
HAL Id: hal-03865595
https://hal.science/hal-03865595

Preprint submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Conservative Cartesian Cut Cell Method for the
Solution of the Incompressible Navier-Stokes Equations

on Staggered Meshes
Alejandro Quirós Rodríguez, Tomas Fullana, V. Le Chenadec, Taraneh Sayadi

To cite this version:
Alejandro Quirós Rodríguez, Tomas Fullana, V. Le Chenadec, Taraneh Sayadi. A Conservative Carte-
sian Cut Cell Method for the Solution of the Incompressible Navier-Stokes Equations on Staggered
Meshes. 2022. �hal-03865595�

https://hal.science/hal-03865595
https://hal.archives-ouvertes.fr


A Conservative Cartesian Cut Cell Method for the
Solution of the Incompressible Navier-Stokes Equations

on Staggered Meshes
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Abstract

The treatment of complex geometries in Computational Fluid Dynamics appli-

cations is a challenging endeavor, which immersed boundary and cut-cell tech-

niques can significantly simplify by alleviating the meshing process required by

body-fitted meshes. These methods however introduce new challenges, as the

formulation of accurate and well-posed discrete operators becomes nontrivial.

Here, a conservative cartesian cut cell method is proposed for the solution of

the incompressible Navier–Stokes equation on staggered Cartesian grids. Em-

phasis is set on the structure of the discrete operators, designed to mimic the

properties of the continuous ones while retaining a nearest-neighbor stencil.

For convective transport, a divergence is proposed and shown to also be skew-

symmetric as long as the divergence-free condition is satisfied, ensuring mass,

momentum and kinetic energy conservation (the latter in the inviscid limit).

For viscous transport, conservative and symmetric operators are proposed for

Dirichlet boundary conditions. Symmetry ensures the existence of a sink term

(viscous dissipation) in the discrete kinetic energy budget, which is beneficial

for stability. The cut-cell discretization possesses the much desired summation-
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by-parts (SBP) properties. In addition, it is fully conservative, mathematically

provably stable and supports arbitrary geometries. The accuracy and robust-

ness of the method are then demonstrated with flows past a circular cylinder

and an airfoil.

Keywords: Immersed Boundary Method, Cut Cell Method, Incompressible

Navier-Stokes Equations

1. Introduction

A vast range of flow phenomena are dominated by the dynamics that occur

within the vicinity of solid boundaries. These include the viscous and pressure

drag observed in external flows, the conjugate heat transfer blades are subjected

to in gas turbines or the generation of vorticity in boundary layers and its subse-5

quent impact on the turbulent mixing, to name a few examples. The effect of the

dynamics in the vicinity of boundaries on the overall flow singles out the treat-

ment of boundary conditions, a critical aspect that also represents a significant

challenge for many Computational Fluid Dynamics (CFD) applications.

Many numerical methods have therefore been developed to address the treat-10

ment of boundary conditions on complex geometries. Unstructured techniques,

as the name suggests, leverage meshes with arbitrary polyhedral elements that

at least for piece-wise planar cases conform to the geometry, at the cost of ex-

plicitly storing connectivity information. They are very effective and powerful

to represent arbitrary geometries, and can even represent curved surface ex-15

actly [16], but the generation of high-quality unstructured meshes continues to

be a challenging and time-consuming task. In addition, the design of efficient

and robust numerical algorithms targeting such meshes remains an active area

of research [19]. Finally, explicit element connectivity effectively introduces an

overhead that does not exist on structured meshes, and consequently increases20

the computational cost per grid point.

These limitations are one of two compelling arguments for the use of struc-

tured meshes, the second being the simplicity and efficiency of the implemen-
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tation of many algorithms on such meshes. The connectivity is implicit, which

restricts their use to simple mesh topologies, including cylindrical or curvilinear25

ones. To circumvent this limitation, dedicated discretization techniques, re-

ferred to as immersed boundary methods (IBM), have been devised [20]. There

exists various approaches to represent the boundary (diffuse or sharp) and to

account for the mass and momentum transfers that occur along the solid bound-

ary. The original IBM [26], which targeted cardiovascular flows, represented the30

boundary as a flexible elastic membrane, which enabled the explicit expression

of the force exerted onto the flow. This approach however is not valid for rigid

boundaries, for which a variety of techniques ranging from the use of fictitious

domain methods [12] and Lagrange multiplier methods [30].

IBM techniques have been adapted to suit the numerical representation of35

PDE solutions, such as the Finite Difference Method and the Finite Element

Method. A widespread flavor of the IBM, favored by the Finite Volume com-

munity, is referred to as the cut-cell method, developed for scalar equations [8]

or the viscous compressible flows [5, 28] on collocated Cartesian grids, and for

incompressible Navier-Stokes equations on staggered Cartesian grids [9]. The40

combination of the cut cell method with staggered arrangement (also referred

to as Arakawa C grid [1]), adopted in two dimensions by Cheny and Botella [9],

is a sensible choice for incompressible flows: it guarantees a strong coupling

between the pressure and velocity variables [13], and can potentially conserve

important physical invariants such as kinetic energy in the inviscid limit of the45

incompressible Navier-Stokes equations [22]. Preserving such properties in the

presence of complex boundaries is however a challenge which, to the best of the

authors’ knowledge, is yet to be fulfilled.

