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Abstract

This article aims to give a coherent presentation of the theory of Gaussian distributions
on Riemannian symmetric spaces and also to report on recent original developments of
this theory. The initial goal is to define a family of probability distributions, on any
suitable Riemannian manifold, for which maximum-likelihood estimation, based on a fi-
nite sequence of observations, is equivalent to computation of the Riemannian barycentre
of these observations. As it turns out, this goal is achievable whenever the underlying
Riemannian manifold is a Riemannian symmetric space of non-positive curvature. In
this case, the required Gaussian distributions are exactly the maximum-entropy distri-
butions, for fixed barycentre and dispersion. The second step is the search for efficient
means of computing the normalising factors associated with these distributions. This
leads to a fascinating connection with random matrix theory, and even with theoretical
physics (Chern-Simons theory), which yields a series of original results that provide exact
expressions, as well as high-dimensional asymptotic expansions of the normalising factors.
Another outcome of this connection with random matrix theory is the new idea of duality,
between Gaussian distributions on Riemannian symetric spaces of opposite curvatures.
The present article also investigates Bayesian inference for Gaussian distributions on
symmetric spaces. This investigation motivates original results regarding Markov-Chain
Monte Carlo and convex optimisation on Riemannian manifolds. It also reveals a new
open problem (roughly, this concerns the equality of a posteriori mode with a posteriori
barycentre), which should be the focus of future developments.

keywords : Gaussian distribution ; Symmetric space ; Random matrix theory ; Markov-
Chain Monte Carlo ; Convex optimisation ; Bayesian inference



1 Introduction

The realisation that an essentially new approach, beyond that of classical statistics, is
needed in order to learn from data that live in non-Euclidean spaces, can be credited to
Fréchet, who invented what we today call the Fréchet mean, back in 1948 [1].

The Fréchet mean generalises the concept of the mean (average or expectation) of a
sequence of observations (x1, . . . , xN), from the classical case where these observations lie
in a Euclidean space, to the general setting where they belong to a non-Euclidean space.

Let us call our sample space M (the observations belong to M). If M is a Euclidean
space, it has a vector space structure, and the mean of (x1, . . . , xN) is just the arithmetic
mean (x1 + . . . + xN)/N . If M is a non-Euclidean space, it will have no vector space
structure, and this definition will lose all meaning.

To salvage the concept of mean, Fréchet suggested looking at the set of global minima
of the sum of squared distances (the factor 1/2 is included for later convenience)

E(x) =
1

2

N∑
n=1

d2(xn , x) for x ∈M

He noted that any global minimum of E deserves to be called a mean of (x1, . . . , xN). In
this way, the mean of a sequence of observations in a non-Euclidean space is well-defined,
at the cost of eventually failing to be unique.

Fast-forward to the present, learning from data that live in Riemannian manifolds
(a particular class of non-Euclidean spaces) has become central to many applications,
ranging from radar signal processing to neuroscience [2, 3], and the Fréchet mean (more
descriptively called the Riemannian barycentre) a very popular tool in this respect [4, 5].

Naturally, it also became important to provide a statistical (specifically, inferential)
foundation for the use of this tool. One way or another, this lead to the quest for a
suitable definition of a Gaussian distribution on a Riemannian manifold. This appeared
inevitable, already because of the intimate connection between arithmetic means and
Gaussian distributions, in the classical Eucidean case (see Paragraph 2.1, for discussion).

Gaussian distributons, defined as maximum entropy distributions on a Riemannian
manifold, for a given Fréchet mean and dispersion, where first introduced by Pennec [6].
For a while, it remained difficult to study these distributions, as there was no practical
means of computing the associated normalising factors. However, a first breakthrough
came when these factors where expressed as multiple integrals, in the case of Gaussian
distributions on the space of real positive-definite matrices [7].

In [8][9], the approach of [7] was generalised to Gaussian distributions on Riemannian
symmetric spaces of non-positive curvature, which include hyperbolic spaces, as well as
spaces of real, complex and quaternion positive-definite matrices, and spaces of structured
(Toeplitz or block-Toeplitz) positive-definite matrices. This opened the way to rigorous
learning algorithms for data that live in these spaces (this is partially discussed in [9]).

The introduction of Riemannian symmetric spaces reduced normalising factors of
Gaussian distributions to multiple integrals, which could be computed using Monte Carlo
techniques [10]. Only very recently, it was realised that the techniques of random matrix
theory made it possible to write down both analytic expressions and high-dimensional
asymptotic expansions of these multiple integrals. This was studied by the theoretical
physics community [11] (see also our paper, currently under review [12]).
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The aim of the present article is to give a coherent presentation of the theory of
Gaussian distributions on Riemannian symmetric spaces of non-positive curvature, and
report on recent original developments of this theory, including (but not limited to) the
ones just mentioned. Its main body (Sections 2 and 3) relies on a variety of new results,
mostly contained in the habilitation thesis [13] — one advantage of this situation is that
the flow of results is not interrupted by their sometimes lengthy proofs, given in [13].

In the following, Section 2 introduced Gaussian distributions and their connection with
random matrix theory. Section 3 investigates Bayesian inference of these distributions.
Each one of these sections opens with a description of the original results which it contains.

Another, more modest, contribution of this article is Appendix B (not based on [13]).
This appendix provides new results on the convergence rates for Riemannian gradient
descent, applied to strictly convex and strongly convex functions, defined on a convex
subset of a Riemannian manifold. The main results are Propositions B.8 and B.9.

2 Gaussian distributions and RMT

The starting point of this section is a historical discussion of the concept of a Gaus-
sian distribution. This leads up to the definition of Gaussian distributions, adopted in
Paragraph 2.2, as a family of distributions P (x̄, σ) on a Riemannian manifold M , with
parameters x̄ ∈M and σ > 0, for which maximum-likelihood estimation of x̄ is equivalent
to computation of the Riemannian barycentre. It turns out that this definition can be
pursued whenever M is a Riemannian symmetric space of non-positive curvature.

Paragraph 2.3 then gives a general expression of the normalising factor Z(σ) of the
Gaussian distribution P (x̄, σ), in the form of a multiple integral (8). When M is a space of
positive-definite matrices, or when M is the so-called Siegel domain, (8) is further reduced
to a kind of integral familiar in random matrix theory ((10) and (15), respectively).

Paragraph 2.4 states the existence and uniqueness of maximum-likelihood estimates
of the parameters x̄ and σ. It also states the maximum-entropy property of the Gaus-
sian distribution P (x̄, σ), in Proposition 2.5. Paragraph 2.5 provides expressions of the
barycentre (shown to be equal to x̄) and the covariance tensor of P (x̄, σ).

Paragraph 2.6 begins the series of results based on random matrix theory (RMT).
These concern Gaussian distributions on the space H(N) of complex positive-definite
matrices. First, the analytic expression of Z(σ) is given in Proposition 2.8. Then, an
asymptotic expansion of this expression, in the limit where N goes to infinity while
t = Nσ2 remains constant, is given in Proposition 2.9.

Paragraph 2.7 describes the asymptotic distribution of eigenvalues of a random positive-
definite matrix in H(N), drawn from the Gaussian distribution P (IN , σ) (IN denotes the
N ×N identity matrix). This asymptotic distribution has a probability density function,
whose explicit expression is provided in Proposition 2.10.

Paragraph 2.8 introduces Θ distributions. These are classical normal distributions,
wrapped around the unitary group U(N), which is the dual symmetric space of H(N).
Proposition 2.11 uncovers an unexpected relationship between Θ distributions on U(N)
and Gaussian distributions on H(N) : the normalising factors of these distributions are
connected by a simple identity (38).

Proofs of the above-mentioned results may be found in Chapter 3 of [13].
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2.1 From Gauss to Shannon

The story of Gaussian distributions is a story of discovery and re-discovery. Different
scientists, at different times, were repeatedly lead to these distributions, through different
routes. It seems the story began in 1801, on New Year’s day, when Giuseppe Piazzi
sighted a heavenly body (in fact, the asteroid Ceres), which he thought to be a new
planet. Less than six weeks later, this “new planet” disappeared behind the sun. Using
a method of least squares, Gauss predicted the area in the sky, where it re-appeared one
year later. His justification of this method of least squares (cast in modern language) is
that measurement errors follow a family of distributions, which satisfies
Property 1 : maximum-likelihood estimation is equivalent to the least-squares problem.

In his Theoria motus corporum coelestium (1809), he used this property to show
that the distribution of measurement errors is (again, in modern language) a Gaussian
distribution.

In 1810, Laplace studied the distribution of a quantity, which is the aggregate of a
great number of elementary observations. He was lead in this (completely different) way,
to the same distribution discovered by Gauss. Laplace was among the first scientists to
show
Property 2 : the distribution of the sum of a large number of elementary observations
is (asymptotically) a Gaussian distribution.

Around 1860, Maxwell rediscovered Gaussian distributions, through his investigation
of the velocity distribution of particles in an ideal gas (which he viewed as freely-colliding
perfect elastic spheres). Essentially, he showed that
Property 3 : the distribution of a rotationally-invariant random vector, which has in-
dependent components, is a Gaussian distribution.

Kinetic theory lead to another fascinating development, related to Gaussian distribu-
tions. Around 1905, Einstein (and, independently, Smoluchowsky) showed that
Property 4 : the distribution of the position of a particle, which is undergoing a Brow-
nian motion, is a Gaussian distribution.

In addition to kinetic theory, alternative routes to Gaussian distributions have been
found in quantum mechanics, information theory, and other fields. In quantum mechan-
ics, a Gaussian distribution is a position distribution with minimum uncertainty. That is,
it achieves equality in Heisenberg’s inequality. In information theory, one may attribute
to Shannon the following maximum-entropy characterisation
Property 5 : a probability distribution with maximum entropy, among all distributions
with a given mean and variance, is a Gaussian distribution.

The above list of re-discoveries of Gaussian distributions may be extended much
longer. However, the main point is the following. In a Euclidean space, identified with
Rd, any one of the above five properties leads to the same famous expression of a Gaussian
distribution,

P (dx|x̄, σ) =
(
2πσ2

)− d
2 exp

[
−(x− x̄)2

2σ2

]
dx

as a probability distribution on Rd, with mean vector x̄ ∈ Rd and variance parameter
σ > 0 (here dx denotes the Lebesgue measure on Rd).

In non-Euclidean space, each one of these properties may lead to a different distribu-
tion, which may then be called a Gaussian distribution, but only from a restricted point
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of view. People interested in Brownian motion may call the heat kernel of a Rieman-
nian manifold a Gaussian distribution on that manifold. However, statisticians will not
like this definition, since it will (in general) fail to have a straightforward connection to
maximum-likelihood estimation.

2.2 The “right” Gaussian

As of now, the following definition of Gaussian distributions is chosen. Gaussian distribu-
tions, on a Riemannian manifold M , are a family of distributions P (x̄, σ), parameterised
by x̄ ∈ M and σ > 0, such that : a maximum-likelihood estimate x̂N of x̄, based on
samples (xn ;n = 1, . . . , N) from P (x̄, σ), is a solution of the least-squares problem

minimise over x ∈M EN(x) =
1

2

N∑
n=1

d2(xn , x) (1)

This means that x̂N is an empirical barycentre of the samples (xn). In order to construct
probability distributions P (x̄, σ), which satisfy this definition, consider the density profile

f(x|x̄, σ) = exp

[
−d

2(x, x̄)

2σ2

]
(2)

and the normalising factor,

Z(x̄, σ) =

∫
M

f(x|x̄, σ) vol(dx) (3)

where vol denotes Riemannian volume. If this is finite, then

P (dx|x̄, σ) = (Z(x̄, σ))−1 f(x|x̄, σ)vol(dx) (4)

is a well-defined probability distribution on M . In 2.4, below, it will be seen that P (x̄, σ),
as defined by (4), is indeed a Gaussian distribution, if M is a Hadamard manifold and
also a homogeneous space. The following propositions will then be helpful.

Proposition 2.1. Let M be a Hadamard manifold, whose sectional curvatures lie in
[κ, 0], where κ = −c2. Then, for any x̄ ∈M and σ > 0, if Z(x̄, σ) is given by (3),

Z0(σ) ≤ Z(x̄, σ) ≤ Zc(σ) (5)

where Z0(σ) = (2πσ2)
d
2 and Zc(σ) is positive, given by (d denotes the dimension of M)

Zc(σ) = ωd−1
σ

(2c)d−1

d−1∑
k=0

(−1)k
(
d− 1
k

)
Φ ((d− 1− 2k)σc)

Φ′ ((d− 1− 2k)σc)
(6)

where ωd−1 denotes the area of the unit sphere in Rd, and Φ denotes the standard normal
distribution function.

