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ABSTRACT: The synthesis of bent-shaped mesogens and mesogenic dimers has renewed the field of 

liquid crystals in many ways during the previous decades, for example through the discovery of “exotic” 

mesophases such as the twist-bend nematic phase and the biaxial SmA phase (SmAb). Recently, we 

reported on the observation of a SmAb with a bent-shaped dimer, and on its fast electro-optic effect that 

we interpreted as a biaxial Fréedericksz transition (BFrTr) of the secondary m-director under applied 

electric field (C. Meyer et al, Phys. Rev. X, 11, 031012 (2021)). In this study we used dielectric and 

birefringence techniques to directly measure the splay, 𝐾𝐾11𝑚𝑚, and bend, 𝐾𝐾33𝑚𝑚, elastic constants that 

characterize the elastic distortion modes of the m-director. We observed that during the BFrTr, domains 

of opposite tilt appear and are often enclosed in elliptical defect loops, just like those observed during 

the usual Fréedericksz transition of common nematics, which allowed us to obtain the third (twist) 

elastic constant 𝐾𝐾22𝑚𝑚 ,  from the defect loop ellipticity. Although 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 are of the same order of 

magnitude as 𝐾𝐾11 and 𝐾𝐾33 in the nematic phase of bent-shaped dimers, 𝐾𝐾22𝑚𝑚 is an order of magnitude 

smaller than 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 and also than 𝐾𝐾22 of 5CB. We argue that these features could be generic for 

the intercalated SmAb phase of bent-shaped dimers.  
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I. INTRODUCTION 

The nematic phase (N) is the most simple and best studied liquid-crystal (LC) phase. It is a uniaxial 

anisotropic fluid with long-range orientational order and no long-range positional order. The rod-like 

molecules of the nematic are oriented with their long axes preferentially parallel (or antiparallel) to the 

nematic director, 𝐧𝐧, which is along the D∞h symmetry axis of the phase. In the ground state, the director 

field is uniform, and its distortion requires an elastic energy given by [1]: 

𝑓𝑓𝑛𝑛 = 1
2
�𝐾𝐾11�𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)�

2
+ 𝐾𝐾22�𝐧𝐧 ∙ (𝛁𝛁 × 𝐧𝐧)�

2
+ 𝐾𝐾33�𝐧𝐧 × (𝛁𝛁 × 𝐧𝐧)�

2
�, (1) 

where the vectors  𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)  and  𝐧𝐧 × (𝛁𝛁 × 𝐧𝐧)  and the pseudo-scalar  𝐧𝐧 ∙ (𝛁𝛁 × 𝐧𝐧) describe, respectively, 

the splay, bend, and twist distortions of the director n, and K11, K33, and K22 are the respective elastic 

moduli.  

The distortion elasticity of the nematic phase plays an important role for its ubiquitous technological 

applications, which are based on the competition between the torques applied to the director by the 

surface alignment and by the applied electric field. A typical example is when a voltage U is applied to a 

nematic with positive dielectric anisotropy, ∆ε > 0, in a uniformly aligned planar cell (n parallel to the 

surfaces). Up to some threshold voltage Uc, the director remains uniform as the electric torque is too 

weak to distort the nematic. However, for U > Uc, the director is distorted in the bulk of the cell while 

remaining planarly oriented at the two boundary surfaces (see Appendix A). This field-induced effect [2, 

3] is known as the Fréedericksz transition (FrTr) and it is one of the most important electrooptic effects 

in the nematic phase as it is the basis of most of the display applications of liquid crystals. 

Different and less symmetric nematic phases are obtained when the shape of the mesogenic 

molecules significantly differs from rod-like. For example, bent-shaped molecules form a nematic phase 

with spontaneously broken chiral symmetry that is called the twist-bend nematic, NTB [4, 5]. Another 

phase, the splay-bend nematic, NSB, has also been predicted [4, 6] for bent-shaped molecules but still 

remains elusive. These two modulated nematic phases present elastic properties that are different from 

those of the usual uniaxial N-phase. They show strong spontaneous bend distortion, which has been 

explained with a negative value of the bend modulus, K33 < 0, either plain [4] or renormalized by the 

flexoelectric effect [6].  
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Strongly biaxial molecules, e.g. board-like, have been predicted long ago [7] to form biaxial nematic 

(Nb) phases. The orientational order of this phase is biaxial: the long molecular axis is still, on average, 

parallel to the primary director 𝐧𝐧, but the medium axis of the molecules (along their width) is, on 

average, parallel to a secondary director 𝐦𝐦, 𝐦𝐦 ⊥ 𝐧𝐧. The Nb phase has been reported for lyotropic 

systems [8] but its existence for thermotropic nematics is still actively debated [9]. Due to the lower 

symmetry of the Nb phase (D2h), its elasticity is expected to be quite different from that of usual 

nematics. Indeed, twelve distinct elastic moduli are needed [10, 11] to describe all the distortion modes 

for both, 𝐧𝐧 and 𝐦𝐦 directors which promises a very rich behavior of the field-induced textural transitions 

in the Nb phase.  

Smectic (Sm) phases form another large class of LCs. They have not only long-range orientational 

order like nematics but also long-range positional order because the molecules form stacks of equidistant 

smectic layers. The simplest Sm phase is the smectic A (SmA). In this phase, the director 𝐧𝐧 is parallel to 

the normal to the layers, i.e. to the wave vector q of the smectic density wave. Therefore, the SmA is 

uniaxial, with the same D∞h symmetry as the N phase. However, the elastic energy of the SmA is 

different from the nematic case: in addition to the energy involved in distortions of the director field, 

which is similar to that in Eq. (1), there are additional terms related to the compression and/or dilation of 

the layers, and to the tilt of 𝐧𝐧 away from q. The elastic energy corresponding to these specific smectic 

terms is much higher than the one related to the 𝐧𝐧 distortion. Moreover, due to the incompatibility of the 

bend and twist distortions of the director 𝐧𝐧 with the layered smectic structure, these modes are 

practically forbidden in SmA and therefore only the splay remains possible. As a consequence, the 

Fréedericksz transition is impossible in SmA because the tilt of 𝐧𝐧 away from q requires a huge elastic 

energy. Instead, under strong fields, the SmA undergoes the so-called “ghost transitions” [3, 12] with the 

amplitude of the tilt of 𝐧𝐧 so small that they are difficult to observe. 

When the mesogenic molecules of nematics are board-like or strongly bent-shaped [13, 14, 15], they 

can form biaxial smectic A (SmAb) phases in addition to the N-phase. As in the Nb case, there are two 

distinct directors in the SmAb: the primary director, 𝐧𝐧, that is parallel to the layer normal and defines the 

average orientation of the long molecular axis, and the secondary director, 𝐦𝐦, that is parallel to the 

smectic layer and defines the average orientation of the medium molecular axis. Since the symmetry of 

the SmAb is the same as that of the Nb phase (D2h), its elastic energy is expected to be very complicated, 
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with twelve nematic-like terms that describe the distortion of the two directors and smectic-like terms 

that describe the compression of the layers and the tilt of 𝐧𝐧 with respect to q. 

Recently, studying the electrooptic effects in a SmAb phase formed by bent-shaped mesogenic 

dimers [16], we demonstrated that, under realistically strong electric fields, the elastic behavior of the 

SmAb is in fact much simpler than that of the biaxial nematic. Indeed, the smectic terms in the elastic 

energy forbid the bend and twist of the primary director because these distortions are incompatible with 

the condition  𝐧𝐧 || q and thus require a huge smectic distortion energy. Even the splay distortion of 𝐧𝐧 is 

energetically very costly in confined geometry because it requires reorganization of the layers. 

Therefore, as long as the layered structure remains unperturbed, the only possible distortions must be 

related to the 𝐦𝐦-director because its rotation in the plane of the layers does not alter the periodic 

structure, and, therefore, costs no smectic distortion energy.  

In our previous work [16] we studied the electro-optical properties of a LC mixture that was 

primarily made of bent-shaped molecular dimers consisting of two identical monomers connected by a 

(CH2)7 aliphatic chain, with their long axes tilted towards each other at ~118o angle at apex [17] (Fig. 

1a). This mixture shows a SmAb phase with the monomers arranged in smectic layers; the thickness of 

each layer is about one-half of the molecular length in its lowest-energy conformation. The layers are 

intercalated so that each dimer spans two neighboring layers, with their long molecular axes l  aligned 

along the normal to the smectic layer q. The sign of the tilt angle of the monomer axis alternates layer-

to-layer so that a cross-sectional view of the structure looks like books on bookshelves with their spines 

tilted in alternating directions (Fig. 1b). 