The proposed method attempts to fill this void. The formulation, delin-

eated in the following section, is flexible enough to support geometry defined50

by various means, such as Constructive Solid Geometry primitives or surface

triangulations, provided a finite set of geometric moments can be computed

from them, such as the centroid coordinates of wet volumes or the area of wet

faces. One advantage of this method is that these geometric fields are the only
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information required to modify classical finite differences formulas in the vicin-55

ity of boundaries. Well-known second-order formulas are also recovered away

from the boundaries , and the formulations accommodates any stretching. The

definition of these geometric fields and their number is determined from accu-

racy considerations. It will be shown in particular that the proposed operators

degenerates to classical formulas for the mesh-aligned boundaries.60

The discrete calculus of Morinishi [22, 21] is leveraged to provide concise ex-

pressions for the discrete operators, for Dirichlet boundary conditions imposed

on the velocity field. In addition, the expressivity of Morinishi’s calculus allows

for a systematic analysis of the structure of the pressure gradient, velocity diver-

gence as well as convective and viscous transport operators. First, all operators65

are shown to preserve constant states, in the boundary vicinity or away from it

(free-streaming conditions). Second, divergence, advective and skew-symmetric

versions of the convective transport are proposed and shown to be equivalent

and both momentum- and kinetic-energy-conserving upon satisfaction of the

continuity equation (divergence-free condition). Third, a Dirichlet version of70

the viscous transport is proposed and shown to be symmetric positive definite,

which results in the dissipation term in the discrete kinetic energy equation to

be positive all the way to the boundary for viscous flows. Standard validations

are provided that assess the scheme’s accuracy and stability.

The manuscript is structured as follows. Sec. 2 motivates the choice made in75

the design of the method, in particular the set of geometric moments that must

be computed from the geometry. Sec. 3 precisely defines these moments, and the

set of notations used through Sec. 4 which introduces the semi-discretisation as

well as the segregated approach used for time-integration of the incompressible

Navier-Stokes equations for a Newtonian fluid. Sec. 5 presents the flow solution80

around a cylinder and an airfoil and compares them to reference solutions.
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2. Motivation

This section motivates the choices underlying the design of the proposed

cut-cell operators. To do so, the focus is set on the numerical solution of the

Poisson problem

∆T = σ

where σ is a specified source term and T is also subject to a Dirichlet boundary

condition D. Simply put, the question addressed here is: what is the minimal

amount of geometric information required to discretize the Poisson equation on85

an arbitrary domain using Cartesian grid, while guaranteeing that the discrete

Laplacian operator (i) preserves a classical three-point star-shaped stencil, while

(ii) guaranteeing first order accuracy in mesh-aligned cases. The construction

of this operator will ultimately serve for the discretization of the viscous term

in the incompressible Navier-Stokes equations.90

2.1. Governing principles

Cut Cell Methods are firmly grounded in the Finite Volume Method, which

defines the primary discrete variables as cell-wise averages over mesh elements

(as opposed to point-wise values in the Finite Difference Method, for example).

The design of the Finite Volume operators is then based on the application of

Stokes’ theorem. For example, given a scalar field T , this theorem states that

in a Cartesian coordinate system, the x component of the gradient q ≡ ∇T

averaged over a cell Ω may be computed as

|Ω| qx =

ˆ
Ω

∂T

∂x
dV =

˛
∂Ω

Tex · dS (1)

where |·| denotes the measure operator, dS the outward-pointing surface ele-

ment, ex the unit vector along the x direction and ∂· the contour operator.

For the sake of presentation, the case displayed in Fig. 1a is considered

where Ω consists of the intersection of a phase domain and a computational cell

(a right hexahedron). The contour ∂Ω then consists of the union of the three

planar faces A−
x , A−

x and A−
y as well as the boundary surface Γ. A piece-wise
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(a) Exact (b) Approximate

Figure 1: Caption

linear approximation of Γ, denoted Γ̃, of length
∣∣∣Γ̃∣∣∣ and unit normal (nx, ny),

can be defined as done in Fig. 1b. Applying Eq. 1 to Ω̃ with T = 1 then yields
ˆ
Ω̃

∂1

∂x
dV =

∣∣A+
x

∣∣− ∣∣A−
x

∣∣+ nx

∣∣∣Γ̃∣∣∣ = 0

which highlights the existence of a fundamental relation∣∣A+
x

∣∣− ∣∣A−
x

∣∣ = −nx
∣∣∣Γ̃∣∣∣ (2)

sometimes referred to as a Surface Conservation Law (SCL).

In other words, the knowledge of (|Aα|)α∈{x,y,z} implicitly defines a piece-

wise linear approximation to the boundary. As a consequence, this surface

information, henceforth referred to as the surface capacity, may serve to ap-

proximate the right-hand side of Eq. 1. If the unknowns
(
T±
x/y

)
are defined as

averages over the wet areas
(∣∣∣A±

x/y

∣∣∣), the formula

˛
∂Ω̃

Tex · dS =
∣∣A+

x

∣∣T+ −
∣∣A−

x

∣∣T− −
(∣∣A+

x

∣∣− ∣∣A−
x

∣∣)D
is exact, provided D is the Dirichlet condition averaged over the approximate95

boundary Γ̃.