Proposition 2.2. If M is a Riemannian homogeneous space, and Z(x̄, σ) is given by
(3), then Z(x̄, σ) does not depend on x̄. In other words, Z(x̄, σ) = Z(σ).
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If M is a Hadamard manifold and also a homogeneous space, then both Propositions
2.1 and 2.2 apply to M . Indeed, if M is a Riemannian homogeneous space, then its
sectional curvatures lie within a bounded subset of the real line. Therefore, Proposition
2.1 implies Z(x̄, σ) is finite for all x̄ ∈M and σ > 0. On the other hand, Proposition 2.2
implies that Z(x̄, σ) = Z(σ). Then, (4) reduces to

P (dx|x̄, σ) = (Z(σ))−1 exp

[
−d

2(x, x̄)

2σ2

]
vol(dx) (7)

and yields a well-defined probability distribution P (x̄, σ) on M . This will be the main
focus, throughout the following.

Remark : here, readers may wish to recall the concept of a Hadamard manifold, or of
a homogeneous space, from [14] (or any other good Riemannian geometry textbook).
The point of appealing to these concepts is the following. The assumption that M is a
Hadamard manifold implies that geodesic spherical coordinates, which cover all of M , can
be introduced at any point x̄ ∈M . Proposition 2.1 is obtained by writing the integral (3)
in terms of these spherical coordinates, and then applying Riemannian volume comparison
theorems, that state, very roughly speaking, that manifolds with more positive curvature
have less volume. On the other hand, to say that M is a homogeneous space means that
all points x̄ ∈ M are equivalent, so changing the point of origin x̄ does not change the
integral (3). This is the key to Proposition 2.2.

2.3 The normalising factor Z(σ)

Assume now M = G/K is a Riemannian symmetric space which belongs to the non-
compact case, described in Appendix A.1. In particular, M is a Hadamard manifold and
also a homogeneous space. Thus, for each x̄ ∈ M and σ > 0, there is a well-defined
probability distribution P (x̄, σ) on M , given by (7). Here, the normalising factor Z(σ)
can be expressed as a multiple integral, using the integral formula (74) of Proposition
A.1, from Appendix A.1. Applying this proposition (with o = x̄), it is enough to note

f(ϕ(s, a)|x̄, σ) = exp

[
−‖a‖

2
B

2σ2

]
where ‖a‖2

B = B(a, a), in terms of the Ad(G)-invariant symmetric bilinear form B (see
Appendix A.1). Since this expression only depends on a, (74) yields the following formula

Z(σ) =
ω(S)

|W |

∫
a

exp

[
−‖a‖

2
B

2σ2

] ∏
λ∈∆+

|sinh λ(a)|mλ da (8)

This formula expresses Z(σ) as a multiple integral on the vector space a. Recall that the
dimension of a is known as the rank of M [15].

Example 1 : the easiest instance of (8) arises when M is a hyperbolic space of dimension
d, and constant sectional curvature equal to −1. Then, M has rank equal to 1, so that
a = Râ for some unit vector â ∈ a. Since the sectional curvature is equal to −1, there
is only one positive root λ, say λ(â) = 1, with multiplicity mλ = d − 1. In addition,
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|W | = 2 because there are two Weyl chambers, C+ = {râ ; r > 0} and C− = {râ ; r < 0}.
Accordingly, (8) reads

Z(σ) =
ωd−1

2

∫ +∞

−∞
exp

[
− r 2

2σ 2

]
|sinh(r)|d−1 dr = ωd−1

∫ +∞

0

exp

[
− r 2

2σ 2

]
sinhd−1(r)dr

In general, if all distances are divided by c > 0, the sectional curvature −1 is replaced by
−c2. Thus, when M is a hyperbolic space of dimension d, and sectional curvature −c2,

Z(σ) = ωd−1

∫ +∞

0

exp

[
− r 2

2σ 2

]
(c−1 sinh(cr))d−1dr

This is exactly Zc(σ), expressed analytically in (6).

Example 2 : another example, also susceptible of analytic expression, is when M is a
space of positive-definite matrices with real, complex, or quaternion coefficients. Then,
M = G/K with G = GL(N,K), where K = R,C or H (real numbers, complex numbers,
or quaternions), and K ⊂ G a maximal compact subgroup, K = O(N), U(N) or Sp(N).
In each of these three cases, a is the space of N × N real diagonal matrices, and the
positive roots are the linear maps λ(a) = aii − ajj where i < j, each one having its
multiplicity mλ = β, (β = 1, 2 or 4, for K = R,C or H). In addition, ‖a‖2

B = 4tr(a2).
The Weyl group W is the groupe of permutation matrices in K, so |W | = N !, while
S = K/TN where TN is the subgroup of all diagonal matrices in K. Replacing all of this
into (8), it follows that

Z(σ) =
ωβ(N)

N !

∫
a

N∏
i=1

exp

[
−2a2

ii

σ2

]∏
i<j

|sinh(aii − ajj)|β da (9)

where ωβ(N) stands for ω(S), and da = da11 . . . daNN . Introducing xi = exp(2aii),

Z(σ) =
ωβ(N)

2NNβN !

∫
RN+
|V (x)|β

N∏
i=1

ρ(xi , 2σ
2)x
−Nβ
i dxi

where Nβ = (β/2)(N − 1) + 1, ρ(x, k) = exp(− log2(x)/k) and V (x) =
∏

i<j(xj − xi) is
the Vandermonde determinant. Finally, using the elementary identity

ρ(x, k)xα = exp

[
k

4
α2

]
ρ
(
e−

k
2
αx, k

)
it is immediately found that

Z(σ) =
ωβ(N)

2NNβN !
× exp

[
−NN2

β (σ2/2)
]
×
∫
RN+
|V (u)|β

N∏
i=1

ρ(ui , 2σ
2)dui (10)

For the case β = 2, the integral in (10) will be expressed analytically in 2.6, below.

Remark : curious readers will want to compute ωβ(N). For example, ω2(N) can be found
using the Weyl integral formula on U(N) [16]. This yields ω2(N) = vol(U(N))/(2π)N .
The volume of the unitary group can be found by looking at the normalising factor of a

6



Gaussian unitary ensemble [17]. Specifically, vol(U(N)) = (2π)(N2+N)/2/G(N), in terms
of G(N) = Γ(1)× Γ(2)× . . .× Γ(N) (Γ denotes the Euler Gamma function). �

Example 3 : for this last example, let M = DN be the Siegel domain [18]. This is the
set of N ×N symmetric complex matrices z, such that IN −z†z is positive-definite. Here,
M = G/K, where G ' Sp(N,R) (real symplectic group) and K ' U(N) (unitary group).
Precisely, G is the group of 2N × 2N complex matrices g, with gtΩg = Ω and g†Γg = Γ,
where t denotes the transpose, and where Ω and Γ are the matrices

Ω =

(
IN

−IN

)
; Γ =

(
IN

−IN

)
In addition, K is the group of block-diagonal matrices k = diag(U,U∗) where U ∈ U(N),
and ∗ denotes the conjugate. The action of G on M is given by Möbius transformations,

g · z = (Az +B)(Cz +D)−1 g =

(
A B

C D

)
(11)

This action preserves the Siegel metric, which is defined by

〈v,v〉z = ‖(IN − zz†)−1v‖2
B ‖v‖2

B =
1

2
tr(vv†) (12)

where each tangent vector v is identified with a symmetric complex matrix. Now [19],

a =

{(
a

a

)
; a = diag(a11, . . . , aNN)

}
(13)

The positive roots are λ(a) = aii − ajj for i < j, and λ(a) = aii + ajj for i ≤ j, all
with mλ = 1. The order of the Weyl group is |W | = 2NN !, and ω(S) = vol(U(N))/2N .
Replacing into (8), it follows that

Z(σ) =
vol(U(N))

22NN !

∫
a

N∏
i=1

exp

[
− a2

ii

2σ2

]∏
i<j

sinh |aii − ajj|
∏
i≤j

sinh |aii + ajj| da (14)

or, after introducing ui = cosh(2aii),

Z(σ) = 2−2N vol(U(N))×
∫

CN
V (u)

N∏
n=1

w(ui, 8σ
2)dui (15)

where CN = {u ∈ RN
+ : u1 ≤ u2 ≤ u1 ≤ . . . ≤ uN} and w(u, k) = exp(−acosh2(u)/k),

while V (u) is the Vandermonde determinant, as in (10).

2.4 MLE and maximum entropy

Let M be a Hadamard manifold, which is also a homogeneous space. Consider the family
of distributions P (x̄, σ) on M , given by (7) for x̄ ∈ M and σ > 0. This family of
distributions fits the definition of Gaussian distributions, stated at the beginning of 2.2.
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Proposition 2.3. Let P (x̄, σ) be given by (7), for x̄ ∈ M and σ > 0. The maximum-
likelihood estimate of the parameter x̄, based on samples (xn ;n = 1, . . . , N) from P (x̄, σ),
is unique and equal to the empirical barycentre x̂N of the samples (xn).

This proposition is almost immediate. From (7), one has the log-likelihood function

`(x̄, σ) = −N logZ(σ)− 1

2σ2

N∑
n=1

d2(xn , x̄) (16)

Since the first term does not depend on x̄, one may maximise `(x̄, σ), first over x̄ and
then over σ. Clearly, maximising over x̄ is equivalent to minimising the sum of squared
distances d2(xn , x̄). This is just the least-squares problem (1), whose solution is the
empirical barycentre x̂N . Moreover, x̂N is unique, since M is a Hadamard manifold [20][4].

Consider now maximum-likelihood estimation of σ. This is better carried out in terms
of the natural parameter η = (−2σ2)−1, or in terms of the moment parameter δ = ψ′(η),
where ψ(η) = log Z(σ) and the prime denotes the derivative.

Proposition 2.4. The function ψ(η), just defined, is a strictly convex function, which
maps the half-line (−∞, 0) onto R. The maximum-likelihood estimates of the parameters
η and δ are

η̂N = (ψ′)−1(δ̂N) and δ̂N =
1

N

N∑
n=1

d2(xn , x̂N) (17)

where (ψ′)−1 denotes the reciprocal function.

Remark : η̂N in (17) is well-defined, since the range of ψ′ is equal to (0,∞). Indeed, one
has the following inequalities, analogous to (5),

ψ′0(η) ≤ ψ′(η) ≤ ψ′c(η) (18)

where ψ0(η) = logZ0(σ), and ψc(η) = logZc(σ). Now, ψ′0(η) = nσ2, which increases to
+∞ when σ increases to +∞. On the other hand, since η = (−2σ2)−1,

ψ′c(η) = σ3 d

dσ
(logZc(σ)) (19)

which, from (6), is = 0 when σ = 0. Thus, it follows from (18) that ψ′ maps the half-line
(−∞, 0) onto the half-line (0,+∞). �

An alternative definition of Gaussian distributions is provided by their maximum-entropy
property, stated in the following proposition. Here, entropy specifically means Shannon’s
differential entropy. If P is a probability distribution on M , with probability density
function p, this entropy is equal to

S(P ) =

∫
M

(log p(x)) p(x)vol(dx)

Proposition 2.5. The Gaussian distribution P (x̄, σ) is the unique distribution on M ,
having maximum Shannon entropy, among all distributions P with given barycentre x̄
and dispersion δ = Ex∼P [d2(x, x̄)]. Its entropy is equal to ψ∗(δ) where ψ∗ is the Legendre
transform of ψ.
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2.5 Barycentre and covariance

Let M be a Hadamard manifold, which is also a homogeneous space. Consider the
barycentre and covariance of the Gaussian distribution P (x̄, σ) on M , given by (7).

First, it should be noted P (x̄, σ) has a well-defined Riemannian barycentre, since it
has finite second-order moments. To see that this is true, it is enough to note that∫

M

d2(x̄, x)P (dx|x̄, σ) < ∞

Ineded, this integral is just ψ′(η) in (18).

Proposition 2.6. Let P (x̄, σ) be given by (7), for x̄ ∈ M and σ > 0. The Riemannian
barycentre of P (x̄, σ) is equal to x̄.

The proof of this proposition relies on the fact that the so-called variance function

E(x) =
1

2

∫
M

d2(x, y)P (dy |x̄, σ) (20)

is strongly convex (see [13], Paragraph 2.2.3). Thus, if gradE(x̄) = 0, then x̄ is the global
minimiser of E , and therefore the barycentre of P (x̄, σ). However, gradE(x̄) = 0 follows
by a direct application of the following “Fisher’s identity”,∫

M

(gradx̄ log p(x|x̄, σ))P (dx|x̄, σ) = 0

where gradx̄ denotes the gradient with respect to x̄, defined according to the Riemannian
metric of M , and p(x|x̄, σ) is the probability density function, appearing in (7).