Such a structure is optically biaxial, and can be characterized by an ellipsoid of the wave normals 

(optical indicatrix or index ellipsoid) that has three different semi-axes of length nnn, nmm, and nkk, with 

the nnn axis along the long molecular axes and perpendicular to the smectic layers, and the nmm axis 

parallel to the smectic layer. The primary director  𝐧𝐧  coincides with the nnn axis of the indicatrix. The 

secondary director 𝐦𝐦 is associated with the projection of the monomer axes on the plane of the smectic 

layers and is along the nmm axis of the indicatrix (Fig. 2).  
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Fig. 1 : Schematic representation (a) of the dimer 1,7-Bis(6-(4- hexyloxybenzoyloxy) naphthalene-2-yl) 
heptane (BNA-76) and of the structure of the intercalated  SmAb phase (b). The dimer molecules of 
length l are perpendicular to the completely intercalated smectic layers. The period of the structure, i.e. 
the layer thickness, is d ≈ l /2. In each layer, the monomers are tilted, as in a SmC, and the sign of the tilt 
alternates from one layer to the next. The order parameter tensor of the dimers, Q, represented as a 
parallelepiped, is biaxial. The primary director, n, is perpendicular to the layers and any deviation from 
this direction requires a huge smectic energy. The secondary director, m, is parallel to the layer and the 
monomers are preferentially aligned parallel to the mn-plane. In the ground state of the phase, m is 
uniform, and its in-plane orientation is degenerated. The distortion of m requires only a nematic-like 
energy, in exact analogy with the n-distortions in the nematic phase. 

 

Figure 2. Representations of the molecular 
alignment and the indicatrix in a planar cell in the 
case of rod-shaped molecules in the absence of 
applied voltage (a) and in an external electric field 
E (b) and of board-like molecules in the absence 
of applied voltage (c) and in an external electric 
field E (d).  (For simplicity, the pretilt of the n-
director is not represented in c and d.) 
 

The birefringence properties of the SmAb 

phase were studied in planar cells filled with the 

LC mixture at the isotropic-phase temperature and 

then cooled to the nematic phase. Cooling resulted 

in a uniform planar alignment, with the nematic 

director  𝐧𝐧  along the rubbing direction r. Further cooling resulted in the formation of large monochiral 
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NTB domains with their optic axes along r and alternating handedness of chirality. Further cooling led to 

the coexistence of NTB and SmAb domains, and then, eventually, to the formation of SmAb domains that 

were large enough to allow for the measurement of the local optical retardation of the cell, ∆L. Analysis 

of the textures under a polarizing microscope supported the alignment of the primary director 𝐧𝐧  and, 

hence the nnn axis, along r and along the helix of the NTB domains; the smectic layers of the SmAb 

domains were perpendicular to 𝐧𝐧. The secondary director 𝐦𝐦 and the nmm axis of the indicatrix were 

found to be in the plane of the cell, parallel to the smectic layer, and perpendicular to the primary 

director 𝐧𝐧.  Thus, without electric field, the optical retardation of the cell, ∆L, was determined by the 

difference nnn - nmm. Heating the sample to the isotropic phase and then cooling it back to the SmAb 

phase in the presence of a strong electric field aligned the primary director 𝐧𝐧 along the normal to the 

cell, with the smectic layers parallel to the cell substrates. This allowed us to demonstrate the biaxiality 

of the SmAb phase and we have shown that the difference nmm - nkk, although small, is nevertheless 

significant.  

Locking of the primary director 𝐧𝐧 in the SmAb phase along the rubbing direction r in planar cells 

allows for an independent rotation of the secondary director 𝐦𝐦 in the external electric field. This process 

takes place without altering the layered structure, and implies the possibility of a biaxial Fréedericksz 

transition (BFrTr), which was confirmed experimentally [16], and is illustrated in Fig. 2. When a voltage 

U was applied to the planar cells, with the electric field E perpendicular to the cell, the optical 

retardation of the SmAb domains increased due to the rotation of the secondary director 𝐦𝐦 about the 

fixed primary director 𝐧𝐧. The increase of the optical retardation is consistent with nmm > nkk since, in the 

presence of the field, the optical retardation is determined by (𝑛𝑛nn − 𝑛𝑛eff) which is larger than (𝑛𝑛nn −

𝑛𝑛mm), where 𝑛𝑛eff = 𝑛𝑛mm𝑛𝑛kk

�𝑛𝑛mm2 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃+𝑛𝑛kk2 𝑐𝑐𝑠𝑠𝑛𝑛2 𝜃𝜃
 and θ = θ(U) is the angle between 𝐦𝐦 and E. The threshold 

voltage of this BFrTr, 𝑈𝑈𝑐𝑐𝑚𝑚 ~ 4 V, is less than twice the value measured in the nematic phase of the same 

compound for the classical FrTr, while the field-off relaxation time is about 30 times faster. These 

features make the BFrTr very attractive for technological applications.  

 Decoupling 𝐦𝐦 from 𝐧𝐧 in the planar SmAb domains allows for the description of its elasticity with 

the help of a nematic-like distortion energy [16]: 

 𝑓𝑓𝑚𝑚 = 1/2 {𝐾𝐾11𝑚𝑚 [𝐦𝐦(𝛁𝛁 ∙ 𝐦𝐦)]𝟐𝟐 + 𝐾𝐾22𝑚𝑚  [𝐦𝐦 ∙ (𝛁𝛁 × 𝐦𝐦)]2 + 𝐾𝐾33𝑚𝑚  [𝐦𝐦 × (𝛁𝛁 × 𝐦𝐦)]2} , (2) 
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which is a direct analogy of the usual uniaxial nematic elastic energy but involves only the distortions of 

the 𝐦𝐦-director. Here 𝐾𝐾𝑠𝑠𝑠𝑠𝑚𝑚, for i =1,2,3, are the elastic moduli for splay, twist, and bend distortions of 𝐦𝐦, 

respectively [16].  

By accurately measuring the dependence of the capacitance on the voltage applied to the cells, 

C(U), and then fitting it with a theoretical model [18, 19], we estimated the values of the 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 

moduli in the SmAb phase and found them slightly lower than the corresponding values measured in the 

nematic phase for the 𝐧𝐧-director distortions. However, 𝐾𝐾22𝑚𝑚 cannot be measured in this way because the 

twist distortion is not involved in the BFrTr transition. Also, these dielectric measurements cannot be 

applied to any of the 𝐾𝐾𝑠𝑠𝑠𝑠𝑚𝑚 within the wide (~5°C) coexistence range of the SmAb and NTB phases because 

such measurements would require a large monophasic domain [16]. In this work, we use a different 

technique to analyze the BFrTr that allows for the measurement of all three 𝐾𝐾𝑠𝑠𝑠𝑠𝑚𝑚 constants in the SmAb 

phase as well as in the SmAb - NTB biphasic coexistence range. Our results show that the anisotropy of 

the biaxial nematic-like elastic constants in the SmAb phase, 𝐾𝐾11𝑚𝑚 > 𝐾𝐾33𝑚𝑚 >> 𝐾𝐾22𝑚𝑚, is very unusual 

compared to that of the uniaxial nematic phase of typical rod-like mesogens or even to that measured in 

the nematic phase of the same BP12 mixture. 

 

II. MATERIALS AND METHODS  

A. Liquid crystal materials.   

For this work, we used the LC mixture “BP12” consisting of 88% (by weight) of 1,7-Bis(6-(4-

hexyloxybenzoyloxy)naphthalene-2-yl)heptane dimer (BNA-76) (Fig. 1) [17] and 12% of the rod-like 

nematogen 4′-cyano[1,1′-biphenyl]-4-yl 4-hexylbenzoate (6-PEPP-N) (commercially available from 

Xi’an Ruilian, China) (Fig. 3) [16]. The phase transition temperatures of the mixture measured by DSC 

are: Iso – 162 °C - N -  109 °C - NTB  - 102 °C - NTB/SmAb  - 97 °C - SmAb  - ~ 70 °C -  Cr 

Note that the BP12 mixture has an unusually wide (≈ 5oC) temperature range of coexistence of the 

NTB and SmAb phases. 

