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SPECTRUM AND PSEUDOSPECTRUM FOR QUADRATIC POLYNOMIALS
IN GINIBRE MATRICES

NICHOLAS COOK∗, ALICE GUIONNET†, AND JONATHAN HUSSON

Abstract. For a fixed quadratic polynomial p in n non-commuting variables, and n independent
N×N complex Ginibre matrices XN

1 , . . . , XN
n , we establish the convergence of the empirical measure

of the eigenvalues of P N = p(XN
1 , . . . , XN

n ) to the Brown measure of p evaluated at n freely inde-
pendent circular elements c1, . . . , cn in a non-commutative probability space. As in previous works
on non-normal random matrices, a key step is to obtain quantitative control on the pseudospectrum
of P N . Via a linearization trick of Haagerup–Thorbjørnsen for lifting non-commutative polynomi-
als to tensors, we obtain this as a consequence of a lower tail estimate for the smallest singular
value of patterned block matrices with strongly dependent entries. This reduces to establishing
anti-concentration for determinants of random walks in a matrix space of bounded dimension, for
which we encounter novel structural obstacles of an algebro-geometric nature.

Résumé. Pour un polynôme quadratique p en n variables non-commutatives, et n matrices N ×N de
Ginibre complexes XN

1 , . . . , XN
n , nous établissons la convergence de la mesure empirique des valeurs

propres de P N = p(XN
1 , . . . , XN

n ) vers la mesure de Brown de p évaluée en n éléments circulaires
librement indépendants c1, ..., cn dans un espace de probabilité non-commutatif. Comme dans de
précédents travaux portant sur des matrices aléatoires non normales, une étape clé est d’obtenir un
contrôle qualitatif sur le pseudo-spectre de P N . Par une méthode de linéarisation due à Haagerup et
Thorbjørnsen qui permet de relever les polynômes non-commutatifs en des tenseurs, nous obtenons
ce contrôle comme conséquence d’une estimée de la queue de la loi de la plus petite valeur singulière
d’une matrice dotée d’une structure par blocs avec des coefficients fortement dépendants. Cela nous
ramène à établir l’anti-concentration pour les déterminants de marches aléatoires dans un espace
de matrices de dimension bornée, pour lesquelles nous rencontrons de nouveaux obstacles de nature
algèbrico-géométriques.

1. Introduction

1.1. Background. Recall that for an N ×N complex matrix A with complex eigenvalues
λ1(A), . . . , λN (A) (not necessarily distinct), the empirical spectral distribution (ESD) is the proba-
bility measure

µA := 1
N

N∑
j=1

δλj(A) . (1.1)

For an ensemble of random N ×N matrices (AN )N≥1, a central problem in random matrix theory
is to establish a law of large numbers for the ESDs – that is, to prove that (in the vague topology)
µAN converges in probability to some deterministic probability measure µ. The seminal works
of Wigner [57] and Marchenko–Pastur [35] addressed this problem for matrices with i.i.d. entries
above the diagonal (Wigner ensembles) and Gram matrices for i.i.d. rectangular matrices using the
moment and Stieltjes transform methods.
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For non-Hermitian i.i.d. ensembles XN , having i.i.d. entries and no symmetry assumption, the
problem was only addressed at a comparable level of generality much more recently in [50, 28, 49],
where it was shown that µ 1√

N
XN converges to Girko’s circular law µcirc, the uniform measure on the

unit disk. The moment and Stieltjes transform methods were insufficient to establish the circular
law due to the instability of the spectrum of non-normal matrices; these obstacles were overcome
using tools from additive combinatorics and geometric functional analysis. We refer to the survey
[14] for further background.

The circular law was recently generalized to the inhomogeneous case to allow the variance of
the entries depends on the site [19, 1] and further to the case of correlated entries provided their
correlations decay fast enough [2]. In [40] it was extended to random block matrices, with each
block an i.i.d. matrix, and entries in separate blocks uncorrelated. Girko’s elliptic law for matrices
with correlation between opposite pairs of entries ξij , ξji, interpolating between the Wigner and
i.i.d. ensembles, was established in [39]. The case of matrices invariant under left multiplication by
Haar unitary matrices led to the single ring theorem proven in [29]; see also [23] for a non-rigorous
derivation. The sum of i.i.d. Haar unitary, orthogonal and permutation matrices were treated in
[9, 8].

Random matrices have played an important role in the theory of operator algebras since the
seminal work of Voiculescu [56]. In these applications one is interested not in a single random
matrix XN but rather a collection XN

1 , . . . , X
N
n of a bounded number of independent random

matrices, and the algebra they generate in the large N limit. For self-adjoint polynomials in several
independent Wigner matrices, Voiculescu showed that the theory of free probability gives powerful
tools to understand the limit of ESDs for a non-commutative polynomial in those matrices [56].
Indeed, if WN

1 , ...,WN
n are independent N ×N Wigner matrices and p is a non-commutative self-

adjoint polynomial, then the ESD of p(WN
1 , ...,WN

n ) converges towards the spectral distribution
of p(s1, ..., sn), where s1, ..., sn are n freely independent semi-circular elements of a von Neumann
algebra.

The problem is more involved in the case of a non-self-adjoint polynomial since the convergence
in ∗-moments does not yield the convergence of the ESDs. In this case, the analogue of the spectral
distribution for a non-normal element of a von Neumann algebra is the Brown measure [15], and
the result one can expect for usual matrix models is the convergence of the empirical measure
toward the Brown measure of the ∗-moments limit. Even the computation of the candidate Brown
measure limit is a non-trivial task: there has been recent progress by Speicher, Mai, Belinschi and
Sniady, who found an algorithm that gives such Brown measures using linearization techniques and
subordination results [11, 12]; see also [13] for the computation of some specific Brown measures.

The convergence of ESDs of polynomials in independent matrices was so far tackled only in
specific cases. The product of independent Ginibre matrices was studied by F. Götze, A. Naumov
and A. Tikhomirov [52, 28] and S. O’Rourke and A. Soshnikov [43], as well as the sum of such
products [32]. For products of Girko’s elliptic random matrices see [42]. Yet, there are no general
results for the convergence of the ESDs of non-self-adjoint polynomials in independent non-normal
random matrices.

Part of the challenge is to develop an approach that can deal with all polynomials in a unified
way. This difficulty has also been encountered in recent work on the local law for self-adjoint
polynomials [22], which covers quadratic polynomials and symmetrized products of independent
Wigner matrices; the specific case of the anti-commutator W1W2 +W2W1 of Wigner matrices was
the subject of the earlier work of Anderson [3].

Here we develop a general approach for non-self-adjoint quadratic polynomials. Modulo a key
reduction step, many of the essential ideas can be illustrated with the case of the anti-commutator
X1X2 + X2X1 in i.i.d. matrices, as we do in Section 2. After lifting the matrix polynomials to
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Figure 1. Simulated spectra of X1X2+X2X1 (left) and X1X2−0.3X2X3+0.1X3X1
(right) for independent 5000 × 5000 matrices X1, X2, X3 with entries independently
and uniformly drawn from [−1, 1].

flattened random tensors of higher dimension, we encounter a new layer to the problem of quan-
titative invertibility of random matrices. The Ginibre hypothesis allows us to relatively efficiently
get to what we feel are the core novel difficulties for non-self-adjoint polynomials. Generalizing to
other distributions, particularly discrete, would involve extra considerations of a purely technical
nature (many of which are by now standard); in order to keep the paper of reasonable length we
do not pursue such extensions here. As with the local law for self-adjoint polynomials, the main
outstanding challenge is to generalize to higher degree – we hope that some of the techniques de-
veloped here will be useful for this problem.

1.2. Spectral convergence and the pseudospectrum. Interestingly, the qualitative problem
of establishing convergence of spectral measures to the Brown measure is intimately related to
quantitative (finite-N) questions of interest in numerical analysis. The key difficulty for non-normal
matrices lies in the instability of their eigenvalues: it is well known that for certain matrices even
a tiny perturbation of a single entry can drastically change the spectrum.

One might expect however that random non-normal matrices have a more stable spectrum.
A long line of works beginning with [47] has shown that in many cases, for a sequence of non-
normal matrices converging in star moments, it is sufficient to perturb by a small random matrix
(of vanishing norm) in order to “regularize” the ESDs and guarantee convergence to the Brown
measure – see [47, 30, 58, 10, 55] and references therein. This regularizing effect has been exploited
for applications in numerical analysis in the recent works [5, 6]. Yet, these results are based on
independence of the entries of random matrices and there are, as quoted above, no general results
when the entries start to be strongly coupled, for instance for the commutator of two independent
Ginibre matrices.

We briefly sketch how quantitative measures of spectral instability arise in the study of limiting
spectral distributions; a more formal discussion is deferred to Section 1.5. The starting point is to
note that the empirical spectral distribution (ESD) µA of an N × N matrix A can be recovered
from the Laplacian of the log-modulus of the characteristic polynomial: recalling (1.1), we have

µA = 1
2πN

N∑
i=1

∆z log |λi(A) − z| = 1
2πN∆z log | det(A− z)|.
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On the other hand, the log-modulus of the characteristic polynomial can also be expressed
1
N

log | det(A− z)| = 1
2N log det[(A− z)(A− z)∗] = 1

2

∫ ∞

0
log x dµ(A−z)(A−z)∗(x)

and so we have the identity

µA = 1
4π∆z

∫ ∞

0
log x dµ(A−z)(A−z)∗(x) (1.2)

expressing the ESD of a (possibly non-normal) matrix A in terms of the ESDs of the collection of
Hermitian matrices (A− z)(A− z)∗ with z ∈ C.

Now for a sequence AN of N × N matrices converging in ∗-moments to an element a of a
von Neumann algebra one has convergence of the ESDs µ(AN −z)(AN −z)∗ to the spectral measure
µ(a−z)(a−z)∗ , and so one might hope to have convergence of the ESDs µAN to the measure µa

obtained by substituting a for A on the right hand side of (1.2). This is not true in general:
we have already mentioned that convergence in ∗-moments does not guarantee convergence of the
spectral distributions, and indeed one notes that the hoped-for identity fails if there is escape of
mass of µ(AN −z)(AN −z)∗ to the singularities of the logarithm at 0 and +∞. However, we may take
(1.2) as a reasonable guess, and indeed this amounts to the definition of the Brown measure νa

(reviewed in Section 1.5 below).
We thus see that in order to access the limiting measure via (1.2) it is crucial to control the largest

and smallest eigenvalues of (AN − z)(AN − z)∗. For random matrices it turns out that the more
delicate task is to bound the smallest eigenvalue from below. Recall that the ε-pseudospectrum of
a square matrix A is the set

Λε(A) = {z ∈ C : σmin(A− z) ≤ ε} (1.3)

where σmin(A) =
√
λmin(AA∗) denotes the smallest singular value of a matrix A. Alternatively,

Λε(A) is the union of the spectra of A + E over all perturbations E of spectral norm at most ε
(we refer to [53, Chapter 2] for the demonstration of this equivalence). The pseudospectrum is an
important object in numerical analysis that quantifies the stability of the spectrum under small
perturbations. We refer to the textbook [53] for further background. To prove convergence of the
ESDs µAN one must show that Λε(AN ) has measure o(1) for ε = ε(N) → 0 not too fast (any
polynomial order will be sufficient).

We point out that the problem of bounding supz∈C P{σmin(A − z) ≤ ε} for a random N × N
matrix A generalizes the well-studied anti-concentration problem for scalar random variables, which
is the case N = 1. Moreover, scalar concentration inequalities have played a fundamental role in
the study of invertibility of random matrices.

To establish uniform integrability of the logarithm in (1.2) also requires some control on the
k-th smallest singular value of AN − z for moderately small values of k (in the range [N−c, δN ] for
small fixed c, δ > 0). For a polynomial PN in Ginibre matrices this can be done thanks to local
laws which can be found in this context in [31]. Hence, in the present work the main issue is to
obtain control on the pseudospectrum of PN . For this, the dependency structure of the polynomial
presents significant obstacles that were not present in work on the circular law. As this structure is
different for each polynomial, it is a challenge to develop an approach to deal with all polynomials in
a unified way. For the quadratic case, the singular value decomposition of the associated quadratic
form can be used to organize the dependencies among blocks in the associated tensor matrix in a
certain common pattern (see Corollary 4.2). We comment further on the novel challenges for the
proof after stating our results below.

1.3. Main results. In the sequel we write C⟨x1, . . . , xn⟩ for the set of polynomials with complex
coefficients in n non-commuting indeterminates x1, . . . xn. We recall the following definition of the
complex Ginibre ensemble:
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Definition 1.1. A random matrix X = XN is an N × N complex Ginibre matrix if the families
(
√
Nℜ(Xi,j))i,j∈[N ] and (

√
Nℑ(Xi,j))i,j∈[N ] are independent i.i.d. families of random variables of

law N (0, 1/2).
Our first main result establishes convergence of the empirical spectral distribution of p(XN

1 , . . . , X
N
n )

for any quadratic non-commutative polynomial p.

Theorem 1.2 (Convergence to the Brown measure). Let n ∈ N and p ∈ C⟨x1, . . . , xn⟩ be a non-
commutative polynomial of degree two. For each N ∈ N let XN

1 , . . . , X
N
n be n independent N ×N

complex Ginibre matrices and set PN = p(XN
1 , . . . , X

N
n ). Then

µP N → νp(c1,...,cn)

weakly in probability, where c1, . . . , cn are ∗-free circular elements of a W ∗-probability space and
νp(c1,...,cn) is the Brown measure of p(c1, . . . , cn) (defined in Section 1.5 below).

As we described above, the main step for proving Theorem 1.2 is to control the pseudospectrum
of PN , which is accomplished in our second main result. Whereas Theorem 1.2 was stated for a
sequence of matrices PN of growing size, the following is a non-asymptotic result for matrices of
any fixed size.

Theorem 1.3 (Control on the pseudospectrum). Let N,n ∈ N and p ∈ C⟨x1, . . . , xn⟩ be a non-
commutative polynomial of degree two. There is an absolute constant C0 > 0 and C(p), c(p) > 0
depending only on p such that the following holds. Let X1, . . . , Xn be n independent N×N complex
Ginibre matrices and set P = p(X1, . . . , Xn). For any z ∈ C and any ε > 0,

P
{
σmin(P − z) ≤ ε

}
≤ C(NC0εc + e−N ).

Remark 1.4. Our proof shows one can take C0 = 13/3 but we have not tried to optimize this
constant. We obtain the dependence c(p) = 1/(n0 + 1), where n0 is the rank of the quadratic form
associated to the homogeneous degree-two part of p (see Lemma 4.1). The constant C depends on
p only through the rank parameter n0 and the size of the coefficients, quantified by the norm of the
matrix (s0, . . . , sn0) with columns sk as in Corollary 4.2. The dependence on these two parameters
is polynomial, but we have not tracked the precise order.

From the Fubini–Tonelli theorem and Markov’s inequality, we obtain the following corollary on
the density of the pseudospectrum (recall (1.3)).

Corollary 1.5. With hypotheses in Theorem 1.3, for any Borel set Ω ⊂ C and any ε > 0 we have
ELeb(Λε(P ) ∩ Ω) ≤ C(NC0εc + e−N ) Leb(Ω)

where Leb denotes the Lebesgue measure on C. In particular, for any K > 0 there exists C(K, p) > 0
such that for all N sufficiently large depending on p, for any fixed Borel set Ω of finite measure we
have that with probability at least 1 −N−100,

Leb(ΛN−C (P ) ∩ Ω) ≤ N−K Leb(Ω).

1.4. A matrix Littlewood–Offord problem. Previous work on the invertibility and pseudospec-
trum of matrices with independent entries proceeds by reduction to an anti-concentration problem
for scalar random walks. For given deterministic w0 ∈ C, u = (u1, . . . , uN ) ∈ CN and i.i.d. copies
ξ1, . . . , ξN of a random variable ξ ∈ C, the problem is to bound the probability that the scalar
random variable

w = w0 +
N∑

j=1
ujξj (1.4)
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lies in a small neighborhood of the origin. When ξ is Bernoulli this is the classic Littlewood–Offord
problem [33]. Strong small-ball estimates for w depending on arithmetic structure among the scalars
uj were obtained in [51, 50, 44]. (For analogous results on the invertibility of symmetric Wigner
matrices – first obtained in [20, 38, 54], with some notable recent improvements in [24, 17, 16] – the
problem reduces to anti-concentration for quadratic forms, but these works make use of a bilinear
reduction in order to apply the linear Littlewood–Offord theory.) Sharp extensions to the vector
setting, with w,w0 ∈ Rd, u ∈ Rd×N and ξ scalar, were obtained in [26, 45]. Extensions to scalar
polynomials of higher degree have been obtained in [40, 36, 25]. The problem has also been studied
in the setting of finite abelian groups; for further background we refer to the survey [41].