The covariance form of P (x̄, σ) is the symmetric bilinear form Cx̄ on Tx̄M ,

Cx̄(u, v) =

∫
M

〈u,Exp−1
x̄ (x)〉〈Exp−1

x̄ (x), v〉 p(x|x̄, σ)vol(dx) u , v ∈ Tx̄M (21)

where Exp denotes the Riemannian exponential map (Exp−1 is well-defined, since M is
a Hadamard manifold).

With σ > 0 fixed, the map which assigns to x̄ ∈ M the covariance form Cx̄ is a
(0,2)-tensor field on M , here called the covariance tensor of P (x̄, σ). In order to compute
this tensor field, consider the following situation.

Assume M = G/K is a Riemannian symmetric space. Here, K = Ko , the stabiliser in
G of o ∈M . For k ∈ K and u ∈ ToM , it is clear k ·u ∈ ToM . This defines a representation
of K in the tangent space ToM , called the isotropy representation. One says that M is
an irreducible symmetric space, if this isotropy representation is irreducible.

IfM is not irreducible, then it is a product of irreducible Riemannian symmetric spaces
M = M1×. . .×Ms [15] (Proposition 5.5, Chapter VIII. This is the de Rham decomposition
of M). Accordingly, for x ∈ M and u ∈ TxM , one may write x = (x1, . . . , xs) and
u = (u1, . . . , us), where xr ∈ Mr and ur ∈ TxrMr . Now, looking back at (7), it may be
seen that

p(x|x̄, σ) =
s∏
r=1

p(xr|x̄r , σ) p(xr|x̄r , σ) = (Zr(σ))−1 exp

[
−d

2(xr , x̄r)

2σ2

]
(22)

For the following proposition, let η = (−2σ2)−1 and ψr(η) = logZr(σ).
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Proposition 2.7. Assume that M is a product of irreducible Riemannian symmetric
spaces, M = M1 × . . .×Ms . The covariance tensor C in (21) is given by

Cx̄(u, u) =
s∑
r=1

ψ′r(η)

dim Mr

‖ur‖2
x̄r (23)

for u ∈ Tx̄M where x̄ = (x̄1, . . . , x̄s) and u = (u1, . . . , us), with x̄r ∈Mr and ur ∈ Tx̄rMr .

Example : let M = H(N), the space of N × N Hermitian positive-definite matrices,
so M = GL(N,C)/U(N), with U(N) the stabiliser of o = IN (N × N identity matrix).
The de Rham decomposition of M is M = M1 × M2 , where M1 = R and M2 is the
submanifold whose elements are those x ∈ M such that det(x) = 1. Accordingly, each
x̄ ∈M is identified with the couple (x̄1 , x̄2),

x̄1 =
1

N
log det(x̄) x̄2 = (det(x̄))−1/N x̄

and each u ∈ Tx̄M is written u = u1 x̄+ u2

u1 =
1

N
tr(x̄−1u) u2 = u− 1

N
tr(x̄−1u) x̄

These may be replaced into expression (23),

Cx̄(u, u) = ψ′1(η)u2
1 +

ψ′2(η)

N 2 − 1
‖u2‖2

x̄2
(24)

where ψ1(η) = log (2πσ2)
1
2 , and ψ2(η) = logZ(σ) − ψ1(η) (Z(σ) is given by (26) in 2.6,

below). After a direct calculation, this can be brought under the form

Cx̄(u, u) = g1(σ)tr2(x̄−1u) + g2(σ)tr(x̄−1u)2 (25)

where g1(σ) and g2(σ) are certain functions of σ.

Remark : as a corollary of Proposition 2.7, the covariance tensor C is a G-invariant
Riemannian metric on M . This is clear, for example, in the special case of (25), which
coincides with the general expression of a GL(N,C)-invariant metric. �

2.6 Z(σ) from RMT

Random matrix theory is very helpful in the calculation of integrals such as (10) and
(15), leading both to exact expressions and to asymptotic expansions of these integrals.
Here, this is illustrated for the integral (10), with β = 2. This corresponds to M = H(N),
the space of N × N Hermitian positive-definite matrices. In this case, it is possible to
provide an analytic formula for the normalising factor Z(σ).

Proposition 2.8. When M = H(N), the normalising factor Z(σ), given by (10) with
β = 2, admits of the following analytic expression

Z(σ) =
ω2(N)

2N2

(
2πσ2

)N
2 exp

[(
N3 −N

6

)
σ2

]N−1∏
n=1

(
1− e−nσ2

)N−n
(26)
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The proof of this proposition is a direct application of a well-known formula from
random matrix theory [17]. The integral in (10) reads

IN(σ) =

∫
RN+
|V (u)|β

N∏
i=1

ρ(ui , 2σ
2)dui

According to [17] (Chapter 5, Page 79), if (pn ;n = 0, 1, . . .) are orthonormal polynomials
with respect to the weight function ρ(u, 2σ2) on R+ , then IN(σ) is given by

IN(σ) = N !
N−1∏
n=0

p−2
nn (27)

where pnn is the leading coefficient in pn . The required orthonormal polynomials pn are
given by pn = (2πσ2)−

1
4 sn , where sn are the Stieltjes-Wigert polynomials [21] (Page 33).

Looking up the expression of these polynomials, it is easy to find

p−2
nn =

(
2πσ2

)1
2 exp

[
(2n+ 1)2

2
σ2

] n∏
m=1

(
1− e−mσ2

)
Then, working out the product (27) and replacing into (10), one is lead to (26).

Moving on, it is possible to derive an asymptotic expression of Z(σ), valid in the limit
where N goes to infinity while the product t = Nσ2 remains constant.

Proposition 2.9. Let Z(σ) be given by (26). If N → ∞, while t = Nσ2 remains
constant, then the following equivalence holds,

1

N 2
logZ(σ) ∼ −1

2
log

(
2N

π

)
+

3

4
+
t

6
− Li3(e

−t)− ζ(3)

t2
(28)

where Li3(x) =
∑∞

k=1 x
k/k3 for |x| < 1 (the trilogarithm), and ζ is the Riemann Zeta

function.

The main idea behind (28) is that, taking the logarithm in (26), the product on the
right-hand side turns into a Riemann sum for the improper integral∫

1

0

(1− x) log
(
1− e−tx

)
dx = −(Li3(e

−t)− ζ(3))/t2

where the equality follows by integrating term-by-term the power series of the logarithm.

2.7 The asymptotic distribution

From the point of view of random matrix theory, a Gaussian distribution P (IN , σ) on
M = H(N) defines a unitary matrix ensemble. If x is a random matrix, drawn from this
ensemble, and (xi ; i = 1, . . . , N) are its eigenvalues, which all belong to (0,∞), then the
empirical distribution νN , which is given by (as usual, δxi is the Dirac distribution at xi)

νN(B) = E

[
1

N

N∑
i=1

δxi(B)

]
(29)

for measurable B ⊂ (0,∞), converges to an absolutely continuous distribution νt , when
N goes to infinity, while the product t = Nσ2 remains constant.
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Proposition 2.10. Let c = e−t and a(t) = c(1 +
√

1− c)−2 while b(t) = c(1−
√

1− c)−2.
When N goes to infinity, while the product t = Nσ2 remains constant, the empirical
distribution νN converges weakly to the distribution νt with probability density function

dνt
dx

(x) =
1

πtx
arctan

(
4etx− (x+ 1)2

x+ 1

)
1[a(t),b(t)](x) (30)

where 1[a(t),b(t)] denotes the indicator function of the interval [a(t), b(t)].

Remark : as one should expect, when t = 0 (so σ2 = 0), a(t) = b(t) = 1. �
The proof of Proposition 2.10 is a relatively direct application of a result in [22] (Page

191). In fact, the intergration variables in (10) are ui = etxi. Let ν̃N be the empirical
distribution of the ui (this is the same as (29), but with ui instead of xi). By applying [17]
(Chapter 5, Page 81),

ν̃N(B) =
1

N

∫
B

R(1)

N (u)(du) (31)

for measurable B ⊂ (0,∞), where the one-point correlation function R(1)

N (u) is given by

R(1)

N (u) = ρ(u, 2σ2)
N−1∑
n=0

p2
n(u) (32)

in the notation of 2.6 (pn are orthonormal polynomials, with respect to the weight
ρ(u, 2σ2)). According to [23] (Page 133), ν̃N given by (31) converges weakly to the
so-called equilibrium distribution ν̃t , which minimises the electrostatic energy functional

E(ν) =
1

t

∫ ∞

0

1

2
log2(u)ν(du)−

∫ ∞

0

∫ ∞

0

log |u− v|ν(du)ν(dv) (33)

over probability distributions ν on (0,∞). Also according to [23] (Page 133), this equi-
librium distribution is the asymptotic distribution of the zeros of the polynomial pN (in
the limit N → ∞ while Nσ2 = t). Fortunately, pN is just a constant multiple of the
Stieltjes-Wigert polynomial sN [21] (Page 33). Therefore, the required asymptotic dis-
tribution of zeros can be read from [22] (Page 191). Finally, (30) follows by introducing
the change of variables x = e−tu.

Remark : in [24], the equilibrium distribution ν̃t is derived directly, by searching for
stationary distributions of the energy functional (33). This leads to a singular integral
equation, whose solution reduces to a Riemann-Hilbert problem. Astoundingly, the Gaus-
sian distributions on H(N), as introduced in the present chapter, provide a matrix model
for Chern-Simons quantum field theory (a detailed account is given in [24]). �

2.8 Duality : the Θ distributions

Recall the Riemannian symmetric space M = H(N) of 2.6. Its dual space is the unitary
group M∗ = U(N) (the definition of duality may be found in Appendix A.2).

Consider now a family of distributions on M∗, which will be called Θ distributions,
and which display an interesting connection with Gaussian distributions on M , studied

12



in 2.6. Recall Jacobi’s ϑ function1,

ϑ(eiφ|σ2) =
+∞∑

m=−∞

exp(−m2σ2 + 2miφ)

As a function of φ, up to some minor modifications, this is a wrapped normal distribution
(in other words, the heat kernel of the unit circle),

1

2π
ϑ(eiφ|σ2

2
) =

∞∑
m=−∞

exp

[
−(2φ− 2mπ)2

2σ2

]
Each x ∈M∗ can be written x = k·eiθ where k ∈ U(N) and eiθ = diag(eiθj ; j = 1, . . . , N).
Here, k ·y = kyk† for y ∈M∗. With this notation, define the following matrix ϑ function,

Θ
(
x
∣∣σ2
)

= k · ϑ(eiθ|σ2
2

) (34)

which is obtained from x by applying Jacobi’s ϑ function to each eigenvalue of x. Further,
consider the positive function,

f∗(x|x̄, σ) = det
[(

2πσ2
)1
2 Θ
(
xx̄†
∣∣σ2
)]

(35)

where x̄ ∈M∗. This is also equal to

det
[(

2πσ2
)1
2 Θ
(
x̄†x
∣∣σ2
)]

since the matrices xx̄† and x̄†x are similar. Then, let ZM∗(σ) denote the normalising
constant

ZM∗(σ) =

∫
M∗

f∗(x|x̄, σ) vol(dx) (36)

which does not depend on x̄, as can be seen, by introducing the new variable of integration
z = xx̄†, and using the invariance of vol(dx).

Now, define a Θ distribution Θ(x̄, σ) as the probability distribution on M∗, whose
probability density function, with respect to vol(dx), is given by

p∗(x|x̄, σ) = (ZM∗(σ))−1 f∗(x|x̄, σ) (37)

Proposition 2.11. Let ZM(σ) = Z(σ) be given by (26), and ZM∗(σ) be given by (36).
Then, the following equality holds

ZM(σ)

ZM∗(σ)
= exp

[(
N3 −N

6

)
σ2

]
(38)

Remark : the Gaussian density (7) on M , and the Θ distribution density (37) on M∗

are apparently unrelated. Therefore, it is interesting to note their normalising constants
ZM(σ) and ZM∗(σ) scale together according to the simple relation (38). The connection
between the two distributions is due to the duality between M and M∗. �

1To follow the original notation of Jacobi [25], this should be written ϑ(eiφ|q) where q = e−σ
2

. In
other popular notations, this function is called ϑ00 or ϑ3 .
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3 Gaussian distriutions and Bayesian inference

This section aims to investigate Bayesian inference for Gaussian distributions. Precisely, it
aims to study Bayesian estimation of the parameter x of a Gaussian distribution P (x, σ),
when this parameter is assigned a prior density which is also Gaussian, say P (z , τ). Both
the prior density P (z , τ) and the likelihood density P (x, σ) are defined on a Riemannian
symmetric space of non-positive curvature M 2.