To complete the definition of the averaged x-component of the gradient, the

volume capacity V ≡ |Ω| is also required, which results in the following tentative
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gradient operator

Qv1
x ≃

(∣∣A+
x

∣∣T+ −
∣∣A−

x

∣∣T− −
(∣∣A+

x

∣∣− ∣∣A−
x

∣∣)D) /V.
It is worth stressing that the use of the SCL (Eq. 2) in Qv1

x guarantees that the

discrete gradient vanishes when the solution and boundary values are matching

constants (T+ = T− = D).

This notation can be generalized to arbitrary dimensions for any boundary

geometry using the differentiation operator δ · /δξα, α ∈ {x, y} as follows

∀α ∈ {x, y} , gradv1α (Tα, D) =
1

V

(
δAαTα
δξα

− δAα

δξα
D

)
(3)

where all components of the discrete vector field Q = (Qα) =
(
gradv1α (Tα, D)

)
are collocated with D. In Eq. 3, the operator δϕ · /δξα denotes the discrete

differentiation operator along direction α on a mesh with unit spacing. When

α = x and ϕi,j is centered at (xi, yj), it is defined as

δϕ

δξx

∣∣∣∣
i+1/2,j

= ϕi+1,j − ϕij . (4)

This definition is straightforward to extend to either staggered (ϕi+1/2,j) and100

(ϕi,j+1/2) or nodal (Φi+1/2,j+1/2) fields. Likewise, differentiation in the second

direction, δ(·)/δξy, is defined in the same manner. Finally, extension to three

dimensions and restriction to one are obtained by adding and removing an index,

respectively.

In this first version of the gradient operator, the primary unknowns Tα are

collocated with the surface areas Aα, whereas the Dirichlet boundary condition

D is staggered in between. This construction, referred to as Arakawa E grid [1]

(see Fig. 2), relies on the definition of multiple temperature fields. Such a grid

configuration is not the one adopted by the MAC approach [13], which favors

the C-grid that defines a single temperature field collocated with the D field

here. A C-grid however means that the temperature unknowns T and surface

capacities Aα are staggered, in which case the latter together with V should be

interpolated as follows

∀α ∈ {x, y} , gradv2α (T,D) =
1

V
α

(
δA

α
T

δξα
− δAα

δξα
D

α
)
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(a) Arakawa C grid. (b) Arakawa E grid.

Figure 2: Variable arrangements considered in presented work.

which introduces the interpolation operator ·α, α ∈ {x, y}, defined in direction

x as

ϕ
x
∣∣∣
i+1/2,j

=
ϕi+1,j + ϕij

2
(5)

for a field ϕ centered at (xi, yj). Interpolation in direction y as well as exten-105

sions to staggered variables, are defined analogously, as previously discussed for

differentiation operations.

2.2. Loss of accuracy with interpolation

It should be noted that formulas other than Eq. 2.1 can also be written

without interpolation of the geometric capacities, for example by collocating110

all surface capacities (Aα) with the primary variable T . However in the con-

text of a second order operator such as the scalar Laplacian (Eq. 2), the need

for interpolation will resurface in the approximation of the divergence opera-

tor. This section therefore focuses on the limitations of the second tentative

formula (Eq. 2.1), more specifically its failure to revert to a classical first order115

approximation of the second order derivative in the limit where the boundary is

orthogonal to the direction of interest. This is the central point of the proposed

cut-cell method, namely the enhancement of the geometric description of the

boundary by means of additional volume and surface capacities to revise the
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Figure 3: Insufficient geometric information resulting in loss of accuracy in mesh-aligned

geometries.

gradient and divergence operators so as to achieve first-order accuracy in the120

vicinity of mesh-aligned boundaries.

To illustrate the limitation of the tentative gradient formula (Eq. 2.1), the

discretization of the second-order derivative along x in the mesh-aligned two-

dimensional configuration displayed in Fig. 3 is considered, where the fluid

occupies the rightmost cells. This configuration is characterized by V0 = 0,

V1 = (hx − g)hy, V2 = hxhy, A1/2 = 0 and A3/2 = A5/2 = hy (here, A stands

for Ax since only the x contribution is considered). Using these expressions,

Eq. 2.1 simplifies to Q−1/2 = 0,

Q1/2 =
T1 −D1

g
,

and

Q3/2 =
T2 − (T1 +D1) /2

(g + hx) /2
.

This approximation of the gradient is problematic for two reasons: (i) At the

boundary, the x-gradient value (Q1/2) is under predicted by a factor of 2, since

the denominator of the right-hand side of Eq. 2.2 stands at g when it should

match the distance between the points where D1 and T1 are defined, g/2. (ii)125

Away from the boundary, the x-gradient value (Q3/2) depends on the boundary

condition D1, when one would simply expect to difference T2 − T1 to appear in

the numerator of the right-hand side of Eq. 2.2.
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This simple exercise highlights the loss of accuracy associated with the inter-

polation of the geometric capacities. This can be associated with the fact that

they are defined as volume and surface integrals of the characteristic function

of the fluid domain Ωf ⊂ Ω, defined as

∀x ∈ Ω, Hf (x) ≡
ˆ
y∈Ωf

δ (x− y) dV (6)

where Ω denotes the computational domain and δ the multi-dimensional Dirac

delta function. Hf is not differentiable in the classical sense, and one should130

tread carefully not to interpolate or differentiate its surface- or volume-averaged

values.

