
HAL Id: hal-03865843
https://hal.science/hal-03865843

Preprint submitted on 22 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On (approximate) pure Nash equilibria in preference
games

Angelo Fanelli, Dimitris Fotakis

To cite this version:
Angelo Fanelli, Dimitris Fotakis. On (approximate) pure Nash equilibria in preference games. 2022.
�hal-03865843�

https://hal.science/hal-03865843
https://hal.archives-ouvertes.fr


On (approximate) pure Nash equilibria in preference games

Angelo Fanelli,1 Dimitris Fotakis, 2

1 CNRS, France
2 National Technical University of Athens, Greece

Abstract

In this work we introduce and study a general model of pref-
erence game. Our game belongs to the large class of games in
which each agent aims at compromising between her innate
preferences and the choices of the neighbours. Our game en-
compasses two models, i.e., the full information and the par-
tial information settings. While in the former each agent is
fully aware of the strategies of the neighbours, in the latter
each agent has only access to a single representative strategy,
which can be regarded as the output of an aggregation func-
tion. Both settings are quite general and allow for a system-
atic study of the fundamental questions related to the exis-
tence and efficiency of (approximate) equilibria in the strate-
gic interaction of agents in social networks. Interestingly, our
bounds on the price of anarchy are very general and are de-
rived in terms of key features of the game (i.e., social impact,
boundary and stretch). Moreover, our results show that the
two settings behave very similarly, thus confirming our con-
jecture that in general the lack of information does not affect
the existence and efficiency of the (approximate) equilibria.

1 Introduction
We refer to preference games as the class of games in which
a set of finite agents share a common set of strategies,
that are embedded in an (approximate) metric space, and
in which each agent aims at choosing the strategy that rep-
resents a good compromise between her preferred strategy
and the neighbours’ strategies. An agent’s cost is typically
formulated as the sum of two quantities: the first quantity
is the cost for choosing a strategy different from her pre-
ferred one, usually quantified as the (approximate) distance
between her strategy and the preferred one, while the second
quantity is the cost for choosing a strategy which is far from
the neighbours’ strategies.

Numerous games studied in the letterature can be cast as
preference games, including models of opinion formation
(see e.g., (Bindel, Kleinberg, and Oren 2015; Bhawalkar,
Gollapudi, and Munagala 2013; Ghaderi and Srikant 2014)),
or their variants such as discrete preference games, (see e.g.,
(Chierichetti, Kleinberg, and Oren 2018; Auletta et al. 2016,
2017; Lolakapuri et al. 2019)).

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we introduce and study a quite general
model of preference game which encompasses the full and
the partial information settings. In the full information set-
ting, inspired by the discrete preference model introduced
in (Chierichetti, Kleinberg, and Oren 2018), we assume that
each agent is fully aware of the strategies of her neighbours
and respond optimally to them. Instead, in the partial infor-
mation setting, we assume that each agent has access to a
single representative strategy, which can be regarded as the
output of an aggregation function that condenses the strate-
gies of her neighbors into a single one. In order to motivate
this latter model, we may think of the traditional political
voting scenario, where voters have fixed innate preferences
over the candidates, but polls (which is a form of preference
aggregation) might cause the voters to change their vote (see
also (Epitropou et al. 2019), where the model involves an es-
timation of the average opinion of the agents).

Before presenting the related work (Section 1.3) and
outline our conceptual and technical contributions (Sec-
tion 1.4), we formally describe our model (Section 1.1) and
introduce technical concepts (Section 1.2). We next present
our results on the existence of (approximate) pure Nash
equilibria (Section 2) and the price of anarchy (Section 3
and Section 4). We conclude the paper with an application
of our findings on a special case of preference game which
we call k-approval voting game (Section 5).

1.1 Preference games
We assume a finite population N of n ≥ 2 agents and an
underlying strategy space Z, which may be either discrete
or continuous. Each agent i has a fixed preferred strategy
si. Let S = {s1, . . . , sn}. One of the key ingredient of
our model is to allow preferred strategies not to belong to
Z. This ensures the agents to have more elaborate preferred
strategies and to account for preferences that possibly cannot
be fully disclosed in public. So, we assume a strategy “uni-
verse” U , and that Z ⊆ U (e.g., Z may be discrete, while U
may be the convex hull of Z) and S ⊆ U . Z and S could be
disjoint or not. So, we let NS = {i ∈ N : si ∈ Z} denote
the set of agents with preferred strategy in Z; we say that the
game is restricted if NS = ∅, unrestricted if NS = N , and
semi-restricted otherwise.

We assume a distance function d : U ×U → R≥0, which
quantifies dissimilarity between the strategies; we let d be



a approximate metric over U (see Section 1.2 for a formal
definition). This function will be used to quantify the agents’
costs in a given strategy profile.

The influence exercised by j’s strategy on the strategy
choice of agent i is quantified by the influence weight wij ∈
[0, 1]. We refer to the set of agents j such thatwij > 0 as the
set of i’s neighbours. Another key ingredient of our model
is to assume that the influence weights wij are not neces-
sarily symmetric, have wii = 0 and are normalized so that∑
j wij = 1, i.e., the total influence exercised to any agent i

sums up to 1. For every agent i, we denote by ~wi the vector
of influence weights (wij)j∈N .

We refer to any vector ~z ∈ Zn as a state (strategy profile)
of the game, in which the i-th component, denoted by ~z(i),
represents the strategy of i. If ~z = (z, . . . , z), we say that
~z is a consensus on z. We denote by ~z−i the partial strategy
profile obtained from ~z after removing i’s strategy.

The overall cost ci(~z) incurred by i in ~z can be summa-
rized as the convex combination between two components,
i.e.,

ci(~z) = αd
(
si, ~z(i)

)
+ (1− α)K(~wi, ~z) ,

where the first component d
(
si, ~z(i)

)
is the innate cost of

i for ~z(i), and the second component K(~wi, ~z) is the dis-
agreement cost; the agents only influence each other through
this latter term. In this paper we will propose two differ-
ent definitions of K, corresponding to the full information
and partial information settings. The coefficient α ∈ (0, 1)
quantifies the confidence of each agent i on her preferred
strategy si, and often referred to as the self-confidence of
agent i. We say the agents are compliant when α ∈ (0, 1/2),
balanced when α = 1/2, and stubborn otherwise. As usual,
each agent i selects her strategy ~z(i) so as to minimize her
cost.

Full information. We assume that each agent has full access
to the strategies of the neighbours. We define the disagree-
ment cost of i as

K(~wi, ~z) =
∑
j 6=i

wijd
(
~z(i), ~z(j)

)
. (1)

When K is defined as in (1), we will denote the cost of each
agent i in ~z as cFi (~z).