Paragraph 3.1 begins by expressing the posterior density π(x), based on the general
definition

π(x) ∝ prior density × likelihood density

Here, π(x) will remain partially unknown, as the missing normalising factor cannot be
determined. Then, two Bayesian estimators are studied. The maximum a posteriori x̂MAP

is the mode of π(x),
x̂MAP = argmaxx∈M π(x)

while the minimum mean square error estimator x̂MMS , classically understood as the mean
(expectation) of the posterior density, is here the Riemanian barycentre of π(x).

It is seen that x̂MAP can be computed directly, being a geodesic convex combination
of the prior barycentre z and a new observation y, with respective weights 1 − ρ and ρ,
where ρ = τ 2/(σ2 + τ 2). On the other hand, x̂MMS seems much harder to compute.

However, Proposition 3.1 states that x̂MMS = x̂MAP if ρ = 1/2, and Proposition 3.2
states that, in the special case where M is a hyperbolic space, x̂MMS is a geodesic convex
combination of z and y, just like x̂MAP , but with different weights, say (1− t∗) and t∗.

Paragraph 3.2 reports on numerical experiments which show, again in the special case
where M is a hyperbolic space, that x̂MMS and x̂MAP lie very close to each other, and that
they even appear to be equal (this would mean t∗ = ρ). At present, I am unaware of any
mathematical explanation of this phenomenon.

Paragraph 3.3 describes the computational tools employed in calculating x̂MMS . First,
Proposition 3.3 provides easy-to-verify sufficient conditions, for the geometric ergodicity
of an isotropic Metropolis-Hastings Markov chain, in a Riemannian symmetric space M .
These conditions are shown to apply in the case of the posterior density π(x), making it
possible to generate geometrically ergodic samples (xn ;n ≥ 1) from this density.

The next Proposition 3.4 states that the empirical barycentre x̄N of the samples
(x1, . . . , xN) converges almost-surely to x̂MMS , so x̄N may be used to approximate x̂MMS to
any required accuracy.

Concretely, computing the empirical barycentre x̄N requires solving a strongly convex
optimisation problem on the Riemannian manifold M (here, convexity is with respect
to the Riemannian connection of M [26]. This has come to be called “geodesic convex-
ity”). Appendix B is devoted to a brief but systematic study of convex optimisation on
Riemannian manifolds. Specifically, it establishes the rate of convergence of Riemannian
gradient descent schemes, applied to strictly convex or strongly convex cost functions.

The gradient descent schemes under consideration are retraction schemes (not limited
to the Riemannian exponential) with a constant step-size. The problem is then to find
the largest possible step-size which guarantees a certain rate of convergence. Proposition
B.8 addresses this problem for strictly convex functions, and Proposition B.9 for strongly

2Proofs of the results stated in this section can be found in Chapter 4 of [13].
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convex functions. For any strictly convex cost function, and suitable retraction, Propo-
sition B.8 gives the largest possible step-size which guarantees a rate of convergence at
least as fast as O(1/t) (t is the number of iterations). Proposition B.9 does the same
for strongly convex functions, but with an exponential rate of convergence. In fact, with
regard to the original motivation of computing x̄N , this ensures that a gradient descent
scheme, using the Riemannian exponential, converges after only a few iterations.

3.1 MAP versus MMS

Assume M = G/K is a Riemannian symmetric space which belongs to the non-compact
case, described in Appendix A.1. Recall the Gaussian distribution P (x, σ) on M given
by its probability density function (7)

p(y|x, σ) = (Z(σ))−1 exp

[
−d

2(y, x)

2σ2

]
(39)

In 2.4, it was seen that maximum-likelihood estimation of the parameter x, based on
samples (yn ;n = 1, . . . , N), amounts to computing the empirical barycentre of these
samples. The one-sample maximum-likelihood estimate, given a single observation y, is
therefore x̂ML = y.

Instead of maximum-likelihood estimation, consider Bayesian estimation of x, based
on the observation y. To do so, assign to x a prior density, which is also Gaussian,

p(x|z, τ) = (Z(τ))−1 exp

[
−d

2(x, z)

2τ 2

]
(40)

Upon observation of y, Bayesian inference concerning x is carried out using the posterior
density

π(x) ∝ exp

[
−d

2(y, x)

2σ2
− d2(x, z)

2τ 2

]
(41)

where ∝ indicates a missing (unknown) normalising factor.
In particular, the maximum a posteriori estimator x̂MAP of x is equal to the mode of

the posterior density π(x). In other words, x̂MAP minimises the weighted sum of squared
distances d2(y, x)/σ2 + d2(x, z)/τ 2. This is expressed in the following notation3,

x̂MAP = z#ρ y where ρ =
τ 2

σ2 + τ 2
(42)

Thus, x̂MAP is a geodesic convex combination of the prior barycentre z and the observation
y, with respective weights σ2/(σ2 + τ 2) and τ 2/(σ2 + τ 2).

On the other hand, the minimum mean square error estimator x̂MMS is the barycentre
of the posterior density π(x). That is, x̂MMS is the unique global minimiser of

Eπ(w) =
1

2

∫
M

d2(w, x)π(x)vol(dx) (43)

3If p, q ∈ M and c : [0, 1] → M is a geodesic curve with c(0) = p and c(1) = q, then p#t q = c(t),
for t ∈ [0, 1]. In other words, p#t q is a geodesic convex combination of p and q, with respective weights
(1− t) and t.
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While it is easy to compute x̂MAP from (42), it is much harder to find x̂MMS , as this requires
minimising the integral (43), where the density π(x) is known only up to normalisation.

Still, there is one special case where these two estimators are equal.

Proposition 3.1. In the above notation, if σ2 = τ 2 (that is ρ = 1/2), then x̂MMS = x̂MAP .

When M is a Euclidean space, it is well-known that x̂MMS = x̂MAP for any value of ρ.
When M is a space of constant negative curvature, the following proposition indicates
x̂MMS and x̂MAP cannot be too far away from one another.

Proposition 3.2. In the above notation, if M is a space of constant negative curvature
(hyperbolic space), then x̂MMS = z#t∗ y for some t∗ ∈ (0, 1).

3.2 Bounding the distance

In general, one expects x̂MMS and x̂MAP to be different from one another, when ρ 6= 1/2.
However, when M is a space of constant negative curvature, Proposition 3.2 shows the
distace between these two estimators is always less than the distance between z and y.

Surprisingly (again when M is a space of constant negative curvature), numerical
experiments show that x̂MMS and x̂MAP lie very close to each other, and that they even
appear to be equal. I am unaware of any mathematical explanation of this phenomenon.

It is possible to bound the distance between x̂MMS and x̂MAP , using the fundamental
contraction property [20] (this is an immediate application of Jensen’s inequality, as
explained in the proof of Theorem 6.3 in [20]).

d(x̂MMS , x̂MAP) ≤ W (π, δx̂MAP
) (44)

where W denotes the Kantorovich (L1-Wasserstein) distance, and δx̂MAP
denotes the Dirac

probability distribution concentrated at x̂MAP . Now, the right-hand side of (44) is equal
to the first-order moment

m1(x̂MAP) =

∫
M

d(x̂MAP , x)π(x)vol(dx) (45)

Of course, the upper bound in (44) is not tight, since it is strictly positive, even when
ρ = 1/2, as one may see from (45).

It will be shown below that a Metropolis-Hastings algorithm, with Gaussian proposals,
can be used to generate geometrically ergodic samples (xn ;n ≥ 1) from the posterior
density π. It is therefore possible to approximate (45) by an empirical average

m̄1(x̂MAP) =
1

N

N∑
n=1

d(x̂MAP , xn) (46)

In addition, the samples (xn) can be used to compute a convergent approximation of
x̂MMS . Precisely, the empirical barycentre x̄MMS of the samples (x1, . . . , xN) converges
almost-surely to x̂MMS (this is a result of Proposition 3.4).
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Numerical experiments were conducted in the case where M is a hyperbolic space
of curvature equal to −1 and of dimension d. The following table was obtained for the
values σ2 = τ 2 = 0.1, using samples (x1, . . . , xN) where N = 2× 105.

dimension d 2 3 4 5 6 7 8 9 10

m̄1(x̂MAP) 0.28 0.35 0.41 0.47 0.50 0.57 0.60 0.66 0.70

d(x̄MMS , x̂MAP) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03

and the following table for σ2 = 1 and τ 2 = 0.5, again using N = 2× 105.

dimension d 2 3 4 5 6 7 8 9 10

m̄1(x̂MAP) 0.75 1.00 1.12 1.44 1.73 1.97 2.15 2.54 2.91

d(x̄MMS , x̂MAP) 0.00 0.00 0.03 0.02 0.02 0.03 0.04 0.03 0.12

The first table confirms Proposition 3.1. The second table, more surprisingly, shows that
x̂MMS and x̂MAP can be quite close to each other, even when ρ 6= 1/2.

In both of these tables, d(x̄MMS , x̂MAP) is an approximation of d(x̂MMS , x̂MAP), based on
using the empirical barycentre x̄MMS instead of x̂MMS . The main source of error affecting
this approximation is the fact that the samples (x1, . . . , xN) follow from a Metropolis-
Hastings algorithm, and not directly from the posterior density π.

Other values of σ2 and τ 2 lead to similar orders of magnitude for m̄1(x̂MAP) and
d(x̄MMS , x̂MAP). While m̄1(x̂MAP) increases with the dimension d, d(x̄MMS , x̂MAP) does not
appear sensitive to increasing dimension.

Based on these experimental results, one is tempted to conjecture that x̂MMS = x̂MAP ,
even when ρ 6= 1/2. Of course, numerical experiments do not equate to a mathematical
proof.

3.3 Computing the MMS

3.3.1 Metropolis-Hastings algorithm

A crucial step in Bayesian inference is sampling from the posterior density. Here, this is
π(x) given by (41). Since π(x) is known only up to normalisation, a suitable sampling
method is afforded by the Metropolis-Hastings algorithm. This algorithm generates a
Markov chain (xn ;n ≥ 1), with transition kernel [27]

Pf(x) =

∫
M

α(x, y)q(x, y)f(y)vol(dy) + ρ(x)f(x) (47)

for any bounded measurable function f : M → R, where α(x, y) is the probability of
accepting a transition from x to dy, and ρ(x) is the probability of staying at x, and where
q(x, y) is the proposed transition density

q(x, y) ≥ 0 and

∫
M

q(x, y)vol(dy) = 1 for x ∈M (48)

17



In the following, (xn) will always be an isotropic Metropolis-Hastings chain, in the sense
that q(x, y) = q(d(x, y)), so q(x, y) only depends on the distance d(x, y). In this case,
the acceptance probability α(x, y) is given by α(x, y) = min {1, π(y)/π(x)}.

The aim of the Metropolis-Hastings algorithm is to produce a Markov chain (xn) which
is geometrically ergodic. Geometric ergodicity means the distribution πn of xn converges
to π, with a geometric rate, in the sense that there exist β ∈ (0, 1) and R(x1) ∈ (0,∞),
as well as a function V : M → R, such that (in the following, π(dx) = π(x)vol(dx))

V (x) ≥ max
{

1, d2(x, x∗)
}

for some x∗ ∈M (49)∣∣∣∣∫
M

f(x)(πn(dx)− π(dx))

∣∣∣∣ ≤ R(x1)β
n (50)

for any function f : M → R with |f | ≤ V . If the chain (xn) is geometrically ergodic,
then it satisfies the strong law of large numbers [28]

1

N

N∑
n=1

f(xn) −→
∫
M

f(x)π(dx) (almost-surely) (51)

as well as a corresponding central limit theorem (see Theorem 17.0.1, in [28]). Then, in
practice, the Metropolis-Hastings algorithm can be used to generate samples (xn) from
the posterior density π(x).

The following general statement can be proved, concerning the geometric ergodicity of
isotropic Metropolis-Hastings chains. The proof (see [13], Section 4.6) is a generalisation
of the one carried out in the special case where M is a Euclidean space [29].

Proposition 3.3. Let M be a Riemannian symmetric space, which belongs to the non-
compact case. Assume (xn ;n ≥ 1) is a Markov chain in M , with transition kernel given
by (47), with proposed transition density q(x, y) = q(d(x, y)), and with strictly positive
invariant density π.