Our approach to Theorem 1.3 leads naturally to the following matrix generalization of the scalar
anti-concentration problem. Indeed, our first step (see Section 2.2 for further discussion) is to apply
the so-called linearization trick incepted by Haagerup and Thorbjørnsen in [31] to reduce to the
problem of estimating the smallest singular value of a larger Nd×Nd block matrix L with depen-
dent entries, for some bounded d determined by p, with coefficients given by linear combinations
of the Ginibre matrices. The matrix L can be viewed as an N ×N matrix whose d× d entries Li,j

are independent random matrices, which themselves have correlated entries. In an analogous way
to arguments for i.i.d. matrices we are then led to the following matrix generalization of the scalar
anti-concentration problem.

Matrix Littlewood–Offord problem: For given deterministic W0, U1, . . . , UN ∈ Cd×d and i.i.d.
copies Lj of a d× d random matrix L, bound the probability that the matrix random walk

W = W0 +
N∑

j=1
U∗

j Lj (1.5)

is close to the variety of singular matrices Sd = {A ∈ Cd×d : detA = 0}.

For Theorem 1.3 we specifically seek a bound of the form NCεc +e−N on the probability that W
is within distance ε of Sd (in the Hilbert–Schmidt norm, say), for some C, c−1 = Od,L(1) (depending
only on d and the distribution of L), but it would be interesting to determine the optimal exponents.

As for the scalar problem there are obvious conditions under which anti-concentration is poor or
completely fails. For instance, when W0 = 0, one of the Uj is singular and the rest are zero, then
P(W ∈ Sd) = 1. We also have P(W ∈ Sd) = 1 in the “simple” case that L = ξ Id is a random scalar
multiple of the identity and all of the matrices W0, U1, . . . , UN lie in a linear subspace contained
in Sd. The problem of classifying such subspaces was raised by Lovász in [34] and as far as we are
aware there has been little progress since then. In our study of quadratic polynomials in random
matrices we can avoid this case as L will have a very different structure, but we note that the case
L = ξ Id arises naturally when considering higher-degree monomials. Here, we have the opposite
problem that L itself is singular with probability 1, so that in bounding the probability that W is
close to Sd we must make use of the geometry of the sequence U1, . . . , UN .

For the smallest singular value problem, the matrices Lj are taken from an Nd× d column of L,
and the sequence of matrices U1, . . . , UN are random and depending on the remaining, independent
columns of the matrix. The main technical challenge for the proof of Theorem 1.3 is thus to rule out
the case that the sequence U1, . . . , UN has special structure. The structural events here, already
present in the Gaussian case, are algebro-geometric in nature, orthogonal to arithmetic issues for
the discrete scalar problem. Controlling these events requires delicate partitionings and coverings
of the Stiefel manifold of orthonormal d-frames in CNd based on the structure of the polynomial p
(indeed, the dependency structure and support of the step variable L is determined by p).

In order to focus on this new layer to the problem of quantitative invertibility of random matrices,
we consider here the case of Gaussian entries, which allows us to get to the heart of the issue in
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a more transparent way; an extension to general, possibly discrete distributions would involve a
combination of algebro-geometric and arithmetic structural considerations. We illustrate these new
issues in Section 2 using the example of the anti-commutator P = X1X2 +X2X1.

1.5. The Brown measure limit. In this subsection we define the Brown measure appearing as
the limit in Theorem 1.2. For further background on free probability we refer to [4, Chapter 5] and
[37, Chapter 11].

Recall that a (tracial) W ∗-probability space (A, τ) is a von Neumann algebra A equipped
with a tracial faithful normal state τ . According to Voiculescu’s central result [56], the non-
commutative distribution of (XN

1 , . . . , X
N
n ) converges in ∗-moments towards the non-commutative

distribution of n free circular elements (c1, . . . , cn) in A in the sense that for any polynomial
p ∈ C⟨x1, . . . , xn, x

∗
1, . . . , x

∗
n⟩

lim
N→∞

1
N

Tr
(
p(XN

1 , . . . , X
N
n , (XN

1 )∗, . . . , (XN
n )∗)

)
= τ (p(c1, . . . , cn, c

∗
1, . . . , c

∗
n)) a.s.

The right hand side is a linear map on the set of polynomials in C⟨x1, . . . , xn, x
∗
1, . . . , x

∗
n⟩ which

is uniquely defined by its value on monomials given, for any choices of i1, . . . , ik ∈ [1, n] and any
ε1, . . . , εk ∈ {1, ∗}, by setting that τ

(
cε1

i1
· · · cεk

ik

)
is the number of non-crossing pair partitions of

{i1, . . . , ik} so that each block b = (b1, b2) is such that ib1 = ib2 and (εb1 , εb2) = (1, ∗) or (∗, 1). By
density of polynomial functions in the set of continuous functions, and the fact that the Ginibre
matrices are bounded with high probability, we see that the latter implies that for any bounded
continuous function f

lim
N→∞

1
N

Tr
(
f
(
p(XN

1 , . . . , X
N
n , (XN

1 )∗, . . . , (XN
n )∗)

))
= τ (f(p(c1, . . . , cn, c

∗
1, . . . , c

∗
n))) a.s.

If p is self-adjoint, this guarantees the convergence of the empirical spectral distribution of
p
(
XN

1 , . . . , X
N
n , (XN

1 )∗, . . . , (XN
n )∗) towards the distribution of p(c1, . . . , cn, c

∗
1, . . . , c

∗
n) which is

specified by its moments as given above. If p is non-self-adjoint, there is no such simple rela-
tion between the eigenvalues and moments. Girko’s idea [27] to overcome this difficulty is based on
Green’s formula which states that for any twice continuously and bounded function ψ, any complex
numbers λi, 1 ≤ i ≤ N ,

1
N

N∑
i=1

ψ(λi) = 1
2π

∫
∆ψ(z) 1

N

N∑
i=1

log |z − λi|dz (1.6)

where dz denotes the Lebesgue measure on C. Taking the λi, 1 ≤ i ≤ N to be the eigenvalues of
Q := p

(
XN

1 , . . . , X
N
n , (XN

1 )∗, . . . , (XN
n )∗), we deduce

1
N

N∑
i=1

ψ(λi) = 1
4π

∫
∆ψ(z) 1

N
Tr

(
log |z −Q|2

)
dz .

Noting that |z −Q|2 is a self-adjoint polynomial in XN
1 , . . . , X

N
n , (XN

1 )∗, . . . , (XN
n )∗, and neglecting

the singularity and unboundedness of the logarithm, we are hence prompted to conjecture that the
empirical measure of the eigenvalues of Q converges towards its Brown measure given for any twice
continuously differentiable function ψ on C by∫

C
ψ(λ)dνp(c1,...,cn,c∗

1,...,c∗
n)(λ) := 1

4π

∫
∆ψ(z)τ

(
log |z − p(c1, . . . , cn, c

∗
1, · · · , c∗

n)|2
)
dz.

Note that the right hand side makes sense as soon as ∆ψ is nonnegative, taking at worst the value
−∞, since the circular elements c1, . . . , cn are bounded.
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1.6. Organization of the paper. The proof of Theorem 1.3 occupies the bulk of the paper;
the deduction of Theorem 1.2 from Theorem 1.3 following the by-now standard Hermitization
procedure is deferred to Section 8. In Section 2 we give an informal overview of the proof ideas
for Theorem 1.3 using the example of the anti-commutator P = X1X2 + X2X1 in two Ginibre
matrices. The formal proofs of Theorems 1.3 and 1.2 occupy the remainder of the paper. Section 3
summarizes our notational conventions and records a few standard facts. The proof of Theorem 1.3
occupies Sections 4–7.

2. Proof outline

The proof of Theorem 1.3 proceeds in four steps, carried out in Sections 4–7. Here we illustrate
the main ideas for the special case of the anti-commutator P = X1X2 + X2X1 of independent
Ginibre matrices X1, X2 (the same arguments apply with trivial modifications to the commutator
X1X2 − X2X1). Note that Anderson [3] showed the convergence of the empirical measure of the
eigenvalues of the anti-commutator X1X2 + X2X1 in two Wigner matrices, which is self-adjoint.
For our conventions on asymptotic notation we refer to Section 3 below; in the simple setting of the
anti-commutator we are able to avoid the more burdensome notation for block matrices described
there that is useful for treating general polynomials.

2.1. A word on the problem for a single i.i.d. matrix. Previous works on the invertibility
and pseudospectrum of a single i.i.d. matrix X proceed by reduction to the task of bounding the
probability that some column of X, say the jth column, which we will denote by colj(X), is close
to the span V(j) of the remaining N − 1 columns. The independence of the columns allows one
to condition on the remaining columns and focus on controlling the distance of a random vector
to a fixed subspace. When the entries are i.i.d. Gaussian, by rotational invariance one may take
the fixed space to be the span of the standard basis vectors e2, . . . , eN , and the distance is simply
the magnitude of the first coordinate of colj(X). The necessary control then follows from the
boundedness of the Gaussian density.

For non-Gaussian entries, and in particular for discrete distributions, the problem is more com-
plicated as the small ball probability for the distance depends on the position of the random
hyperplane spanned by the remaining columns – in particular on arithmetic structure in a normal
vector to the hyperplane. Such issues will not arise in the present work and we refer the interested
reader to [44]. By taking the entries of our matrices to be Gaussian we can focus on the novel
structural pathologies that can arise for algebraic reasons related to the form of the polynomial p.

2.2. Step 1: Linearization. When considering distances of columns to the span of remaining
columns for the anti-commutator P = X1X2 + X2X1 in Ginibre matrices, we immediately en-
counter the problem of complete lack of independence of the entries. However, we can retain some
independence by using the linearization trick of Haagerup and Thorbjørnsen [31]: one verifies with
the Schur complement formula that (P − z)−1 is the top-left N ×N block of (Lz)−1, where Lz is
the 3N × 3N block matrix

Lz =

−z X1 X2
X2 − I 0
X1 0 − I

 . (2.1)

In particular we have the deterministic bound

∥(P − z)−1∥op ≤ ∥(Lz)−1∥op (2.2)

and so it suffices to show
P{σmin(Lz) ≤ ε} ≲ NCεc + e−N . (2.3)
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The advantage of this new problem is that Lz can be viewed as an N ×N matrix with entries that
are independent 3 × 3 random matrices:

Lz
i,j =

 −zδi,j X1(i, j) X2(i, j)
X2(i, j) −δi,j 0
X1(i, j) 0 −δi,j

 , i, j ∈ [N ]. (2.4)

(To avoid ambiguity in the proof we will actually write L̃
z for the element of MN (M3(C)) associated

to P , whereas we write Lz for the associated element of M3(MN (C)) as represented in (2.1), but
we avoid this notation here.)

2.3. Step 2: Reduction to a random matrix of bounded dimension. Now we write L̂z
j for 3×

3 matrix obtained by projecting the three columns of colj(Lz) =: (Lz
i,j)N

i=1 ∈ M3(C)N ∼= M3N,3(C)
to the orthogonal complement of the span Vz

(j) of the remaining 3N − 3 columns. Specifically, we
let U j ∈ M3N,3(C) have columns that are orthonormal in (Vz

(j))
⊥, and put

L̂z
j = U∗

j colj(Lz) =
N∑

i=1
U∗

i,jL
z
i,j (2.5)

where Ui,j ∈ M3(C) are the corresponding 3 × 3 blocks of U j . (We remark that, a posteriori, with
high probability (Vz

(j))
⊥ has dimension 3 and the columns of U j are in fact a basis.) The key is

that colj(Lz) is independent of Vz
(j), and hence U j can be chosen independently of colj(Lz).

Now on the event that σmin(Lz) ≤ ε, there exists a unit vector v = (vj)N
j=1 ∈ (C3)N such that

ε ≥ ∥Lzv∥2 =
∥∥∥ N∑

j=1
colj(Lz)vj

∥∥∥
2
.

Since v has unit norm there must be some j0 ∈ [N ] such that ∥vj0∥2 ≥ N−1/2. Projecting to the
orthocomplement of V(j0) we obtain

ε ≥
∥∥∥ N∑

j=1
U∗

j0 colj(Lz)vj

∥∥∥
2

= ∥U∗
j0 colj0(Lz)vj0∥2 = ∥L̂z

j0vj0∥2 ≥ N−1/2σmin(L̂z
j0).

After applying a union bound to fix j0 (and using symmetry to assume j0 = 1) we reduce to showing

P{σmin(L̂z
1) ≤ ε} ≲ NCεc + e−N (2.6)

for an adjusted constant C.

2.4. Step 3: Gaussian polynomial anti-concentration. It will be convenient to instead bound
the lower tail of | det(L̂z

1)| =
∏3

k=1 σk(L̂z
1) rather than the smallest singular value. Since L̂z

1 has
bounded norm O(1) with probability 1 − O(e−N ) (a property inherited from Lz, which in turn
inherits this from X1 and X2 via the triangle inequality), we have | det(L̂z

1)| ≲ σmin(L̂z
1), so it

suffices to show
P{| det(L̂z

1)| ≤ ε} ≲ NCεc + e−N . (2.7)
We condition on an arbitrary realization of U1 (recall it is independent of col1(Lz)). From (2.5)
we can view the random matrix L̂z

1 as a random walk in M3(C) with independent steps U∗
i,1L

z
i,1,

and our aim is to control the probability that this walk lands in a small neighborhood of the
codimension-one variety of singular matrices.

For a single i.i.d. matrix X the analogous problem of bounding P{|u∗ col1(X)| ≤ ε} is easily
handled when the entries X(i, j) have bounded density, as one can condition on all components
but some j0 for which uj0 is not too small. In the present setting we cannot reduce so easily to
consideration of a single step of the walk. Indeed, (2.7) fails to hold for general U1: consider for
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instance the case all of the Ui,1 are zero except for a single Ui0,1 with i0 ≥ 2, in which case det(L̂z
1) =

det(Ui0,1) det(Li0,1) ≡ 0. On the other hand, it seems unlikely that the random orthonormal set
U1 in (Vz

(1))
⊥ would concentrate on a single submatrix Ui0,1.

We highlight in particular a key challenge for establishing (2.7): one notes from (2.4) that
the random matrices Lz

i,1 are themselves singular for i ≥ 2. Thus, the invertibility of L̂z
1 cannot

rely on the randomness of the Lz
i,1 alone, but must also come from the geometry of the sequence

(U1,1, . . . , UN,1).
We proceed to identify sufficient structural conditions on the matrix U1 in order to have (2.7). Let

us denote the columns of U∗
i,1 by v0

i , v
1
i , v

2
i ∈ C3. For compactness of notation we write ξa

i = Xa(i, 1),
a = 1, 2, for the entries of X1, X2 that enter in col1(Lz). For simplicity of exposition we ignore
here the deterministic shift in Lz

1,1 and focus on the random walk

W =
N∑

i=1
U∗

i,1Li,1 , Li,1 =

 0 ξ1
i ξ2

i
ξ2

i 0 0
ξ1

i 0 0

 .

For a single step of the matrix random walk we have
U∗

i,1Li,1 =
(
ξ2

i v
1
i + ξ1

i v
2
i , ξ

1
i v

0
i , ξ

2
i v

0
i

)
.