Partial information. We assume that each agent does not
have full access to the strategies of the neighbours but to
an aggregate value. The major ingredient is an aggregation
function aggr which, for each agent i, maps ~wi and ~z−i
to an aggregated strategy aggr(~wi, ~z−i) ∈ Z that “sum-
marizes” the strategies in ~z−i. For brevity, we will usually
write aggri(~z−i), instead of aggr(~wi, ~z−i). We define the
disagreement cost of i as

K(~wi, ~z) = d
(
~z(i), aggr(~wi, ~z−i)

)
. (2)

Our results hold for general aggregation functions
that satisfy unanimity i.e., if ~x−i = (x, . . . , x) then
aggri(~x−i) = x, and consistency i.e., if ~x and ~y satisfy∑
j 6=i wijd

(
~x(j), ~y(j)

)
= 0 (this quantity corresponds to

the relative distance πi(~x, ~y) between ~x and ~y, as defined in

Section 1.2) then aggri(~x−i) = aggri(~y−i). We refer to ag-
gregation functions that satisfy unanimity and consistency
as feasible (see Section 1.2 for some examples of feasible
aggregation functions). We remark that choosing the aggre-
gation value as an element of Z, instead of U , strongly af-
fects the behaviour of the game. On the other hand, choosing
aggri as an element of U requires more assumptions (e.g.,
on the strategy space, the aggregation function, or the dis-
tance function) in order to derive significant results; we leave
this as an interesting direction for further research.

When K is defined as in (2), we will denote the cost of
each agent i in ~z as cPi (~z).

A case study: k-approval voting game. As an applica-
tion of our findings, we introduce an example of prefer-
ence game in which the strategy space Z consists of all
binary strings of length m with k ones, while the pre-
ferred strategies lie in the convex hull of Z. Formally,
Z = {~u ∈ {0, 1}m |

∑m
`=1 ~u(`) = k}, U = {~u ∈

[0, 1]m |
∑m
`=1 ~u(`) = k} and an agent i can choose any

si ∈ U as her preferred strategy. We refer to the case m = 2
and k = 1 as the binary strategies setting, since |Z| = 2. We
assume that the distance function d is L2

2; namely, for every
~u,~v ∈ U ,

d(~u,~v) =

m∑
`=1

(~u(`)− ~v(`))2 .

As a special case of preference game, also here we can
distinguish two versions of the game, namely the full and
the partial information. This game is motivated by the
k-approval voting and generalises the opinion formation
model with binary strategies (Ferraioli, Goldberg, and Ven-
tre 2016); we discuss in more details about this relation in
Section 1.3.

1.2 Notation, Definitions and Preliminaries
In this section, we introduce some additional notation and
discuss some important preliminaries.

Approximate metric. We assume that, for some 1 ≤ ρZ ≤
ρ, d : U ×U 7→ R≥0 satisfies (i) d(x, x) = 0, for all x ∈ U ;
(ii) symmetry, i.e., d(x, y) = d(y, x), for all x, y ∈ U ; (iii)
(approximate) triangle inequality, i.e., d(x, y) ≤ ρ

(
d(x, z)+

d(z, y)
)
, for all x, y, z ∈ U ; and (iv) d(x, y) ≤ ρZ

(
d(x, z)+

d(z, y)
)
, for all x, y, z ∈ Z. In this case, we say that d is a

(ρ, ρZ)-approximate metric. We say that d is an exact metric
when ρ = ρZ = 1, and that d is uniform when it is an exact
metric such that d(x, y) = 1 for all x 6= y.

Examples of Feasible Aggregation Functions. These are
aggregation functions that satisfy unanimity and consis-
tency. Notable examples of feasible aggregation functions
are the Fréchet median and the Fréchet mean. Given any
state ~z, the Fréchet median of agent i in ~z, denoted by
medi(~z−i), is any strategy that minimizes the weighted sum
of its distances to the strategies in ~z−i, i.e.,

medi(~z−i) ∈ argminy∈Z
∑
j 6=i

wijd
(
y, ~z(j)

)
. (3)



The Fréchet mean of agent i in ~z, denoted by meani(~z−i),
is any strategy in Z that minimizes the weighted sum of its
squared distances to the strategies in ~z−i, i.e.,

meani(~z−i) ∈ argminy∈Z
∑
j 6=i

wijd
2
(
y, ~z(j)

)
. (4)

Approximate Pure Nash Equilibria, Social Optima and
Price of Anarchy. For any state ~z and any strategy z,
we let [~z−i, z] be the new state obtained from ~z by re-
placing its i-component ~z(i) with z and keeping the re-
maining components unchanged, i.e., [~z−i, z](i) = z and
[~z−i, z](j) = ~z(j) for every j 6= i. For γ ≥ 1, a strategy
z∗ ∈ Z is a γ-approximate best response of agent i wrt.
~z−i if ci([~z−i, z∗]) ≤ γci([~z−i, z]), for every z ∈ Z (when
γ = 1, z∗ is simply called best response). We say that a
state ~z is a γ-approximate pure Nash equilibrium (or sim-
ply γ-equilibrium, for brevity) if every agent i is playing a
γ-approximate stable strategy wrt. ~z−i, i.e., for every agent
i and every strategy z ∈ Z, we have ci(~z) ≤ γci([~z−i, z]);
if γ = 1, we simply refer to ~z as an exact pure Nash equi-
librium (or simply equilibrium). We use Eγ ⊆ Zn to denote
the set of all γ-approximate pure Nash equilibria of a given
preference game. We say that a strategy x? ∈ Z is a γ-
approximate dominant strategy of agent i if ci

(
[~x−i, x

?]
)
≤

γci
(
[~x−i, y]

)
, for all states ~x−i and y ∈ Z (when γ = 1, x?

is simply called dominant strategy).
We measure the efficiency of each state ~z according to

a social objective. We consider two social objectives, the
social cost SUM(~z) =

∑
i∈N ci(~z) and the maximum cost

MAX(~z) = maxi∈N ci(~z). A state ~o is optimal wrt. SUM,
if SUM(~o) ≤ SUM(~z), for all states ~z. We let OSUM ⊆
Zn be the set of optimal states wrt. SUM, i.e., OSUM =
argmin~z∈Zn SUM(~z). Optimal states wrt. MAX and OMAX

are defined similarly.
For any ~o ∈ OSUM, the price of anarchy of a game wrt.

SUM is POASUM = max~e∈E1

SUM(~e)
SUM(~o) , if SUM(~o) > 0; if

SUM(~o) = 0 then POASUM = +∞, when E1 6= OSUM, and
POASUM = 1, when E1 = OSUM. The definition of POAMAX

is similar.

Equivalence and Relative Distance between States. For
every pair of states ~x, ~y, D(~x, ~y) = {j ∈ N : ~x(j) 6= ~y(j)}
denotes the set of agents with different strategies in ~x and
~y. If D(~x, ~y) = ∅, we say that ~x and ~y are globally equiva-
lent. For every agent i and all pairs of states ~x, ~y, we define
the relative distance between ~x and ~y for i as πi(~x, ~y) =∑
j 6=i wijd

(
~x(j), ~y(j)

)
. Notice that if ~y = [~x−i, x], for any

x, then πi(~x, ~y) = 0. When πi(~x, ~y) = 0, we say that ~x
and ~y are equivalent for i. Notice that D(~x, ~y) = ∅ implies
πi(~x, ~y) = 0 (while the converse may not be true).

Social Impact, Boundary and Stretch. These are the three
features of the game which fully characterize the ineffi-
ciency of the equilibria, as we will see in Section 3.

The social impact of agent i is δi =
∑
j∈N wji and quan-

tifies the intensity by which i influences the environment.
The global social impact is δ = maxj∈N δj ; it quantifies
the asymmetry between the influence received and exercised

by any agent in the social network. Since
∑
j 6=i wij = 1 for

every i, we observe that
∑
i∈N δi = n and δ ∈ [1, n− 1].