The chain (xn) satisfies (49) and (50), if the following assumptions hold,

(a1) there exists x∗ ∈M , such that r(x) = d(x∗, x) and `(x) = log π(x) satisfy

lim sup
r(x)→∞

〈grad r, grad `〉x
r(x)

< 0

(a2) if n(x) = grad `(x)/‖grad `(x)‖ , then n(x) satisfies

lim sup
r(x)→∞

〈grad r, n〉x < 0

(a3) there exist δq > 0 and εq > 0 such that d(x, y) < δq implies q(x, y) > εq

Remark : the posterior density π in (41) verifies Assumptions (a1) and (a2). To see this,
let x∗ = z, and write

grad `(x) = − 1

τ 2
r(x)grad r(x)− 1

σ2
grad fy(x)
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where fy(x) = d2(y, x)/2. Then, taking the scalar product with grad r,

〈grad r, grad `〉x = − 1

τ 2
r(x)− 1

σ2
〈grad r, grad fy〉x (52)

since grad r(x) is a unit vector, for all x ∈ M . Now, grad fy(x) = −Exp−1
x (y) (see [30]).

But, since r(x) is a convex function of x, it follows, by (85) in Appendix B.1, that

〈grad r,Exp−1
x (y)〉 ≤ r(y)− r(x)

for any y ∈ M . Thus, the right-hand side of (52) is strictly negative, as soon as r(x) >
r(y), and Assumption (a1) is indeed verified. That Assumption (a2) is also verified can
be proved by a similar reasoning. �

Remark : on the other hand, Assumption (a3) holds, if the proposed transition density
q(x, y) is a Gaussian density, q(x, y) = p(y|x, τq). With this choice of q(x, y), all the
assumptions of Proposition 3.3 are verified, for the posterior density π in (41). Therefore,
Proposition 3.3 implies that the Metropolis-Hastings algorithm generates geometrically
ergodic samples (xn ;n ≥ 1), from this posterior density. �

3.3.2 The empirical barycentre

Let (xn ;n ≥ 1) be a Metropolis-Hastings Markov chain in M , with its transition kernel
(47), and invariant density π. Assume the chain (xn) is geometrically ergodic, so it
satisfies the strong law of large numbers (51).

Then, let x̄N denote the empirical barycentre of the first N samples (x1, . . . , xN). This
is the unique global minimum of the variance function

EN(w) =
1

2N

N∑
n=1

d2(w, xn) (53)

Let x̂ denote the Riemannian barycentre of the invariant density π. It turns out that x̄N
converges almost-surely to x̂.

Proposition 3.4. Let (xn) be any Markov chain in a Hadamard manifold M , with in-
variant distribution π. Denote x̄N the empirical barycentre of (x1, . . . , xN), and x̂ the
Riemannian barycentre of π. If (xn) satisfies the strong law of large numbers (51), then
x̄N converges to x̂, almost-surely.

The proof of Proposition 3.4 is nearly a word-for-word repetition of the proof in [31]
(that of Theorem 2.3).

According to the remarks after Proposition 3.3, the Metropolis-Hastings Markov chain
(xn), whose invariant density is the posterior density π(x), given by (41), is geometrically
ergodic. Therefore, by Proposition 3.4, the empirical barycentre x̄MMS , of the samples
(x1, . . . , xN), converges almost-surely to the minimum mean square error estimator x̂MMS

(since this is just the barycentre of the posterior density π). This provides a practical
strategy for approximating x̂MMS . Indeed, x̄MMS can be computed using the Riemannian
gradient descent method (this method is discussed in Appendix B.4).

Remark : this strategy for approxmating x̂MMS provided the numerical results discussed
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in Paragraph 3.2. For an additional, visual illustration, consider (as in Paragraph 3.2)
the case where M is a space of constant negative curvature −1, and of dimension d = 2.
Figure 1 represents M in the shape of the Poincaré disc. The prior barycentre z is
designated by a square � and the observation y by a circle ◦. Grey crosses × mark the
last 1000 out of N = 100000 samples xn generated using the Metropolis-Hastings kernel
(47), and the empirical barycentre x̄MMS is designated by a black circle •. In both of the
Subfigures 1a and 1b, x̄MMS is seen to lie on the geodesic connecting z and y, here the
dashed circle arc. Note that 1a corresponds to Proposition 3.1 and 1b to Proposition 3.2.

(a) σ2 = τ2 = 0.1 (Proposition 3.1) (b) σ2 = 0.1 ; τ2 = 1 (Proposition 3.2)

Figure 1: Poincaré disc with z = � ; y = ◦ ; x̄MMS = •

3.4 Proof of Proposition 3.2

Neither this proposition, nor its proof, appeared in [13]. The proof is here given in a
series of lemmas. Recall that M is now a hyperbolic space (simply-connected space of
constant negative curvature −1).

Lemma 3.1. Let γ : R → M denote the geodesic curve with γ(0) = z and γ(1) = y.
Then, x̂MMS lies on this geodesic curve γ.

Proof : recall from [32] (Section 3) that there exists an isometry σ : M →M , such that
σ ◦ σ is the identity (σ is an involution), and the set of fixed points of σ is exactly the
geodesic curve γ. The key point in the following, which can be seen from (41), is that

π(σ(x)) = π(x) for x ∈M (54)

In other words, σ leaves invariant the posterior density π. Let Eπ be the function in (43).
Then, note that

(Eπ ◦ σ)(w) =
1

2

∫
M

d2(w, σ(x))π(x)vol(dx) =
1

2

∫
M

d2(w, x)π(σ(x))σ∗(vol)(dx)

where the first equality follows from (41), because σ is an isometry and an involution, and
the second equality by a change of variables (σ∗(vol) denotes the pullback of the volume
form vol by σ). Using (54) and the fact that σ preserves the volume, it now follows that

(Eπ ◦ σ)(w) = Eπ(w) for w ∈M (55)
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Finally, taking w = x̂MMS and recalling that x̂MMS is the unique global minimiser of Eπ, it
follows that σ(x̂MMS) = x̂MMS , so that x̂MMS indeed lies on γ. �

Lemma 3.2. There exists a continuous function c : R→ R such that

grad Eπ(γ(t)) = c(t)γ̇(t) for t ∈ R (56)

Remark : taking covariant derivatives in (56),

Hess Eπ(γ(t)) · γ̇(t) = c′(t)γ̇(t) (57)

where c′(t) = dc(t)/dt. Because Eπ is 1-strongly convex (see Item (iii) of Proposition B.2,
Appendix B.1), it follows that c′(t) ≥ 1. In particular, c(t) is strictly increasing.

Proof : let w = γ(t) and take the gradient of (55). This yields

dσ · grad Eπ(γ(t)) = grad Eπ(γ(t)) (58)

However, the derivative dσ : Tγ(t)M → Tγ(t)M is equal to 1 on vectors parallel to γ̇(t)
and to −1 on vectors orthogonal to γ̇(t). Thus, (58) implies that grad Eπ(γ(t)) should be
parallel to γ̇(t). This is equivalent to (56). �

The next step in the proof will be to compute c(0) and c(1). This will show that c(0) is
negative and c(1) is positive. Computing c(0) and c(1) requires taking a closer look at
the posterior density π.

Lemma 3.3. Let Z(z, y, τ, σ) denote the missing normalising factor in (41). Then,
Z(z, y, τ, σ) = Z(δ, τ, σ), where δ = d2(z, y).

Proof : a hyperbolic space is a two-point homogeneous space [15] (Page 355). This
means if z′ , y′ ∈ M have d(z′ , y′) = d(z, y), then there exists an isometry g : M → M
such g(z) = z′ and g(y) = y′. Now, since g is an isometry,

Z(z, y, τ, σ) =

∫
M

exp

[
−d

2(y, x)

2σ2
− d2(x, z)

2τ 2

]
vol(dx)

=

∫
M

exp

[
−d

2(g(y), g(x))

2σ2
− d2(g(x), g(z))

2τ 2

]
vol(dx)

Thus, introducing the change of variables w = g(x),

Z(z, y, τ, σ) =

∫
M

exp

[
−d

2(y′, w)

2σ2
− d2(w, z′)

2τ 2

]
vol(dw) = Z(z′, y′, τ, σ)

In other words, Z(z, y, τ, σ) only depends on the distance between z and y. �

It is now possible to compute c(0) and c(1).

Lemma 3.4. There exists a positive constant ψ(δ, τ, σ), such that

c(0) = −ψ(δ, τ, σ)τ 2 and c(1) = ψ(δ, τ, σ)σ2 (59)

In the notation of (56).
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Proof : for any value of the parameters (z, y, τ, σ),∫
M

exp

[
−d

2(y, x)

2σ2
− d2(x, z)

2τ 2
− log Z(δ, τ, σ)

]
vol(dx) = 1

where δ = d2(z, y). Taking the gradient of this identity with respect to z, and using

gradzd
2(x, z) = −2Exp−1

z (x) ; gradzd
2(z, y) = −2Exp−1

z (y)

where gradz denotes the gradient with respect to z, it follows that

1

τ 2

∫
M

Exp−1
z (x)π(x)vol(dx)− ψ(δ, τ, σ)Exp−1

z (y) = 0 (60)

where ψ(δ, τ, σ) = −2× ∂ log Z(δ, τ, σ)/∂δ. However, here one has,∫
M

Exp−1
z (x)π(x)vol(dx) = −grad Eπ(z) ; Exp−1

z (y) = γ̇(0) (61)

Thus, replacing (61) into (60), it follows that

c(0) = −ψ(δ, τ, σ)τ 2

which is the first part of (59). The second part can be proved in the same way, taking
the gradient with respect to y rather than z. The fact that ψ(δ, τ, σ) > 0 follows because
c(t) is strictly increasing (see the remark after Lemma 3.2), and has at most one zero
(because Eπ has exactly one stationary point). �

It is now possible to complete the proof of Proposition 3.2. Lemma 3.4, shows that c(0)
is negative and c(1) is positive. Therefore, c(t∗) = 0 for some t∗ ∈ (0, 1). By (56) of
Lemma 3.2, grad Eπ(γ(t∗)) = 0. Since Eπ is strongly convex, it follows immediately that
γ(t∗) is the unique global minimiser of Eπ . In other words, x̂MMS = γ(t∗), as required. �
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A Riemannian symmetric spaces

A Riemannian symmetric space is a Riemannian manifold M , such that, for each x ∈M ,
there exists an isometry sx : M →M , with sx(x) = x and dsx(x) = −Idx . This isometry
sx is called the geodesic symmetry at x [15].

Let G denote the identity component of the isometry goup of M , and K = Ko be the
stabiliser in G of some point o ∈ M . Then, M = G/K is a Riemannian homogeneous
space. The mapping θ : G→ G, θ(g) = so ◦ g ◦ so is an involutive isomorphism of G.

Let g denote the Lie algebra of G, and consider the Cartan decomposition, g = k+ p,
where k is the +1 eigenspace of dθ and p is the −1 eigenspace of dθ. One clearly has the
commutation relations,

[k, k] ⊂ k ; [k, p] ⊂ p ; [p, p] ⊂ k (62)

In addition, it turns out that k is the Lie algebra of K, and that p may be identified with
ToM , in a natural way.

The Riemannian metric of M may always be expressed in terms of an Ad(K)-invariant
scalar product Q on g. If x ∈M is given by x = g · o for some g ∈ G (where g · o = g(o)),
then

〈u,v〉x = Q(g−1 · u, g−1 · v) (63)

where the vectors g−1 · u and g−1 · v, which belong to ToM , are identified with elements
of p. Here, by an abuse of notation, dg−1 · u is denoted g−1 · u.

Let exp : g→ G denote the Lie group exponential. If v ∈ ToM , then the Riemannian
exponential Expo(v) is given by

Expo(v) = exp(v) · o (64)

Moreover, if Πt
0 denotes parallel transport along the geodesic c(t) = Expo(tv), then

Πt
0(u) = exp(tv) · u (65)

for any u ∈ ToM (note that the identification ToM ' p is always made, implicitly). Using
(65), one can derive the following expression for the Riemann curvature tensor at o,

Ro(v, u)w = −[[v, u], w] v, u, w ∈ ToM (66)

A fundamental property of symmetric spaces is that the curvature tensor is parallel :∇R =
0. This is often used to solve the Jacobi equation [15][14], and then express the derivative
of the Riemannian exponential,

dExpx(v)(u) = exp(v) · sh(Rv)(u) (67)

where sh(Rv) =
∑∞

n=0(Rv)
n/(2n + 1)! for the self-adjoint curvature operator Rv(u) =

[v, [v, u]]. As a result of (67), since exp(v) is an isometry, the following expression of the
Riemannian volume is immediate

Exp∗o(vol) = |det(sh(Rv))| dv (68)

where dv denotes the volume form on ToM , associated with the restriction of the scalar
product Q to p.
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Expression (68) yields applicable integral formulae, when g is a reductive Lie algebra
(g = z + gss : z the centre of g and gss semisimple). If a is a maximal Abelian subspace
of p, any v ∈ p is of the form v = Ad(k) a for some k ∈ K and a ∈ a (see [15], Lemma
6.3, Chapter V). Moreover, using the fact that Ad(k) is an isomorphism of g,

Ad(k−1) ◦Rv ◦ Ad(k) = Ra =
∑
λ∈∆+

(λ(a))2 Πλ (69)

where each λ ∈ ∆+ is a linear form λ : a → R, and Πλ is the orthogonal projector onto
the corresponding eigenspace of Ra . Here, ∆+ is the set of positive roots of g with respect
to a [15] (see Lemma 2.9, Chapter VII).