Expanding det(W ) using multilinearity of the determinant, we have

p(ξ1, ξ2) = det(W ) =
∑

i0,i1,i2∈[N ]

{
ξ2

i0ξ
1
i1ξ

2
i2 det(v1

i0 , v
0
i1 , v

0
i2) + ξ1

i0ξ
1
i1ξ

2
i2 det(v2

i0 , v
0
i1 , v

0
i2)

}
where we view the determinant as a degree-3 polynomial p in the i.i.d. complex Gaussian variables
ξ1 = (ξ1

i )i∈[N ], ξ
2 = (ξ2

i )i∈[N ]. Now a simple consequence of the Carbery–Wright inequality (cf.
Lemma 6.2) gives an anticoncentration bound of the form

P{|p(ξ1, ξ2)| ≤ ε} ≲ NO(1)ε1/3 (2.8)
as soon as we can find a monomial of p with coefficient of size at least N−O(1). It will be sufficient
to focus on the coefficients of the 2N2 monomials ξ1

i (ξ2
j )2 and (ξ1

i )2ξ2
j for 1 ≤ i, j ≤ N , which are

∆1
i,j := det(v1

j , v
0
i , v

0
j ) , ∆2

i,j := det(v2
i , v

0
i , v

0
j ). (2.9)

2.5. Step 4: Ruling out structured bases. We hence obtain (2.7) as soon as either |∆1
i,j | =

N−O(1) or |∆2
i,j | = N−O(1) for some i, j ∈ [N ]. We thus say that the set U1 of orthonormal columns

in (Vz
(1))

⊥ is structured if
|∆1

i,j |, |∆2
i,j | ≤ N−γ ∀ i, j ∈ [N ] (2.10)

for some γ > 0 to be taken sufficiently large, and aim to show that, in the randomness of the
remaining columns colj(Lz), 2 ≤ j ≤ N , U1 is unstructured except with probability 1 −O(e−N ).

Previous works on the invertibility of i.i.d. matrices have controlled the event that a set of
columns has a structured normal vector using net arguments, and we do the same here. However,
the notion of structure here is quite different from the arithmetic structure encountered in those
works, as it involves an orthonormal set rather than a single normal vector, and involves relations
between a set of tuples (in this case triples) of coordinates that is determined by the polynomial
p. Indeed, one notes that the pattern of indices in (2.9) results from the form of the linearization
(2.1), which will be different for other polynomials (and in fact there are multiple linearizations
one can consider for any given polynomial).

To bound the probability that U1 satisfies (2.10) we aim to construct an ε-net N for the set
of all possible structured orthonormal bases U = (U1, . . . , UN ) ∈ M3(C)N ∼= M3N,3(C). Since
U∗

1 colj(Lz) = 03×3 for every 2 ≤ j ≤ N , then if U1 is approximated within ε (in the Hilbert–
Schmidt metric) by an element Û of the net, we have ∥Û

∗ colj(Lz)∥HS = O(ε) for all 2 ≤ j ≤ N
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(here we use that Lz has bounded operator norm with high probability). Viewing the 3×3 random
matrix Û

∗ colj(Lz) as a random vector in C9, after a bit of algebra one sees

∥Û
∗ colj(Lz)∥HS = ∥w0 + W ∗ξ∥2

for a deterministic vector w0 ∈ C9 depending on Û and z, where
ξ = (X1(1, j), . . . , X1(N, j), X2(1, j), . . . , X2(N, j)) ∈ C2N

is a Gaussian vector and

W =
(
Û2 Û0 0
Û1 0 Û0

)
∈ M2N,9(C) (2.11)

with Û0, Û1, Û2 ∈ MN,3(C) denoting the blocks of Û under the partitioning of coordinates as
in (2.1). Thus, the small ball probability for the matrix random walk Û

∗ colj(Lz) ∈ M3(C) is
controlled by that of the Gaussian vector W ∗ξ ∈ C9, which in turn is determined by the effective
rank r of W (one can take r to be the number of singular values of W that exceed some small
fixed threshold).

Note that the conditions (2.10) are geometric in nature, as they imply that a large collection of
triples of the rows are not in general position, but lie in some hyperplane in C3. This is what allows
for the construction of an efficient net for the set Struct of structured bases U . Supposing we can
find a net of size |N | = O(1/ε2)dN , where 0 ≤ d ≤ 9 is the effective metric dimension of Struct
(which is a subset of the 9N -dimensional complex vector space M3N,3(C), so that this estimate
holds trivially for d = 9) we can then bound the probability that U1 is structured by∑

Û∈N

P{∥Û
∗ colj(Lz)∥HS ≤ Cε} ≤ O(1/ε2)dN ·O(ε2)r(N−1) = O(ε2)2(r−d)N−2r.

We thus hope to show that the effective rank r of matrices W as in (2.11) is strictly larger than
the effective metric dimension d of Struct. Note that the former is determined by relations between
the columns of Û , while the latter is determined by relations between the rows.

In fact one cannot show the effective rank r is strictly larger than the effective dimension d
uniformly for all structured U – we will instead need to stratify the set Struct according to the
effective rank and use the geometric relations (2.10) between rows together with the rank constraint
to construct an efficient net on each stratum. We defer further explanation of this step to Section 7.

3. Notation and preliminaries

3.1. Asymptotic notation. We use C,C0, c, c
′, etc. to denote positive, finite constants. If the con-

stants depend on parameters p, q, . . . we indicate this by writing C = C(p, q, . . . ). If no dependence
on parameters is given then the constants are understood to be absolute.

For g ∈ R+ we write O(g) to stand for a quantity f ∈ C such that |f | ≤ Cg for some absolute
constant C ∈ (0,+∞). For f, g ∈ R+, f ≲ g and g ≳ f mean that f = O(g). For a parameter (or
list of parameters) q, we write f = Oq(g) to mean |f | ≤ Cg for some C = C(q) ∈ (0,+∞), and
similarly for f ≲q g, f ≳q g.

3.2. Matrices. For integers n ≥ m ≥ 1 we use the common abbreviations [m,n] := {m, . . . , n}
and [n] := [1, n]. We write |I| for the cardinality of a finite set I, and for n < |I| we denote by

(
I
n

)
the set of subsets of I with cardinality n.

We write Mn,m(X ) for the set of n×m matrices with entries in a set X , and abbreviate Mn(X ) :=
Mn,n(X ). The n × n identity matrix is denoted In, with the subscript sometimes omitted if it is
clear from the context. For a ∈ C we often write a for a In when there can be no confusion.

We frequently work with block matrices, and the following more general matrix notation facili-
tates referral to their entries and submatrices of various dimensions. For finite indexing sets S, T
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we write MT
S (X ) for the set of |S| × |T | matrices with entries in X and rows and columns indexed

by S and T , respectively. Thus, Mn,m(X ) = M[m]
[n] (X ). We write MS(X ) := MS

S(X ) when there can
be no confusion (we avoid this when S is itself a product set). For A ∈ MT

S (X ) and (s, t) ∈ S × T
we write A(s, t) for the (s, t) entry of A. A block matrix A that is an n × n′ array of blocks
Ak,ℓ ∈ MN,N ′(X ) is viewed as an element of

M[n′]×[N ′]
[n]×[N ] (X )

and is naturally associated with an element of Mn,n′(MN,N ′(X )); we abusively write A for both.
Thus,

A(k, ℓ) = Ak,ℓ, A((k, i), (ℓ, j)) = Ak,ℓ(i, j) (3.1)
for (k, ℓ) ∈ [n] × [n′] and (i, j) ∈ [N ] × [N ′]. We will sometimes index the rows by I × J for some
other sets I, J ⊂ Z≥0 of size n,N , respectively, and similarly for the columns. It will often be
convenient to view a block matrix “inside-out” – that is, A is naturally associated to an element

Ã ∈ M[N ′]×[n′]
[N ]×[n] (X ) ∼= MN,N ′(Mn,n′(X )) (3.2)

with Ã((i, k), (j, ℓ)) = A((k, i), (ℓ, j)).
Typically, one of the pairs (N,N ′) will contain a “large” dimension (usually (N,N ′) ∈ {(N,N), (N,N−

1), (N, 1)}, with N the size of the Ginibre matrices in Theorems 1.2 and 1.3) while the other pair
(n, n′) remains bounded (being related to parameters of the fixed polynomial p). In this case we al-
ways use boldface for the block matrix A, with its large submatrices Ak,ℓ indexed with superscripts
and its small submatrices indexed with subscripts:

Ã(i, j) = Ai,j , (i, j) ∈ [N ] × [N ′]. (3.3)
Thus

A((k, i), (ℓ, j)) = Ak,ℓ(i, j) = Ai,j(k, ℓ) = Ã((i, k), (j, ℓ)). (3.4)
We always use indices i, j, i0, i1, etc. for the large dimensions and k, ℓ, etc. for the small dimensions.

For A ∈ MT
S (X ), we denote its rows and columns

rows(A) = (A(s, t))t∈T ∈ X T , colt(A) = (A(s, t))s∈S ∈ X S .

We sometimes manipulate these as row and column vectors (note that the entries may be matrices).
Thus, for A = (Ak,ℓ) ∈ Mn,n′(MN,N ′(C)) with Ã = (Ai,j) ∈ MN,N ′(Mn,n′(C)) we have that

colℓ(A) = (A1,ℓ, . . . , An,ℓ) ∈ MN,N ′(C)n, ℓ ∈ [n′]

colj(Ã) = (A1,j , . . . , AN,j) ∈ Mn,n′(C)N , ℓ ∈ [N ′]
are vectors of matrices, whereas

col(ℓ,j)(A) = (A((k, i), (ℓ, j)))(k,i)∈[n]×[N ] ∈ C[n]×[N ], (ℓ, j) ∈ [n′] × [N ′]

col(j,ℓ)(Ã) = (A((k, i), (ℓ, j)))(i,k)∈[N ]×[n] ∈ C[N ]×[n], (j, ℓ) ∈ [N ′] × [n′]
are arrays of scalars, which we view as vectors with block coordinate structure.

For A ∈ MT
S (A) and B ∈ MU

T (A) with A a ∗-algebra we define the product

AB =
(

rows(A) · colu(B)
)

s∈S,u∈U
=

(∑
t∈T

A(s, t)B(t, u)
)

s∈S,u∈U
∈ MU

S (A)

and the conjugate transpose
A∗ =

(
A(t, s)∗)

t∈T,s∈S
∈ MS

T (A)

in the usual way. For A ∈ MT
S (A) and B ∈ MV

U (A) we denote the tensor product A⊗B ∈ MT ×V
S×U (A)

with entries
(A⊗B)((s, u), (t, v)) = A(s, t)B(u, v).
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3.3. Norms and singular values. For finite indexing sets S, T we equip CT with the Euclidean
inner product ⟨·, ·⟩ and ℓ2-norm ∥ · ∥2, and MT

S (C) with the Hilbert–Schmidt norm

∥A∥HS =
( ∑

s∈S,t∈T

|A(s, t)|2
)1/2

.

We let BT ⊂ CT and BT
S ⊂ MT

S (C) denote the closed unit balls under the Euclidean ℓ2 and Hilbert–
Schmidt norms, respectively. We denote the boundary of BT by ST . For T = [n] we write Bn, Sn−1.
We sometimes write dist(u, v) := ∥u− v∥2 for the Euclidean metric on CT . We also equip MT

S (C)
with the ℓ2(T ) → ℓ2(S) operator norm

∥A∥op = sup
v∈ST

∥Av∥2 .

For A ∈ MT
S (C) we label its singular values in non-increasing order:

∥A∥op = σ1(A) ≥ · · · ≥ σ|S|∨|T |(A) ≥ 0 ,
where the last |S| ∨ |T | − |S| ∧ |T | singular values are trivially zero, and denote by

σmin(A) := σ|S|∧|T |(A) ≥ 0
the smallest nontrivial singular value (which may be zero). In particular, for |S| = |T | we have
that A is invertible if and only if σmin(A) > 0. For a square block matrix A ∈ M[n]×[N ]

[n]×[N ](C) we have
σl(A) = σl(Ã) for all 1 ≤ l ≤ nN , as the singular values are invariant under relabeling of the rows
and columns.

For subsets E1, . . . , Em of a vectors space we write Span(E1, . . . , Em) := Span(E1 ∪ · · ·Em)
for the linear span of their union. With slight abuse we allow some of the Ek to be single points,
understood to denote the singleton sets {Ek}. For A ∈ MT

S (C), by Span(A) we mean the linear span
of its columns in CS . For vectors vj ∈ CS , j ∈ J we sometimes write ⟨vj : j ∈ J⟩ = Span({vj}j∈J)
and ⟨vj⟩ = Span(vj). vj ∧ vk denotes the wedge product of vj and vk.

3.4. Basic facts. Recall that an ε-net for a subset E of a metric space (X , d) is a finite set Σ ⊂ E
such that

sup
x∈E

min
y∈Σ

d(x, y) < ε.

In the sequel all nets will be with respect to the appropriate Euclidean metric (which for matrices
coincides with the Hilbert–Schmidt norm). The following is standard:
Lemma 3.1. There is an absolute constant C > 0 such that for any subset E of the closed ball of
radius R in Cd with Euclidean metric and any ε ∈ (0, R), there is an ε-net for E of cardinality at
most (CR/ε)2d.

The following two lemmas provide control on the norm and the norm of the inverse of the
individual Ginibre inputs X1, . . . , Xn for the polynomial P .
Lemma 3.2. There is a constant C0 < ∞ such that the following holds. For any N ≥ 1 and X an
N ×N Ginibre matrix,

P{∥X∥op > C0} ≲ e−N .

Proof. This holds more generally for matrices with independent complex uniformly-sub-Gaussian
entries; see for instance [44] (one reduces to the real Ginibre case with the triangle inequality). □

Lemma 3.3. Let N ≥ 1 and X an N × N Ginibre matrix. For any deterministic M ∈ MN (C)
and any ε > 0

P{σmin(X +M) ≤ ε} ≲ N3ε2 ,

where we emphasize that (following our previously stated convention) the implied constant is abso-
lute and in particular is independent of the shift M .



14 N. COOK, A. GUIONNET, AND J. HUSSON

We include the short proof below for completeness. We remark in passing that Edelman obtained
the sharp bound of N2ε2 (with no constant factor loss) on the left hand side for the unshifted case
M = 0 [21]. The sharpening to O(N2ε2) for the shifted case can be found in [5] (cf. Lemma 3.3
there), extending the analogous bound of O(Nε) for real shifts of real Ginibre matrices from [48].

Proof. Write A = X + M . On the event that σmin(A) ≤ ε, there exists u ∈ SN−1 such that
∥Au∥2 ≤ ε. Moreover, since u must have a coordinate i such that |ui| ≥ 1/

√
N , we obtain after

projecting the vector Au to the orthocomplement of A−i := Span{colj(A) : j ̸= i} that

dist(coli(A), A−i) ≤ ε
√
N.

By rotational invariance of the distribution of coli(X), the probability of the above event is equal
to

P{dist(coli(X) + y,Span{e2, . . . , eN }) ≤ ε
√
N}

for a vector y that depends only on M and A−i, and hence is independent of coli(X). Conditioning
on the columns colj(X) with j ̸= i, the above is equal to

P{|X(1, i) + y(1)| ≤ ε
√
N} ≲ ε2N2,

where we used that
√
N ·X(1, i) ∼ NC(0, 1) has bounded density on C. Taking a union bound over

the possible choices of i yields the claim. □

4. Linearization

Recall that C⟨x⟩ = C⟨x1, . . . , xn⟩ is the set of polynomials with complex coefficients in n non-
commuting indeterminates x1, . . . , xn. We express p ∈ C⟨x⟩ of degree two as

p(x) =
n∑

ℓ,m=1
aℓ,mxℓxm +

n∑
ℓ=1

bℓxℓ + a0. (4.1)

Lemma 4.1 (Linearization). Let A be a unital ∗-algebra over C, let x1, . . . , xn ∈ A, and let
p ∈ C⟨x⟩ have degree two. Let n0 ∈ [n] be the rank of the matrix A = (aℓ,m) as in (4.1). There
exist vectors r1, . . . , rn0 , s0, s1, . . . , sn0 ∈ Cn such that r1, . . . , rn0 are orthonormal and s1, . . . , sn0
are nonzero and orthogonal (note we leave out s0), and the following holds. Define the linear
mapping

L = Lp : An → M[0,n0](A), L(x) :=


⟨s0,x⟩ ⟨r1,x⟩ · · · ⟨rn0 ,x⟩
⟨s1,x⟩ 0 · · · 0

...
... . . . ...

⟨sn0 ,x⟩ 0 · · · 0

 (4.2)

and for z ∈ C set
Lz = Lz

p : An → M[0,n0](A), Lz(x) := L(x) +Kz ⊗ 1A (4.3)
where

Kz = Kz
p :=

(
a0 − z 0

0 − In0

)
∈ M[0,n0](C) . (4.4)

We have that for any z ∈ C,
(p − z)−1 = ((Lz(x))−1)1,1. (4.5)

For the proof we recall the Schur complement formula: for M ∈ Mm+n(A) written in block form
as

M =
(
M1,1 M1,2
M2,1 M2,2

)
, M1,1 ∈ Mm(A), M2,2 ∈ Mn(A)
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with M2,2 invertible, we have that the top-left m×m block of M−1 is given by

(M−1)1,1 =
(
M1,1 −M1,2(M2,2)−1M2,1

)−1
.