2.3. Additional geometric information to restore accuracy

An intuitive idea to alleviate the interpolations in Eq. 2.1 is to add new

information where the volume (cell-centered and denoted V ) and surface (face-135

centered and denoted (Aα)) capacities were previously interpolated. These new

quantities, referred to as second-kind capacities, complement the already used

first-kind capacities V and (Aα). Volume (face-centered and denoted (Wα))

and surface (cell-centered and denoted (Bα)) forms will be defined in Sec. 3 for

arbitrary geometries.140

These additional quantities yield the final gradient formula

∀α ∈ {x, y} , gradα (T,D) =
1

Wα

[
δBαT

δξα
+
δ(Aα

α −Bα)D

δξα
− δAα

δξα
D

α
]

(7)

that supersedes grad(v1)α and grad(v2)α .

To show how the addition of the second-kind capacity restores first-order

accuracy in the gradient computation, the configuration displayed in Fig. 4 is

considered. Since only x derivatives are considered, A again will stands for

Ax, whereas W and B will respectively stand for Wx and Bx. Bearing this in

mind, the configuration under study is characterized by V0 = 0, V1 = 2fhy and

V2 = hxhy, A−1/2 = A1/2 = 0, A3/2 = A5/2 = hy, B0 = 0, B1 = B2 = hy and

finally W−1/2 = 0, W1/2 = fhy, W3/2 = ghy and W5/2 = hxhy. Using these

10



Figure 4: Enhanced geometric information restoring accuracy in mesh-aligned geometries.

expressions, Eq. 7 simplifies to Q−1/2 = 0 and

Q1/2 =
T1 −D1

f
,

Q3/2 =
T2 − T1

g

and

Q5/2 =
T3 − T2
hx

.

T0 does not appear since it is outside of the fluid domain, and the boundary

condition (D) appears only in the faces adjacent to the boundary. The formulas

obtained from Eq. 7 are classical formulas since f , g and hx are the distances

over which the differences T1 − D1, T2 − T1 and T3 − T2 are defined. Finally,

in the fluid domain and away from the boundaries, Eq. 7 simply reverts to the

classical gradient formula

Qx,i+1/2 =
Ti+1 − Ti
xi+1 − xi

.

In fact, the addition of the second-kind capacities is also sufficient to define

the (cell-centered) volume-weighted divergence operator, which consists of the

sum of the contributions from ∀α ∈ {x, y} where Nα denotes the boundary

value of Qα. If one sets the divergence to the product of the volume V with the

local value of the source term σ as in the original Poisson problem (Eq. 2), the
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configuration displayed in Fig. 4 yields the trivial equation 0 = 0 in the first

cell, and

hy
(
Q3/2 −N1/2

)
= 2fhyσ1,

hy
(
Q5/2 −Q3/2

)
= hxhyσ2

in the rest. Again in the fluid domain and away from the boundary the classical

formulas are obtained, given below

hy
(
Qi+1/2 −Qi−1/2

)
= hy

(
xi+1/2 − xi−1/2

)
σi.

Finally, the unknown N = (Nα) can be eliminated by substituting the gradient

formula (Eq. 7) in the divergence formula defined below,

divα
(
Q,N

)
=
δAαQα

δξα
+
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α

. (8)

The boundary contribution (the last two terms in the right-hand side of Eq. 8)

are set to∑
α

[
δ(Bα −Aα)Nα

δξα
− δBα

δξ
Nα

α
]
=
∑
α

[
δ(Bα −Aα)Qα

δξα
− δBα

δξ
Qα

α
]
,

which amount to identifying the heat flow through the boundary to the normal

component of the temperature gradient. In the configuration displayed in Fig. 4,

this yields one single non-trivial equation, N1 = Q1.

Putting it all together, the proposed gradient and divergence operators, de-

fined for arbitrary boundary geometries in Eqs. 7 and 8, discretize the Poisson

problem (Eq. 2) in the configuration displayed in Fig. 4 as 0 = 0,

hy

(
T2 − T1

g
− T1 −D

f

)
= 2fhyσ1

and

hy

(
T3 − T2
hx

− T2 − T1
g

)
= hxhyσ2

in the three cells displayed, while reverting to the classical formula

hy

(
Ti+1 − Ti
xi+1 − xi

− Ti − Ti−1

xi − xi−1

)
= hxhyσi

in the fluid domain away from the boundary.145
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As a consequence, formulas Eqs. 7 and 8 can be interpreted as generalizations

of the classical second-order formulas to accommodate the presence of arbitrary

boundaries while preserving first-order accuracy in the presence of mesh-aligned

cases.

3. Definitions and notation150

Before generalizing the methodology presented in Sec. 2 to the discretization

of the incompressible Navier-Stokes equations, this section clarifies the notation

employed thus far, in particular the definition of volume and surface capacities

of the first and second kinds for both cell- and face-centered quantities. The

differentiation and interpolation operators are also recalled, and completed with155

the definition of the permanent product.

3.1. Mesh and geometry input

As far as the Cartesian mesh is concerned, a rectilinear mesh with nx × ny

cells is defined by specifying the following sets of user-defined abscissas

x1/2 < x3/2 < · · · < xnx+1/2

and

y1/2 < y3/2 < · · · < yny+1/2.