Figure 3. Schematic representation of 4′-cyano[1,1′-
biphenyl]-4-yl 4-hexylbenzoate (6-PEPP-N) 
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B. Sample preparation 

In our experiments we used planar cells assembled with anti-parallel rubbing directions of 

polyimide alignment layers deposited on the conducting layers serving as electrodes which allowed us to 

apply the electric field normal to the cell substrates. Depending on the task, we used cells with different 

gaps. The thinner cells with a gap of about 1.5 µm showed faster relaxation of the 𝐦𝐦 director during the 

transition and thus were used for the birefringence study of the BFrTr. Cells with gaps of 5 and 9.8 µm 

were used for the studies of the shape of the domain walls under electric field because the thicker cells 

provided for slower collapse of the domain-wall loops. The cells were filled by capillarity with the BP12 

mixture in the isotropic phase and were then slowly cooled down. The alignment layers provide a pretilt 

angle of 2o for the 𝐧𝐧 director in the nematic phase and about zero pretilt for both 𝐧𝐧  and 𝐦𝐦 in the SmAb 

phase. Large monophasic planarly-aligned single domains of the SmAb phase suitable for the dielectric 

and birefringence investigation of the BFrTr were obtained by applying thermal and electric field 

oscillations during the slow cooling of the cells through the NTB and NTB/SmAb temperature range, as 

described previously [16]. The zero-pretilt of 𝐦𝐦 in the SmAb phase allowed for the appearance of “twin” 

domains (domains with opposite directions of director tilt in the middle of the cell) above the BFrTr 

threshold that were required for the measurement of the 𝐾𝐾22𝑚𝑚 elastic modulus. 

 

 

C. Dielectric measurements 

We used the same dielectric technique and measuring setup that were described in [16]. The 

technique is based on the measurement of the cell capacity C(U) (10-μm-thick commercial cells (MUT, 

Poland) treated to provide planar alignment) under increasing applied voltage U. This gives the values of 

the dielectric tensor components ε⊥ = εkk and  ε|| = εmm, with the m-director perpendicular and parallel to 

the applied field at U = 0 and high voltage, respectively. Fitting of the C(U) curve with the results of 

simulations based on the well-established theory of the FrTr in nematics [16, 20, 21, 22] provides the 

value of the Fréedericksz threshold voltage 𝑈𝑈cm and the splay elastic constant 𝐾𝐾11𝑚𝑚. The slope of the BC 

part of the C(U) curve in Figure 10 depends on the ratio 𝐾𝐾33𝑚𝑚/ 𝐾𝐾11𝑚𝑚, and thus provides the value of 𝐾𝐾33𝑚𝑚. 
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This technique allows for almost complete characterization of the nematic-like elasticity of the SmAb 

phase with an important exception of the twist elastic constant 𝐾𝐾22𝑚𝑚   that cannot be measured due to the 

difficulty in obtaining the cell geometry required for the twist FrTr. Another limitation of this technique 

is the requirement of a monophasic region spanning the whole area between the cell electrodes because 

the capacitive signal is integrated over the electrode area. Therefore, the wide biphasic temperature 

range is inaccessible for this technique. This limitation is an important drawback for the BP12 case, as 

the variation of the elastic constants can be significant in this range due to the fast variation of the in-

layer orientational order close to the NTB/SmAb phase transition.  

 

D. Birefringence measurements. 

To measure the elastic constants in the biphasic region, we use a birefringence measurement 

technique inspired by previous works for the nematic phase [20, 22]. Indeed, the birefringence 

measurement is local, and can be performed with excellent precision within a uniform domain with size 

as small as 10 × 10 µm2. The details of the measurement technique and setup are published in [16, 23]. 

In brief,  we measure the voltage dependence of the optical path difference at normal incidence, ∆L(U) = 

L|| - L⊥, where L|| and L⊥ refer to the optical paths for light polarized parallel and perpendicular to the 

primary director 𝐧𝐧, respectively, in a thin (1.5 µm thick) cell with planar alignment. ∆L(U) is measured 

under polarizing microscope (Leitz Ortholux) equipped with a Sénarmont compensator and a highly 

sensitive photomultiplier-based photometer. Our optical measurement system has a small window with a 

variable size of about 20 µm × 20 µm. By adjusting its position and size, we could acquire the signal 

from a uniform single SmAb domain and thus measure ∆L(U) in the NTB-SmAb co-existence temperature 

range. ∆L(U) can be expressed [16] in terms of the three refractive indices of the biaxial phase, nnn, nmm, 

and nkk:  

𝛥𝛥𝛥𝛥(𝑈𝑈) = ∫ �𝑛𝑛nn −
𝑛𝑛mm𝑛𝑛kk

�𝑛𝑛mm2 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃+𝑛𝑛kk2 𝑐𝑐𝑠𝑠𝑛𝑛2 𝜃𝜃
�𝑑𝑑

0 𝑑𝑑𝑑𝑑, (3) 

where 𝜃𝜃is the angle between m and the normal to the cell. 

The fitting of the ∆L(U) curve with the theoretical model provides precise values for the BFrTr 

threshold, 𝑈𝑈cm, and nnn - nmm and nnn – nkk. Moreover, if the dielectric tensor components εmm and εkk are 
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available from another experiment, the fit provides, by analogy with the dielectric case, the values of  

𝐾𝐾11𝑚𝑚  and 𝐾𝐾33𝑚𝑚. 

 

 

E. Measurement of 𝑲𝑲𝟐𝟐𝟐𝟐
𝒎𝒎  by fitting the shape of the domain-wall loops 

For the measurement of the elastic constant 𝐾𝐾22𝑚𝑚, we used a technique that was proposed long ago 

for nematics in the zero-pretilt cell geometry [24] and was shown to give reliable values of a ratio of 

elastic constants  [25, 26]. It is based on the analysis of the shape of the domain walls separating two 

types of domains with opposite director tilt angles that occur in the bulk of the nematic layer during the 

FrTr. The textures of the two domains are symmetric (see Fig. 4) and hence have the same total energy. 

When a high enough voltage is applied abruptly in a zero-pretilt nematic cell, the mass-flow generated 

by the fast rotation of the director favors the formation of two types of domains, so-called “twin-

domains”, that are separated by characteristic domain walls (DWs). Because the director tilt angle 

changes sign inside the domain wall, the elastic energy of the wall is higher than that in the twin-

domains. Therefore, the wall costs some excess energy per unit surface that depends on the wall 

orientation. When the DW forms a closed loop around a uniform domain of one type, the loop starts 

shrinking progressively under its line tension (the line tension is the excess energy of the wall integrated 

over the cell thickness), and eventually disappears. In order to minimize its total energy, the loop keeps 

its equilibrium shape during contraction since it is defined only by the anisotropy of the line tension. 

 

Figure 4. FrTr in a nematic cell with two twin domains (on the left and right) separated by a wall (the 
region in the middle, between the vertical dashed lines). In the two domains, the tilt angles of the 
director with respect to the cell surfaces have opposite signs and the tilt vanishes in the middle of the 
wall. 
 

E ψ
−ψ
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Originally, this technique was proposed by F. Brochard  [24] who considered the case of a magnetic 

field-induced FrTr in a planar cell. In her theoretical treatment, she adopted the two-constant 

approximation: K11 = K33 = K ≠ K22. Under this assumption, the quasi-equilibrium shape of the loop was 

predicted to be an ellipse, with the ratio of its axes a|| / a⊥ = (K/K22)1/2 (here the subscripts refer to the 

orientation of the long axis of the ellipse with respect to the preferred director orientation at the cell 

surface). Experiments conducted by L. Leger [25, 26] confirmed this prediction and demonstrated that 

this technique is reliable for the measurement of the ratio of elastic constants. 

Because of the similarity between the distortion energies of the uniaxial nematic (associated with re-

orientation of 𝐧𝐧) and biaxial SmAb (associated with the decoupling and independent rotation of 𝐦𝐦 about 

the strongly anchored 𝐧𝐧), we expect that the same technique can be applied for the BFrTr in the SmAb 

phase. However, in this case, the approach needs to be generalized to an electric field-induced FrTr, 

which is more complex because the field in the sample is not uniform due to the finite and non-

negligible value of ∆ε/ε⊥ [27]. Moreover, due to the significant difference between the values of 𝐾𝐾11𝑚𝑚 and 

𝐾𝐾33𝑚𝑚 for our material, we need to consider the complete anisotropy of the elastic moduli, K11 ≠ K22 ≠ K33. 