The boundary of agent i, denoted by βi quantifies how
much closer a strategy x can be to si compared against an
equilibrium strategy ~e(i) of i. Formally,

βi = min
~e∈E,x6=~e(i)

d(x, si)

d
(
x,~e(i)

) . (5)

For nontrivial instances, there always exists a strategy xwith
d(x,~e(i)) > 0. Thus, βi is well defined. The (global) bound-
ary is β = minj∈N βj .

The stretch τi of agent i quantifies how sensitive the ag-
gregation function is wrt. the changes of the state of the
game. Formally, we let

τ̂i = inf
~e∈E
~y∈Zn

πi(~e,~y)>0

{
r ≥ 0

∣∣∣ d(aggri(~e−i), aggri(~y−i))
πi(~e, ~y)

≤ r

}
.

We define τi = max{τ̂i, 1}, so as to account for the case
where πi(~e, ~y) = 0 and d

(
aggri(~e−i), aggri(~y−i)

)
= 0.

Since τi is used in the price of anarchy bounds, we can
restrict its definition to optimal states ~o, instead of arbi-
trary states ~y. We use this more restricted definition in the
proofs of Proposition 7.We define the (global) stretch as
τ = maxj∈N τj . At the conceptual level, the global stretch
quantifies how much we lose, in terms of equilibrium effi-
ciency, because agents only have access to an aggregate of
the strategies in ~z, instead of ~z itself; in short, the stretch is
the parameter that measures the lack of information. We will
give the formal evidence of this last statement in Lemma 3
and Remark 1.

1.3 Related Work
Our preference game with full information is closely re-
lated to both the discrete preference model, introduced in
(Chierichetti, Kleinberg, and Oren 2018), and the class of
opinion formation games (see e.g., (Bindel, Kleinberg, and
Oren 2015; Bhawalkar, Gollapudi, and Munagala 2013;
Ghaderi and Srikant 2014)), whose principles go back to the
classical works of (Degroot 1974) and (Friedkin and Johnsen
1990) on opinion formation.

In the discrete preference model (Chierichetti, Kleinberg,
and Oren 2018), differently from our model, the set of
strategies is discrete, d is an exact metric and the influ-
ence weights are symmetric and not normalized. The authors
show that their model is a potential game, that the price of
anarchy can be unbounded and that the price of stability is at
most 2. Moreover, the properties of the discrete preference
game for richer metrics, such as tree metrics, were studied.
Recently, (Lolakapuri et al. 2019) proved that computing
a pure Nash equilibrium for such game is PLS-complete,
even in a very restricted setting. The model proposed in
(Chierichetti, Kleinberg, and Oren 2018) has been general-
ized in (Auletta et al. 2016) and consistency between pre-
ferred strategies and equilibrium strategies were considered
in (Auletta et al. 2017).

On the other hand, opinion formation games are charac-
terized by the fact that the set of strategies is the set of points



on the real line, d is L2
2 (i.e., the square of the L2 norm,

motivated by repeated averaging in (Degroot 1974; Fried-
kin and Johnsen 1990)) and the influence weights are usu-
ally symmetric and not normalized. In the last few years,
there has been considerable interest in equilibrium prop-
erties (e.g., existence, computational complexity, conver-
gence, price of anarchy and stability) of opinion formation
(see e.g., (Bindel, Kleinberg, and Oren 2015; Bhawalkar,
Gollapudi, and Munagala 2013; Ghaderi and Srikant 2014)).
The main message is that these games are well-behaved due
to their continuous strategy space. Specifically, they admit a
unique equilibrium which can be computed efficiently and
has small price of anarchy for symmetric weights.

Our k-approval voting model bears some resemblance to
opinion formation with binary strategies (Ferraioli, Gold-
berg, and Ventre 2016). Differently from our model, their
model is restricted only to binary strategies, the influence
weights are symmetric and not normalized. They proved
that the price of anarchy is unbounded for α ≤ 1/2.

The partial information setting has strong connections
with the class of aggregative games, e.g.,(Kukushkin 2004;
Dindos and Mezzetti 2006; Jensen 2010; Acemoglu and
Jensen 2013; Babichenko 2017). In this class of games the
cost of each agents depends on the his own strategy and an
aggregate of the strategies of all the agents.

Aggregating preferences under some metric function has
been received attention in algorithms (see e.g., (Ailon,
Charikar, and Newman 2008)) and in social choice (see e.g.,
(Anshelevich et al. 2018)). Ours is the first work where
aggregation under metric dissimilarity functions is used in
modelling preference games.

1.4 Our Contribution
Our conceptual contribution is the new model of preference
game which encompasses the full and the partial informa-
tion settings. While the full information model is mostly
inspired by the discrete preference game (Chierichetti,
Kleinberg, and Oren 2018), the partial information one
introduces a novel feature in preference games, that is the
aggregation function. Both settings are quite general and
allow for a systematic study of the fundamental questions
related to the existence and efficiency of (approximate)
pure Nash equilibria in the strategic interaction of agents in
social networks.
On the technical side, we provide a comprehensive set of
very general results on the existence and the structure of
equilibria, and on the price of anarchy of the game. The first
general message of these results is that the two settings,
despite being very different from each other, behave very
similarly, thus confirming our conjecture that in general
the lack of information does not affect the existence and
efficiency of the (approximate) equilibria. The second
message is that our bounds on the price of anarchy are
very general and are derived in terms of key features of the
game (i.e., social impact, boundary and stretch). The third
message is that low self-confidence levels (i.e., α ≤ 1/2)
help with the existence of equilibria and simplify their
structure, while high self-confidence levels (i.e., α > 1/2)
help with the price of anarchy.

Specifically, in Section 2 we show that, unless α >
1/2 and the game is restricted, there always exists a ρ-
approximate equilibrium both for the full and the partial in-
formation case. In fact we observe that the two settings be-
have almost similarly. Specifically, if the agents are compli-
ant (α < 1/2), any consensus (i.e., a state where all agents
adopt the same strategy) is a ρ-equilibrium both for the full
information case (Theorem 1) and the partial information
one (Theorem 2); if the agents are stubborn (α > 1/2), we
show that (when the game is unrestricted), in both settings,
the state ~s in which each agent i adopts her preferred strat-
egy si is a ρ-equilibrium, and moreover such equilibrium is
unique when ρ = 1 (Theorem 3); lastly, if the agents are
balanced (α = 1/2), the set of ρ-equilibria in both settings
is seemingly larger, as both the set of consensuses and ~s
are ρ-equilibria (theorems 1, 2 and 3). Existence of approxi-
mate equilibria for the restricted case with α > 1/2 requires
more assumptions (e.g., on the strategy space, the aggrega-
tion function, or the distance function) and is an interesting
direction for further research.

In Section 3 we consider the price of anarchy wrt. SUM
and MAX. We express the bounds on the price of anarchy
wrt. social impact, the boundary and stretch of the game. In-
terestingly, also the bounds on the price of anarchy hold for
both the full and the partial information settings, thus prov-
ing that the lack of information does not have any impact
also on the inefficiency of the equilibria. Specifically, we ob-
serve that for compliant and balanced agents (α ∈ (0, 1/2]),
the price of anarchy can be either unbounded for the re-
stricted case (Proposition 1) or +∞ for the unrestricted one
(Proposition 2); these hold for both objectives. So, if self-
confidence level is low, the price of anarchy of our pref-
erence game behaves similarly to that of the discrete pref-
erence game (Chierichetti, Kleinberg, and Oren 2018) and
of the opinion formation game with binary strategies (Fer-
raioli, Goldberg, and Ventre 2016). On the other hand, if
the agents are stubborn (α > 1/2), we show that the price of
anarchy is bounded from above by ρZ

(
1 + δ (1−α)

α
τ
β

)
, wrt.