Importantly, the mesh need not be uniform. Any given cell Ωij , identified by a

multi-index ij, (i, j) ∈ J1, nxK × J1, nyK, corresponds to the set of points (x, y)

that simultaneously satisfy xi−1/2 < x < xi+1/2 and yj−1/2 < y < yj+1/2.160

Regarding the boundary description, there exists a wide range of techniques

to define a fluid domain, such as simplicial meshes or Constructive Solid Geom-

etry (CSG) primitives and operations. Implicit representations by means of a

void fraction or distance function (Level Set) are also commonly used [6, 29]. Re-

gardless of the method employed, the assembly of the cut cell operators requires165

the computation of areas and volumes that correspond to the intersection of the

fluid domain with Cartesian elements (faces or cells), as displayed in Fig. 5.
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Figure 5: Intersection of the fluid domain (Ωf ) with Cartesian elements.

In the proposed work, these computations are performed using either the

Vofi library [10] or a Marching Squares/Cubes algorithm [18], both of which

only require a signed distance function, readily available in the context of the170

Level Set method but which requires some implementation efforts in other input

methods. This choice was made out of convenience, and other methods, such as

ray tracing, can equally well work as placeholders. Following the computation

of the capacities, the geometry input is discarded.

3.2. Capacities of the first kind175

Consider the Cartesian mesh displayed in Fig. 5, partitioned into fluid (Ωf )

and solid (Ωs) domains separated by a boundary (Γ). In a finite volume set-

ting, the primary variables Φij consist of averages of any given continuous field

(x, y) 7→ ϕ (x, y) over the intersection of the fluid domain with any given hexa-

hedral cell, defined as follows

Vij ≡
ˆ
Ωij

ϕ (x)Hf (x) d2x, (9)

ϕijVij ≡
ˆ
Ωij

ϕ (x)Hf (x) d2x

where Hf is the fluid characteristic function defined in Eq. 6. The set V ≡ (Vij)

is referred to as the volume capacities of the first kind.
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When the field under consideration is linear, these averages coincide with

the values at the fluid center of mass, displayed in Fig. 6, defined as long as

the cell is fully or partially occupied by the fluid. Although it does not appear

explicitly in the cut cell operators, the coordinates of the fluid center of mass

(displayed with crosses in Fig. 6) are still required to define the second kind

capacities, and are therefore temporarily stored. They are denoted as X and Y

and defined for any cell Ωij asXij

Yij

Vij ≡
ˆ
Ωij

x
y

Hf (x) d2x. (10)

The second step consists in computing the area of each of the faces wet by the

fluid. Because the mesh is Cartesian, the faces adjacent to each cell are labelled

based on the direction they are orthogonal to. These quantities, referred to as

surface capacities, are staggered and are denoted as (Aα) (α ∈ {x, y}), and are

defined as

Ax
i+1/2,j ≡

ˆ yj+1/2

yj−1/2

Hf
(
xi+1/2, y

)
dy (11)

and

Ay
i,j+1/2 ≡

ˆ xi+1/2

xi−1/2

Hf
(
x, yj+1/2

)
dx. (12)

3.3. Capacities of the second kind

The coordinates of the fluid center of mass are used as follows. For each

direction, the volume information is enriched by measuring how much fluid lies

between each center of mass. This yields as many sets of staggered volumes

denoted as (Wα), α ∈ {x, y}, defined as

W x
i+1/2,j ≡

ˆ yj+1/2

yj−1/2

ˆ Xi+1,j

Xij

Hf (x) d2x (13)

and

W y
i,j+1/2 ≡

ˆ Yi,j+1

Yij

ˆ xi+1/2

xi−1/2

Hf (x) d2x (14)

and referred to as volume capacities of the second kind. The capacities W x and

W y are represented as colored areas in the configuration displayed in Fig. 7a180

and 7b, respectively.
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Figure 6: First kind capacities: V (filled areas), A1 (dashed vertical lines), A2 (dashed hori-

zontal lines) and X and Y (crosses).

(a) W1 (filled areas), B1 (dashed vertical

lines) and X and Y (crosses).

(b) W2 (filled areas), B2 (dashed horizontal

lines) and X and Y (crosses).

Figure 7: Second kind capacities.
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Likewise, the area wet by the fluid for the mesh-aligned faces that intercept

the fluid center of mass will be required in each cell. This yields an additional

set of cell-centered quantities,

Bx
ij =

ˆ yj+1/2

yj−1/2

Hf (Xij , y) dy (15)

and

By
ij =

ˆ xi+1/2

xi−1/2

Hf (x, Yij) dx, (16)

referred to a surface capacities of the second kind. The capacities Bx and By

are represented as colored dashed lines in the configurations displayed in Fig. 7a

and 7b, respectively.

3.4. Staggering of the velocity components185

It will be shown that the only capacities required for the cell-centered quan-

tities (the pressure field) are the surface capacities of the first kind

(Ax
i+1/2,j) and (Ay

i,j+1/2).

Considering the velocities however given the staggering of the x and y compo-

nents, the computation of two additional sets of the first and second kind capac-

ities are required, per velocity component. These computations are performed

for the x component by replacing
(
x1/2, · · · , xnx+1/2

)
abscissas by (x0, · · · , xnx

),

with half a grid spacing shift, and applying formulas of Eqs. 9 and 10, Eqs. 11

and 12 and Eqs. 13, 14, 15 and 16 to compute the following first kind

(V x
i+1/2,j), (Axx

ij ) and (Axy
i+1/2,j+1/2)

and second kind capacities

(W xx
ij ), (W xy

i+1/2,j+1/2), (Bxx
i+1/2,j) and (Bxy

i+1/2,j).