The generalized treatment performed for the case of a usual nematic is presented in Appendixes A and 

B. Remarkably, despite the significant difference in the absolute value of the excess energy of the wall 

compared to the simpler case described in Ref. [24], the shape of the loop in quasi-equilibrium is also an 

ellipse, with axial ratio a|| / a⊥ = (K33/K22)1/2. Thanks to the analogy between the FrTr in the nematic and 

BFrTr in the SmAb phases, we obtain for the SmAb case:  

𝑎𝑎∥𝑚𝑚/𝑎𝑎⊥𝑚𝑚  = (𝐾𝐾33𝑚𝑚  / 𝐾𝐾22𝑚𝑚)1/2,  (4) 

where the subscripts refer to the orientation of the ellipse axes with respect to the director 𝐦𝐦 in the 

absence of field. A typical case of a loop around one of the twin domains during the BFrTr is shown in 

Fig. 5. The shape of the loop is indeed elliptical, with its major axis parallel to the 𝐦𝐦-director and an 

axial ratio of about 3, which suggests an unusually high value of the 𝐾𝐾33𝑚𝑚/𝐾𝐾22𝑚𝑚 ratio. 

   

Figure 5. Biphasic SmAb/NTB sample at T = 102.0 °C under electric 
field (U = 5 V > 𝑈𝑈cm, f = 6 kHz). The BFrTr takes place in the SmAb 
regions (green). The blue double-headed arrows show the orientation 
of the 𝐧𝐧- and 𝐦𝐦-directors of the SmAb phase. The elliptically shaped 
DW that separates one of the twin domains from the other is clearly 
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visible in the SmAb region (dark line). The dashed red line that is superposed on the wall is an ellipse 
with axial ratio 𝑎𝑎∥𝑚𝑚/𝑎𝑎⊥𝑚𝑚 = 2.66.  

 
 

To induce the formation of the domain-wall loops, we abruptly apply a d.c. or a.c. (f = 6 kHz, U = 5 

Vrms) voltage (Fig. 6). Similarly to the nematic case [3], the fast rotation of 𝐦𝐦 under the applied electric 

field induces backflow and the formation of electro-convective rolls, which results in the emergence of 

both kinds of twin-domains separated by DWs. At first, the domain walls are irregular, with curvature at 

all possible wave lengths (Fig. 6 b). However, due to the high line-tension, the DWs start shrinking and, 

gradually, the loops relax to an elliptical shape (Fig. 6 d). Then, the loops further slowly shrink due to 

the line tension. In this process, their axial ratio remains approximately constant (the plateau region in 

Fig. 7). Such behavior is a signature of a quasi-equilibrium process. Finally, at the end of the process, 

the loop contraction rate increases until the domains vanish. In this out-of-equilibrium regime, the axial 

ratio starts varying (a low-value outlier in Figure 7). To precisely measure the time dependence of the 

axial ratio as the domains collapse, we recorded videos of the process, and then analyzed them frame-by-

frame. Only sequences for which the axial ratio remains constant were used for further analysis because 

they correspond to a quasi-equilibrium regime for which Eq. (4) is valid. (Some other sequences 

demonstrate a different behavior, mainly due to the pinning of the walls on surface defects or on the 

NTB/SmAb interface.) 

 

Figure 6. Formation of twin domains and coarsening of the domain structure (98 °C). The green regions 
are in the NTB phase, the brown regions are the twin domains in the SmAb phase under field (U = 9 V, 

f = 6 kHz), the yellow regions correspond to planar 
orientation either at U = 0 (a) or within the domain 
walls (b-d). The photos were taken before (a) and 
0.03, 0.06 and 0.45 seconds after turning on the 
electric field (b-d), respectively.  

 

a b c d
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Figure 7.  Evolution of the axial ratio of the elliptical loops. When the loop is in quasi-equilibrium 
in absence of pinning on the surfaces and of defects of the texture, it shrinks keeping its axial ratio 
almost constant (open symbols, 102.3 °C). The solid line shows the average value of the plateau and the 
dashed lines show the upper and lower 95% confidence limits.  

 

 

III. RESULTS AND DISCUSSION 

A. Dielectric and elastic properties obtained by fitting the C(U) curve 

C(U) curves were measured at different temperatures (see Section II) and fitted with the theoretical 

models. The multi-step fitting procedure is non-trivial, and was performed for each temperature as 

follows: 

1. First, εkk was determined and εmm was estimated from the capacitance and appropriate cell 

geometry at low and high voltages respectively. The third component, εnn, was measured in a 

field-induced quasi-homeotropic domain as described in [16]; 

2. A rough estimation of the value of the Fréedericksz threshold voltage 𝑈𝑈cm and data from step 1 

were used to calculate the splay elastic constant 𝐾𝐾11𝑚𝑚; 

3. The slope of the linear portion of the C(U) curve was used to estimate 𝐾𝐾33𝑚𝑚/𝐾𝐾11𝑚𝑚 ratio, and thus 

𝐾𝐾33𝑚𝑚 itself; 

4. The parameters found in steps 1-3 were used as initial conditions for the precise fitting 

procedure. The 𝐦𝐦-director distribution was calculated for each voltage (using Euler-Lagrange 

formalism) and was then used to calculate the theoretical C(U) curve. By varying the 𝐾𝐾11𝑚𝑚, 𝐾𝐾33𝑚𝑚, 

and εmm parameters, an almost perfect fit of the experimental C(U) curve can be obtained. This 

fitting procedure is multi-parametric, which raises the question of its uniqueness. However, as 

mentioned in the Section II, the various parts (A-E in Fig. 10) of the C(U) curve have different 

sensitivities to variations of different fitting parameters. For example: (i) the almost flat segments 

at the beginning (part AB) and the end (part DE) of the curve give the εkk and εmm values 

respectively; (ii) the voltage at which the capacity starts increasing rapidly gives the approximate 

value of 𝑈𝑈cm, and is very sensitive to 𝐾𝐾11𝑚𝑚; (iii) the curvature at point B is mostly defined by the 
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pretilt; (iv) the slope of the segment BC is sensitive to the 𝐾𝐾33𝑚𝑚/𝐾𝐾11𝑚𝑚 ratio. Thus, we believe that 

the dielectric and elastic constants obtained by our fitting procedure are accurate; 

5. The procedure was repeated for various temperatures within the SmAb range, and the results are 

presented in Fig. 8 and 9. 
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Figure 8. Temperature dependence of the dielectric tensor components measured in the SmAb phase [16] 
and their extrapolation in the biphasic region. 
 

It is impossible to measure the dielectric constants in the biphasic region using the method described 

above. The presence of NTB domains leads to non-uniform response of the sample in an external electric 

field and, therefore, to incorrect values of εkk and εmm. However, the linear dependence on temperature 

of both εkk and εmm across the whole SmAb range allows for its extrapolation in the biphasic region 

(Fig. 8).  
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Figure 9. Temperature dependences of the Fréedericksz threshold 𝑈𝑈cm (a) and the elastic constants 
𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 (b) obtained by fitting the C(U) curves (in the monophasic SmAb range of the BP12 mixture 
[16], open symbols) and the optical retardation (solid symbols, discussed below) with the theoretical 
model. The solid line is a linear interpolation of the 𝐾𝐾33𝑚𝑚  data used for calculation of 𝐾𝐾22𝑚𝑚. 

 

B. Elastic properties obtained from fitting the ∆L(U) curves 

The fitting procedure of the ∆L(U) curves is almost identical to the one described in section III A. 

The only difference is that the initial fitting parameters are nkk, nmm (measured in [16]), and εkk, εmm 

(which are needed for the calculations of the 𝐦𝐦-director distribution and were determined in the 

previous section). The experimental ∆n(U) curve and the best fit for one of the temperatures within the 

SmAb range are shown in Fig. 10 to illustrate the good quality of the fit. As mentioned above, fitting the 

∆L(U) curve offers a significant advantage over dielectric methods, because it allows for the  

determination of 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in the biphasic range of the BP12 mixture [16].  
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Figure 10. Voltage dependence of the birefringence measured in the SmAb phase at T = 93.0 °C (open 
circles) and its best fit (solid line) by the theoretical model of the BFrTr.  
 

The data for  𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in both the SmAb and the biphasic range are presented in Fig.9 along with data 

obtained using the dielectric method. 