SUM (Theorem 4), and by ρZ

(
1+ (1−α)

α
τ
β

)
, wrt. MAX (The-

orem 5). We also show that these bounds hold with τ = 1 for
the full information setting (Lemma 3 and Remark 1), thus
proving that τ is the parameter which quantifies the lack of
information. Notice that, in order to provide bounds on the
price of anarchy only as functions of α, δ and ρZ (notice that
δ is always upper bounded by n − 1), we need additional
assumptions on the structure of the game which allow us to
estimate the values of τ (for the partial information case)
and β; we illustrate several examples in Section 4.

In Section 4, we provide upper bounds on τ and β for sev-
eral significant cases. Interestingly, our bounds on β depend
only on α, while our bounds on τ may depend on the aggre-
gation function, the metric space and the influence weights.

In Section 5, we focus on the k-approval voting game. As
we said in the introduction, this game is a spacial case of
preference game, it is motivated by the k-approval voting
and generalizes the opinion formation model with binary
strategies (Ferraioli, Goldberg, and Ventre 2016). Since d



(defined as L2
2) is a (2, 1)-approximate metric (i.e., ρ = 2

and ρZ = 1, given that it is equivalent to the Hamming
distance when restricted to Z), the results from Section 3
carry over to this special case. The main technical result
of Section 5 is an upper bound on β (Theorem 6) which,
combined with the results in Section 3, implies interesting
upper bounds of 1 + δ(2α− 1)−2τ and 1 + (2α− 1)−2τ
on the price of anarchy wrt. SUM and MAX respectively,
when α > 1/2. We recall that these bounds, as for the gen-
eral case, hold with τ = 1 for the full information setting.
Our analysis complements the results of (Ferraioli, Gold-
berg, and Ventre 2016) for the opinion formation model with
binary strategies. For the partial information case we can de-
rive specific bounds by applying the bounds on τ illustrated
in Section 4. One of the most intriguing directions for fur-
ther research is to determine under which assumptions the
k-approval voting game admits equilibria for α > 1/2.

2 Existence of Approximate Equilibria
In this section we characterize the existence of equilibria.

Compliant and Balanced Agents.
Theorem 1. In the full information setting, if α ≤ 1/2 then
any consensus ~e ∈ Zn is a ρ-equilibrum.

Lemma 1. In the partial information setting, if α ≤ 1/2
then aggri(~x−i) is a ρ-approximate best response for agent
i with respect to ~x−i, for every partial strategy profile ~x−i.
Moreover, if α < 1/2 and ρ = 1, aggri(~x−i) is the unique
best response.

The following theorem is an immediate consequences of
Lemma 1.

Theorem 2. In the partial information setting, if α ≤ 1/2,
then any consensus ~e ∈ Zn is a ρ-equilibrium.

Stubborn and Balanced Agents.
Lemma 2. If α ≥ 1/2 then si is a ρ-approximate dominant
strategy for every agent i ∈ NS . Moreover, if α > 1/2 and
ρ = 1, si is the unique dominant strategy.

Theorems 3 is an immediate consequence of Lemma 2.

Theorem 3. If α ≥ 1/2 and the game is unrestricted
(NS = N ) then ~s = (s1, s2, . . . , sn) is a ρ-approximate
equilibrium. Moreover, if ρ = 1 then ~s is the unique equilib-
rium.

3 Price of Anarchy
Compliant and Balanced Agents. This is the case in which
the social cost of an equilibrium can be unboundedly larger
than the social cost of any optimal configuration.

Proposition 1. For α ∈ (0, 1/2], if the game is restricted
(NS = ∅), then there exist instances for which both POASUM

and POAMAX are unbounded.

The proof of Proposition 1 considers a strategy universe
U = {a, b, s} with Z = {a, b} and si = s for all agents i ∈
N . If d(b, s) = ε, for some arbitrarily small ε > 0, d(a, b) =
1 and d(a, s) = 1 + ε, d is a metric. Then, the consensus

on b is optimal, while the consensus on a is an equilibrium.
If, instead, we consider Z = U = {a, s}, with d(a, s) = 1
and si = s for all agents i, the state ~s, in which every agent
chooses s, is optimal with SUM(~s) = MAX(~s) = 0, while
the consensus on a is an equilibrium. Hence, we show that:
Proposition 2. For α ∈ (0, 1/2], if the game is unrestricted
(NS = N ), then there exist instances with for which both
POASUM and POAMAX are unbounded.
Stubborn Agents. In theorems 4 and 5, we show general
bounds on the price of anarchy that depend on δ, τ , β and α.
The proof of Lemma 3 follows from the equilibrium condi-
tion, the triangle inequality and the definition of stretch.
Lemma 3. For every agent i, equilibrium ~e and state ~z,

cFi (~e) ≤ ρZc
F
i (~z) + ρZ(1− α)πi(~z,~e) ,

and
cPi (~e) ≤ ρZc

P
i (~z) + τiρZ(1− α)πi(~z,~e) .

Proof. For the full information setting, using that ~e is an
equilibrium, we have

cFi (~e) ≤ αd
(
~z(i), si

)
+ (1− α)

∑
j 6=i

wijd
(
~z(i), ~e(j)

)
≤ αd

(
~z(i), si

)
+ ρZ(1− α)

∑
j 6=i

wijd
(
~z(i), ~z(j)

)
+ ρZ(1− α)

∑
j 6=i

wijd
(
~z(j), ~e(j)

)
≤ ρZc

F
i (~z) + ρZ(1− α)πi(~z,~e) ,

where the first inequality follows from the equilibrium con-
dition, the second from the approximate triangle inequality
and the third from the definition of the stretch, cFi (~z) and ρZ.

Analogously, in the partial information setting we have

cPi (~e) ≤ αd
(
~z(i), si

)
+ (1− α)d

(
~z(i), aggri(~e−i)

)
≤ αd

(
~z(i), si

)
+ ρZ(1− α)d

(
~z(i), aggri(~z−i)

)
+ ρZ(1− α)d

(
aggri(~z−i), aggri(~e−i)

)
≤ ρZc

P
i (~z) + ρZ(1− α)d

(
aggri(~z−i), aggri(~e−i)

)
≤ ρZc

P
i (~z) + τiρZ(1− α)πi(~z,~e) .

Also in this case the first inequality follows from the equi-
librium condition, the second from the approximate triangle
inequality, the third from the definition of cPi (~z) and ρZ and
the last from the definition of the stretch.

Lemma 4. If α > 1/2, for every equilibrium ~e and opti-
mal state ~o ∈ OSUM with D(~o,~e) 6= ∅, we have D(~o,~e) ⊆
D(~o,~s), where ~s = (s1, s2, . . . , sn).
Remark 1. Since by definition τi ≥ 1, for simplicty of ex-
position, in theorems 4 and 5 we relax the claim of Lemma
3 and assume cFi (~e) ≤ ρZc

F
i (~z) + τiρZ(1 − α)πi(~z,~e) , for

every agent i, equilibrium ~e and state ~z. This allows us to
apply the same arguments without making a distinction be-
tween the full and partial information. This implies that the
bounds on the price of anarchy of theorems 4 and 5 hold with
τ = 1 for the full information setting. This is the evidence
of the fact that τ is the parameter that measure the lack of
information.