Likewise, abscissas
(
y1/2, · · · , yny+1/2

)
are replaced by

(
y0, · · · , yny

)
, with

half a grid spacing shift, to compute the capacities required for the y component

of the velocity field, yielding the following first kind

(V y
i,j+1/2), (Ayx

i+1/2,j+1/2) and (Ayy
ij )
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and second kind capacities

(W yx
i+1/2,j+1/2), (W yy

ij ), (Byx
i,j+1/2) and (Byy

i,j+1/2).

4. Discretisation of the incompressible Navier-Stokes equations

This section presents the proposed discretization of the incompressible Navier-

Stokes equations for an isotropic Newtonian fluid
ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ ·

(
2µs
)
+ ρg,

∇ · u = 0

where u and p respectively denote the fluid’s velocity and pressure fields, ρ its

constant density and g the gravitational acceleration. Additionally, µ denotes

the fluid’s constant dynamic viscosity and

s ≡ ∇u+ (∇u)⊤

2

the strain-rate tensor. P = (Pij) represents the (cell-centered) pressure field,

and

U = (Ux, Uy) =
(
(Ux

i+1/2,j), (U
y
i,j+1/2)

)
the (staggered) Cartesian components of the velocity field. Finally,D = (Dx, Dy)

denotes the (staggered) boundary conditions to be applied on the velocity field.

4.1. Velocity divergence and pressure gradient

Let Ωf
ij = Ωij∩Ωf denote the subset of Ωij wet by the fluid, u the continuous

fluid velocity field and d the boundary condition. Then, Stokes’ divergence

theorem ˆ
Ωf

ij

∇ · u =

ˆ
∂Ωf

ij\Γ
u · n+

ˆ
∂Ωf

ij∩Γ

d · n

states that the volume integral of the velocity divergence matches the net volume190

fluxes, summed over the surfaces immersed in the fluid itself and adjacent to

the boundary. The former term, referred to as homogeneous, quantifies the

exchange of volume with the neighboring fluid elements, and the latter, referred

18



to as heterogeneous, quantifies this exchange with the exterior domain through

the boundary.195

This decomposition is reflected at the discrete level by discretizing the volume-

integrated velocity divergence as

cont (U,D) ≡
∑
α

δAαUα

δξα
+
δ
(
Bα

α −Aα

)
Dα

δξα
− δBα

δξα
Dα

α
 . (17)

The divergence free condition, then, is expressed as

cont (U,D) = 0

and the (volume integrated) α component of the pressure gradient, a linear

operator denoted as presα, is simply defined as the negative transpose of the

Jacobian of Eq. 17 with respect to Uα, namely

∀α ∈ {x, y} , ∂ presα
∂P

= −
(
∂ cont

∂Uα

)⊤

Uβ ̸=α,D

(18)

which yields

∀α ∈ {x, y} , presα (P ) ≡ Aα
δP

δξα
.

This construction is rooted in the geometric interpretation of the incompress-

ible Navier-Stokes equations [2], which exposes the dual role of the pressure in

imposing the divergence-free condition, and commonly used in both structured

and unstructured settings [9, 25].

4.2. Strain-rate tensor200

The components of the diagonal element of the strain-rate tensor are cell-

centered discrete counterparts of

sαα =
∂uα
∂xα

, α ∈ {x, y} ,

defined based upon the gradient formula Eq. 7. First, the surface and volume

capacities W = (Wβ), A = (Aβ) and B = (Bβ) are replaced by those after

shifting the mesh in half a grid spacing along direction α defined in Sec. 3.4,

namely Wα = (Wαβ), A
α = (Aαβ) and B = (Bαβ). Second, the dependent
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field T and the Dirichlet boundary condition D are substituted with Uα and

Dα, respectively. This finally yields

∀α ∈ {x, y} , strainαα (U,D) =

1

Wαα

δBααUα

δξα
+
δ
(
Aαα

α −Bαα

)
Dα

δξα
− δAαα

δξα
Dα

α
 . (19)

This process is repeated for the components of the off-diagonal elements of the

strain-rate tensor, defined in the continuous case as

sαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
, α ̸= β,

and in the discrete case as the node-centered field

∀ (α, β) ∈ {x, y}2 , α ̸= β, strainαβ (U,D) =

1

2Wαβ

δBαβUα

δξβ
+
δ
(
Aαβ

β −Bαβ

)
Dα

δξβ
− δAαβ

δξβ
Dα

β


+
1

2Wβα

δBβαUβ

δξα
+
δ
(
Aβα

α −Bβα

)
Dβ

δξα
− δAβα

δξα
Dβ

α
 . (20)

It should finally be noted that the latter formula (Eq. 20) is also valid in the

diagonal case (α = β), in which case it simply reduces to Eq. 19.

4.3. Viscous transport term

Prior to proceeding with the discretization of the viscous transport term, it

should first be noted that, in the case where the second argument (N) of the

divergence operator (Eq. 8 summed over α) matches the first argument (Q),

Eq. 8 may be simplified using the identities presented by Morinishi [21] as

div
(
Q,Q

)
=
∑
β

Bβ
δQβ

δξβ
. (21)

Therefore, the discretization of the viscous transport term, ∇ · (2µs), is per-

formed similarly to that of the strain-rate operator, by translating the definition

20



of the capacities to yield

∀α ∈ {x, y} , viscα

(
S
)
=
∑
β

Bαβ
δSαβ

δξβ

where S = (Sαβ) is defined as a function of U and D by Eqs. 19 and 20.