 

C. Comparison of dielectric and optical methods 

As evident from Fig. 9, the 𝐾𝐾11𝑚𝑚 values determined via the dielectric method are in excellent 

agreement with those determined by fitting the ∆L(U) curve, therefore, both methods appear to be 

reliable. The results for 𝐾𝐾33𝑚𝑚, however, are significantly different: The values of 𝐾𝐾33𝑚𝑚 obtained by the 

dielectric method are considerably higher at all temperatures, although the discrepancy diminishes with  

increasing temperature. This discrepancy can be explained by analyzing the textural changes in the 

sample in the vicinity of 𝑈𝑈cm. Figure 11 shows microphotographs of a SmAb sample at different applied 

voltages. The sample looks almost uniform with few defects at 𝑈𝑈 ≤ 𝑈𝑈cm (Fig. 11 a), however, at 𝑈𝑈 ≈

𝑈𝑈cm, many more defects appear in the field of view (Fig. 11 b). These defects are mostly walls that 

separate the twin-domains with opposite signs of the tilt angle. At low temperature, the walls are pinned 

to the surfaces and inhomogeneities of the texture. At higher voltages, some of the walls disappear due 

to the shrinkage of the loops but others remain as they are strongly pinned (Fig. 11 c). As long as  the 

voltage remains higher than 𝑈𝑈cm, these strongly pinned defects do not disappear, and only their thickness 

decreases with increasing voltage.  

 

 

Figure 11. SmAb sample at T = 88.0 °C under electric field: a) U = 3.09 Vrms; b) U = 4.24 Vrms; c) 
U = 4.80Vrms (f = 6 kHz). The cell is observed under a polarizing microscope with a Senarmont 

a b c 
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compensator for better visualization - darker state corresponds to higher birefringence. Scale bar: 
100 µm. 
 
Because the capacitance of the sample depends on the dielectric permittivity of the material averaged 

over the whole active area, the presence of areas with the director oriented differently from its 

orientation within the monodomain leads to a capacitance that is lower compared to that of a perfectly 

uniform texture. This affects very little the experimental value of  𝑈𝑈cm and, therefore, the calculated 

value of 𝐾𝐾11𝑚𝑚. However, the presence of the defects alters the slope of C(U) in its steeper part (Fig. 12) 

which depends almost exclusively on 𝐾𝐾33𝑚𝑚/𝐾𝐾11𝑚𝑚. Thus, with 𝐾𝐾11𝑚𝑚 essentially unaffected, the presence of 

the defects significantly affects the calculated value of 𝐾𝐾33𝑚𝑚. 

 

 
 
Figure12. Voltage dependence of the birefringence (left scale) and the average dielectric constant (right 
scale) in the SmAb phase of the BP12 mixture at 88 °C. The symbols are the experimental results and the 
solid lines show the best fit with the theoretical model. The threshold voltages, Uc, computed from the 
two fits are respectively 3.89 and 3.78 V, resulting in almost identical values of the elastic constant 𝐾𝐾11𝑚𝑚. 
On the contrary, the ratios 𝐾𝐾33𝑚𝑚/𝐾𝐾11𝑚𝑚 estimated from the two experiments, 0.32 and 0.56, are quite 
different, leading to significantly different values of 𝐾𝐾33𝑚𝑚, 3.9 and 6.4 pN, respectively. The inset shows 
the magnified parts of the curves in the vicinity of Uc, clearly demonstrating the difference in slope. 
 

The fact that different cells were used for dielectric and optical measurements is also worth 

mentioning in this respect because these cells may differ in pretilt and anchoring energy. Our modeling, 

however, confirms that a 1° to 2° variation of the pretilt angle and quite large variations of anchoring 
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energy do not affect the C(U) curve to the level seen in the experiment. Therefore, we conclude that a 

defective texture is the main source of the discrepancy in the 𝐾𝐾33𝑚𝑚 values obtained by the two methods 

making the dielectric method less reliable. The optical method, in contrast, allows for selection of a very 

small and well-aligned uniform area for the measurement, and therefore is preferred for the calculation 

of the 𝐾𝐾33𝑚𝑚 values. 
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Figure 13. Temperature dependence of the measured axial ratio of the elliptical defect loops (a) and 
the ratio of the elastic constants (b) for twist and bend distortions of the 𝐦𝐦-director. The solid lines are 
linear interpolations of the data; the dashed lines show the upper and lower 95% confidence limits. 

 

D. 𝑲𝑲𝟐𝟐𝟐𝟐
𝒎𝒎  elastic constant calculated from domain wall ellipticity 

The temperature dependence of the axial ratio of the elliptical defect loops obtained by processing 

the video recordings (as described in Section II E) is presented in Fig. 13a.The temperature dependence 

of 𝐾𝐾22𝑚𝑚  (shown in Fig. 14) was calculated according to equation (4) from the ratios of 𝐾𝐾33𝑚𝑚  / 𝐾𝐾22𝑚𝑚 and 

𝐾𝐾33𝑚𝑚  values obtained via the optical method (presented in Fig. 9, solid symbols). The summary of the 

obtained 𝐾𝐾𝑠𝑠𝑠𝑠𝑚𝑚 moduli is shown in Fig. 14. 
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Figure 14. Temperature dependence of all three elastic moduli for the 𝐦𝐦-director distortion in the 
intercalated SmAb phase of the BP12 mixture.  

 
 
 
 
E. DISCUSSION 
 

The similarity of the elliptical domain walls observed during the BFrTr and the ones occurring 

during the usual FrTr strikingly shows that the nematic m-director in the SmAb phase behaves quite like 

the n-director of usual nematics. This means that the smectic positional order of the molecules does not 

affect the realignment ability of the m-director.  This deep analogy between the realignment of n during 

the FrTr (studied in detail in Appendices A and B) and of m during the BFrTr underlies our calculations 

of 𝐾𝐾22𝑚𝑚.    

As evident from the elastic constant data (summarized in Figure 14), the temperature dependence of 

𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in the SmAb is qualitatively similar to that of common rod-like nematics. Both decrease 

with increasing temperature and are of the same order of magnitude but slightly smaller than those of 

5CB [22]. However, one striking difference is that the ratio 𝐾𝐾11𝑚𝑚 / 𝐾𝐾33𝑚𝑚 ≈ 3, whereas for common rod-like 

nematics 𝐾𝐾33𝑛𝑛  ≥ 𝐾𝐾11𝑛𝑛 . As was discussed in Ref.[16], this behavior is typical for the nematics that also form 

a NTB phase due to non-trivial bend elasticity. Moreover, in contrast to common rod-like nematics, in the 
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case of SmAb, 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 are associated with the rotation of the molecule about its long axis [16], 

which requires less energy than the rotation about a short molecular axis .  

Another surprising difference with common nematics is that the 𝐾𝐾22𝑚𝑚 constant is ten times smaller 

than 𝐾𝐾33𝑚𝑚 (and about 30 times smaller than 𝐾𝐾11𝑚𝑚). Moreover, it is also almost one order of magnitude 

smaller than 𝐾𝐾22 of usual nematics like 5CB.  Qualitatively, this behavior can be explained by the 

anticlinic orientation of the monomers in adjacent smectic layers of the intercalated SmAb phase, which 

makes the nematic-like contribution to 𝐾𝐾22𝑚𝑚 negligible. The residual twist elasticity in the intercalated 

SmAb phase should then only be attributed to the twist elasticity of the central spacer of the BNA-76 

dimers, which is likely small due to the large number of possible conformations.  

 

IV. CONCLUSIONS 

By combining different experimental techniques, we measured all the principal dielectric, optic, and 

elastic constants and their temperature dependences in both the intercalated SmAb phase and the SmAb - 

NTB biphasic coexistence range of the BP12 mixture. The measurement and subsequent modeling of the 

sample capacitance versus applied voltage curves allowed us to obtain the dielectric constants and elastic 

moduli 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in the SmAb. The measurement and modeling of the optical retardation of the 

sample as a function of applied voltage allowed us to obtain the refraction indices and the elastic moduli 

𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in the SmAb domains in both the monophasic SmAb and the SmAb - NTB biphasic 

coexistence range. The analysis of the defect loops formed during the BFrTr of the m-director, coupled 

with a theoretical model that exploits the similarity with the FrTr in ordinary nematics, allowed us to 

also calculate 𝐾𝐾22𝑚𝑚. Although the 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 elastic constants are of the same order of magnitude as the 

elastic constants of common rod-like nematics, 𝐾𝐾22𝑚𝑚 is abnormally small, about a tenth of the typical 

value of 𝐾𝐾22 for ordinary nematics. These remarkable features of the nematic-type elasticity of the m-

director may in fact be typical of the intercalated SmAb phase of bent-shaped dimers. In a follow-up 

paper, we will present a simple theoretical model for the estimation of the nematic-like elastic constants 

𝐾𝐾𝑠𝑠𝑠𝑠𝑚𝑚 in the intercalated SmAb phase of liquid-crystalline compounds of this kind.  