Theorem 4. If α > 1/2, POASUM ≤ ρZ

(
1 + δ (1−α)

α
τ
β

)
.

Proof. If E ⊆ OSUM, then POASUM = 1. Otherwise, let ~e
be any equilibrium and ~o ∈ OSUM be any optimal state with
D(~o,~e) 6= ∅. We have

SUM(~e) ≤ ρZSUM(~o) + ρZ(1− α)
∑
i∈N

τiπi(~o,~e)

≤ ρZSUM(~o) + τρZ(1− α)
∑
i∈N

∑
j∈N\{i}

wijd
(
~o(j), ~e(j)

)
= ρZSUM(~o) + τρZ(1− α)

∑
j∈D(~o,~e)

δjd
(
~o(j), ~e(j)

)
,

(6)

where the first inequality follows from Lemma 3 and the
definition of SUM, the second from the definition of τ and
πi, and the last step from the definitions of D(~o,~e) and the
social impact of j.

On the other hand,

SUM(~o) ≥ α
∑
i∈N

d
(
~o(i), si

)
= α

∑
i∈D(~o,~s)

d(~o(i), si)

≥ α
∑

i∈D(~o,~e)

d
(
~o(i), si

)
≥ α

∑
i∈D(~o,~e)

βid
(
~o(i), ~e(i)

)
,

(7)

where the first inequality follows from Lemma 4 and the
second from the definition of boundary (5). Notice that the
last expression is strictly larger than 0 because α > 1/2,
βi > 0 and d

(
~o(i), ~e(i)

)
> 0 for every i ∈ D(~o,~e) 6= ∅.

Therefore, we can conclude that

POASUM ≤
ρZSUM(~o) + τρZ(1− α)

∑
j∈D(~o,~e)

δjd
(
~o(j), ~e(j)

)
SUM(~o)

≤ ρZ +

τρZ(1− α)
∑

j∈D(~o,~e)

δjd
(
~o(j), ~e(j)

)
α
∑

i∈D(~o,~e)

βid
(
~o(i), ~e(i)

)
≤ ρZ

(
1 + δ

(1− α)
α

τ

β

)
,

where the first inequality follows from (6), the second from
(7), and the third from the definitions of δ, β.

Theorem 5. If α > 1/2, POAMAX ≤ ρZ

(
1 + (1−α)

α
τ
β

)
.

The proof of Theorem 5 is similar to that of Theorem 4.

4 Some Bounds on the Boundary and Stretch
Next, we show bounds on the boundary and the stretch under
quite general assumptions on the structure of the game.

We start with a technical claim which will be used to
bound β.
Proposition 3. If ρZ = 1 then for any equilibrium ~e ∈ E,
any agent i, and any strategy x 6= ~e(i), we have

d(x, si) ≥ d
(
~e(i), si

)
− (1− α)

α
d
(
x,~e(i)

)
.

Proposition 4. If α > 1/2 and ρ = 1 then β ≥ 2α−1
2α .

Proof. For any equilibrium ~e ∈ E, any agent i, and any
strategy x 6= ~e(i), we have

d(x, si) ≥ d
(
~e(i), si

)
− (1− α)

α
d
(
x,~e(i)

)
≥
[
d
(
x,~e(i)

)
− d(x, si)

]
− (1− α)

α
d
(
x,~e(i)

)
≥
(
2α− 1

α

)
d
(
x,~e(i)

)
− d(x, si),

where the first inequality follows from Proposition 3 and the
remaining inequalities from the triangle inequality. The the-
orem follows by adding d(x, si) to each side of the previous
inequality and dividing by 2.

Proposition 5. For α > 1/2, if either the game is unre-
stricted (NS = N ) or d is uniform then β = 1.

We proceed to show some upper bounds on the stretch.
Since τ = 1 in the full information case, we next restrict our
attention on the partial information case.

Proposition 6. It always holds that τ ≤ dmax(Z)
wmindmin(Z) ,

where dmax(Z) = maxx,y∈Z d(x, y) is the diameter of Z,
dmin(Z) = minx 6=y:d(x,y)>0 d(x, y) is the minimum positive
distance in Z, and wmin = mini6=j:wij>0 wij is the mini-
mum positive influence weight.

Proof. In the definition of τi, we have τi = 1, if πi(~e, ~y) =
d(aggri(~e−i), aggri(~y−i)) = 0. Hence, we assume that
πi(~e, ~y) > 0.

We let wmin(i) = minj 6=i:wij>0 wij . Then, πi(~e, ~y) =∑
j 6=i wijd(~e(j), ~y(j)) ≥ wmin(i) dmin(Z), because

~e(j), ~y(j) ∈ Z, there is at least one positive term in the
sum, and if either wij = 0 or d(~e(j), ~y(j)) = 0, the corre-
sponding term is 0. Moreover, d(aggri(~e−i), aggri(~y−i)) ≤
dmax(Z), because aggri(~e−i), aggri(~y−i) ∈ Z. Therefore,

τi ≤
dmax(Z)

wmin(i) dmin(Z)
.

Using that the global stretch τ = maxi∈N τi and that
wmin = mini∈N w

min(i), we conclude the proof of the
proposition.

Unless we impose additional structures, the upper bound
of Proposition 6 is essentially the best possible, because
there are examples where a small change in a single coor-
dinate of a state moves the aggregate to a diametrically dif-
ferent strategy. E.g., consider Z = {0, 1}, ~e−i = (0, 1, 1),
~y−i = (0, 0, 1), wi1 = wi3 = 1−ε

2 and wi2 = ε,
and the Fréchet median as aggregation function. Clearly,
aggri(~e−i) = 1, while aggri(~y−i) = 0.

For the following propositions, we restrict the definition
of τ to optimal states ~o (either ~o ∈ OSUM or ~o ∈ OMAX),
instead of arbitrary states ~y.
Proposition 7. If either every optimum (wrt. any objective)
is a consensus or every equilibrium is a consensus then
a) τ ≤ 2, if ρZ = 1 and aggr is the Fréchet median;
b) τ = 1, if d is L2

2 and aggr is the Fréchet median.



5 k-Approval Voting Game
In this section we discuss how the results developed in the
previous sections can be used, together with other technical
considerations, to characterize the equilibria and their
efficiency in the k-approval voting game.

Existence of approximate equilibria. The approval voting
model does not admit an exact potential function (due to the
asymmetry of wij , even for binary strategies). Instead, since
d is a (2, 1)-approximate metric, Theorem 1, Theorem 2
and Theorem 3 apply to this setting, implying the existence
of 2-approximate pure Nash equilibria in both the full and
partial information settings. Moreover, by using (Ferraioli,
Goldberg, and Ventre 2016, Observation 2.2), we can show
that our approval voting game admits an equilibrium for the
game with binary strategies when α ∈ [0, 1].

Price of anarchy. In order to bound the price of anarchy for
the k-approval voting game, we first derive a lower bound
on β.