4.4. Convective transport term205

The convective term in the momentum transport equation along α ∈ {x, y}

is rewritten in conservative form using the divergence-free condition,

(u · ∇)u = ∇ · (u⊗ u)−∇ · u = ∇ · (u⊗ u)

which in discrete form can be written as

convα

(
U,U†, D,D†

)
=

∑
β

δAβUβ
α
U†
α

β

δξβ
+

δ
(
Bβ

β −Aβ

)
Dβ

α

δξβ
− δBβ

δξβ
Dβ

β
α
 U†

α +D†
α

2

 . (22)

This multilinear operator is typically evaluated at U† = U and D† = D but

the distinction might bear significance, in the context of Picart linearisation for

example where a distinction applies between U which is typically frozen whereas

U† is updated. This discretization can be considered as the generalisation of the

centered scheme to the cut cell method, which can be demonstrated as follows.

In the continuous case,

∀ (α, β} ∈ {x, y}2 , uα
∂uβuα
∂xβ

=
∂uβu

2
α/2

∂xβ
+
u2α
2

∂uβ
∂xβ

, (23)

which, upon summation over α, yields a similar equation for the specific kinetic

energy k ≡ ∥u∥2/2, ultimately conserved in the inviscid limit. The proposed

discretization of the convective transport term (Eq. 22) preserves this property

at the discrete level. Using the identities presented by Morinishi [21], it can be

be shown that

∀ (α, β) ∈ {x, y}2 , U†
α

δAβUβ
α
U†
α

β

δξβ
=
δAβUβ

α
Ũ†
αU

†
α

β

/2

δξβ
+
U†2
α

2

δAβUβ
α

δξβ
(24)
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where ·̃ denotes the permanent product

ϕ̃ψ
x
∣∣∣
i+1/2,j

=
ϕi+1,jψij + ψi+1,jϕij

2
, (25)

also introduced by Morinishi [21] and easily extended to other dimensions and

arrangements as previously done for differentiation and interpolation. Eq. 24,

together with the continuity operator (Eq. 17), can be used to show that ∀α ∈

{x, y}

U†
α convα

(
U,U†, D,D†

)
=

∑
β

δAβUβ
α
Ũ†
αU

†
α

β

/2

δξβ
+

δ
(
Bβ

β −Aβ

)
Dβ

α

δξβ
− δBβ

δξβ
Dβ

β
α
 U†

αD
†
α

2


+
U†2
α

2
cont (U,D)

α
. (26)

This identity can be interpolated in each direction α, and summed over α, to

ultimately state the proposed discretization (Eq. 22) conserves kinetic energy,

in the sense that the rate of change of the discrete kinetic energy

kinetic
(
U†
)
≡
∑
α

1

2
VαU

†
αU

†
α

α

is a result of an exchange with the neighboring fluid elements (first term in the

right-hand side of Eq. 26) and across the boundary (second term).

4.5. Semi-discrete system

The face-centered mass matrices appearing in front of the rate of change and

body forces are diagonal with coefficients V = (Vα) (the volume of the staggered

control volumes, defined in Sec. 3.4) and are denoted as

∀ {x, y} , Mα ≡ diag (Vα) .

Gathering all the terms, the proposed semi-discrete momentum equations then

read (α ∈ {x, y})

ρ

[
Mα

dUα

dt
+ convα (U,U,D,D)

]
= −presα (P )+viscα

(
2µS

)
+ρMαg, (27)
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with divergence-free condition

cont (U,D) = 0. (28)

The system is closed with the discrete strain-rate tensor S, defined as a function

of U and D as follows,

∀ (α, β) ∈ {x, y}2 , Sαβ = strainαβ (U,D) (29)

where the operators strainαβ are defined by Eqs. 19 and 20.

All of the operators appearing in Eqs. 27, 28 and 29 are linear in all depen-210

dent variables (P , U and S) and boundary condition D with the exception of the

convective transport operators ((convα) defined in Eq. 22) which is quadratic

when evaluated at U† = U and D† = D.

4.6. Projection method

The discretization of the aforementioned incompressible Navier-Stokes equa-215

tions results in a saddle point system of equations [4], sometimes also called

Karush-Kuhn-Tucker (KKT) system [23] in optimization. A wide range of al-

gorithms have been devised to efficiently solve saddle point systems (or approx-

imation thereof). In the field of fluid mechanics, a common approach is the

fractional step method [11]. In the present work, the method referred to as220

projection method II (PmII) by Brown et al. [7], which ensures a second order

discretization of the equations, is employed.

In this projection method, the convective term is discretized using the ex-

plicit second-order Adams-Bashforth scheme and the viscous term is discretized

using the implicit Crank-Nicolson scheme. The first step of the method consists

of obtaining an intermediate velocity field U⋆ by solving

ρMα
U⋆
α − Un

α

τ
+

3ρ

2
convα (Un, Un, Dn, Dn)

− ρ

2
convα

(
Un−1, Un−1, Dn−1, Dn−1

)
= −presα

(
Pn−1/2

)
+ viscα

(
µS⋆

)
+ viscα

(
µSn

)
+ ρMαg, (30)
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where τ denotes the time step and the superscript n the iteration number. The

boundary conditions applicable to U⋆ (the predicted velocity field) and used in

S⋆ are those of the velocity field at the next time step (D⋆ = Dn+1)

∀ (α, β) , Sn
αβ = strainαβ (U

n, Dn) and S⋆
αβ = strainαβ

(
U⋆, Dn+1

)
.