The rather low values of 𝐾𝐾11𝑚𝑚 and 𝐾𝐾33𝑚𝑚 in the SmAb phase, which is more typical of a nematic than of 

a smectic, are important for applications because relatively low voltages can be used for switching the 

device despite its operation in a smectic phase. Moreover, the very low rotational viscosity involved in 



 
21 

 

the BFrTr leads to response times that are about thirty times shorter than the typical ones for the FrTr 

[16]. The combination of these advantages suggests that the BFrTr of the m-director could find 

applications in non-display electro-optic devices that require fast switching.    
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Appendix A: Director distribution and elastic energy in a nematic monodomain during the 

electric-field-induced Fréedericksz transition  

Before examining the shape of the wall separating two nematic domains with opposite signs of the 

tilt angle ψ (Fig. 4), let’s first consider the energy stored in each individual monodomain when a usual 

nematic undergoes a Fréedericksz transition. Inside such a domain, the director distribution is uniform 

and is characterized by a splay-bend elastic deformation subject to zero pretilt at the LC layer 

boundaries. On both surfaces the director is oriented along the x-axis (see Fig. A1). The electric field is 

applied along the cell normal, z. When the applied voltage is larger than the FrTr threshold, U > Uc, the 

director tilts at an angle ψ = ψ (z) but remains in the xz-plane: 

          n(z) = (𝑐𝑐𝑐𝑐𝑐𝑐 ψ(z), 0, 𝑐𝑐𝑠𝑠𝑛𝑛 ψ(𝑑𝑑) ) (A1)  

The tilt angle reaches its maximum value, ψm = ψ(d/2), in the middle of the LC layer and we assume that 

the applied voltage is small enough to satisfy the condition ψm
2 << 1.  

 

 

 

 
 
 
Figure A1. Single nematic monodomain undergoing a FrTr. (The director n is confined in a vertical 
plane.) 
 

In the presence of the external electric field, the free energy of the LC per unit volume is: 

𝑓𝑓𝑛𝑛 = 1
2
�𝐾𝐾11�𝐧𝐧(𝛁𝛁 ∙ 𝐧𝐧)�
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+ 𝑫𝑫 ∙ 𝑬𝑬�.                (A2) 

In our case, it takes the following form:  
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Introducing the notations  κ = 𝐾𝐾33−𝐾𝐾11
𝐾𝐾11

   and   𝜔𝜔 = Δε𝑐𝑐𝑠𝑠𝑛𝑛2𝜕𝜕
𝜀𝜀⊥

<< 1 we have: 
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𝑓𝑓 = 1
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Here, 𝐸𝐸0 = 𝐷𝐷
𝜀𝜀0𝜀𝜀⊥

= 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐, due to 𝐷𝐷𝜕𝜕 = 𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐. Since 𝜔𝜔 ≪ 1, the free energy density becomes:  
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𝜕𝜕𝜓𝜓
𝜕𝜕𝑑𝑑
�
2

+
𝜀𝜀0𝜀𝜀⊥𝐸𝐸02

𝐾𝐾11
(1 − 𝜔𝜔 + 𝜔𝜔2)� = 

    =  1
2
𝐾𝐾11 �(1 + κ𝑐𝑐𝑠𝑠𝑛𝑛2𝜓𝜓) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2
− 𝜀𝜀0Δε𝐸𝐸02

𝐾𝐾11
 𝑐𝑐𝑠𝑠𝑛𝑛2𝜓𝜓 �1 − Δε𝑐𝑐𝑠𝑠𝑛𝑛2𝜕𝜕

𝜀𝜀⊥
��.  (A5) 

Inside the domain, 𝜓𝜓  is small, and since 𝜓𝜓 (0) = 𝜓𝜓 (d) = 0 at the boundaries, the function ψ(z) is 

symmetric. It reaches its maximum amplitude at the middle of the cell: 𝜓𝜓m = 𝜓𝜓(d/2) and can be 

approximated by 𝜓𝜓(𝑑𝑑) = 𝜓𝜓𝑚𝑚 𝑐𝑐𝑠𝑠𝑛𝑛 �𝜋𝜋𝜕𝜕
𝑑𝑑
�  that satisfies all these conditions. Substituting 𝜓𝜓 by this function 

in Eq. (A5) and using 𝑐𝑐𝑠𝑠𝑛𝑛2𝜓𝜓 ≈ 𝜓𝜓2 − 1
3
𝜓𝜓4, we obtain the free energy per unit volume averaged over the 

thickness of the LC layer, 𝑓𝑓:̅  

𝑓𝑓̅ = 1
𝑑𝑑 ∫ 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑

0 = 1
2
𝐾𝐾11 �

1
2
�𝜋𝜋
𝑑𝑑
�
2
𝜓𝜓𝑚𝑚2 + 1

8
κ �𝜋𝜋

𝑑𝑑
�
2
𝜓𝜓𝑚𝑚4 −

𝜀𝜀0Δε𝐸𝐸02

𝐾𝐾11
�1
2
𝜓𝜓𝑚𝑚2 −

3
8
𝜓𝜓𝑚𝑚4 �

1
3

+ Δε
𝜀𝜀⊥
���. (A6) 

If ψm is small, then 𝑓𝑓̅ ≈ 1
4
𝐾𝐾11𝜓𝜓𝑚𝑚2 ��

𝜋𝜋
𝑑𝑑
�
2
− 𝜀𝜀0Δε𝐸𝐸02

𝐾𝐾11
� ≥ 0. We then introduce a critical field  𝐸𝐸𝑐𝑐 (the field at 

which the Fréedericksz threshold takes place): 

 𝐸𝐸𝑐𝑐 = 𝑈𝑈𝑐𝑐
𝑑𝑑

= 𝜋𝜋
𝑑𝑑 �

𝐾𝐾11
𝜀𝜀0Δε

  so that  �𝜋𝜋
𝑑𝑑
�
2

= 𝐸𝐸𝑐𝑐2

𝐾𝐾11
𝜀𝜀0Δε . 

This transforms Eq. (A6) into: 

𝑓𝑓 ̅ = 1
4
𝜀𝜀0Δε �𝜓𝜓𝑚𝑚2 �𝐸𝐸𝑐𝑐2 − 𝐸𝐸02� + 1

4
𝜓𝜓𝑚𝑚4 �κ𝐸𝐸𝑐𝑐2 + �1 + 3Δε

𝜀𝜀⊥
�𝐸𝐸02��    (A7) 

Minimization with respect to ψm  results in: 

 𝜓𝜓𝑚𝑚2 = 2(𝐸𝐸0
2−𝐸𝐸𝑐𝑐2)

κ𝐸𝐸𝑐𝑐2+�1+
3Δε
𝜀𝜀⊥

�𝐸𝐸02
 , (A8)  

which is valid for small κ and Δε 𝜀𝜀⊥⁄  ratio.  

Let’s now calculate the voltage U as a function of the integration constant E0 defined above.  
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By using Dz=D=εο(ε⊥ +∆ε sin2ψ)E(z), we obtain  E(z)= 𝐸𝐸0
1+Δε𝜀𝜀⊥

𝑐𝑐𝑠𝑠𝑛𝑛2𝜕𝜕
 , and then:   

𝑈𝑈 = ∫ 𝐸𝐸(𝑑𝑑)𝑑𝑑𝑑𝑑 ≈ 𝐸𝐸0 ∫
1

1+Δε𝜀𝜀⊥
𝜕𝜕2�1−13𝜕𝜕

2�
𝑑𝑑𝑑𝑑𝑑𝑑

0
𝑑𝑑
0 . (A9) 

Let’s now approximate U further, recognizing that the quantity 𝛼𝛼 = Δε
𝜀𝜀⊥
𝜓𝜓2 �1 − 1

3
𝜓𝜓2� is small. Then, up 

to terms of the order 𝜓𝜓𝑚𝑚4  we obtain: 

𝑈𝑈 ≈ 𝐸𝐸0 ∫ �1 − Δε
𝜀𝜀⊥
𝜓𝜓𝑚𝑚2  𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
� �1 − 1