Proof. For s0 = (s0,1, . . . , s0,n) we take s0,ℓ = bℓ. Write p(2)(x) =
∑n

ℓ,m=1 aℓ,mxℓxm for the homo-
geneous degree-2 part of p(x). Let A = UΣV ∗ be the singular value decomposition for A, with
U = (uℓ,k), V = (vm,k) ∈ Mn,n0(C), and Σ = diag(σ1, . . . , σn0) with σ1 ≥ · · · ≥ σn0 > 0. For
1 ≤ k ≤ n0 and 1 ≤ ℓ ≤ n, we set rk,ℓ := uℓ,k and sk,ℓ = σkvℓ,k, so that

p(2)(x) =
n0∑

k=1
σk

n∑
ℓ=1

uℓ,kxℓ

n∑
m=1

vm,kxm

=
n0∑

k=1

( n∑
ℓ=1

rk,ℓxℓ

)( n∑
m=1

sk,mxm

)

=
n∑

k=1
⟨rk,x⟩⟨sk,x⟩.

With Lz(x) as in (4.3), by the Schur complement formula we have

((Lz(x))−1)1,1 =
(

⟨s0,x⟩ + a0 − z +
n0∑

k=1
⟨rk,x⟩⟨sk,x⟩

)−1
= (p(x) − z)−1

as desired. □

Corollary 4.2. Let X = (X1, . . . , Xn), and P be as in Theorem 1.3, with p as in (4.1). With n0
the rank of A = (aℓ,m), there exist vectors s0, s1, . . . , sn0 ∈ Cn depending only on p, with s1, . . . , sn0
nonzero and mutually orthogonal, such that the following holds. Let

Lz := L +Kz ⊗ IN (4.6)
with Kz as in (4.4) and

L :=


Y0 X1 · · · Xn0
Y1 0 · · · 0
...

... . . . ...
Yn0 0 · · · 0

 , (4.7)

where

Yk :=
n∑

ℓ=1
sk,ℓXℓ, k ∈ [0, n0]. (4.8)

For all ε > 0 and z ∈ C,
P{σmin(P − z) ≤ ε} ≤ P{σmin(Lz) ≤ ε}. (4.9)

Proof. We apply Lemma 4.1 to get a linearized matrix Lz(X) as in (4.3), with

(P − z)−1 = ((Lz(X))−1)1,1

where the right hand side is the N ×N top-left block of (Lz(X))−1. In particular,

∥(P − z)−1∥op = ∥((Lz(X))−1)1,1∥op ≤ ∥(Lz(X))−1∥op. (4.10)
Now extend r1, . . . , rn0 to an orthonormal basis Cn and let R be the unitary matrix with rows
r1, . . . , rn. Replacing the N2 independent complex standard Gaussian vectors X(i, j) =
(X1(i, j), . . . , Xn(i, j)) with R∗X(i, j) and s0, . . . , sn0 with s0R

∗, . . . , sn0R
∗ we obtain the matrix

(4.6). The claim now follows from (4.10) and the invariance of the complex standard Gaussian
measure on Cn under unitary transformations. □
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It will be convenient later in the proof to assume n0 ≥ 2, so we now dispense with the case that
n0 = 1.

Lemma 4.3. Theorem 1.3 holds for the case that A = (aℓ,m) as in (4.1) has rank one.

Proof. With a unitary change of basis we can reduce to a matrix of the form

P = X1(α1X1 + α2X2) +
3∑

k=1
βkXk + γ.

If β3 ̸= 0 then, conditioning on X1, X2, we have from Lemma 3.3 that
P{σmin(P ) ≤ ε} = P{σmin(X3 +M) ≤ ε/|β3|} ≲ (ε/|β3|)2N3 = Op(N3ε2),

where M is a deterministic shift depending on X1, X2. Having obtained the claim in this case, we
henceforth assume that β3 = 0. Now write

P = (α2X1 + β2)X2 + (α1X
2
1 + β1X1 + γ).

If α2 or β2 is nonzero then, conditioning on X1, we have
P{σmin(P ) ≤ ε} ≤ P{σmin(α2X1 + β2) ≤ δ} + P{σmin(X2 +M ′) ≤ ε/δ}

where M ′ = (α2X1 + β2)−1(α1X
2
1 + β1X1 + γ) is a deterministic shift depending on X1 (note

that M ′ is well defined off a null event since α2X1 + β2 is almost-surely invertible). Taking δ =
min{

√
ε, |β2|/2}, the claim again follows from Lemma 3.3.

Finally, assuming β3 = β2 = α2 = 0, we have
P = α1X

2
1 + β1X1 + γ.

If α1 = 0 we can conclude along the same lines as in previous cases. Otherwise we can factorize
P = α1(X1 − a+)(X1 − a−) for some a± ∈ C. Then since σmin((X1 − a+)(X1 − a−)) ≥ σmin(X1 −
a+)σmin(X1 − a−) we have

P{σmin(P ) ≤ ε} ≤ P{σmin(X1 − a+) ≤ (ε/|α1|)1/2} + P{σmin(X1 − a−) ≤ (ε/|α1|)1/2} ≲p εN
3

and the lemma is proved. □

5. Reduction to a bounded-dimensional test projection

In view of Corollary 4.2, we henceforth write

Lz(x) = L(x) +Kz ⊗ 1A, with L(x) :=


⟨s0,x⟩ x1 · · · xn0
⟨s1,x⟩ 0 · · · 0

...
... . . . ...

⟨sn0 ,x⟩ 0 · · · 0

 (5.1)

(i.e. taking rk to be the k-th standard basis vector in Cn for each k ∈ [n0]), so that L = L(X),Lz =
Lz(X) are as in Corollary 4.2. Our aim is to establish a lower tail bound for σmin(Lz).

Recall our notational conventions from Section 3.2. We view L,Lz as elements of M[0,n0]×[N ]
[0,n0]×[N ](C) ∼=

M[0,n0](MN (C)) (note that the first row and column have index 0). Thus, L has entries

L((k, i), (l, j)) = Lk,l(i, j) = Li,j(k, l) = L̃((i, k), (j, l)), k, l ∈ [0, n0], i, j ∈ [N ]
with

Li,j = L(X1(i, j), . . . , Xn(i, j)) ∈ M[0,n0](C),
and similarly Lz((k, i), (l, j)) = Lz

i,j(k, l), with

Lz
i,j = Lz(X1(i, j), . . . , Xn(i, j)) = Li,j +Kzδi,j .
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Note that as an element of MN (M[0,n0](C)), L̃
z = (Lz

i,j)i,j∈[N ] has independent entries, and L̃ =
(Li,j)i,j∈[N ] has entries that are i.i.d. and centered; however, we stress that the (n0 + 1)2 scalar
entries of Li,j in general are not independent.

For 1 ≤ j ≤ N we write Lz
(j) ∈ MN,N−1(M[0,n0](C)) (resp. L(j)) for the submatrix of Lz (resp.

L) obtained by removing the jth column from each N × N submatrix. We let Vz
(j) ⊂ C[0,n0]×[N ]

denote the span of the columns of Lz
(j), viewed as an element of M[0,n0]×[N−1]

[0,n0]×[N ] (C), that is

Vz
(j) := Span{col(l,j′)(Lz) : j′ ∈ [N ] \ {j}, l ∈ [0, n0]}. (5.2)

For each j, conditional on these (N − 1)(n0 + 1) columns, we draw a matrix U j ∈ M[0,n0]
[0,n0]×[N ](C)

with columns that are orthonormal in (Vz
(j))

⊥, with U j independent of colj(L̃z) = (Lz
i,j)N

i=1. (To
be more precise, we can for instance draw N i.i.d. Haar unitaries Hj ∈ U(n0 + 1), indepen-
dent of (X1, . . . , Xn), and fixing arbitrary matrices V j with n0 + 1 orthonormal columns in Vz

(j),
chosen measurably with respect to the sigma algebra generated by {Li,j′}i∈[N ],j′∈[N ]\{j}, we set
U j = V jHj .) Recalling our notational conventions from Section 3.2, we have that U j is naturally
associated to Ũ j ∈ M[0,n0](C)N , an N × 1 matrix of (n0 + 1) × (n0 + 1) blocks, which we denote by
U1,j , . . . , UN,j .

In the remainder of this section we establish the following:

Lemma 5.1 (Reduction to invertibility of a small test projection). With notation as above, for
j ∈ [N ] denote

L̂z
j := Ũ

∗
j colj(L̃z) =

N∑
i=1

U∗
i,jL

z
i,j ∈ M[0,n0](C). (5.3)

Then for any ε > 0,

P{σmin(Lz) ≤ ε} ≤ N P
{

| det(L̂z
1)| ≤ ε(|z| + Cp)n0

√
N

}
+ e−N

for some Cp < ∞ depending only on p.

Proof. On the event that σmin(Lz) ≤ ε we have that there exists a unit vector v = (v1, . . . , vN ) ∈
C[N ]×[0,n0] with each vj ∈ C[0,n0] such that

ε ≥ ∥Lzv∥2 =
∥∥∥ N∑

j=1
colj(L̃z)vj

∥∥∥
2
.

Since v is a unit vector we must have ∥vj0∥2 ≥ 1/
√
N for some j0 ∈ [N ]. Since the norm of Lzv

can only decrease under projection to the column span of U j0 , we have

ε ≥
∥∥Ũ

∗
j0 colj(L̃z)vj

∥∥
2 = ∥L̂z

j0vj0∥2 ≥ 1√
N
σmin(L̂z

j0).

Now note that

∥L̂z
j0∥op ≤ ∥Lz∥op ≤ ∥L∥op + |z| +Op(1).

From Lemma 3.2 and the triangle inequality,

P{∥L∥op > B} ≤ e−N
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for some B = Op(1). Thus, by the union bound we have for some B′ = Op(1),

P{σmin(Lz) ≤ ε} ≤ e−N +
N∑

j=1
P{σmin(L̂z

j ) ≤ ε
√
N, ∥L̂z

j ∥op ≤ B′ + |z|}

≤ e−N +
N∑

j=1
P{| det(L̂z

j )| ≤ (B′ + |z|)n0ε
√
N}.

Since the distribution of L̃
z = (Lz

i,j)i,j∈[N ] is invariant under simultaneous permutation of the N
row and N column indices, the claim follows. □

6. Anti-concentration for matrix random walks

From Lemma 5.1 we see that it suffices to control the lower tail for the determinant of the
(n0 + 1)-dimensional matrix L̂z

1 defined in (5.3). The advantage of this perspective is that for a
fixed realization of U1 (which we recall is independent of col1(L̃z)), the summands U∗

i,1L
z
i,1 are N

independent random matrices. We can thus view L̂z
1 as a random walk in M[0,n0](C).

In this section we consider an arbitrary fixed (deterministic) matrix

U ∈ M[0,n0]
[0,n0]×[N ](C) ∼= MN (C)[0,n0]

with orthonormal columns in C[0,n0]×[N ], identified with the sequence of its block submatrices
as U = (U0, . . . , Un0) ∈ MN (C)[0,n0] and with the sequence of its square submatrices denoted
Ũ = (U1, . . . , UN ) ∈ M[0,n0](C)N . Thus, denoting the rows of Ui by (vk

i )∗, k ∈ [0, n0], we have that
(vk

i )∗ is the ith row of Uk.
Let (gk

i )i∈[N ],k∈[n], (hk
i )i∈[N ],k∈[n] ∈ C[N ]×[n] be independent arrays of Nn i.i.d. standard real

Gaussians and denote gi = (g1
i , . . . , g

n
i ), gk = (gk

i )i∈[N ], and similarly for hi, h
k. We set ξk

i =
(2N)−1/2(gk

i + ihk
i ), ξi = (ξ1

i , . . . , ξ
n
i ), ξk = (2N)−1/2(gk + ihk). Then L̂z

1 from (5.3) is identically
distributed to the (n0 + 1) × (n0 + 1) random matrix

W = M +
N∑

i=1
U∗

i Li (6.1)

where
M = M(U , z, a0) := U∗

1K
z ∈ M[0,n0](C) (6.2)

is deterministic and the square matrices

Li := L(ξ1
i , . . . , ξ

n
i ) =


⟨s0, ξi⟩ ξ1

i · · · ξn0
i

⟨s1, ξi⟩ 0 · · · 0
...

... . . . ...
⟨sn0 , ξi⟩ 0 · · · 0

 ∈ M[0,n0](C) (6.3)

are i.i.d., with a0, s0, . . . , sn0 as in Corollary 4.2.
From Lemma 5.1 we see that in order to prove Theorem 1.3, it suffices to prove an anti-

concentration estimate for det(W ), a degree-(n0 + 1) polynomial in the Nn Gaussian variables
gk

i , of the form
P{| det(W )| ≤ ε} ≤ NCεc. (6.4)

In this section we identify sufficient structural conditions on the matrix U in order to have (6.4).
In Section 7 we will show that such conditions hold with high probability for the matrix U1.
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For 1 ≤ ℓ ≤ n let

Qℓ = Qℓ(U) =
n0∑

k=0
sk,ℓU

k ∈ M[0,n0]
[N ] (C) (6.5)

and for i ∈ [N ] denote the ith row of Qℓ by (wℓ
i )∗; thus,

wℓ
i =

n0∑
k=0

sk,ℓv
k
i . (6.6)

For ℓ ∈ [n] and i0, i1, . . . , in0 ∈ [N ] denote

∆ℓ
i0,i1,...,in0

= ∆ℓ
i0,i1,...,in0

(U) := det(wℓ
i0 , v

0
i1 , . . . , v

0
in0

). (6.7)

For a parameter δ > 0 we define sets of structured matrix-columns:

Struct1(δ) :=
⋂

i0,i1,...,in0 ∈[N ]

⋂
ℓ∈[n0+1,n]

{
U ∈ M[0,n0]

[0,n0]×[N ](C) : |∆ℓ
i0,i1,...,in0

| < δ
}
, (6.8)

Struct2(δ) :=
⋂

i1,...,in0 ∈[N ]

⋂
ℓ∈[n0]

{
U ∈ M[0,n0]

[0,n0]×[N ](C) : |∆ℓ
iℓ,i1,...,in0

| < δ
}
, (6.9)

Struct(δ) := Struct1(δ) ∩ Struct2(δ). (6.10)

Lemma 6.1 (Anti-concentration for the determinant of a matrix random walk). Let U = (U1, . . . , UN ) ∈
M[0,n0]

[0,n0]×[N ](C) and suppose U /∈ Struct(δ) for some δ > 0. Then for any ε > 0,

sup
M∈M[0,n0](C)

P
{∣∣∣∣ det

(
M +

N∑
i=1

U∗
i Li

)∣∣∣∣ ≤ ε

}
≲n0 N

1/2(ε/δ)1/(n0+1). (6.11)

To establish the lemma we make use of the following easy corollary of the Carbery–Wright
inequality for anti-concentration of polynomials in Gaussian variables.

Lemma 6.2. Let g1, · · · , gn be i.i.d. standard gaussian variables and let p be a real-valued degree-d
polynomial. Let a ̸= 0 be the coefficient of one of the degree-d monomials of p. Then for any ε > 0,

sup
t∈R

P (|p(g1, . . . , gn) − t| ≤ ε) ≲d (ε/|a|)1/d.