It is possible to use the diagonalisation (69), in order to evaluate the determinant (68).
To obtain a regular parameterisation, let S = K/Ka , where Ka is the centraliser of a in
K. Then, let ϕ : S×a→M be given by ϕ(s, a) = Expo(β(s, a)) where β(s, a) = Ad(s) a.
Now, by (68) and (69),

ϕ∗(vol) =
∏
λ∈∆+

∣∣∣∣sinh λ(a)

λ(a)

∣∣∣∣mλ β∗(dv)

where mλ is the multiplicity of λ (the rank of Πλ). On the other hand, one may show

β∗(dv) =
∏
λ∈∆+

|λ(a)|mλ daω(ds) (70)

where da is the volume form on a, and ω is the invariant volume induced onto S from K.
Finally, the Riemannian volume, in terms of the parameterisation ϕ, can be expressed

in the following way

ϕ∗(vol) =
∏
λ∈∆+

|sinh λ(a)|mλ daω(ds) (71)

Using (71), it will be possible to write down integral formulae for Riemannian symmetric
spaces, either non-compact or compact.

A.1 The non-compact case

This is the case were g admits an Ad(G)-invariant, non-degenerate, symmetric bilinear
form B, such that Q(u, z) = −B(u, dθ(z)) is an Ad(K)-invariant scalar product on g.

In this case, B is negative-definite on k and positive-definite on p. Moreover, the linear
map ad(z) = [z, ·] is skew-symmmetric or symmetric (with respect to Q), according to
whether z ∈ k or z ∈ p.

If u1 , u2 ∈ p are orthonormal, the sectional curvature of Span(u1 , u2) is found from
(66), κ(u1 , u2) = −‖[u1 , u2]‖2

o ≤ 0. Therefore, M has non-positive sectional curvatures.
In fact, M is a Hadamard manifold. It is geodesically complete by (64). It is moreover

simply connected, because Expo : p→M is a diffeomorphism [15] (Theorem 1.1, Chapter
VI). Thus, (68) yields a first integral formula,∫

M

f(x) vol(dx) =

∫
p

f(Expo(v)) |det(sh(Rv))| dv (72)

24



To obtain an integral formula from (71), one should first note that β : S × a→ p is not
regular, nor one-to-one. Recall the following :
• the hyperplanes λ(a) = 0, where λ ∈ ∆+ , divide a into finitely many connected
components, which are open and convex sets, known as Weyl chambers. From (70), β is
regular on each Weyl chamber.
• let K ′a denote the normaliser of a in K. Then, W = K ′a/Ka is a finite group of
automorphisms of a, called the Weyl group, which acts freely transitively on the set of
Weyl chambers [15] (Theorem 2.12, Chapter VII).

Then, for each Weyl chamber C, β is regular and one-to-one, from S×C onto its image
in p. Moreover, if ar is the union of the Weyl chambers (a ∈ ar if and only if λ(a) 6= 0
for any λ ∈ ∆+), then β is regular and |W |-to-one from S × ar onto its image in p. To
obtain the desired integral formula, it only remains to note that ϕ is a diffeomorphism
from S × C onto its image in M . However, this image is the set Mr of regular values of
ϕ. By Sard’s lemma, its complement is negligible [33].

Proposition A.1. Let M = G/K be a Riemannian symmetric space, which belongs
to the “non-compact case”, just described. Then, for any bounded continuous function
f : M → R,∫

M

f(x) vol(dx) =

∫
C+

∫
S

f(ϕ(s, a))
∏
λ∈∆+

(sinh λ(a))mλ daω(ds) (73)

=
1

|W |

∫
a

∫
S

f(ϕ(s, a))
∏
λ∈∆+

|sinh λ(a)|mλ daω(ds) (74)

Here, C+ is the Weyl chamber C+ = {a ∈ a : λ ∈ ∆+ ⇒ λ(a) > 0}.

A.2 The compact case

In this case, g admits an Ad(G)-invariant scalar product Q. Therefore, ad(z) is skew-
symmmetric, with respect to Q, for each z ∈ g. Using (66), it follows that M is compact,
with non-negative sectional curvature.

In fact, the compact case may be obtained from the previous non-compact case by
duality. Denote gC the complexification of g, and let g∗ = k+ p∗ where p∗ = ip. Then, g∗

is a compact real form of gC (that is, g∗ is a compact Lie algebra, and its complexification
is equal to gC). Denote G∗ the connected Lie group with Lie algebra g∗.

If M = G/K is a Riemannian symmetric space which belongs to the non-compact
case, then M∗ = G∗/K is a Riemannian symmetric space which belongs to the compact
case. Formally, to pass from the non-compact case to the compact case, all one has to do
is replace a by ia. Applying this recipe to (71), one obtains

ϕ∗(vol) =
∏
λ∈∆+

|sin λ(a)|mλ daω(ds) (75)

where da is the volume form on a∗ = ia, and ω is the invariant volume induced onto S
from K. Note that the image under Expo of a∗ is the torus T∗ = a∗/aK , where aK is the
lattice given by aK = {a ∈ a∗ : Expo(a) = o}. Recall the following :
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• ϕ(s, a) only depends on t = Expo(a). Thus, ϕ may be considered as a map from S×T∗
to M .
• if a ∈ aK then exp(2a) = e (the identity element in G∗). Thus, λ(a) ∈ iπ Z for all
λ ∈ ∆+ [15] (Page 383). Therefore, there exists a function D : T → R, such that

D(t) =
∏
λ∈∆+

|sin λ(a)|mλ whenever t = Expo(a)

Now, T∗ is a totally flat submanifold of M . Therefore, Exp∗(dt) = da, where dt denotes
the invariant volume induced onto T∗ from M . With a slight abuse of notation, (75) now
reads,

ϕ∗(vol) = D(t)dt ω(ds) (76)

Denote (T∗)r the set of t ∈ T∗ such that D(t) 6= 0. By the same arguments as in the
non-compact case, ϕ is a regular |W |-to-one map from S × (T∗)r onto Mr , the set of
regular values of ϕ.

Proposition A.2. Let M = G∗/K be a Riemannian symmetric space, which belongs to
the “compact case”, just described. For any bounded continuous function f : M → R,∫

M

f(x) vol(dx) =
1

|W |

∫
T∗

∫
S

f(ϕ(t, a))D(t)dt ω(ds) (77)

A.3 Example of Propositions A.1 and A.2

consider M = H(N) the space of N × N Hermitian positive-definite matrices. Here,
G = GL(N,C) and K = U(N). Moreover, B(u,z) = Re(tr(uz)) and dθ(z) = −z†. Thus,
p is the space of N ×N Hermitian matrices, and one may choose a the space of N ×N
real diagonal matrices. The positive roots are the linear maps λ(a) = aii − ajj where
i < j, and each one has its multiplicity equal to 2. The Weyl group W is the group of
permutation matrices in U(N) (so |W | = N !). Finally, S = U(N)/TN ≡ SN , where TN is
the torus of diagonal unitary matrices. By (74),∫

H(N)

f(x) vol(dx) =
1

N !

∫
a

∫
SN

f
(
s exp(2a)s†

)∏
i<j

sinh2(aii − ajj)daω(ds) (78)

where da = da11 . . . daNN . Now, assume f is a class function : f(k · x) = f(x) for k ∈ K
and x ∈ H(N). That is, f(x) depends only on the eigenvalues xi = eri of x. By (78),∫

H(N)

f(x) vol(dx) =
ω(SN)

2NN !

∫
RN

f (exp(r))
∏
i<j

sinh2((ri − rj)/2)dr (79)

or, by introducing the eigenvalues xi as integration variables,∫
H(N)

f(x) vol(dx) =
ω(SN)

2N2N !

∫
RN+

f (x1 , . . . , xN) |V (x)|2
N∏
i=1

x−Ni dxi (80)

where V (x) =
∏

i<j(xj − xi) is the Vandermonde determinant.
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The dual of H(N) is the unitary group U(N). Here, G∗ = U(N) × U(N) and K '
U(N), is the diagonal group K = {(x, x) ;x ∈ U(N)}. The Riemannian metric is given
by the trace scalar product Q(u,z) = −tr(uz). Moreover, T∗ = TN and S = SN (this is
U(N)/TN). The positive roots are λ(ia) = aii − ajj where i < j and where a is N × N ,
real and diagonal4. By writing the integral over TN as a multiple integral, (77) reads,∫

U(N)

f(x) vol(dx) =
1

N !

∫
[0,2π]N

∫
SN

f
(
s exp(2ia)s†

)∏
i<j

sin2(aii − ajj)ω(ds) da (81)

where da = da11 . . . daNN .
Now, assume f is a class function. That is, f(x) depends only on eigenvalues eiθi of

x. Integrating out s, from (81), it follows,∫
U(N)

f(x) vol(dx) =
ω(SN)

2NN !

∫
[0,2π]N

f (exp(iθ))
∏
i<j

sin2((θi − θj)/2)dθ (82)

or, after an elementary manipulation,∫
U(N)

f(x) vol(dx) =
ω(SN)

2N2N !

∫
[0,2π]N

f (θ1 , . . . , θN) |V (eiθ)|2dθ1 . . . θN (83)

where V (eiθ) =
∏

i<j(e
iθj − eiθi) is the Vandermonde determinant.

Integrals such as (80) and (83) are familiar in random matrix theory [17][34]. The
resemblance between these integrals (for example, in the rôle played by the Vandermonde
determinant) is at the origin of the sort of “duality” described in Paragraph 2.8.

4Please do no confuse the imaginary number i with the subscript i.
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B Convex optimisation

B.1 Convex sets and functions

In Euclidean geometry, a convex set A is any set which satisfies the definition : if points
x and y belong to A, then the straight line segment between x and y lies entirely in A.
One hopes to extend this definition to Riemannian geometry, by letting geodesics play
the rôle of straight lines. However, this does not lead to one, but to multiple definitions
of a convex set. The present article will focus on the following [30].

Definition B.1. A subset A of a complete Riemannian manifold M is called strongly
convex if, whenever points x and y belong to A, there exists a unique length-minimising
geodesic γx,y connecting x and y, and γx,y lies entirely in A.

Remark : as an example of a different way of defining a convex set, consider the following.
A subset A of M is called weakly convex if, whenever points x and y belong to A, there
exists a unique geodesic γ in M , such that γ connects x and y, and γ lies entirely in A
(this coincides with the definition in [30], because γ is then the unique length-minimising
curve, among all curves that connect x and y and lie entirely in A). �

In Euclidean geometry, a ball of any radius is convex. In a Riemannian manifold, a ball
may fail to be strongly (or even weakly) convex, if its radius is too large. On the other
hand, a ball with sufficiently small radius is always strongly convex [30][14].

Proposition B.1. Assume the sectional curvatures of M are bounded above by κ2
max ≥ 0.

Then, denoting inj(M) the injectivity radius of M , let

Rc(M) = min

{
1

2
inj(M),

π

2κmax

}
(84)

For any x ∈ M and R < Rc(M), the open ball B(x,R) is strongly convex (if κmax = 0,
it should be understood that division by zero yields infinity).

Remark : if 1
2
inj(M) is replaced by inj(M) in (84), then R ≤ Rc(M) implies B(x,R) is

weakly convex [30][35]. �

There is a certain class of Riemannian manifolds, where balls of any radius are strongly
convex. Namely, these are Hadamard manifolds. Recall that a Hadamard manifold is a
simply connected, complete Riemannian manifold with non-positive sectional curvatures.
In particular [36], this implies inj(M) =∞ and κmax = 0, so that Rc(M) =∞.

The following definition of a convex function on a Riemannian manifold directly ex-
tends the usual, well-known definition of a convex function on a Euclidean space.