3
𝜓𝜓𝑚𝑚2  𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
�� + �Δε

𝜀𝜀⊥
�
2
𝜓𝜓𝑚𝑚4  𝑐𝑐𝑠𝑠𝑛𝑛4 �𝜋𝜋𝜕𝜕

𝑑𝑑
�� 𝑑𝑑𝑑𝑑𝑑𝑑

0 ,    (A10) 

which results in:  

𝑈𝑈 = 𝐸𝐸0𝑑𝑑 �1 −
1
2
Δε
𝜀𝜀⊥
𝜓𝜓𝑚𝑚2 + 1

8
Δε
𝜀𝜀⊥
�1 + 3 Δε

𝜀𝜀⊥
�𝜓𝜓𝑚𝑚4 �. (A11)  

For 𝜓𝜓2 ≪ 1, both U and 𝜓𝜓𝑚𝑚2  are simple functions of the integration constant E0. As the component of the 

dielectric permittivity tensor εzz and the optical anisotropy ∆n are both functions of 𝜓𝜓2, they can also be 

obtained as functions of E0. (The same approach was used for fitting of the C(U) curves.)  
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Appendix B: Excess energy of the domain wall between twin domains and shape of the loop 

around a domain 

After establishing the energy density function of a nematic monodomain (Appendix A), we now 

calculate the excess energy of a domain wall that separates two monodomains with opposite director 

tilts. Let’s first calculate the energy stored in the domain wall. Since the wall encircles the domain, its 

orientation with respect to the director varies. Therefore, an important twist distortion is present across 

the wall and needs to be considered. Let the field be applied along the z-axis, resulting in the formation 

of twin domains separated by an infinitely long straight wall placed at x = 0 and parallel to the y-axis. 

On the two cell surfaces the imposed orientation of the director n is in the xy-plane and makes an angle 

ϕ with the x-axis (Figure B1). In this geometry, the director is: 

 𝐧𝐧 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓, 𝑐𝑐𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓, 𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓) (B1) 

 

 

Figure B1: Director geometry and notations used in the calculations 

 

Under the field, n rotates in a vertical plane and the angle ϕ remains constant and independent of the 

position. On the contrary, inside the domain wall 𝜓𝜓 = 𝜓𝜓(𝑥𝑥, 𝑑𝑑) and, in the middle of the wall, 𝜓𝜓 vanishes: 

𝜓𝜓(0, 𝑑𝑑) = 0, while far from the wall (deep inside the monodomain) 𝜓𝜓 depends only on z, as shown in 

Appendix A. 

The free energy density is: 

ϕ
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𝑓𝑓 = 1
2
�𝐾𝐾11 �−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝐾𝐾22 𝑐𝑐𝑠𝑠𝑛𝑛2𝑐𝑐 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2

+ 𝐾𝐾33 � 𝑐𝑐𝑠𝑠𝑛𝑛2𝜓𝜓 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+

         𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑛𝑛(2𝜓𝜓) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝑐𝑐𝑐𝑐𝑐𝑐2𝜓𝜓 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�
2
�� + 𝑫𝑫∙𝑬𝑬

2
. (B2) 

The total energy can be minimized using a separation of the variables and an ansatz function invoked by 

the 1D-solution in Appendix A: 

 𝜓𝜓(𝑥𝑥, 𝑑𝑑) = 𝜓𝜓𝑚𝑚(𝐸𝐸0) 𝑋𝑋(𝑥𝑥) 𝑍𝑍(𝑑𝑑) = 𝜓𝜓𝑚𝑚 𝑋𝑋(𝑥𝑥) 𝑐𝑐𝑠𝑠𝑛𝑛 �𝜋𝜋𝜕𝜕
𝑑𝑑
�,  (B3) 

where 𝑋𝑋(𝑥𝑥) → ±1 at ± ∞ and 𝑋𝑋(0) = 0 . Assuming that the wall thickness is proportional to 1
𝜕𝜕𝑚𝑚

 and  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

~𝜓𝜓𝑚𝑚[24], after omitting the terms of order higher than 𝜓𝜓𝑚𝑚 4  and disregarding the terms containing 

𝑐𝑐𝑐𝑐𝑐𝑐 �𝜋𝜋𝜕𝜕
𝑑𝑑
�  (since they integrate to zero over the thickness of the cell), but keeping the terms 

containing 𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜋𝜋𝜕𝜕
𝑑𝑑
� , the approximate free energy density reads:  

𝑓𝑓 = 1
2
𝐾𝐾11 ��

𝜋𝜋
𝑑𝑑
�
2
𝜓𝜓𝑚𝑚2  𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜋𝜋𝜕𝜕

𝑑𝑑
�  [𝑋𝑋(𝑥𝑥)]2 −  �𝜋𝜋

𝑑𝑑
�
2
𝜓𝜓𝑚𝑚4  𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
� 𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜋𝜋𝜕𝜕

𝑑𝑑
�  [𝑋𝑋(𝑥𝑥)]4 +

𝐾𝐾22
𝐾𝐾11

 𝑐𝑐𝑠𝑠𝑛𝑛2𝑐𝑐 𝜓𝜓𝑚𝑚2 𝑐𝑐𝑠𝑠𝑛𝑛2 �
𝜋𝜋𝜕𝜕
𝑑𝑑
�  [𝑋𝑋′(𝑥𝑥)]2 + 𝐾𝐾33

𝐾𝐾11
��𝜋𝜋
𝑑𝑑
�
2
𝜓𝜓𝑚𝑚4  𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
� 𝑐𝑐𝑐𝑐𝑐𝑐2 �𝜋𝜋𝜕𝜕

𝑑𝑑
� [𝑋𝑋(𝑥𝑥)]4 +

𝜓𝜓𝑚𝑚 
2 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐 𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
�  [𝑋𝑋′(𝑥𝑥)]2� − 𝜀𝜀0Δε𝐸𝐸02

𝐾𝐾11
�𝜓𝜓𝑚𝑚2  𝑐𝑐𝑠𝑠𝑛𝑛2 �𝜋𝜋𝜕𝜕

𝑑𝑑
� [𝑋𝑋(𝑥𝑥)]2 − �1

3
+ Δε

𝜀𝜀⊥
�𝜓𝜓𝑚𝑚4  𝑐𝑐𝑠𝑠𝑛𝑛4 �𝜋𝜋𝜕𝜕

𝑑𝑑
� [𝑋𝑋(𝑥𝑥)]4�� 

 (B4) 

Averaging over the thickness of the cell results in: 

〈𝑓𝑓〉𝜕𝜕 = 1
𝑑𝑑 ∫ 𝑓𝑓(𝑑𝑑)𝑑𝑑𝑑𝑑 =𝑑𝑑

0
1
4
𝐾𝐾11 ��

𝜋𝜋
𝑑𝑑
�
2
𝜓𝜓𝑚𝑚2  [𝑋𝑋(𝑥𝑥)]2 + 𝜒𝜒2 𝜓𝜓𝑚𝑚 

2 𝑐𝑐𝑠𝑠𝑛𝑛2𝑐𝑐 [𝑋𝑋′(𝑥𝑥)]2 + κ 1
4
�𝜋𝜋
𝑑𝑑
�
2
𝜓𝜓𝑚𝑚4 [𝑋𝑋(𝑥𝑥)]4 +

𝜒𝜒3𝜓𝜓𝑚𝑚2 𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐 [𝑋𝑋′(𝑥𝑥)]2 − 1
𝜉𝜉2
�𝜓𝜓𝑚𝑚2  [𝑋𝑋(𝑥𝑥)]2 − 3

4
�1
3

+ Δε
𝜀𝜀⊥
�𝜓𝜓𝑚𝑚4  [𝑋𝑋(𝑥𝑥)]4��. (B5) 

where we introduced 𝜒𝜒2 = 𝐾𝐾22
𝐾𝐾11

, 𝜒𝜒3 = 𝐾𝐾33
𝐾𝐾11

, and 1
𝜉𝜉2

= 𝜀𝜀0Δε𝐸𝐸02

𝐾𝐾11
. Finally, Eq. (B5) takes the following form: 

〈𝑓𝑓〉𝜕𝜕 = 1
4
𝐾𝐾11 �

𝜋𝜋
𝑑𝑑
�
2
��1 − � 𝑑𝑑

𝜋𝜋𝜉𝜉
�
2
�𝜓𝜓𝑚𝑚2  �𝑋𝑋(𝑥𝑥)�

2
+ �𝑑𝑑

𝜋𝜋
�
2

(𝜒𝜒2 𝑐𝑐𝑠𝑠𝑛𝑛2𝑐𝑐 + 𝜒𝜒3𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐)𝜓𝜓𝑚𝑚2  �𝑋𝑋′(𝑥𝑥)�
2