Proof. By rescaling p and ε by a we may assume a = 1. From the Carbery–Wright inequality [18]
we have

sup
t∈R

P (|p(g1, . . . , gn) − t| ≤ εσ) ≲d ε1/d

where σ2 = Var(p(g1, . . . , gn)) is the variance of p under the product Gaussian measure. It hence
suffices to verify that

Var(p(g1, . . . , gn)) ≳d 1.
One readily notes the above indeed holds by, for instance, expanding p in the orthonormal basis
of Hermite polynomials and noting our assumption implies that one of the coefficients among the
highest degree terms in the expansion must be of size ≳d 1. The claim follows. □

Proof of Lemma 6.1. Write

D = det L̂, L̂ := M +
N∑

i=1
U∗

i Li. (6.12)
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Denoting the columns of M by y0, . . . , yn0 , we have

D = det

y0 +
N∑

i0=1

n0∑
k=0

⟨sk, ξi0⟩vk
i0 , y

1 +
N∑

i1=1
ξ1

i1v
0
i1 , . . . , y

n0 +
N∑

in0 =1
ξn0

in0
v0

in0


= det

y0 +
N∑

i0=1

n∑
ℓ=1

ξℓ
i0w

ℓ
i0 , y

1 +
N∑

i1=1
ξ1

i1v
0
i1 , . . . , y

n0 +
N∑

in0 =1
ξn0

in0
v0

in0

 . (6.13)

Now we condition on the variables h = (hk
i )i∈[N ],k∈[n], the imaginary parts of

√
2Nξ, and view D

as a degree-(n0 + 1) polynomial in the nN i.i.d. standard real Gaussian variables g = (gk
i ), the real

parts of
√

2Nξ. Write D̂ for the homogeneous degree-(n0 + 1) part of this polynomial. We have

D̂ = (2N)−(n0+1)/2
n∑

ℓ=1

N∑
i0,...,in0 =1

gℓ
i0g

1
i1 · · · gn0

in0
· det(wℓ

i0 , v
0
i1 , . . . , v

0
in0

) (6.14)

= (2N)−(n0+1)/2
n∑

ℓ=1

N∑
i0,...,in0 =1

gℓ
i0g

1
i1 · · · gn0

in0
· ∆ℓ

i0,...,in0
. (6.15)

In particular, for ℓ ≤ n0, the coefficient of the monomial gℓ
iℓ
g1

i1
· · · gn0

in0
is

2 · (2N)−(n0+1)/2∆ℓ
iℓ,i1,...,in0

(6.16)

and for ℓ > n0, the coefficient of the monomial gℓ
i0
g1

i1
· · · gn0

in0
is

(2N)−(n0+1)/2∆ℓ
i0,i1,...,in0

. (6.17)

Since U /∈ Struct(δ), at least one of these coefficients has modulus at least (2N)−(n0+1)/2δ. Suppose
this holds for a coefficient (6.16) for some ℓ ≤ n0 and i1, . . . , in0 ∈ [N ]. Then either the real or
imaginary part is of size at least 2−1/2(2N)−(n0+1)/2δ. Supposing further that this holds for the real
part, then for the real Gaussian polynomial ℜD there is a coefficient of a maximal degree monomial
of size at least 2−1/2(2N)−(n0+1)/2δ. Applying Lemma 6.2 to ℜD, we have

P{|D| ≤ ε} ≤ P{|ℜD| ≤ ε} ≲n0 N
1/2(ε/δ)1/(n0+1)

yielding (6.11) in this case. For the case that the imaginary part of this coefficient is of size at least
2−1/2(2N)−(n0+1)/2δ we argue similarly with the real Gaussian polynomial ℑD, and we repeat the
same reasoning for the case that a coefficient as in (6.17) is large. □

7. Ruling out structured bases

Recall from (5.2) that Vz
(1) ⊂ C[0,n0]×[N ] denotes the span of the (n0 + 1)(N − 1) columns of

Lz
(1), with the latter viewed as an element of M[0,n0]×[N−1]

[0,n0]×[N ] (C), and that the columns of U1 are a
random orthonormal set in (Vz

(1))
⊥. (In view of Theorem 1.3 we have, a posteriori, that with high

probability Lz
(1) is full rank and the columns of U1 in fact comprise a basis for (Vz

(1))
⊥.) The aim

of this section is to establish the following:

Proposition 7.1 (Structured bases are rare). Assume n0 ≥ 2. Then, we have

P{U1 ∈ Struct(N− 1
2 n0−10)} ≲p,z e

−N (7.1)

where the sets Struct(δ) were defined in (6.10).
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We now conclude the proof of Theorem 1.3 assuming the above proposition. From Lemma 4.3
we may assume n0 ≥ 2. From Lemma 3.2, the triangle inequality and sub-multiplicativity of the
operator norm we have ∥P∥op = Op(1). In particular we may assume |z| = Op(1) since otherwise
we obtain the claim by simply lower bounding σmin(P − z) ≥ |z| − ∥P∥op. Now by Corollary 4.2,

P{σmin(P − z) ≤ ε} ≤ P{σmin(Lz) ≤ ε}
and from Lemma 5.1 the latter is in turn bounded by

NP
{

| det(L̂z
1)| ≤ ε(|z| + Cp)n0

√
N

}
+ e−N .

Finally, from Proposition 7.1, (6.1) and Lemma 6.1,

P
{

| det(L̂z
1)| ≤ ε(|z| + Cp)n0

√
N

}
≲p e

−N +N
1
2 (1+(n0+21)/(n0+1))(|z| + Cp)n0/(n0+1)ε1/(n0+1)

≲p e
−N +N13/3ε1/(n0+1),

where in the second line we bounded the exponent of N by its maximum value at n0 = 2. The
claim follows by combining all of these estimates. □

7.1. High-level proof of Proposition 7.1. Our approach is to cut the set Struct(δ) (for suffi-
ciently small δ = N−Op(1)) into several pieces, and to bound the event that U1 lies in each piece
by taking union bounds over nets. (Recall the definition of a net from Section 3.4.) Once we have
approximated U1 by a some fixed element U of a net, our task is then to bound the probability
that the columns of U are nearly contained in (Vz

(1))
⊥, i.e. that Ũ

∗ colj(L̃z) ≈ 0 (the zero matrix
in M[0,n0](C)) for each 2 ≤ j ≤ N . We have

Ũ
∗ colj(L̃z) =

N∑
i=1

U∗
i L

z
i,j = U∗

j K
z +

N∑
i=1

U∗
i Li,j

=: Mj(U , z) + Walkj(U) ∈ M[0,n0](C) (7.2)
where the matrices Mj are deterministic shifts and Walkj(U) are i.i.d. copies of the centered random
walk

Walk(U) =
N∑

i=1
U∗

i Li (7.3)

with
Li = L(ξ1

i , . . . , ξ
n
i ) = 1√

N
L(ζ1

i , . . . , ζ
n
i )

as in (6.3), where ζk
i = 1√

2(gk
i + ihk

i ) are i.i.d. standard complex Gaussians. Our task is thus
reduced to proving an anti-concentration bound for Walk(U). Note that whereas in Section 6 we
were concerned with anti-concentration for the determinant of W = M1 +Walk(U), here we need to
show the matrix Walk(U) is anti-concentrated as a random element of the vector space M[0,n0](C).

Anti-concentration for Walk(U) is most transparent when viewing the matrix as a Gaussian
vector in C(n0+1)2 ∼= C[0,n0]2 . Indeed, we note from (6.3) that Li is a Gaussian linear combination

1√
N

∑n
ℓ=1 ζ

ℓ
iMℓ of matrices Mℓ, where M∗

ℓ has zeroth row (s0(ℓ), . . . , sn0(ℓ)), ℓth row eℓ (the ℓth
standard basis vector) and all other rows equal to zero. Thus

Walk(U) = 1√
N

∑
(ℓ,i)∈[n]×[N ]

ζℓ
iU

∗
i Mℓ

Recalling (6.6), the matrix U∗
i Mℓ has zeroth column wℓ

i , ℓth column vℓ
i , and all other columns equal

to zero. We can hence identify the matrix (7.3) with the Gaussian vector
1√
N

W ∗ζ ∈ C[0,n0]2 (7.4)
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where ζ = (ζk
i )(k,i)∈[n]×[N ], and the walk matrix W = W (U) is defined

W (U) :=



Q1 U0 0 · · · 0
Q2 0 U0 · · · 0
...

... . . . ...
Qn0 0 · · · 0 U0

Qn0+1 0 · · · 0 0
...

...
...

...
Qn 0 · · · 0 0


=: ( Q(U) R(U0) ) ∈ M[0,n0]2

[n]×[N ](C), (7.5)

recalling the matrices Qℓ from (6.5). (See (2.11) in the proof outline for the form of the walk
matrix in the case of the anti-commutator polynomial p = x1x2 + x2x1.) From (7.4) we see that
the probability the Gaussian vector Walk(U) lands in a Hilbert–Schmidt ball of radius ε scales like
O(ε2)rank(W ) for small ε (cf. Lemma 7.7). In particular, from the form of (7.5) we see that a lower
bound σmin(U0) ≳ 1 already guarantees a small ball probability of order O(ε2)n0(n0+1). The next
lemma shows we may assume such a bound holds. For a parameter α > 0, we define the set of
“good” matrices U having a well-conditioned zeroth block:

A(α) := { U ∈ M[0,n0]
[0,n0]×[N ](C) : σmin(U0) ≥ α }. (7.6)

Recall that L(1) is obtained by removing the first column from each of the n0 + 1 blocks of N
columns of L, and that U1 depends on L only through L(1).

Lemma 7.2. There is constant cp > 0 depending only on p such that for any B ≥ 1 and z ∈ C,

P
{

U1 /∈ A(α) ∧ ∥L(1)∥op ≤ B
}
≲p e

−N (7.7)

for any α < cp/(B2 + |z|).

We prove this lemma in Section 7.2.
By a standard tensorization argument (cf. Lemma 7.8), we obtain from the anti-concentration

bound for Walk(U) the following anti-concentration estimate for U∗Lz
(1). In other words, we bound

the probability that the columns of a fixed matrix U are almost contained in Vz
(1). The bounds

assume U0 is well conditioned, and depend on how many columns of Q are in general position
with respect to each other and to the columns of R. We use the following notation: For given U ,
denoting the columns of Q by qk, k ∈ [0, n0], we write W I for the submatrix of W formed by the
columns of R together with the columns {qk}k∈I of Q (in the natural order, say, though we note
the order of columns will not be important). We sometimes write W ∅ := R. The column span of
W I is denoted WI , that is:

WI := Span(W∅, qk1 , . . . , qkr
) for I = {k1, . . . , kr} ⊂ [0, n0]. (7.8)

Lemma 7.3. Let z ∈ C and α > 0, and fix some arbitrary U ∈ A(α). Then for any ε > 0 and
1 ≤ j ≤ N ,

P{∥U∗Lz
(1)∥HS ≤ ε} = Op,α(ε2)n0(n0+1)(N−1). (7.9)

Furthermore, if additionally it holds that for some β > 0, 1 ≤ r ≤ n0 + 1 and k1, . . . , kr ∈ [0, n0]
distinct,

dist(qki
,W{k1,...,ki−1}) ≥ β ∀ 1 ≤ i ≤ r, (7.10)

(interpreting the left hand side as dist(qk1 ,W∅) when i = 1), then for any ε > 0 and 1 ≤ j ≤ N ,

P{∥U∗Lz
(1)∥HS ≤ ε} = Op,α,β(ε2)[n0(n0+1)+r](N−1) . (7.11)
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We defer the proof to Section 7.3.
We get the best anti-concentration estimate in (7.11) when r = n0 + 1, i.e. when the full walk

matrix W (U) is well conditioned. The following lemma shows we may assume this is the case. For
β > 0 we define the set

B(β) :=
⋃

k∈[0,n0]

{
U ∈ M[0,n0]

[0,n0]×[N ](C) : dist(qk,W[0,n0]\{k}) < β
}

(7.12)

Lemma 7.4 (Walks usually have full rank). For any α > 0 and B ≥ 1 there exists β⋆(p, α,B) > 0
such that for any β ∈ (0, β⋆] and z ∈ C,

P{ U1 ∈ B(β) ∩ A(α) ∧ ∥Lz∥op ≤ B } ≲p e
−N .

We prove this lemma in Section 7.4. While the lemma allows us to apply (7.11) with r = n0 + 1,
we will need to apply this estimate with smaller values of r in the proof.

In view of Lemmas 7.2 and 7.4 it only remains to bound the probability that U1 lies in the set

E = E(δ, α, β) := Struct(δ) ∩ A(α) ∩ B(β)c. (7.13)

We will bound the probability that U1 lies in E by combining the the anti-concentration estimate
(7.11) (taking r = n0 + 1) with a union bound over a suitable net, provided by the following:

Lemma 7.5. For any α > 0, ρ⋆ ∈ (0, 1) and 0 < δ ≤ ρ2
⋆N

− n0
2 −2, E has a (Hilbert–Schmidt) ρ⋆-net

N ⊂ E of size
|N | = Op,α(1)NN (2n0+3)NO(1/ρ2

⋆)(n02+ 3
2 n0+ 3

2 )N . (7.14)

Remark 7.6. The proof in fact yields a net for any subset of Struct(δ) ∩ A(α), which is why the
bound (7.14) is independent of β.

The proof of Lemma 7.5 is deferred to Section 7.5. We now conclude the proof of Proposition 7.1
assuming the above lemmas. Let δ > 0 to be chosen sufficiently small in the course of the proof.
From Lemma 3.2 and the triangle inequality we have that ∥L∥op = Op(1) with probability 1 −
Op(e−N ), and hence ∥L(1)∥op, ∥Lz∥op, ∥Lz

(1)∥op = Op,z(1) with probability 1 − Op(e−N ). Applying
the union bound, for α, β > 0 and some B = Op,z(1) we have

P{U1 ∈ Struct(δ)} ≤ P{U1 ∈ E(δ, α, β) ∧ ∥Lz
(1)∥op ≤ B}

+ P{U1 /∈ A(α) ∧ ∥L(1)∥op ≤ B}
+ P{U1 ∈ A(α) ∩ B(β) ∧ ∥Lz∥op ≤ B} +Op(e−N ).

For this choice of B we now choose α ≳p,z 1 satisfying the constraint in Lemma 7.2, followed by
β ≳p,z 1 satisfying the constraint in Lemma 7.4. From those lemmas we then have

P{U1 ∈ Struct(δ)} ≤ P{U1 ∈ E(δ, α, β) ∧ ∥Lz∥op ≤ B} +Op(e−N ). (7.15)

Let ρ⋆ > 0 to be chosen later and let N be as in Lemma 7.5 (assuming δ is sufficiently small
depending on the choice of ρ⋆). By approximating any realization of U1 ∈ E by some U ∈ N with
∥U1 − U∥HS ≤ ρ⋆ and using that

∥(U1 − U)∗Lz
(1)∥HS ≤ ∥Lz∥op∥U1 − U∥HS

we have, since U∗
1Lz

(1) vanishes everywhere by definition,

P{U1 ∈ E ∧ ∥Lz∥op ≤ B} ≤ P{∃U ∈ E : U∗Lz
(1) = 0 ∧ ∥Lz∥op ≤ B}

≤ P{∃U ∈ N : ∥U∗Lz
(1)∥HS ≤ Bρ⋆}. (7.16)
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Now applying the union bound and (7.11) with r = n0 + 1, using that N ⊂ E ⊂ B(β)c, we have

P{U1 ∈ E ∧ ∥Lz∥op ≤ B} ≤ |N |Op,z(ρ2
⋆)(n0+1)2(N−1) (7.17)

≤ Op,z(1)NN (2n0+3)Nρ
2[(n0+1)2−n02− 3

2 n0− 3
2 ]N−Op(1)

⋆

= Op,z(1)NN (2n0+3)Nρ
(n0−1)N−Op(1)
⋆ .

Recalling our assumption that n0 ≥ 2, one verifies the last expression is at most
Op,z(1)N (c′)N−Op(1) ≲p e

−N

if we take
ρ⋆ = c′N−(2n0+3)/(n0−1)

for a sufficiently small constant c′(p, z) > 0. Now one verifies that the condition of Lemma 7.5 is
satisfied for all N ≥ N0 for a sufficiently large constant N0(p, z) > 0 when δ = N− n0

2 −10. This
completes the proof of Proposition 7.1 assuming Lemmas 7.2, 7.3, 7.4 and 7.5. □

7.2. Proof of Lemma 7.2: Reduction to bases with a well-conditioned zeroth block.
With notation as in Corollary 4.2, we express Lz

(1) in block form as follows:

Lz
(1) =



row1(Y ′
0)

Y ′′
0 + (a0 − z) IN−1

row1(X ′
1)

X ′′
1

row1(X ′
2)

X ′′
2

· · · row1(X ′
n0)

X ′′
n0

row1(Y ′
1)

Y ′′
1

01,N−1
− IN−1

0 · · · 0

row1(Y ′
2)

Y ′′
2

0 01,N−1
− IN−1

...