Theorem 6. For every integers k,m, with 0 < k < m, if
α > 1/2 then β ≥

(
2α−1
2α

)2
for the k-approval voting game.

Proof. To obtain a lower bound on βi, we fix an equilib-
rium ~e ∈ E and a strategy x ∈ Z with ~e(i) 6= x, and
find s∗i = argminsi∈U d(x, si)/d(x, ei). Then, we con-
clude that βi ≥ d(x, s∗i )/d(x,~e(i)). Throughout the proof,
we let [m] = {1, . . . ,m}. We also let x(j), si(j) and ~e(i)(j)
denote the j-th coordinate (bit) of strategies x, si and ~e(i).

To this end, for any fixed strategy x ∈ Z, let C0 = {j ∈
[m] : x(j) = 0} and let C1 = {j ∈ [m] : x(j) = 1} be in-
dices j for which x(j) is 0, for C0, and 1, for C1. We recall
that |C1| = k and |C0| = m− k. Moreover, for the equilib-
rium strategy ~e(i) ∈ Z, we let C01 = {j ∈ C0 : ~e(i)(j) =
1} and C10 = {j ∈ C1 : ~e(i)(j) = 0} be indices j where
x(j) 6= ~e(i)(j). Since both x and ~e(i) include exactly k ones
and m−k zeros, |C01| = |C10|. In the following, we denote
|C01| = |C10| = `, for simplicity, for some 1 ≤ ` ≤ k.
Using this notation, we can write that d(x,~e(i)) = 2`.

Our goal is to find minsi∈U d(x, si)/(2`), for any fixed
` ∈ {1, . . . , k}, under the constraints that si ∈ U , x ∈ Z,
and ~e(i) ∈ Z is an equilibrium strategy. We first observe that

d(x, si)

2`
=

1

2`

∑
j∈C0

si(j)
2 +

∑
j∈C1

(1− si(j))2
 , (8)

where
∑

j∈C0∪C1

si(j) = k and si ∈ [0, 1]m. (9)

Since ~e is an equilibrium and d is an exact metric on Z (d
is identical to the Hamming distance on Z), we can apply
Proposition 3 and obtain

d
(
~e(i), si

)
− d(x, si) ≤

(1− α)
α

d
(
x,~e(i)

)
=

(1− α)
α

2` .

(10)

Moreover, for any j 6∈ C10 ∪ C01, x(j) = ~e(i)(j), we
have

d(~e(i), si)− d(x, si) =
∑
j∈C10

(
si(j)

2 − (1− si(j))2
)

+
∑
j∈C01

(
(1− si(j))2 − si(j)2

)
= 2

∑
j∈C10

si(j)− 2
∑
j∈C01

si(j) ,

where, for the last equality, we use the fact that |C10| =
|C10|. Using (10), we conclude that for any equilibrium
strategy ~e(i) ∈ Z and any strategy x ∈ Z with d(x,~e(i)) =
2`, si satisfies∑

j∈C10

si(j)−
∑
j∈C01

si(j) ≤ `(1− α)/α. (11)

Therefore, we can find minsi∈S d(x, si)/(2`) by comput-
ing an si that minimizes (8), subject to (9) and (11). We
can do so by solving a strictly convex minimization problem
with linear constraints.

In the supplementary material, we show that the mini-
mizer s∗i of (8), subject to (9) and (11), achieves an objec-
tive value of d(x, s∗i )/(2`) =

(
2α−1
2α

)2
. Moreover, s∗i is de-

fined for any strategy x ∈ Z and any equilibrium strategy
~e(i) ∈ Z with d(x,~e(i)) = 2` > 0, and always attains the
same objective value d(x, s∗i )/(2`) =

(
2α−1
2α

)2
.

The proof of Theorem 6 actually shows something
stronger, namely that for any equilibrium strategy ~e(i) ∈ Z
and any x ∈ Z, with x 6= ~e(i), there is a preferenced
strategy s∗i ∈ S, defined as in the proof of Theorem 6, such
that d(x, s∗i )/d(x,~e(i)) =

(
2α−1
2α

)2
. Therefore, the proof of

Theorem 6 shows that for any agent i, βi =
(
2α−1
2α

)2
.

Combined with Theorem 4, Theorem 5 and the fact that
ρZ = 1, Theorem 6 implies that, when α ≥ 1/2, for the
k-approval voting game

POASUM ≤ 1 + δ
4α(1− α)
(2α− 1)2

τ ≤ 1 + δ(2α− 1)−2τ,

and

POAMAX ≤ 1 + δ
4α(1− α)
(2α− 1)2

τ ≤ 1 + (2α− 1)−2τ.

We recall that these bounds hold with τ = 1 for the full in-
formation case (see Remark 1). These results complements
the results in (Ferraioli, Goldberg, and Ventre 2016) for the
binary opinion formation model. By applying Proposition 7,
we obtain that these bounds hold with τ = 1 also for the
partial information setting when the aggregation function is
the Fréchet median and either every optimum (wrt. any ob-
jective) or every equilibrium is a consensus.
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Appendix

A Feasibility of Fréchet Mean and Fréchet
Median

The following proposition shows that both aggregation func-
tions (4) and (3) are feasible.

Proposition 8. The Fréchet mean and the Fréchet median
are feasible aggregation rules.

Proof. We prove the statement for the Fréchet mean. A vir-
tually identical argument applies to the Fréchet median.

Let i be any agent, and ~x and ~y be any pair of states. It is
straightforward to verify unanimity, namely, that if ~x−i is a
consensus on x ∈ Z, then mean(~x−i) = x. In fact, every
term of the summation would be 0 in x.

We proceed to prove consistency. Let us assume that∑
j 6=i wijd(~x(j), ~y(j)) = 0. If ~x(j) = ~y(j) for all co-

ordinates j 6= i, then ~x−i and ~y−i are identical and
meani(~x−i) = meani(~y−i). So, let us assume that for some
coordinates j, ~x(j) 6= ~y(j). Since

∑
j 6=i wijd(~x(j), ~y(j)) =

0, it must be wij = 0 for all coordinates j with ~x(j) 6= ~y(j).
Equivalently, for every j with wij > 0, we have that ~x(j) =
~y(j). Therefore, for every y ∈ Z, it holds that∑

j∈N\{i}

wijd
2
(
y, ~x(j)

)
=

∑
j∈N\{i}
wij>0

wijd
2
(
y, ~x(j)

)
=

∑
j∈N\{i}
wij>0

wijd
2
(
y, ~y(j)

)
=

∑
j∈N\{i}

wijd
2
(
y, ~y(j)

)
,

which implies that meani(~x−i) = meani(~y−i).

B Missing Proofs
Proof of Theorem 1
Proof. Let i be any agent, ~e any consensus, and x 6= ~e(i) any
strategy. Using the facts that d(~e(i), ~e(j)) = 0, we obtain
that:

cFi
(
~e
)
= αd

(
si, ~e(i)

)
≤ ρ
(
αd(si, x) + αd

(
x,~e(i)

))
(12)

≤ ραd(si, x) + ρ(1− α)d
(
x,~e(i)

)
(13)

= ραd(si, x) + ρ(1− α)
∑
j 6=i

wijd
(
x,~e(i)

)
(14)

= ραd(si, x) + ρ(1− α)
∑
j 6=i

wijd
(
x,~e(j)

)
(15)

= ρcFi
(
[~e−i, x]

)
,

where (12) follows from the approximate triangle inequality,
(13) from α ≤ 1/2, (14) from

∑
j 6=i wij = 1, and (15) from

~e(i) = ~e(j).