+

                  1
4
�κ + � 𝑑𝑑

𝜋𝜋𝜉𝜉
�
2
�1 + 3Δε

𝜀𝜀⊥
��𝜓𝜓𝑚𝑚4  �𝑋𝑋(𝑥𝑥)�

4
�  (B6) 
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We now introduce 𝑣𝑣 = 𝑑𝑑
𝜋𝜋𝜉𝜉

= 𝜉𝜉𝑐𝑐
𝜉𝜉

= 𝐸𝐸0
𝐸𝐸𝑐𝑐

, 𝛷𝛷2 = 𝜒𝜒2 𝑐𝑐𝑠𝑠𝑛𝑛2𝑐𝑐 + 𝜒𝜒3𝑐𝑐𝑐𝑐𝑐𝑐2𝑐𝑐, and 𝐴𝐴 = 1
κ
�1 + 3Δε

𝜀𝜀⊥
�, and use the 

relation 𝜓𝜓𝑚𝑚2 = 2�𝐸𝐸02−𝐸𝐸𝑐𝑐2�
κ (𝐸𝐸𝑐𝑐2+𝐴𝐴𝐸𝐸02)

= 2
κ

 𝑣𝑣
2−1

1+𝐴𝐴𝑣𝑣2
 from Eq. (A8) which results in: 

〈𝑓𝑓〉𝜕𝜕 = 1
4𝜉𝜉𝑐𝑐2

𝐾𝐾11 �(1 − 𝑣𝑣2)𝜓𝜓𝑚𝑚2  [𝑋𝑋(𝑥𝑥)]2 + 𝜉𝜉𝑐𝑐2𝛷𝛷2𝜓𝜓𝑚𝑚2  [𝑋𝑋′(𝑥𝑥)]2 + 1
4

κ [1 + 𝐴𝐴𝑣𝑣2]𝜓𝜓𝑚𝑚4  [𝑋𝑋(𝑥𝑥)]4�. (B7) 

To find the shape of the domain wall, the functional ∫〈𝑓𝑓〉𝜕𝜕𝑑𝑑𝑥𝑥 needs to be minimized. As in our case 〈𝑓𝑓〉𝜕𝜕 

does not depend explicitly on x, we employ the Beltrami identity, 〈𝑓𝑓〉𝜕𝜕 −  𝑋𝑋′(𝑥𝑥) 𝜕𝜕〈𝑓𝑓〉𝑧𝑧
𝜕𝜕𝜕𝜕′(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.: 

1
4𝜉𝜉𝑐𝑐2

𝐾𝐾11 �(1 − 𝑣𝑣2)𝜓𝜓𝑚𝑚2  [𝑋𝑋(𝑥𝑥)]2 − 𝜉𝜉𝑐𝑐2𝛷𝛷2𝜓𝜓𝑚𝑚2  [𝑋𝑋′(𝑥𝑥)]2 + 1
4

κ (1 + 𝐴𝐴𝑣𝑣2)𝜓𝜓𝑚𝑚4  [𝑋𝑋(𝑥𝑥)]4� = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.  (B8) 

When 𝑥𝑥 → ±∞ , far from the wall, 𝑋𝑋′(𝑥𝑥) → 0 and 𝑋𝑋(𝑥𝑥) → 1, thus the constant in Eq. (B8) is equal to  
1
4𝜉𝜉𝑐𝑐2

𝐾𝐾11 �(1 − 𝑣𝑣2)𝜓𝜓𝑚𝑚2  + 1
4

κ [1 + 𝐴𝐴𝑣𝑣2]𝜓𝜓𝑚𝑚4 �,  and we obtain the following differential equation for 𝑋𝑋(𝑥𝑥):  

𝑋𝑋′(𝑥𝑥) = √𝑣𝑣2−1
√2𝜉𝜉𝑐𝑐𝛷𝛷

�1 − �𝑋𝑋(𝑥𝑥)�
2
�.  (B9) 

We seek the solution of this equation in the form 𝑋𝑋(𝑥𝑥) = tanh𝑎𝑎𝑥𝑥 and find:  

𝑋𝑋(𝑥𝑥) = tanh �𝜋𝜋√𝑣𝑣
2−1

√2𝛷𝛷𝑑𝑑
𝑥𝑥�, (B10) 

 and, finally,  

𝑋𝑋(𝑥𝑥) = tanh �𝜋𝜋𝜕𝜕𝑚𝑚
2𝛷𝛷𝑑𝑑

�κ + �1 + 3Δε
𝜀𝜀⊥
� � 𝑑𝑑

𝜋𝜋𝜉𝜉
�
2
𝑥𝑥�. (B11) 

Let’s now calculate the excess energy of the domain wall by taking the difference between its 

energy and the energy of the uniform domain. Inside the uniform domain 𝑋𝑋(𝑥𝑥) = 1 and 𝑋𝑋′(𝑥𝑥) = 0. 

From Eq. (B7), the average free energy density inside the monodomain is:  

〈𝑓𝑓〉𝜕𝜕0 = 1
𝑑𝑑 ∫  𝑓𝑓

│
𝜕𝜕(𝑥𝑥)=1 
𝜕𝜕′(𝑥𝑥)=0

  𝑑𝑑𝑑𝑑 = 1
4𝜉𝜉𝑐𝑐2

𝐾𝐾11 �(1 − 𝑣𝑣2)𝜓𝜓𝑚𝑚2  + 1
4

κ [1 + 𝐴𝐴𝑣𝑣2]𝜓𝜓𝑚𝑚4  � = 1
8𝜉𝜉𝑐𝑐2

𝐾𝐾11(1 − 𝑣𝑣2)𝜓𝜓𝑚𝑚2 , (B12) 

and the excess energy of the domain wall becomes: 

∆𝐹𝐹 = 𝑑𝑑 ∫ (〈𝑓𝑓〉𝜕𝜕 − 〈𝑓𝑓〉𝜕𝜕0)∞
−∞ 𝑑𝑑𝑥𝑥 = 1

4𝜉𝜉𝑐𝑐2
𝐾𝐾11𝑑𝑑 ∫ �(𝑣𝑣2 − 1) 𝜕𝜕𝑚𝑚

2

2
��𝑋𝑋(𝑥𝑥)�

2
− 1�

2
+ 𝜉𝜉𝑐𝑐2𝛷𝛷2𝜓𝜓𝑚𝑚2  �𝑋𝑋′(𝑥𝑥)�

2
�∞

−∞ 𝑑𝑑𝑥𝑥 

 (B13) 
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Substituting the solutions for 𝜓𝜓𝑚𝑚2  and 𝑋𝑋(𝑥𝑥) from Eqs. (A8) and (B10) and integrating, we obtain: 

∆𝐹𝐹 = 𝐵𝐵�𝐾𝐾2
𝐾𝐾1

 sin2𝑐𝑐 + 𝐾𝐾3
𝐾𝐾1

cos2𝑐𝑐,  (B14) 

where the coefficient  

𝐵𝐵 = 2√2𝐾𝐾11𝜋𝜋
3κ

�� 𝑑𝑑𝜋𝜋𝜋𝜋�
2
−1�

3/2

1+1κ�1+
3Δε
𝜀𝜀⊥

�� 𝑑𝑑𝜋𝜋𝜋𝜋�
2 (B15) 

is a function of the applied voltage but is independent of the wall orientation.  

When one kind of domain is surrounded by a domain with the opposite sign of the tilt, the shape of 

the wall loop separating the twin-domains is defined by the anisotropy of the excess energy. The 

anisotropy of the expression in Eq. (B14) is the same as in Ref. 24 (with a different coefficient B 

because 𝐾𝐾11 ≠ 𝐾𝐾33 and the ratio Δε/𝜀𝜀⊥ is finite). Therefore, we expect that the equilibrium shape of the 

loop will be again, as in Ref. 24, an ellipse with axial ratio given by  

a|| / a⊥ = (K33/K22)1/2. (B16) 

(This is easily demonstrated by noting that the expression under the square root in Eq. (14) is a 

parametric equation of an ellipse with axial ratio (K33/K22)1/2; after transformation of the coordinate 

system by reducing the long axis of the ellipse by this ratio, the ellipse becomes a circle, which is 

obviously the shape that minimizes the loop energy at constant area of the domain.) 
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