...
... . . . 0

row1(Y ′
n0)

Y ′′
n0

0 · · · 0 01,N−1
− IN−1



.

Here, Y ′
k (resp. X ′

k) is the matrix obtained by removing the first column from Yk (resp. Xk), while
Y ′′

k (resp. X ′′
k ) is the N − 1 × N − 1 matrix obtained by removing the first row and column from

Yk (resp. Xk). 01,N−1 is the row vector of N − 1 zeros.
Let

Ŷ =

 row1(Y ′
1)

...
row1(Y ′

n0)

 ∈ Mn0,N−1(C). (7.18)

We first show that
P{σmin(Ŷ ) < c′

p} ≲p e
−N (7.19)

if c′
p > 0 is sufficiently small. On the event that σmin(Ŷ ) < c′

p, there exists x ∈ Sn0−1 such that

c′
p > ∥x∗Ŷ ∥2 =

∥∥∥ ∑
k∈[n0]

x(k)
∑
ℓ∈[n]

sk,ℓ row1(X ′
ℓ)
∥∥∥

2
= ∥y(1) row1(X ′

1) + · · · + y(n) row1(X ′
n)∥2

where y :=
∑n0

k=1 x(k)sk. Since s1, . . . , sn0 are mutually orthogonal and nonzero it follows that
∥y∥2 ≳p 1, and in particular y must have a coordinate y(ℓ0) of size |y(ℓ0)| ≳p 1. By projecting
row1(X ′

ℓ0
) to the orthocomplement of W̃(ℓ0) = Span{row1(X ′

ℓ)}ℓ ̸=ℓ0 we see that dist(row1(X ′
ℓ0

), W̃(ℓ0)) ≲p

c′
p. Taking a union bound to fix ℓ0 and conditioning on the rows row1(X ′

ℓ) with ℓ ̸= ℓ0, we are
left with bounding the probability that the vector row1(X ′

ℓ0
) is within distance Op(c′

p) of a fixed
subspace of CN−1 of dimension n−1. Since Xℓ has i.i.d. complex Gaussian entries of variance 1/N ,



PSEUDOSPECTRUM FOR QUADRATIC POLYNOMIALS OF GINIBRE MATRICES 25

by rotational invariance of the Gaussian measure we may assume W̃(ℓ0) is the coordinate subspace
spanned by e2, . . . , en, and we have reduced to bounding the probability of the event that

N∑
j=n+1

|Xℓ0(1, j)|2 = Op(c′
p).

Now we can take c′
p sufficiently small to make the right hand side smaller than any fixed constant,

so that this event has probability at most e−N as soon as N ≥ 10n, say, and (7.19) follows.
We now fix for the remainder of the proof an arbitrary realization of L(1) such that ∥L(1)∥op ≤ B

and σmin(Ŷ ) ≥ c′
p. This fixes the subspace (Vz

(1))
⊥. We claim that{

U = (u0, . . . ,un0) : u0,u1, . . . ,un0 orthonormal in (Vz
(1))

⊥ }
∩ A(α)c = ∅ (7.20)

for α < cp/(B2 + |z|). From this the lemma clearly follows.
Turning to prove (7.20), towards a contradiction we let U be an arbitrary element of the left

hand side of (7.20). Then there exists a unit vector u ∈ (Vz
(1))

⊥ such that ∥u0∥2 < α (recall that
u0, . . . , un0 denote the blocks of N coordinates of u). For each k we write uk = (uk(1), ǔk), i.e.
ǔk = (uk(2), . . . , uk(N)). Fixing such a u, we note that u ∈ (Vz

(1))
⊥ is equivalent to the statement

that u∗ is a left null vector for Lz
(1). In particular, for each 1 ≤ k ≤ n0 we have

u0(1) row1(X ′
k) + (ǔ0)∗X ′′

k = (ǔk)∗. (7.21)

Since ∥L(1)∥op ≤ B and ∥u0∥2 < α this implies

∥ǔk∥2 ≤ 2B/α, ∀ 1 ≤ k ≤ n0. (7.22)

Again from the fact that u∗ is a left null vector for Lz
(1), we have

n0∑
k=1

uk(1) row1(Y ′
k) = −u0(1) row1(Y ′

0) − (ǔ0)∗(Y ′′
0 + (a0 − z) IN−1) −

n0∑
k=1

(ǔk)∗Y ′′
k

for each 1 ≤ k ≤ n0. Writing ǔ1 = (u1(1), . . . , un0(1)), the left hand side has norm at least
σmin(Ŷ )∥ǔ1∥2 ≥ c′

p∥ǔ1∥2. Since L(1), and hence any of its submatrices, has norm at most B,
together with (7.22) and ∥u0∥2 < α this implies by the triangle inequality that the right hand side
is Op(α(B2 + |z|)). Putting these bounds together we have

∥ǔ1∥2 ≲p (B2 + |z|)α.

Combined with (7.22) and ∥u0∥2 < α we conclude

1 = ∥u∥2
2 = ∥u0∥2

2 + ∥ǔ1∥2
2 +

n0∑
k=1

∥ǔk∥2
2 ≤ α2(1 +Op(B2 + |z|)2)

and we obtain a contradiction for α < cp/(B2 + |z|) if cp is taken sufficiently small. This implies
the the left hand side of (7.20) is empty for such a choice of α, and completes the proof.

7.3. Proof of Lemma 7.3: Anti-concentration for matrix random walks.

Lemma 7.7. Let M ∈ Md,d′(C) and let Z = (ζ1, . . . , ζd′) be a vector of i.i.d. standard complex
Gaussians. For I ⊆ [d] let MI ∈ M|I|,d′(C) be the submatrix of M formed by the rows indexed by
I. If MI has full row rank for some I ⊆ [d] of size d0, then

sup
w∈Cd

P(∥MZ − w∥2 ≤ ε) ≤ O(ε2)d0

det(MIM∗
I ) . (7.23)
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Proof. By projecting MZ to the coordinate subspace CI we may assume I = [d]. Let M have
singular value decomposition UΣV ∗ with U and V square unitary matrices of respective dimensions
d and d′, and with Σ = diag(σ1(M), . . . , σd(M)). We have

sup
w∈Cd

P(∥MZ − w∥2 ≤ ε) = sup
w∈Cd

P(∥ΣV ∗Z − U∗w∥2 ≤ ε)

= sup
w∈Cd

P(∥ΣV ∗Z − w∥2 ≤ ε)

= sup
w∈Cd

P(∥ΣZ − w∥2 ≤ ε)

where we used the invariance of the Euclidean norm and the distribution of Z under unitary
transformations of Cd and Cd′ , respectively. Now we have

P(∥ΣZ − w∥2 ≤ ε) = P
( d∑

j=1
|σj(M)ζj − wj |2 ≤ ε2

)
≤

d∏
j=1

P(|σj(M)ζj − wj | ≤ ε)

and the latter quantity is O(ε)2d/
∏d

j=1 σj(M)2 by the boundedness of the standard Gaussian
density. The claim follows. □

Lemma 7.8 (Tensorization of anti-concentration (cf. [44])). Suppose that ξ1, . . . , ξm are inde-
pendent non-negative random variables such that, for some ε1, ε2 > 0, P{ξi ≤ ε1} ≤ ε2 for all
1 ≤ i ≤ m. Then

P
{ m∑

i=1
ξ2

i ≤ ε2
1m

}
= O(ε2)m.

We now prove Lemma 7.3. Since U ∈ A(α) we have σmin(R) = σmin(U0) ≥ α, and hence

det(R∗R) ≳p,α 1. (7.24)

Letting ε > 0 be arbitrary, from (7.4) and Lemma 7.7 with M = W ∗, MI = R∗ we obtain

sup
M∈M[0,n0](C)

P
{

∥M + Walk(U)∥HS ≤ εN−1/2 } = Op,α(ε2)n0(n0+1).

In particular, from (7.2) we have that for each 2 ≤ j ≤ N ,

P
{

∥Ũ
∗ colj(L̃z)∥HS ≤ εN−1/2 } = Op,α(ε2)n0(n0+1).

Since the columns colj(L̃z) are independent, from Lemma 7.8 we obtain

P{ ∥U∗Lz
(1)∥HS ≤ ε } = P

{ N∑
j=1

∥Ũ
∗ colj(L̃z)∥2

HS ≤ ε2
}

= Op,α(ε2)n0(n0+1)(N−1)

which is (7.9).
For (7.11), under the assumptions σmin(U0) ≥ α and (7.10), with I = {k1, . . . , kr} we have

det(W ∗
IW I) ≥ det(R∗R) · β2r ≳p,α,β 1,

(recalling the notation around (7.8) and using the fact that

det(W ∗
Ii+1W Ii+1) = | dist(qki+1 ,WIi)|2 det(W ∗

Ii
W Ii)

for Ii = {k1, ..., ki}) and the proof concludes by following the same lines as we did for (7.9). □
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7.4. Proof of Lemma 7.4: Reduction to matrix walks of full rank. We will argue iteratively,
incrementing the rank parameter r in (7.10) from 0 to n0. For brevity, in this section we denote
the dilated Hilbert–Schmidt ball

B⋆ := 2
√
n0 + 1 · B[0,n0]

[0,n0]×[N ]

(recall our notation BT
S ⊂ MT

S (C) for the closed unit Hilbert–Schmidt ball). Note that U1 ∈ B⋆

almost surely since its n0 + 1 columns are unit vectors. For β1 > 0 let
B∅(β1) :=

{
U ∈ B⋆ : dist(qk,W∅) < β1 ∀k ∈ [0, n0]

}
(7.25)

and for β0 ≥ β1 > 0, 1 ≤ r ≤ n0 and k1, . . . , kr ∈ [0, n0] distinct,
B(k1,...,kr)(β0) :=

{
U ∈ B⋆ : dist(qki

,W{k1,...,ki−1}) ≥ β0 ∀ 1 ≤ i ≤ r
}

(7.26)

B̃(k1,...,kr)(β0, β1) := B(k1,...,kr)(β0) \
⋃

kr+1 /∈{k1,...,kr}

B(k1,...,kr+1)(β1). (7.27)

(interpreting W{k1,...,ki−1} as W∅ for i = 1).

Claim 7.9. For any α ∈ (0, 1
2 ] there exists c0(p, α) > 0 such that for any β1 ∈ (0, c0], there is a set

N∅(β1) ⊂ B⋆ ∩A(α) with
|N∅(β1)| ≤ Op(1/β2

1)(n0+1)N (7.28)
and such that for any U ∈ B∅(β1) ∩ A(α) there exists Û ∈ N∅(β1) with

∥U − Û∥HS ≲p,α β1. (7.29)

Claim 7.10. For any α, β0 ∈ (0, 1
2 ] there exists c1(p, α, β0) > 0 such that for any β1 ∈ (0, c1],

1 ≤ r ≤ n0 and distinct k1, . . . , kr ∈ [0, n0], there is a set N(k1,...,kr)(β0, β1) ⊂ B(k1,...,kr)(β0/2)∩A(α)
with

|N(k1,...,kr)(β0, β1)| ≤ Op(1/β2
1)((r+1)n0+1)N (7.30)

and such that for any U ∈ B̃(k1,...,kr)(β0, β1) ∩ A(α) there exists Û ∈ N(k1,...,kr)(β0, β1) with

∥U − Û∥HS ≲p,α,β0 β1. (7.31)

We now conclude the proof of Lemma 7.4 on the above claims. By the same lines we used in the
proof of Proposition 7.1 (cf. (7.16)–(7.17)) we have from Claim 7.9 and (7.9) that for β0 ≤ c0(p, α),

P{U1 ∈ B∅(β0) ∩ A(α) ∧ ∥Lz∥op ≤ B} ≤ |N∅(β0)|Op,α(B2β2
0)n0(n0+1)(N−1)

≤ Op,α,B(1)NO(β2
0)[n0(n0+1)−(n0+1)]N−Op(1).

Since n0(n0 + 1) − (n0 + 1) = n0
2 − 1 ≥ 1 (recall our assumption that n0 ≥ 2), it follows that there

exists β0 = β0(p, α,B) > 0 such that

P{U1 ∈ B∅(β0) ∩ A(α) ∧ ∥Lz∥op ≤ B} ≲p e
−N . (7.32)

Similarly, from Claim 7.10 and (7.10), for any γ0 ∈ (0, 1
2 ] and γ1 ≤ c1(p, α, γ0), any 1 ≤ r ≤ n0 and

distinct k1, . . . , kr ∈ [0, n0],

P{U1 ∈ B̃(k1,...,kr)(γ0, γ1) ∩ A(α) ∧ ∥Lz∥op ≤ B}

≤ |N(k1,...,kr)(γ0, γ1)|Op,α,γ0(B2γ2
1)[n0(n0+1)+r](N−1)

≤ Op,α,B,γ0(1)NO(γ2
1)[n0(n0+1)+r−(r+1)n0−1]N−Op(1).

Since n0(n0 + 1) + r − (r + 1)n0 − 1 = n0(n0 − r) + r − 1 ≥ 1 for all n0, r with 1 ≤ r ≤ n0 and
n0 ≥ 2, it follows that there exists γ1(p, α,B, γ0) ∈ (0, γ0] such that

P{U1 ∈ B̃(k1,...,kr)(γ0, γ1) ∩ A(α) ∧ ∥Lz∥op ≤ B} ≲p e
−N . (7.33)
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Now we recursively obtain a sequence β0 ≥ β1 ≥ · · · ≥ βn0 =: β⋆ > 0 with β0 = β0(p, α,B) as in
(7.32), and βk = γ1(p, α,B, βk−1) for 1 ≤ k ≤ n0. We cover

B(β⋆) ∩ B⋆ ⊆

B∅(β0) ∪
⋃

k1,...,kn0 ∈[0,n0]
distinct

B̃(k1)(β0, β1) ∪ B̃(k1,k2)(β1, β2) ∪ · · · ∪ B̃(k1,...,kn0 )(βn0−1, βn0).

Applying the union bound followed by (7.32) and (7.33) with (γ0, γ1) = (βk−1, βk) for 1 ≤ k ≤ n0,
we obtain

P{ U1 ∈ B(β) ∩ A(α) ∧ ∥Lz∥op ≤ B } ≲p e
−N

for any 0 < β ≤ β⋆. □

It remains to prove Claims 7.9 and 7.10. The proof of Claim 7.9 is essentially contained in that
of Claim 7.10 – we give the proof of the latter and describe at the end which steps can be skipped
to establish the former.

We will use the following elementary lemma.

Lemma 7.11 (Stability of distances to subspaces). Let 1 ≤ k ≤ m. Let b, a1, . . . , ak, b
′, a′

1, . . . , a
′
k ∈

Cm and A = (a1, . . . , ak). Suppose σmin(A) ≥ α > 0, ∥b − b′∥ ≤ ε, and ∥ai − a′
i∥2 ≤ ε for each

i ∈ [k]. If ε ≤ 1
2k

−1/2α, then∣∣ dist(b,Span(a1, . . . , ak)) − dist(b′,Span(a′
1, . . . , a

′
k)
∣∣ ≲ (1 + ∥b∥2)kε/α.

Proof. From the triangle inequality it suffices to show∣∣ dist(b,Span(a1, . . . , ak)) − dist(b,Span(a′
1, . . . , a

′
k)
∣∣ ≲ kε∥b∥2/α. (7.34)

Set A(0) = A and for each 1 ≤ j ≤ k let A(j) be obtained by replacing the first j columns of A with
a′

1, . . . , a
′
j , so that A(k) = A′. By expanding the left hand side of (7.34) as a telescoping sum and

applying the triangle inequality, we see it suffices to show

| dist(b,Span(A(j))) − dist(b,Span(A(j−1)))| ≤ 4∥b∥2ε

σmin(A) (7.35)

for each 1 ≤ j ≤ k.
Fix such a j, and let V be the span of all columns of A(j) but the jth one. Let b̃, ãj , ã

′
j denote

the projections of b, aj , a
′
j to V ⊥. Then the left hand side above is

| dist(b̃, ⟨ãk⟩) − dist(b̃, ⟨ã′
k⟩)| =

∣∣∣∣∥b̃ ∧ ãj∥2
∥ãj∥2

−
∥b̃ ∧ ã′

j∥2

∥ã′
j∥2

∣∣∣∣
≤ 1

∥ãj∥2

∣∣∥b̃ ∧ ãj∥2 − ∥b̃ ∧ ã′
j∥2

∣∣ +
∣∣∣∣∥ã′

j∥2

∥ãj∥2
− 1

∣∣∣∣∥b̃ ∧ ã′
j∥2

∥ã′
j∥2

≤ 1
∥ãj∥2

∥b̃∥2ε+ ε

∥ãj∥2
∥b̃∥2 ≤ 2ε∥b∥2

∥ãj∥2
.