Definition B.2. Let A be a strongly convex subset of a complete Riemannian manifold
M , and f : A→ R. Then, f is called convex (respectively, strictly convex) if f(γx,y(t)) is
a convex (respectively, strictly convex) function of the time parameter t, for all x, y ∈ A.
Further, if there exists α > 0 such that f(γx,y(t)) is an α-strongly convex function of t,
for all x, y ∈ A, then f is called α-strongly convex.

For differentiable functions, it is possible to write down first-order and second-order
characterisations of convexity [26]. Recall that γ̇x,y(0) = Exp−1

x (y), for x, y ∈ A, where
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the dot denotes the time derivative and Exp the Riemannian exponential map [36]. In
addition, let gradf and Hessf denote the gradient and Hessian of a function f on M
(defined with respect to the Riemannian metric and Levi-Civita connection of M).

Proposition B.2. Let A be a strongly convex subset of a complete Riemannian manifold
M , and f : A→ R.

(i) assume f is differentiable. Then, f is convex, if and only if

f(y)− f(x) ≥ 〈gradf(x),Exp−1
x (y)〉x for all x, y ∈ A (85)

Moreover, f is strictly convex if and only if the above inequality is strict whenever y 6= x.

(ii) assume f is differentiable. Then f is α-strongly convex, if and only if,

f(y)− f(x) ≥ 〈gradf(x),Exp−1
x (y)〉x + (α/2)d2(y, x) for all x, y ∈ A (86)

(iii) assume f is twice differentiable. Then f is convex if and only if Hessf(x) � 0, and
strictly convex if and only if Hessf(x) � 0, for all x ∈ A. Moreover, f is α-strongly
convex if and only if Hessf(x) � αg(x), for all x ∈ A.

Here, 〈·, ·〉 and d(·, ·) denote the Riemannian scalar product and distance, associated
with the Riemannian metric tensor g of M . Moreover, � stands for the Loewner order.
A straightforward consequence of (ii) in Proposition B.2 is the so-called PL inequality
(PL stands for Polyak-Lojasiewicz [37]). This inequality will be used in Paragraph B.4.2.

Proposition B.3. Let f : A → R be a twice differentiable, α-strongly convex function.
If f has its minimum at x∗ ∈ A, then

‖gradf(x)‖2
x ≥ 2α(f(x)− f(x∗)) for all x ∈ A (87)

B.2 Second-order Taylor formula

Consider the second-order Taylor formula, for a twice-differentiable function f : M → R
(as usual, M is a complete Riemannian manifold). For x ∈M and v ∈ TxM ,

f(Expx(v)) = f(x) + 〈gradf(x), v〉x +
1

2
Hessfγ(t∗)(γ̇ , γ̇) (88)

where γ is the geodesic curve γ(t) = Expx(tv) and t∗ ∈ (0, 1). Formula (88) is the first-
order Taylor expansion, with Lagrange remainder, of the function f(γ(t)), at t = 0 [13].
This formula will be the starting point for the study of Riemannian gradient descent in
Paragraph B.4. There, it will be applied with v = −µgradf(x) and µ ∈ (0, 1].

To apply (88), it is quite helpful to control the second-order term in its right-hand side.
One says that f is L-smooth on B ⊂M , if there exists L ≥ 0 with |Hessfy(u, u)| ≤ L‖u‖2

y

for all y ∈ B and u ∈ TyM . Then, if γ(t) = Expx(tv) belongs to B for all t ∈ (0, 1),

f(Expx(v)) ≤ f(x) + 〈gradf(x), v〉x + (L/2)‖v‖2
x (89)

Inequality (89) yields the following Proposition B.4. To state this proposition, consider a
C 2 function f : M → R, and assume the sublevel set Bc = {x : f(x) ≤ c} is compact (and
not empty), for some real c. Of course, Bc is contained in some closed ball B = B̄(z, R).
Let G be the maximum of ‖gradf(x)‖x , taken over x ∈ B, and B′ = B̄(z, R+G). Now,
by compactness of B′, f is Lc-smooth on B′, for some Lc ≥ 0.
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Proposition B.4. Let f : M → R be a C 2 function, with Bc and Lc defined as above,
and let y = Expx(−µgradf(x)) for some µ ∈ (0, 1]. If µ ≤ 1/Lc, then

f(y) ≤ f(x)− (µ/2)‖gradf(x)‖2
x for all x ∈ Bc (90)

In particlar, x ∈ Bc implies y ∈ Bc.

Remark : as a consequence of (90), if x∗ ∈ Bc is such that f(x∗) is the minimum of f(x),
taken over x ∈ Bc, then

2Lc(f(x)− f(x∗)) ≥ ‖gradf(x)‖2
x for all x ∈ Bc (91)

which is complementary to (87). �

B.3 Taylor with retractions

It is customary, in practical applications, to approximate the Riemannian exponential
map by another so-called retraction map, which is easier to compute [38]. In this context,
it is helpful to derive new versions of Formula (88) and of Proposition B.4, which apply
when the exponential map Exp is replaced with a retraction Ret.

Recall that a retraction is a smooth map Ret : TM →M (denoted Ret(x, v) = Retx(v)
for x ∈M and v ∈ TxM), such that

Retx(0x) = x and dRetx(0x) = Idx (92)

for all x ∈ M . Here, 0x is the zero element in TxM and Idx is the identity map of TxM .
Most retractions, encountered in practical applications, are regular retractions, in the
following sense [13].

Definition B.3. A retraction Ret : TM →M is regular, if there exists a smooth bundle
map Φ : TM → TM , such that

Retx(v) = Expx (Φx(v)) for all x ∈M and v ∈ TxM (93)

Here, Φ is denoted Φ(x, v) = Φx(v) (“bundle map” means Φx(v) ∈ TxM for all v ∈ TxM).

If Ret : TM → M is a regular retraction and f : M → R is a twice-differentiable
function, then (88) and (93) directly imply

f (Retx(v)) = f(x) + 〈gradf,Φx(v)〉x +
1

2
Hessfγ(t∗)(γ̇, γ̇) (94)

where γ is the geodesic curve γ(t) = Expx(tΦx(v)) and t∗ ∈ (0, 1). Formula (94) is the
required new version of (88).

The Riemannian exponential Exp is a regular retraction, with Φx = Idx for x ∈ M .
For a general regular retraction Ret, each map Φx : TxM → TxM still agrees with Idx up
to second-order terms [13].

Proposition B.5. Let Ret : TM → M be a regular retraction, with Φ : TM → TM
given by (93). Then, for each x ∈M , the map Φx : TxM → TxM verifies

(a) Φx(0x) = 0x and Φ′x(0x) = Idx (the prime denotes the Fréchet derivative).

(b) Φ′′x(0x)(v, v) = c̈(0), where the curve c(t) is given by c(t) = Retx(tv).
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The retraction Ret is called geodesic when Φ′′x(0x)(v, v) = 0 for x ∈M and v ∈ TxM .
In this case, Φx agrees with Idx up to third order terms. For geodesic regular retractions,
the following Proposition B.6 provides a new, general version of Proposition B.4.

Proposition B.6. Let f : M → R be a C 2 function, with Bc = {x : f(x) ≤ c} compact
(and not empty), and let Ret : TM → M be a geodesic regular retraction. There exist
constants βc , δc , Hc ≥ 0, which depend on f and Ret, such that, for all x ∈ Bc,

f(y) ≤ f(x)− µ
(
1− (βcHc/2)µ− (δc‖gradf(x)‖2

x)µ
2
)
‖gradf(x)‖2

x (95)

whenever y = Retx(−µgradf(x)) for some µ ∈ (0, 1]. In particular,

1

2
− (βcHc/2)µ− (δc‖gradf(x)‖2

x)µ
2 ≥ 0 =⇒ f(y) ≤ f(x)− (µ/2)‖gradf(x)‖2

x (96)

Therefore, x ∈ Bc implies y ∈ Bc.

Remark : the application of Proposition B.6 is somewhat simplified when the retraction
Ret, in addition to being regular and geodesic, is contractive and uniformly geodesic.
Here, contractive means that

‖Φx(v)‖x ≤ ‖v‖x for x ∈M and v ∈ TxM (97)

In this case, it is always possible to put βc = 1 and Hc = Lc, where Lc is the same
constant as in Proposition B.4. Uniformly geodesic means there exists δ ≥ 0, such that

‖Φx(v)− v‖x ≤ δ‖v‖3
x for x ∈M and v ∈ TxM (98)

In this case, it is always possible to put δc = δ (independent of c and even of f). �

The widely-used projection retractions for spheres, unitary groups and Grassmann mani-
folds, are examples of contractive, uniformly geodesic regular retractions [13] (see Sections
1.5 and 1.6). Here is another example, for positive-definite matrices.

Example : let M = P(N), the space of symmetric positive-definite N × N matrices,
equipped with its usual affine-invariant metric [6]. For x ∈ P(N), the tangent space
TxP(N) is identified with the space S(N) of symmetric N × N matrices. Then, recall
the Riemannian exponential map Expx(v) = x exp(x−1v) (where exp denotes the matrix
exponential), and consider the retraction Retx(v) = x + v + (1/2)vx−1v. The point of
using this retraction is that the eigenvalues of Retx(v) will always be greater than 1/2.
In addition, it is a contractive, uniformly geodesic regular retraction. �

B.4 Riemannian gradient descent

Let f : M → R be a C 2 function, and Ret : TM →M a retraction. Together, these yield
the Riemannian gradient descent scheme, where µ ∈ (0, 1] is called the step-size,

xt+1 = Retxt(−µgradf(xt)) t = 0, 1, . . . (99)

Assume f has a compact (non-empty) sublevel set Bc , and choose a constant Lc ≥ 0 as in
Proposition B.4. Also, assume Ret is a contractive, uniformly geodesic regular retraction,
as in the remark after Proposition B.6. Specifically, Ret verifies (97) and (98), for some
constant δ ≥ 0. This allows for Ret = Exp, the Riemannian exponential, in which case
δ = 0. Now, the following lemma is a direct consequence of (96) in Proposition B.6.
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Lemma B.1. Under the two assumptions just described, on f and Ret, if x0 ∈ Bc , then

1

2
− (Lc/2)µ− (δ‖gradf‖2

Bc)µ
2 ≥ 0 =⇒ f(xt+1) ≤ f(xt)− (µ/2)‖gradf(xt)‖2

xt (100)

for all t ≥ 0, so that xt ∈ Bc for all t ≥ 0. Here, ‖gradf‖Bc is the maximum of
‖gradf(x)‖x, taken over x ∈ Bc .

This lemma immediately yields the convergence of the Riemannian gradient descent
scheme (99), to the stationary points of f in Bc. Here, µ∗c is the infimum of µ ∈ (0, 1]
such that 1

2
− (Lc/2)µ− (δ‖gradf‖2

Bc
)µ2 < 0.

Proposition B.7. Under the assumptions on f and Ret, made in Lemma B.1, if µ ≤ µ∗c ,
then x0 ∈ Bc implies the sequence (xt) generated by (99) converges to the set of stationary
points of f , in the sublevel set Bc .

The proof of this proposition is straightforward. From Lemma B.1, if µ ≤ µ∗c , then
x0 ∈ Bc implies xt ∈ Bc and (µ/2)‖gradf(xt)‖2

xt ≤ f(xt)− f(xt+1) for all t ≥ 0. Adding
these inequalities, for t = 0, . . . , T ,

(µ/2)
T∑
t=0

‖gradf(xt)‖2
xt ≤ f(xt)− f(xT+1)

Then, since f is bounded below on the compact set Bc , the series
∑∞

t=0 ‖gradf(xt)‖2
xt

must converge. Finally, compactness of Bc ensures every subsequence of (xt) has a further
subsequence that converges to a stationary point of f in Bc .

Proposition B.7 holds without any convexity assumptions, made on the function f .
Consider now the case of a strictly convex, and then of a strongly convex f .

B.4.1 Strictly convex case

Now, assume the function f is strictly convex on some strongly convex subset A of M .
Moreove, assume f has a compact (non-empty) sublevel set Bc ⊂ A. Then, choose a
constant Lc ≥ 0 as in Proposition B.4, and let the retraction Ret be as in Lemma B.1.

Assume that f has a unique minimum at x∗ ∈ Bc . Let R be the radius of the smallest
ball B(x∗, R) such that Bc ⊂ B(x∗, R), D the maximum of ‖gradf(x)‖x for x ∈ B(x∗, R),
and Rc = R+D. The following Lemma ensures that (99) “contracts the distance to x∗”.