Proof of Lemma 1
Proof. Let i be any agent, ~x any state, and x 6= aggri(~x−i)
any strategy. Using the facts that aggri(~x−i) ∈ Z and
d(aggri(~x−i), aggri(~x−i)) = 0, we obtain that:

cPi
(
[~x−i, aggri(~x−i)]

)
= αd

(
aggri(~x−i), si

)
≤ ρ
(
αd
(
x, si

)
+ αd

(
x, aggri(~x−i)

))
(16)

≤ ραd
(
x, si

)
+ ρ(1− α)d

(
x, aggri(~x−i)

)
(17)

= ρcPi
(
[~x−i, x]

)
,

where (16) follows from the approximate triangle inequality
and (17) from α ≤ 1/2. Notice that if α < 1/2 then (17) is
strict and hence, when ρ = 1, aggri(~x−i) is the unique best
response.

Proof of Lemma 2
Proof. Let us assume that α ≥ 1/2. Let i be any agent inNS
and let ~x be any state with ~x(i) 6= si (recall that |Z| ≥ 2).

Since si ∈ Z, in the full information setting we have

cFi
(
[~x−i, si]

)
= αd(si, si) + (1− α)

∑
j 6=i

wijd
(
si, ~x(j)

)
= (1− α)

∑
j 6=i

wijd
(
si, ~x(j)

)
≤ ρ(1− α)

∑
j 6=i

wij

(
d
(
si, ~x(i)

)
+ d
(
~x(i), ~x(j)

))
≤ ραd

(
si, ~x(i)

)
+ ρ(1− α)

∑
j 6=i

wijd
(
~x(i), ~x(j)

)
= ρcFi (~x),

where the first inequality follows from the approximate tri-
angle inequality and the second from

∑
j 6=i wij = 1 and

α ≥ 1/2. Notice that if α < 1/2, then the second inequality
is strict and hence, when ρ = 1, si is the unique dominant
strategy.

Analogously, in the partial information setting we have

cPi
(
[~x−i, si]

)
= αd

(
si, si

)
+ (1− α)d

(
si, aggri(~x−i)

)
= (1− α)d

(
si, aggri(~x−i)

)
≤ ρ(1− α)

(
d
(
xi, si

)
+ d
(
xi, aggri(~x−i)

))
≤ ραd

(
xi, si

)
+ ρ(1− α)d

(
xi, aggri(~x−i)

)
= ρcPi (~x).

Also here, the first inequality follows from the approximate
triangle inequality and the second from α ≥ 1/2. If α <
1/2, then the second inequality is strict, hence, si is a strictly
dominant strategy of agent i.

Proof of Proposition 1
Proof. We consider a set of instances with U = {a, b, s},
Z = {a, b} and S = {s}, (i.e., si = s, for all i ∈ N ), where
a, b, s are three distinct elements. Notice that NS = ∅. We



recall that 0 < α ≤ 1/2. Since a, b, s are three distinct el-
ements, the distance between every two elements of U is
non-negative. Let the distance between b and s be an ar-
bitrarily small positive number, i.e., d(b, s) = ε > 0. By
Theorem 2, the state ~e in which every agent choses a is an
equilibrium; hence, SUM(~e) = nαd(a, s) and MAX(~e) =
αd(a, s). On the other hand, in the state ~o, in which every
agent choses b, SUM(~o) = nαd(b, s) = nαε > 0 and
MAX(~o) = αd(b, s) = αε > 0. We can conclude that
POASUM = POAMAX ≥ d(a,s)

ε . Since ε is an arbitrarily small
positive number, the claim follows.

Proof of Lemma 4
Proof. Let i be any agent in D(~o,~e). We prove the claim by
showing that i belongs also to D(~o,~s). If i ∈ NS then, by
Theorem 3, ~e(i) = si. Since ~o(i) 6= ~e(i), we also have that
~o(i) 6= si, i.e., i ∈ D(~o,~s). If i ∈ N \NS then si does not
belongs to Z. Since ~o(i) belongs to Z, this trivially implies
that ~o(i) 6= si, i.e., i ∈ D(~o,~s).

Proof of Theorem 5
Proof. Let us consider the full information setting first.

If E ⊆ OMAX, then trivially POAMAX = 1.
Otherwise, let ~e ∈ E and ~o ∈ OMAX be two states such

that D(~o,~e) 6= ∅. We recall that α > 1/2. Let i be one of
the agents with maximum cost at equilibrium, i.e., cFi (~e) =
MAX(~e). We have

MAX(~e) ≤ ρZMAX(~o) + τiρZ(1− α)πi(~o,~e)

≤ ρZMAX(~o) + τρZ(1− α)
∑

j∈N\{i}

wijd
(
~o(j), ~e(j)

)
,

(18)

where the first inequality follows from Lemma 3 and the
second from the definition of τ and πi. Notice that, if none
of the agents in N \ {i} is in D(~o,~e), then every term
in the summation in (18) is 0 and the inequality becomes
MAX(~e) ≤ MAX(~o), which implies POAMAX = 1.

Therefore, let us assume that {N \ {i}} ∩ D(~o,~e) 6= ∅
and let j∗ be any agent in such set maximizing the distance
between the strategy at the optimum and the one at the equi-
librium, i.e., j∗ ∈ argmaxj∈D(~o,~e)

j 6=i
d
(
~o(j), ~e(j)

)
. Then we

can write

MAX(~e) ≤ ρZMAX(~o) + τρZ(1− α)
∑

j∈N\{i}

wijd
(
~o(j∗), ~e(j∗)

)
= ρZMAX(~o) + τρZ(1− α)d

(
~o(j∗), ~e(j∗)

)
,

(19)

where first step follows from (18) and the definition of j∗,
and the second from

∑
j∈N wij = 1.

On the other side,

MAX(~o) ≥ cFj∗(~o) ≥ αd
(
~o(j∗), sj∗

)
≥ αβi · d

(
~o(j∗), ~e(j∗)

)
,

(20)

where the last inequality follows from the definition of
boundary (5). Notice that the last expression is strictly larger

than 0, because α > 1/2, βi > 0 and d
(
~o(j∗), ~e(j∗)

)
> 0.

Therefore, we can conclude that

POAMAX ≤
ρZMAX(~o) + τρZ(1− α)d

(
~o(j∗), ~e(j∗)

)
MAX(~o)

≤ ρZ +
τρZ(1− α)d

(
~o(j∗), ~e(j∗)

)
αβi · d

(
~o(j∗), ~e(j∗)

)
≤ ρZ

(
1 +

(1− α)
α

τ

β

)
,

where the first inequality follows from (19), and the last
from (20) and the definition of β.

For the partial information setting, the same argument ap-
plies by replacing cFi with cPi .

Proof of Proposition 3
Proof. Let us first focus on the full information setting. We
apply the equilibrium condition and obtain that

αd
(
~e(i), si

)
+ (1− α)

∑
j 6=i

wijd
(
~e(i), ~e(j)

)
≤ αd(x, si) + (1− α)

∑
j 6=i

wijd
(
x,~e(j)

)
,

which, by triangle inequality on Z, implies

d(x, si) ≥ d
(
~e(i), si

)
− (1− α)

α

[∑
j 6=i

wijd
(
x,~e(j)

)
−
∑
j 6=i

wijd
(
~e(i), ~e(j)

)]
≥ d
(
~e(i), si

)
− (1− α)

α
d
(
x,~e(i)

)
.