Noting that ∥ãj∥2 = dist(aj , V ), we see it suffices to show

dist(aj , V ) ≥ σmin(A)/2. (7.36)

Now for some c1, . . . , cj−1, cj+1, . . . , ck ∈ C we have

dist(aj , V ) =
∥∥∥aj −

∑
i ̸=j

ci coli(A(j))
∥∥∥

2
≥ σmin(A(j))

(
1 +

∑
i ̸=j

|ci|2
)1/2

≥ σmin(A(j)).
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Now since ∥A(j) −A∥op ≤ ∥A(j) −A∥HS ≤ ε
√
k for all 1 ≤ j ≤ k,

σmin(A(j)) ≥ σmin(A) − ∥A(j) −A∥op ≥ σmin(A) − ε
√
k

and (7.36) follows from the previous two displays and our assumption on ε. □

Proof of Claim 7.10. The key property of W = W (U) is that the columns of Q are determined by
those of U . Indeed, let S ∈ M[0,n0]

[n] (C) have columns s0, . . . , sn0 (cf. (6.3)) and let S̃ ∈ M[0,n0]
[0,n] (C)

be the result of adding the standard basis vector e1 = (1, 0, . . . , 0) ∈ Cn as zeroth row. We have(
U0

Q

)
= (S̃ ⊗ IN )U , in particular Q = (S ⊗ IN )U . (7.37)

Since s1, . . . , sn0 are linearly independent, it follows that S̃ has full column rank, so

U = (S̃+ ⊗ IN )
(
U0

Q

)
(7.38)

where S̃+ = (S̃∗S̃)−1S̃∗ is the Moore–Penrose pseudoinverse of S̃.
For U0 = (u0

0, . . . , u
0
n0) ∈ M[0,n0]

[N ] (C) and u′
1, . . . ,u

′
r ∈ C[n0]×[N ] with r ≤ n0, we write W(r)(U0,u′

1, . . . ,u
′
r)

for the span of the columns of R(U0) together with (S ⊗ IN )u1, . . . , (S ⊗ IN )ur, where

uk =
(
u0

k
u′

k

)
.

In particular, for I = {k1, . . . , kr} ⊂ [0, n0] we have

WI(U) = W(r)(U0,u′
k1 , . . . ,u

′
kr

). (7.39)

We introduce this notation to make it clear that this subspace is fixed by the partial data U0,u′
k1
, . . . ,u′

kr
,

which will be crucial for the net construction.
For any β ∈ (0, 1/2] we let Σ0(β, α) be a β-net for the set{

U ∈ 2
√
n0 + 1 · B[0,n0]

[N ] : σmin(U) ≥ α
}

and let Σ1(β) be a β-net for B[n0]×[N ] (the unit ball in C[n0]×[N ]). (Both nets are taken with respect
to the Euclidean metric.) For each Û0 ∈ Σ0(β, α), û′

1, . . . , û
′
r ∈ Σ1(β) and any R ≥ 1, we let

Σ(r)
Û0,û′

1,...,û′
r

(β,R) be a (Euclidean) β-net for the ball of radius R in W(r)(Û0, û′
1, . . . , û

′
r). For r = 0

we let Σ(0)
Û0(β,R) be a β-net for the ball of radius R in W(0)(Û0). By Lemma 3.1 we may choose

these nets so that
|Σ0(β, α)| ≤ Op(1/β2)(n0+1)N , (7.40)

|Σ1(β)| ≤ O(1/β2)n0N , (7.41)

|Σ(0)
Û0(β,R)|, |Σ(r)

Û0,û′
1,...,û′

r

(β,R)| ≤ O(R2/β2)Op(1). (7.42)

Now let 1 ≤ r ≤ n0 and fix distinct k1, . . . , kr ∈ [0, n0]. In the sequel we write Ii = {k1, . . . , ki}.
Let N be the set of Û ∈ B⋆ such that

Û0 ∈ Σ0(β1, α), û′
k ∈ Σ1(β1) ∀ k ∈ Ir (7.43)

and
û′

k ∈
{

(S′ ⊗ IN )
(
û0

k
q̂k

)
: q̂k ∈ Σ

Û0,(û′
k:k∈Ir)(β1, R)

}
∀ k /∈ Ir, (7.44)

with R = Op(1) to be taken sufficiently large, and where S′ is the matrix S̃+ with its first row
removed (see (7.38)).
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Fix an arbitrary U ∈ B̃(k1,...,kr)(β0, β1) ∩ A(α). We claim there exists Û ∈ N such that (7.31)
holds and Û ∈ B(k1,...,kr)(β0/2). From this the claim will follow by taking N(k1,...,kr)(β0, β1) =
N ∩ B(k1,...,kr)(β0/2), noting that Û ∈ A(α) by (7.43), and that the bound (7.30) follows from
(7.40)–(7.42).

We first fix the following submatrices of Û : take Û0 ∈ Σ0(β1, α) and for each k ∈ Ir take
û′

k ∈ Σ1(β1) such that

∥U0 − Û0∥2 ≤ β1 and ∥u′
k − û′

k∥2 ≤ β1 ∀k ∈ Ir. (7.45)
By the triangle inequality, it only remains to choose the vectors û′

k for k /∈ Ir so that
∥u′

k − û′
k∥2 ≲p,α,β0 β1 (7.46)

and so that the resulting matrix Û lies in B(k1,...,kr)(β0/2).
For arbitrary k ∈ [0, n0], since qk = (S ⊗ IN )uk and ∥uk∥2 ≤ 2

√
n0 + 1, it follows that

∥qk∥2 ≤ 2
√
n0 + 1∥S∥op ≲p 1.

For k ∈ Ir, with

q̂k := (S ⊗ IN )ûk, ûk =
(
û0

k
û′

k

)
,

we similarly have
∥qk − q̂k∥2 ≲p β1 ∀ k ∈ Ir. (7.47)

Since U ∈ B̃(k1,...,kr)(β0, β1),

dist(qki
,WIi−1) = dist(qki

,W(i−1)(U0,u′
k1 , . . . ,u

′
ki−1)) ≥ β0 ∀ 1 ≤ i ≤ r (7.48)

and for any k /∈ Ir,
dist(qk,WIr ) = dist(qk,W(r)(U0,u′

k1 , . . . ,u
′
kr

)) ≤ β1 (7.49)

(recalling (7.39)). Since U0 ∈ A(α) we have σmin(R) = σmin(U0) ≥ α. Together with (7.48) this
implies

σmin(W Ii−1) ≳α,β0 1 ∀ 1 ≤ i ≤ r

(where W I0 := R). This together with (7.45), Lemma 7.11 and (7.48), and assuming c1(p, α, β0)
is sufficiently small, implies

dist(q̂ki
,W(i−1)(Û0, û′

k1 , . . . , û
′
ki−1)) ≥ β0 −Op,α,β0(β1) ∀ 1 ≤ i ≤ r. (7.50)

We similarly have
dist(qk,W(r)(Û0, û′

k1 , . . . , û
′
kr

)) ≲p,α,β0 β1 ∀ k /∈ Ir. (7.51)
By the triangle inequality, taking R = Op(1) sufficiently large, there exist q̂k ∈ Σ

Û0,û′
k1 ,...,û′

kr
(β1, R)

such that
∥qk − q̂k∥2 ≲p,α,β0 β1 ∀ k /∈ Ir.

Finally, setting û′
k = (S′ ⊗ IN )q̂k, we have for each k /∈ Ir that

∥u′
k − û′

k∥2 =
∥∥∥∥(S′ ⊗ IN )

(
u0

k − û0
k

qk(U) − q̂k

)∥∥∥∥
2
≲p

∥∥∥∥( u0
k − û0

k
qk(U) − q̂k

)∥∥∥∥
2
≲p,α,β0 β1

giving (7.46) as desired. That Û ∈ B(k1,...,kr)(β0/2) follows from (7.50) and taking the constant
c1(p, α, β0) sufficiently small.

The proof of Claim 7.9 follows similar lines. The net N∅(β1) is taken as in (7.43)–(7.44) with
Ir = ∅ (so no columns û′

k are fixed at this initial stage). The estimates (7.49) and (7.51) are
obtained by the same lines, with the subspaces W∅ = W(0)(U0) and W(0)(Û0), while we skip (7.48)
and (7.50). □
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7.5. Proof of Lemma 7.5: Constructing a net for structured matrices. We first record
two elementary lemmas.

Lemma 7.12. Let A ∈ Mm(C) with | detA| ≥ κ and columns x1, . . . , xm ∈ Bm. Suppose that for
some v ∈ Cm we have

| det((v,AJ))| < δ ∀ J ∈
(

[m]
m− 1

)
(7.52)

where we write AJ for the m× |J | submatrix with columns {xj : j ∈ J}. Then ∥v∥2 < mδ/κ.

Proof. We expand v =
∑m

i=1 bixi. Applying (7.52) with J = [m] \ {j} gives
δ > | det((v,AJ)| = |bj || detA| ≥ κ|bj | ∀ j ∈ [m],

so ∥b∥2 <
√
mδ/κ. From our assumptions we have ∥A∥op ≤ ∥A∥HS ≤

√
m, and so

∥v∥2 = ∥Ab∥2 ≤
√
m∥b∥2 < mδ/κ

as desired. □

Lemma 7.12 will be used in conjunction with the following, which locates a well-conditioned
basis of rows in the matrix U0. Recall that v0

i ∈ C[0,n0], i ∈ [N ] denote the rows of U0.

Lemma 7.13. For any U ∈ A(α), there exists I∗ = {i0, . . . , in0} ⊂ [N ] such that

∥v0
i0 ∧ · · · ∧ v0

ik
∥2 ≥ (α/

√
N)k+1 (7.53)

for each 0 ≤ k ≤ n0.

Proof. We iteratively construct I∗ as follows: first, there exists i0 ∈ [N ] such that ∥v0
i0

∥2 ≥ α/
√
N ,

as otherwise σmin(U0) ≤ ∥U0∥op ≤ ∥U0∥HS < α. Now for 1 ≤ k ≤ n0 − 1, having picked i0, . . . , ik,
there exists ik+1 ∈ [N ] such that dist(v0

ik+1
, ⟨v0

i0
, . . . , v0

ik
⟩) ≥ α/

√
N , as otherwise, for any unit

vector u ∈ ⟨v0
i0
, . . . , v0

ik
⟩⊥ we would have

∥U0u∥2
2 =

∑
j∈[N ]\{i0,...,ik}

|⟨v0
j , u⟩|2 < α2,

which contradicts σmin(U0) ≥ α. (7.53) now follows from the base-times-height formula for the
norm of the wedge product. □

Fix an arbitrary k0 ∈ [n0]. Our proof of Lemma 7.5 is divided into two cases depending on p:
(A) sk0,ℓ0 ̸= 0 for some ℓ0 ∈ [n0 + 1, n];
(B) sk0,ℓ0 ̸= 0 for some ℓ0 ∈ [n0].
Since the vector sk0 ∈ Cn has nonzero norm at least one of these cases must hold. Our construction
of N will be different for each case.

In what follows, for parameters R, ρ > 0 we let Σ0(R, ρ) be a ρ/
√
N -net for the ball of radius R

in C[0,n0], and for J ⊆ [N ], we let ΣJ(R, ρ) ⊂ M[0,n0]
[N ] (C) be a ρ-net for the Hilbert–Schmidt ball

of radius R on the subspace of matrices supported on the rows indexed by J . (We take Σ∅(R, ρ)
to consist of the zero matrix.) As before, all nets are with respect to the appropriate Euclidean
metric. By Lemma 3.1 we may take

|Σ0(R, ρ)| = Op(R2N/ρ2)n0+1, |ΣJ(R, ρ)| = O(R2/ρ2)(n0+1)|J |. (7.54)

Proof of Lemma 7.5 under Case A. Let N ′ be the set of matrices U = (U0, . . . , Un0) ∈ M[0,n0]
[0,n0]×[N ](C)

such that Uk ∈ Σ[N ](
√
n0 + 1, ρ⋆) for each k ∈ [0, n0] \ {k0}, and Uk0 has rows given by

vk0
j = − 1

sk0,ℓ0

∑
k∈[0,n0]\{k0}

sk,ℓ0v
k
j , j ∈ [N ], (7.55)
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where vk
j is the jth row of Uk. Now for each U ′ ∈ N ′ take an element U ′′ ∈ E within a distance

2 dist(U ′, E) of U ′, and let N ⊂ E be the set of all U ′′ obtained in this way. By construction we
have

|N | ≤ |N ′| ≤ |Σ[N ](
√
n0 + 1, ρ⋆)|n0 = Op(1/ρ2

⋆)n0(n0+1)N . (7.56)

We claim that for any U ∈ E there exists Û ∈ N ′ with

∥U − Û∥HS ≲p,α ρ⋆. (7.57)
The lemma (under Case A) clearly follows from this and the triangle inequality, and replacing δ
above with c(p, α)δ for a sufficiently small constant c(p, α) > 0.

To show (7.57), for arbitrary U ∈ E , we take Û ∈ N ′ to be an element such that ∥Uk−Ûk∥HS < ρ⋆

for each k ̸= k0. (Recall that Ûk0 is determined by (7.55) once Uk for k ̸= k0 are fixed.) It only
remains to show

∥Uk0 − Ûk0∥HS ≲p,α ρ⋆. (7.58)
Let I∗ = {i0, . . . , in0} ⊂ [N ] satisfying (7.53) for U . Since U ∈ Struct(δ) ⊂ Struct1(δ) we have

|∆j,I | := | det(wj , v
0
I )| < δ ∀ j ∈ [N ], ∀ I ∈

(
I∗

n0

)
where we write v0

I := (v0
j : j ∈ I), and for ease of notation we write wj := wℓ0

j (ℓ0 being fixed at
this stage). From (7.53) (with k = n0) and Lemma 7.12 it follows that

∥wj∥2 < δ(n0 + 1)(
√
N/α)n0+1 ∀ j ∈ [N ].

Now for each j ∈ [N ], writing v̂k0
j for the jth row of Ûk0 , from (6.6), the triangle and AM-GM

inequalities, and the above inequality, we have

∥vk0
j − v̂k0

j ∥2 = 1
|sk0,ℓ0 |2

∥∥∥wj −
∑

k∈[0,n0]\{k0}

sk,ℓ0(vk
j − v̂k

j )
∥∥∥2

≲p,α δ
2Nn0+1 +

∑
k∈[0,n0]\{k0}

∥vk
j − v̂k

j ∥2
2.

Summing over j and applying the bounds ∥Uk − Ûk∥HS < ρ⋆ for k ̸= k0 and our assumed bound
on δ, we obtain (7.58) as desired. □

Proof of Lemma 7.5 under Case B. Let Λ0 be a ρ⋆/
√
N -mesh for the interval [−R,R], for some

R = Op(1) to be taken sufficiently large. We take N ′′ be the set of matrices Û = (Û0, . . . , Ûn0) ∈
M[0,n0]

[0,n0]×[N ](C) such that

Ûk ∈ Σ[N ](
√
n0 + 1, ρ⋆) ∀ k ∈ [n0] \ {k0}, (7.59)

and for some (possibly empty) J ⊆ [N ],

Û0
Jc ∈ ΣJc(ρ1/2

⋆ , ρ⋆) and Ûk0
Jc ∈ ΣJc(

√
n0 + 1, ρ⋆) (7.60)

while for each j ∈ J ,
v̂0

j ∈ Σ0(1, ρ1), ρ1 := ρ
3/2
⋆ /N (7.61)

and
v̂k0

j = 1
sk0,ℓ0

(
ŵj −

∑
k∈[0,n0]\{k0}

sk,ℓ0 v̂
k
j

)
(7.62)

for some ŵj ∈ Λ0 · ⟨v̂0
j ⟩. Here we write Jc := [N ] \ J , and Ûk

I for the matrix obtained from Ûk by
zeroing out the rows with indices in Ic.
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Constructing N ⊂ E from N ′′ analogously to how N was obtained from N ′ in the proof for Case
A, we have by construction that

|N | ≤ |N ′′|

≤ |Σ[N ](
√
n0 + 1, ρ⋆)|n0−1

∑
J⊆[N ]

|ΣJc(ρ1/2
⋆ , ρ⋆)||ΣJc(

√
n0 + 1, ρ⋆)||Σ0(1, ρ1)||J ||Λ0||J |

= Op(1/ρ2
⋆)(n0−1)(n0+1)N

∑
J⊆[N ]

Op(1/ρ⋆)(n0+1)(N−|J |)Op(1/ρ2
⋆)(n0+1)(N−|J |)

×Op(1/ρ2
1)(n0+1)|J |Op(N/ρ2

⋆)|J |

= Op(1)NO(1/ρ2
⋆)(n0+1/2)(n0+1)N

∑
J⊆[N ]

O(N)(2n0+3)|J |O(1/ρ2
⋆)|J |

= Op(N)(2n0+3)NO(1/ρ2
⋆)(n02+ 3

2 n0+ 3
2 )N

where in the last line we simply bounded |J | ≤ N and absorbed the harmless factor 2N in the
implied constant.