Lemma B.2. Assume that the sectional curvatures of M lie in the interval [−κ2
min , κ

2
max ],

and that Rc < inj(x∗). If x0 ∈ Bc and µ ≤ µ∗c (with µ∗c as in Proposition B.7), then

1− κ(Rc)Lcµ− (2δRc‖gradf‖Bc)Lcµ2 ≥ 0 =⇒ d(xt+1, x∗) ≤ d(xt, x∗) (101)

where κ(Rc) = max {κminRccoth(κminRc), |κmaxRccot(κmaxRc)|} and ‖gradf‖Bc is the
maximum of ‖gradf(x)‖x for x ∈ Bc .

Remark : inj(x∗) denotes the injectivity radius of M at x∗ [14]. The condition that
Rc < inj(x∗) guarantees the xt stay away from the cut locus Cut(x∗). This condition is
introduced because the distance function x 7→ d(x, x∗) is not differentiable on Cut(x∗),
where its Hessian may even diverge to −∞. �

Let µ∗d denote the infimum of µ such that 1− κ(Rc)Lcµ− (2δRc‖gradf‖Bc)Lcµ2 < 0.
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Proposition B.8. Under the same assumptions of Lemma B.2, if µ ≤ min{µ∗c , µ∗d}, then

f(xt+1)− f(x∗) ≤ 2d2(x0, x∗)

µ(t+ 1)
(102)

for all t ≥ 0. In particular, the sequence (xt) converges to x∗.

Remark : the quality of the convergence in (102) depends above all on the step-size µ.
The smaller this is, the slower the convergence. From the definitions of µ∗c and µ∗d , it
is clear that there are two reasons why µ would be smaller : a larger constant δ, and
a larger curvature (in absolute value) κmin. In theory, one can alway make δ = 0 by
using the retraction Ret = Exp, but this requires the ability to compute the Riemannian
exponential Exp with sufficient accuracy. �

Remark : the rate of convergence stated in (102) is a partial generalisation of the rate
found in [39], for gradient descent in a Euclidean space. In the Euclidean setting, δ = 0
and κmin = κmax = 0. It then follows from Proposition B.8, that (102) obtains whenever
µ ≤ 1/Lc. Essentially, this is Corollary 2.1.2 (Page 81) in [39]. However, note the
restriction µ ∈ (0, 1], which is necessary in a curved Riemannian manifold. �

Here is an optimisation problem, which falls under the scope of Proposition B.8.

Example : let M be a Hadamard manifold, with sectional curvatures bounded below by
−κ2

min ≤ 0. Fix a cutoff parameter q > 0, and define

Vy(x) = q2
[
1 + (d(x, y)/q)2

] 1
2 − q2 for x, y ∈M (103)

In [13], it was proved that Vy : M → R is strictly convex, but not strongly convex, and
that it is (1 + qκmin)-smooth on M .

Now, let π be a probability distribution on M and consider the problem of minimising

Vπ(x) =

∫
M

Vy(x) π(dy) (104)

Note that Vπ is strictly convex (but not strongly convex), and (1 + qκmin)-smooth on
M , because the same is true of each function Vy . In fact, Vπ has compact sublevel sets
whenever the distribution π has finite first-order moments [13]. In this case, Vπ(x) is guar-
anteed to achieve its minimum at some x∗ ∈M . This x∗ is called the robust Riemannian
barycentre of π (the adjective “robust” comes from the field of robust statistics [40]).

When applying Lemma B.2 and Proposition B.8 to the present example (with f = Vπ),
note that inj(x∗) =∞, since M is a Hadamard manifold, and Lc = (1 + qκmin) does not
depend on c.

B.4.2 Strongly convex case

Here, assume the function f is α-strongly convex on some strongly convex subset A ⊂M .
Let Bc ⊂ A be a sublevel set of f (where c > infx f(x)). Because f is strongly convex, Bc

is compact, and it is possible to choose a constant Lc ≥ 0, as in Proposition B.4. Then,
let µ∗c be given as in Proposition B.7. As usual, f has a unique minimum at x∗ ∈ Bc .
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Proposition B.9. Under the assumptions just described, if µ ≤ µ∗c and x0 ∈ Bc, then

f(xt)− f(x∗) ≤ (1− µα)t(f(x0)− f(x∗)) (105)

for all t ≥ 0. In particular, the sequence (xt) converges to x∗.

The proof of this proposition follows by replacing Inequality (87) into Lemma B.1.
Indeed, if µ ≤ µ∗c and x0 ∈ Bc , then (100) in Lemma B.1 immediately implies

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)− (µ/2)‖gradf(xt)‖2
xt for t ≥ 0

Thus, replacing (87) into the right-hand side,

f(xt+1)− f(x∗) ≤ (1− µα)(f(xt)− f(x∗))

and (105) can be obtained by induction.

Remark : (105) shows that f(xt) converges to the minimum f(x∗), at an exponential
rate. In practice, this can still be quite slow, if µα is very small. Indeed, one should
attempt to use µ as large as possible, in order to benefit from the exponential rate (105).
From the definition of µ∗c , one cannot have µ any larger than 1/Lc , and µ = 1/Lc is only
possible if δ = 0, which corresponds to using Ret = Exp. �

Example : let π be a probability distribution on a complete Riemannian manifold M ,
and define

Eπ(x) =
1

2

∫
M

d2(x, y) π(dy) for x ∈M (106)

If the support of π is contained in a ball B(z, R), where R < Rc(M) given by (84), then Eπ
is C 2 on B(z, R), and has a unique global minimum x∗ ∈M , such that x∗ ∈ B(z, R) [4]
(x∗ is the Riemannian barycentre of π). In addition, if R < Rc(M)/2, then Eπ is α-
strongly convex on B(z, R), with α equal to 2κmaxR cot(2κmaxR) (= 1 if κmax = 0).

In this case, it is possible to apply Proposition B.9 to the present example (with
f = Eπ). If M has positive sectional curvatures, it is always possible to choose Lc = 1.
On the other hand, if M has negative sectional curvatures Lc = 1+4κminR always works.
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C Proofs for Section B

Proof of Proposition B.3 : write inequality (86) under the equivalent form

f(y)− f(x) ≥ 〈gradf(x),Exp−1
x (y)〉x + (α/2)‖Exp−1

x (y)‖2
x

With y = x∗, this becomes

f(x)− f(x∗) ≤ −〈gradf(x),Exp−1
x (x∗)〉x − (α/2)‖Exp−1

x (x∗)‖2
x

or, by completing the square on the righ-hand side,

f(x)− f(x∗) ≤ − 1

2α
‖gradf(x) + Exp−1

x (x∗)‖2
x +

1

2α
‖gradf(x)‖2

x

Then, (87) follows immediately, by noting the first term on the righ-hand side is negative.

Proof of Proposition B.4 : the proof employs the notation introduced before the
proposition. Let x ∈ Bc and v = −µgradf(x). Then, note that ‖v‖x ≤ ‖gradf(x)‖x ≤ G.
This implies γ(t) = Expx(tv) belongs to B′ for all t ∈ (0, 1). From the definition of Lc ,
it now follows by (89) that

f(y) ≤ f(x) + 〈gradf(x), v〉x + (Lc/2)‖v‖2
x

and, by recalling v = −µgradf(x),

f(y) ≤ f(x)− µ(1− (Lc/2)µ)‖gradf(x)‖2
x

Then, (90) follows because µ ≤ 1/Lc implies the expression in parentheses is ≥ 1/2.

Proof of Proposition B.5 : this is given in [13], Section 1.5.

Proof of Proposition B.6 : assume Ret is a regular geodesic retraction, and let Φ be
the corresponding map in (93). Since Bc is compact, there exist βc , δc ≥ 0 such that

sup {‖Φ′x(u)‖op ;x ∈ Bc and u ∈ TxM, ‖u‖x ≤ ‖gradf(x)‖x} ≤ β1/2

c (107)

sup {‖Φ′′′x (u)‖op ;x ∈ Bc and u ∈ TxM, ‖u‖x ≤ ‖gradf(x)‖x} ≤ δc (108)

where ‖ · ‖op denotes the operator norm of the linear map Φ′x(u) : TxM → TxM , or of the
tri-linear map Φ′′′x (u) : TxM × TxM × TxM → R. In terms of these constants βc and δc ,

‖Φx(−µgradf(x))‖2
x ≤ (βcµ

2)‖gradf(x)‖2
x for x ∈ Bc (109)

‖Φx(−µgradf(x)) + µgradf(x)‖x ≤ (δcµ
3)‖gradf(x)‖3

x for x ∈ Bc (110)

Furthermore, let Bc be contained in a closed geodesic ball B = B̄(z, R). Denote G the
maximum of ‖gradf(x)‖x taken over x ∈ B, and B′ = B̄(z, R+ β1/2

c G). By compactness
of B′, there exists Hc ≥ 0 such that f is Hc-smooth on B′.

Now, in order to prove (95), note that γ(t) = Expx(tΦx(−µgradf(x))) belongs to B′

for all t ∈ (0, 1). It follows from (94) that (similarly to (89)),

f(y) ≤ f(x) + 〈gradf,Φx(−µgradf(x))〉x + (Hc/2)‖Φx(−µgradf(x))‖2
x

Then, using (109) and (110),

f(y) ≤ f(x)− µ‖gradf(x)‖2
x + (βcHc/2)µ2‖gradf(x)‖2

x + δcµ
3‖gradf(x)‖4

x

which is the same as (95). Finally, (96) is an immediate consequence of (95).
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Proof of Lemma B.1 : (100) can be obtained immediately, upon replacing βc = 1,
δc = δ and Hc = Lc into (96).

Proof of Proposition B.7 : the proof has already been summarised, right after the
proposition.

Proof of Lemma B.2 : let L(x) = d2(x, x∗)/2. If Rc < inj(x∗), then L(x) is κ(Rc)-
smooth on B(x∗, Rc) [14]. Note that xt ∈ Bc for all t ≥ 0, because µ ≤ µ∗c as in
Proposition B.7. Then, from the Taylor expansion (94) of L, and since Ret is contractive
((109) holds with βc = 1),

L(xt+1) ≤ L(xt) + 〈gradL(xt),Φxt(−µgradf(xt))〉xt + (κ(Rc)/2)µ2‖gradf(xt)‖2
xt

However, applying (91) to the third term on the right-hand side, this implies

L(xt+1) ≤ L(xt) + 〈gradL(xt),Φxt(−µgradf(xt))〉xt + κ(Rc)Lcµ
2(f(xt)− f(x∗)) (111)

Now, consider the second term on the right-hand side, since gradL(xt) = −Exp−1
xt (x∗),

this second term is equal to

µ〈Exp−1
xt (x∗), gradf(xt)〉xt − 〈Exp−1

xt (x∗),Φxt(−µgradf(xt)) + µgradf(xt)〉xt (112)

Applying (85) and (110) (with δc = δ, since Ret is uniformly geodesic),

(112) ≤ −µ(f(xt)− f(x∗)) + (δµ3)‖Exp−1
xt (x∗)‖xt‖gradf(xt)‖3

xt

Using (91) once again, along with ‖Exp−1
xt (x∗)‖xt ≤ Rc and ‖gradf(xt)‖xt ≤ ‖gradf‖Bc ,

(112) ≤ −µ(f(xt)− f(x∗)) + (2δRc‖gradf‖Bc)Lcµ3(f(xt)− f(x∗)) (113)

Finally, from (111) and (113),

L(xt+1) ≤ L(xt)− µ
[
1− κ(Rc)Lcµ− (2δRc‖gradf‖Bc)Lcµ2

]
(f(xt)− f(x∗))

Since f(xt) ≥ f(x∗), whenever the expression in square brackets is positive, one has
L(xt+1) ≤ L(xt). However, this directly yields (101).

Proof of Proposition B.8 : note from Lemma B.1 that µ ≤ µ∗c implies

f(xt+1)− f(x∗) ≤ f(xt)− f(x∗)− (µ/2)‖gradf(xt)‖2
xt

On the other hand, note that

‖gradf(xt)‖xt ≥
f(xt)− f(x∗)

d(xt , x∗)
≥ f(xt)− f(x∗)

d(x0 , x∗)

where the first inequality follows by applying Cauchy-Schwarz to (85), and the second
one from Lemma B.2, since µ ≤ µ∗d . Letting ε(t) = f(xt)− f(x∗), it is now clear that

ε(t+ 1) ≤ ε(t)− (µ/2)
(
ε(t)
/
d(x0 , x∗)

)2
so that (102) can be proved by a straightforward induction.

Proof of Proposition B.9 : the proof was summarised after the proposition.
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