This inequality holds also for the partial information set-
ting. In fact, in this case, if we apply the equilibrium condi-
tion, we obtain

αd
(
~e(i), si

)
+ (1− α)d

(
~e(i), aggri(~e−i)

)
≤ αd(x, si) + (1− α)d

(
x, aggri(~e−i)

)
,

from which, by applying the triangle inequality on Z, we
have

d(x, si) ≥ d
(
~e(i), si

)
− (1− α)

α

[
d
(
x, aggri(~e−i)

)
− d
(
~e(i), aggri(~e−i)

)]
≥ d
(
~e(i), si

)
− (1− α)

α
d
(
x,~e(i)

)
.

Proof of Proposition 5
Proof. Let us first assume that the game is unrestricted, i.e.,
NS = N . Let us consider any equilibrium ~e ∈ E, any agent
i and any strategy x 6= ~e(i) (recall that |Z| ≥ 2). In order to
prove the claim, we need to show that d(x, si) = d

(
x,~e(i)

)
.

Assuming α > 1/2, by Theorem 3, we get ~e(i) = si, which
implies that d(x, si) = d

(
x,~e(i)

)
.



Next, we assume that (U, d) is a uniform metric. As be-
fore, we consider any equilibrium ~e ∈ E, any agent i and
any strategy x 6= ~e(i). In order to prove the claim, we need to
show that d(x, si) = d

(
x,~e(i)

)
. Notice that, since x 6= ~e(i),

we have d
(
x,~e(i)

)
= 1. Therefore, in order for the claim

to hold, it must be that d(x, si) = 1. By contradiction, let
us assume that d(x, si) = 0, or equivalently x = si. This
implies that i belongs to NS . If we assume α > 1/2, by
Theorem 3, we get si = ~e(i), and by transitivity x = ~e(i),
i.e., d

(
x,~e(i)

)
= 0, contradicting the hypothesis.

Proof of Proposition 7
In the proof of Proposition 7, we use the following result:

Theorem 7 ((Fanelli 2021)). Let i be any agent, ~x any state,
and y any strategy in Z. If d is L2

2 and aggri is the Fréchet
median then∑

j∈N\{i}

wijd
(
y, ~x(j)

)
= d
(
y, aggri(~x−i)

)
+

∑
j∈N\{i}

wijd
(
aggri(~x−i), ~x(j)

)
.

We are now ready to prove the proposition.

Proof. We proof the clam for the case in which every opti-
mum (wrt. any objective) is a consensus. The proof for the
case in which every equilibrium is a consensus is symmetric
and follows by simply exchanging the roles of ~e and ~o in the
argument below.

We start with the proof of (a). Let us consider any equi-
librium ~e ∈ E, any social optimum ~o (either ~o ∈ OSUM or
~o ∈ OMAX) and any agent i. By the definition of the Fréchet
median, ∑

j∈N\{i}

wijd
(
aggri(~e−i), ~e(j)

)
≤

∑
j∈N\{i}

wijd
(
aggri(~o−i), ~e(j)

)
.

(21)

Hence, we have that

d
(
aggri(~o−i), aggri(~e−i)

)
=

∑
j∈N\{i}

wijd
(
aggri(~o−i), aggri(~e−i)

)
(22)

≤
∑

j∈N\{i}

wijd
(
aggri(~o−i), ~e(j)

)
+

∑
j∈N\{i}

wijd
(
aggri(~e−i), ~e(j)

)
(23)

≤ 2
∑

j∈N\{i}

wijd
(
aggri(~o−i), ~e(j)

)
(24)

= 2
∑

j∈N\{i}

wijd
(
~o(j), ~e(j)

)
= 2 · πi(~o,~e), (25)

where (22) follows from
∑
j∈N\{i} wij = 1, (23) from the

triangle inequality, (24) from (21) and (25) from the fact that

~o is a consensus. Hence τ̂i ≤ 2. Using that τi = max{τ̂i, 1}
and τ = maxi∈N τi, we conclude the proof of (a).

Let us prove (b) now. Also in this case, let us consider any
equilibrium ~e ∈ E, any social optimum ~o (either ~o ∈ OSUM

or ~o ∈ OMAX) and any agent i. We have that

d
(
aggri(~o−i), aggri(~e−i)

)
≤

∑
j∈N\{i}

wijd
(
aggri(~o−i), ~e(j)

)
(26)

=
∑

j∈N\{i}

wijd
(
~o(j), ~e(j)

)
= πi(~o,~e), (27)

where (26) follows from Theorem 7 by setting y =
aggri(~o−i) and ~x = ~e, and (27) from the fact that ~o is a
consensus. Hence τ̂i = 1. Using that τi = max{τ̂i, 1} and
τ = maxi∈N τi, we conclude the proof of (b).

Missing Details from the Proof of Theorem 6
Proof. We complete the proof of Theorem 6, by observing
that we can find minsi∈S d(x, si)/(2`) by computing an si
that minimizes (8), subject to (9) and (11). Since (8) is a
strictly convex function of si(1), . . . , si(m) and the con-
straints of (9) and (11) are linear on si(1), . . . , si(m), we
have to solve a strictly convex minimization problem with
linear constraints.

We observe that

s∗i (j) =



2α− 1

2α
if j ∈ C01

1

2α
if j ∈ C10

0 if j ∈ C0 \ C01

1 if j ∈ C1 \ C10

is feasible (i.e., it lies in S and satisfies (11)) and achieves
an objective value of d(x, s∗i )/(2`) =

(
2α−1
2α

)2
. Moreover,

s∗i is defined for any strategy x ∈ Z and any equilibrium
strategy ~e(i) ∈ Z with d(x,~e(i)) = 2` > 0 and always
attains the same objective value d(x, s∗i )/(2`) =

(
2α−1
2α

)2
.

To confirm that s∗i is indeed a minimizer of the above
strictly convex minimization problem, we observe that the
KKT optimality conditions are satisfied at s∗i with KKT mul-
tipliers µ = 2α−1

2`α for (11) and 0 for all the constraints of (9).
To see this, let

f(y) =
1

2`

∑
j∈C0

y(j)2 +
∑
j∈C1

(1− y(j))2
 and

g(y) =
∑
j∈C10

y(j)−
∑
j∈C01

y(j)− `(1− α)/α

We first observe that complementary slackness constraints
are satisfied, since g(s∗i ) = 0 and all other KKT multipli-
ers are 0. Primal and dual feasibility constraints are also
satisfied. Regarding stationarity constraints, we observe that
∇jf(s∗i ) = 0, for any j 6∈ C01 ∪C10,∇jf(s∗i ) = 2α−1

2`α , for
all j ∈ C01, and ∇jf(s∗i ) = 1−2α

2`α , for all j ∈ C10. Simi-
larly, ∇jg(s∗i ) = 0 for any j 6∈ C01 ∪ C10, ∇jg(s∗i ) = −1,



for all j ∈ C01, and ∇jg(s∗i ) = 1, for all j ∈ C10. There-
fore, stationarity constraints are also satisfied with KKT
multiplier µ = 2α−1

2`α .
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