As in the proof for Case A, we will be done if we can show that for every U ∈ E there exists
Û ∈ N ′′ such that (7.57) holds. Fixing now an arbitrary U ∈ E , for each k ∈ [n0] \ {k0} we let
Ûk be as in (7.59) with ∥Uk − Ûk∥HS < ρ⋆. It only remains to pick Û0, Ûk0 as in (7.60)–(7.62) for
some choice of J = J(U) ⊆ [N ] with

∥Uk − Ûk∥HS ≲p,α ρ⋆ , k ∈ {0, k0}. (7.63)
We take J to be the set of large rows of U0:

J = J(U0) = {j ∈ [N ] : ∥v0
j ∥2 ≥ ρ

1/2
⋆ /

√
N}.

We have ∥U0
Jc∥HS < ρ

1/2
⋆ , and so there exists Û0

Jc as in (7.60) with ∥U0
Jc − Û0

Jc∥HS ≤ ρ⋆. Completing
Û0 with rows v̂0

j as in (7.61) such that ∥v0
j − v̂0

j ∥2 ≤ ρ1 for each j ∈ J , we obtain (7.63) for k = 0.
Since ∥Uk0∥HS ≤

√
n0 + 1 we can take Ûk0

Jc as in (7.60) with ∥Uk0
Jc − Ûk0

Jc ∥HS ≤ ρ⋆. It only remains
to show there exist v̂k0

j , j ∈ J as in (7.62) such that∑
j∈J

∥vk0
j − v̂k0

j ∥2
2 ≲p,α ρ

2
⋆. (7.64)

Turning to this task, let I∗ = {i0, . . . , in0} ⊂ [N ] satisfying (7.53) for U . For ease of writing we set
m := n0 +1 and denote xk := v0

ik−1
for 1 ≤ k ≤ m. We also use the shorthand x∧I := xk1 ∧· · ·∧xkℓ

for I = {k1, . . . , kℓ} ⊆ [m] with k1 < · · · < km. From (7.53) we have

|x1 ∧ · · · ∧ xm| ≥ (α/
√
N)m =: κ. (7.65)

Consider an arbitrary j ∈ J . From Lemma 7.12, and the bounds (7.65) and ∥v0
j ∥2 ≥ ρ

1/2
⋆ /

√
N

it follows that there exists Î = Îj ⊂ [m] of size m− 1 such that

|v0
j ∧ x∧Î

| ≥ κρ
1/2
⋆

m
√
N
. (7.66)

Since U ∈ Struct(δ) ⊂ Struct2(δ) we have that for every I ⊂ [m] of size m− 2,

|∆̃j,I | := | det(wj , v
0
j , (xk)k∈I)| = |wj ∧ v0

j ∧ x∧I | < δ.

Letting w̃j , x̃1, . . . , x̃m denote the projections of wj , x1, . . . , xm to ⟨v0
j ⟩⊥, we have in particular that

δ > |wj ∧ v0
j ∧ x∧I | = ∥v0

j ∥2∥w̃j ∧ x̃∧I∥2 ≥ ρ
1/2
⋆√
N

∥w̃j ∧ x̃∧I∥2 ∀ I ∈
(

Î

m− 2

)
. (7.67)
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On the other hand, since ∥v0
j ∥2 ≤ 1, we have from (7.66) that

∥x∧Î
∥2 ≥ |v0

j ∧ x∧Î
| ≥ κρ

1/2
⋆

m
√
N
.

Together with (7.67) and Lemma 7.12 (identifying the subspace ⟨v0
j ⟩⊥ with Cm−1) this implies

dist(wj , ⟨v0
j ⟩) = ∥w̃j∥2 <

m(m− 1)δN
κρ⋆

≲p,α δN
(n0+3)/2/ρ⋆ ≲ ρ⋆/

√
N

using our assumption on ρ⋆ and recalling m = n0 + 1 = Op(1). Now from the estimates

∥wj∥2 = Op(1) , ∥v0
j ∥2 ≥ ρ

1/2
⋆√
N
, ∥v0

j − v̂0
j ∥2 ≤ ρ1 = ρ

3/2
⋆ /N,

the identity

dist(wj , ⟨v0
j ⟩) =

∥wj ∧ v0
j ∥2

∥v0
j ∥2

and multilinearity of the wedge product, we have
dist(wj , ⟨v̂0

j ⟩) = dist(wj , ⟨v0
j ⟩) +Op,α(ρ⋆/

√
N) ≲p,α ρ⋆/

√
N.

Since ∥wj∥2 = Op(1), by taking R sufficiently large we have that for every j ∈ J there exists
ŵj ∈ Λ0 · v̂0

j such that
∥wj − ŵj∥2 ≲p,α ρ⋆/

√
N. (7.68)

Taking v̂k0
j as in (7.62) for each j ∈ J (having by now fixed all vectors on the right hand side), we

have by (6.6) and the triangle and AM-GM inequalities

∥vk0
j − v̂k0

j ∥2
2 ≲p ∥wj − ŵj∥2

2 +
∑

k∈[n0]\{k0}

∥vk
j − v̂k

j ∥2
2.

Substituting (7.68), summing over j ∈ J , and applying the bounds ∥Uk − Ûk∥HS ≲p ρ⋆ for k ̸= k0
yields (7.64) and completes the proof. □

Remark 7.14. Let us explain why we cannot take any linearization for p. Consider a linearization
of the form

Lz =


−z + T R1 . . . Rn0
Y1 − I . . . 0
... . . .
Yn0 · · · − I


(compare (4.6)) where the Rk, Yℓ and T are linear forms in the matrices X1, . . . , Xn with respective
coefficient vectors rk, sℓ, t ∈ Cn. If the family {r1, ..., rn0} is not of full rank, there exists a non-null
vector x ∈ Cn0 such that

∑n0
i=1 xiri = 0, then if x̃ = (0, x1, ..., xn0), the matrices Li as in (6.3)

(with ⟨rk, ξi⟩ in place of ξk
i ) all satisfy Lix̃ = 0. When we look for the coefficients of the terms of

order n0 + 1 of det(M +
∑N

i=1 U
∗
i Li), we find that these are the same as in det(

∑N
i=1 U

∗
i Li), and

hence they are zero. On the other hand, if {s1, ..., sn0} is not of full rank, we then have a non-null
vector x ∈ Cn0 such that

∑n0
k=1 xkYk = 0 and so

∑
xk row1(Y ′

k) = 0. Then considering the vector
u with first block u0 = 0 and uk(1) = xk for k = 1, ..., n0, uk(i) = 0 for all k and all i ∈ [2, N ], we
have that u is a non-null element of (Vz

(1))
⊥, so that σmin(U0) = 0. And so we cannot have our

lower bound on the effective rank R(U0) (as in (7.5)) and our anti-concentration bound does not
beat the cardinality of the net. The problem of finding a “nice” linearization for p is also why the
question of polynomials of degrees higher than 2 is more difficult. For instance, it is not clear that
a homogeneous polynomial of degree 3 admits a linearization of the form p =

∑n0
i=1RiSiTi where

the families {Ri}1≤i≤n0 and {Ti}1≤i≤n0 are of full rank.



PSEUDOSPECTRUM FOR QUADRATIC POLYNOMIALS OF GINIBRE MATRICES 35

8. Proof of Theorem 1.2

The proof of Theorem 1.2 follows Girko’s idea [27] based on Green’s formula (1.6). For z ∈ C ,
we set

νz
N := µ(z IN −P N )(z IN −P N )∗ ,

where we recall that PN = p(XN
1 , . . . , X

N
n ), as well as our notation (1.1). Applying the above

formula to the eigenvalues of PN , we deduce that∫
C
ψ(z)dµP N (z) = 1

4π

∫
C

∆ψ(z)
∫ ∞

0
log(x)dνz

N (x)dz . (8.1)

The proof of the convergence of the right hand side is broken into the following steps.

(1) For all z ∈ C, we show that νz
N converges weakly almost surely to some identifiable proba-

bility measure νz on R+.
(2) Using our lower bound in Theorem 1.3, we show that for almost every z ∈ C,

∫
R+

log(x)dνz
N (x)

converges to
∫
R+

log(x)dνz(x) in probability.

(3) We show that, in probability, z 7→
∫
R+

log(x)dνz
N (x) converges in L1 to z 7→

∫
R+

log(x)dνz(x),
and therefore µP N converges in distribution to a limit that we identify as νp(c1,...,cn).

Proof of (1): Because (z IN −PN )(z IN −PN )∗ is a self-adjoint polynomial in independent Ginibre
matrices and their adjoints, the first point is a direct consequence of Voiculescu’s theorem [56], see
[4] for a review. In particular we have that νz is the distribution of |z − p(c1, . . . , cn)|2 in the sense
of ∗-moments, and from the boundedness of the circular elements it follows that νz is compactly
supported for every fixed z ∈ C.

Proof of (2): To prove the second point, we need to deal with the fact that the logarithm is
unbounded. To this end, first observe that by Lemma 3.2, there is a constant B > 0 such that

lim sup
N→∞

∥PN ∥ ≤ B a.s. (8.2)

Therefore, fixing ϵ > 0, the first point implies that for any smooth nonnegative function χϵ which
vanishes on [0, ϵ/2] and equals one on [ϵ,∞),

lim
N→∞

∫ B

0
χϵ(x) log(x)dνz

N (x) =
∫ B

0
χϵ(x) log(x)dνz(x) a.s. (8.3)

The main point is therefore to show that
∫ ϵ

0 log(x)dνz
N (x) is negligible. We will show that for every

δ, δ′ > 0 there is ϵ ∈ (0, 1) such that

lim sup
N→∞

P
{ ∣∣∣∣ ∫ ϵ

0
log xdνz

N (x)
∣∣∣∣ ≥ δ

}
≤ δ′.

Denoting GN = {∥PN ∥ ≤ B, σmin(z − PN ) ≥ N−β}, by Theorem 1.3 and (8.2), we can choose β
large enough so that P(GN ) goes to one. Hence, it suffices to show that

lim
ϵ→0

lim sup
N→∞

E
(
1GN

∫ ϵ

0
| log x|dνz

N (x)
)

= 0.

On the event GN , ∫ ϵ

0
log xdνz

N (x) =
∫ ϵ

N−β

log xdνz
N (x),

so we only need to show

lim
ϵ→0

lim sup
n→∞

E
∣∣∣ ∫ ϵ

N−β

log xdνz
N (x)

∣∣∣ = 0. (8.4)
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We denote ν̄z
n = E[νz

N ] and g (resp. gN ) the Stieljes transform of νz (resp. ν̄z
N ) given for ζ ∈ C by

gz(ζ) =
∫ ∞

0

1
ζ − x

dνz(x), gz
N (ζ) = E[

∫ ∞

0

1
ζ − x

dνz
N (x)] .

The next lemma is the key to prove (8.4).

Lemma 8.1. Let z ∈ C be fixed. There exist C,N0 > 0 and c1, c2 ∈ (0, 1) such that for η ∈ [N−c1 , 1]
and N ≥ N0,

|ℑ(gz
N (iη))| ≤ Cη−c2 .

We postpone the proof of this lemma to deduce first (8.4). This lemma implies that for x ∈
[N−c1 , 1],

F z
N (x) := ν̄z

N ([0, x]) ≤ 2
∫

[0,x]

x2

y2 + x2dν̄
z
N (y) ≤ 2xℑ(gz

N (ix)) ≤ 2Cx1−c2 .

Hence, we find for α < c1 and ϵ < 1:

E
∣∣∣ ∫ ϵ

N−β

log xdνz
N (x)

∣∣∣
≤ −

∫ N−α

N−β

log xdν̄z
N (x) −

∫ ϵ

N−α

log xdν̄z
N (x)

≤ β(logN)ν̄z
N ([0, N−α]) +

∫ ϵ

N−α

1
x
F z

N (x)dx− log(ϵ)F z
N (ϵ) + F z

N (N−α) log(N−α)

≤ 2Cβ(logN)N−α(1−c1) + 2C ϵ1−c2

1 − c2
− 2(log ϵ)ϵ1−c2 ,

which gives (8.4).

Proof of Lemma 8.1. First we observe that Haagerup and Thorbjørnsen [31] proved the convergence
of the Stieltjes transform of νz

N close to the real axis. Indeed, recall that Ginibre matrices can
be decomposed as the sum of two independent GUE matrices: XN

j = (Y N
j + iZN

j )/
√

2 where
(Yj , Zj)1≤j≤n are independent GUE matrices. Hence (z−PN )(z−PN )∗ can be seen as a polynomial
in independent GUE matrices so that Haagerup and Thorbjørnsen result applies and, see e.g [4,
Lemma 5.5.4], implying that there exists c1 finite such that for ℑζ ∈ [N−c1 , 1] and N large enough,

|gz(ζ) − gz
N (ζ)| ≤ c2

N2(ℑζ)c3
.

Up to take a smaller c1, it is therefore enough to show that

ℑgz(iϵ) ≤ Kϵq

for some q > −1 and K > 0. Following [46, Corollary 1.2], νz has no atoms. Moreover, by [46,
Theorem 1.1], gz is bounded close to the real line except possibly on a discrete set A. Assuming at
worst that A contains the origin, the same theorem shows that there exists q ∈ Q and a constant
K ̸= 0 such that gz(ζ) ≃ Kζq for ζ close to the origin. But clearly, since νz has no atoms, q > −1.
A more quantitative proof could have used that [7] implies that the partition function of νz is
Hölder with exponent 1/15. □

Proof of (3): Denoting

hN (z) :=
∫ ∞

0
log |x|dνz

N (x) and h(z) =
∫ ∞

0
log |x|dνz(x)
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we have shown that for every fixed z ∈ C, hN (z) converges in probability to h(z), the latter now
being well defined by steps (1) and (2). In particular we have

h(z) =
∫
C

log |z − λ|dνp(c1,...,cn)(λ)

by definition of the Brown measure. We next prove that for any compact set K, and on the events
AN = {∥PN ∥ < B}, hN converges as well in L1 in the sense that

lim
N→∞

E
(
1AN

∫
z∈K

|hN (z) − h(z)|dz
)

= 0. (8.5)

This is enough to conclude the proof of Theorem 1.2 by (8.1) for any twice continuously differentiable
function ψ with compact support. The last condition is finally removed since the eigenvalues are
almost surely bounded by B according to (8.2). To prove (8.5), it is enough to notice that hN and
h belong to L2 in the sense that

E[1AN

∫
K

|hN (z)|2dz] +
∫

K
|h(z)|2dz

is bounded independently of N , so that the bounded convergence theorem applies. But, Jensen’s
inequality and Fubini’s theorem imply that

E[1AN

∫
K

|hN (z)|2dz] ≤ E[1AN

∫
C

∫
K

| log |z − λ||2dzdµP N (λ)] ≤ sup
|λ|≤B

∫
K

| log |z − λ||2dz

is finite, and a similar estimate holds for h(z) (one obtains from the boundedness of the circular
elements c1, . . . , cn that νp(c1,...,cn) has compact support). Therefore, in probability hN converge to
h in L1(K,Leb) and so µP N = 1

4π ∆hN converges to νp(c1,...,cm) = 1
4π ∆h in the sense of distributions

on K. Again, taking K that contains the support of νp(c1,...,cm) and µP N , the convergence in the
sense of distributions implies weak convergence and the result is proved.
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