In the projection step, the velocity field is updated by projecting U⋆ using

the intermediate pressure field Φn+1, which is obtained by solving the following

Poisson equation

τ cont
(
pres

(
Φn+1

)
, 0
)
= cont

(
U⋆, Dn+1

)
, (31)

with a homogeneous Neumann boundary conditions being used for the interme-

diate pressure (0). The velocity field is ultimately corrected as

Un+1
α = U⋆

α − τ presα
(
Φn+1

)
. (32)

The pressure is finally updated as

Pn+1/2 = Pn−1/2 +Φn+1 − τµ

2ρ
cont

(
pres

(
Φn+1

)
, 0
)
, (33)

where the last term ensures the second order accuracy of the pressure field.

Thus far, only Dirichlet boundary conditions for the velocity field have been

considered, which are paired with homogeneous boundary conditions for the225

pressure in the projection step. Cases will be considered in the following section

where Neumann boundary condition are required along the outflow boundaries.

Along their vicinity, a Dirichlet boundary condition for the pressure is employed

in order to uphold the compatibility equation 18.

Finally, the use of periodic and/or Neumann boundary conditions gives rise230

to a rank deficiency in the Laplacian operator. This results in the pressure

field being known up to a constant. This knowledge is exploited in the iterative

solution of the Poisson equation by projecting the updates in the space of zero-

mean solutions.
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Figure 8: Close-up view of grid G1.

Grid nx × ny ∆xmin ∆xmax

G1 320× 200 0.06 0.2

G2 600× 350 0.03 0.1

G3 1150× 500 0.015 0.075

Table 1: Grids parameters for the cylinder.

5. Results235

Two canonical test cases are presented to validate the methodology and

showcase that the proposed cut cell method is able to accommodate geometries

of any shape.

5.1. Flow around a cylinder

Viscous flow around a cylinder at Re = 100 is used to test the accuracy of240

the proposed method. Three different grids have been tested with a domain

size D = [−15, 30] × [−15, 15] with varying resolutions, labelled G1 (coarsest)

to G3 (finest), in order to assess the accuracy of the method in a canonical

configuration and to highlight its convergence properties. Fig. 8 shows a close-

up view of the grid G1, whereas the number of points in each direction and the245

minimum and maximum cell size of each grid are shown in Tab. 1.

Dirichlet boundary condition is applied on the left border of the domain

on the velocity field whereas homogeneous Neumann boundary conditions are

applied on the bottom, right and top borders as outflow boundary conditions.

On the pressure field, homogeneous Neumann is applied on the left border and250

Dirichlet on the bottom, right and top borders. A no-slip Dirichlet boundary

condition is used at the wall for the velocity and homogeneous Neumann for

the pressure. The CFL number is set to 0.5 in all the simulations. The hori-

zontal and vertical components of the velocity field are initialized to 1 and 0,
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Figure 9: Convergence of Cd.

St r.m.s. Cl Cd

G3 0.167 0.251 1.370± 0.008

Norberg [24] 0.164 0.265 -

Henderson [15] 0.164 - 1.350

He et al. [14] 0.167 - 1.353

Linnick and Fasel [17] 0.166 - 1.38± 0.009

Table 2: Comparison of Strouhal number, r.m.s. lift coefficient and drag coefficient for the

cylinder case at Re = 100.

respectively. The simulations are advanced 200 time units in order to reach the255

periodic state.

Fig. 9 depicts the error and the order of convergence of the proposed

methodology by measuring the error as the difference in the mean drag coeffi-

cient between the values obtained using grids G1 and G2 and the value obtained

using grid G3, which is used as reference. A convergence rate of 1.606 is ob-260

served. The results obtained for the Strouhal number (St), the root mean square

lift coefficient (r.m.s. Cl) and the drag coefficient (Cd) are presented in Tab. 2

for the finest grid G3 and compared with several reference solutions, showing a

good agreement.
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(a) Horizontal velocity component.
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Figure 10: Colormap of the velocity components using grid G4 at t = 200.

A snapshot of the streamwise and vertical velocity fields at t = 200 is dis-265

played in Fig. 10 showing the expected von Kármán vortex street.

5.2. Flow around an airfoil

The flow around the symmetric NACA 0010 airfoil at Re = 500 and an angle

of attack α = 30◦ is also simulated and compared with a reference solution [27].

In this case, a single grid has been used with a domain size D = [−15, 30] ×270

[−15, 15] using 1200×600 grid points, with a minimum cell size of ∆xmin = 0.01

and a maximum cell size of ∆xmax = 0.075. Fig. 11 displays a general and a

close-up view of the grid around the airfoil plotting the grid lines every two cells

for the sake of clarity. As in the cylinder case, the horizontal component of the

velocity is initialized to 1, and the vertical component to 0. The simulation is275

advanced 80 time units until the periodic stated is reached and the same set of

boundary conditions as those of the previous case are applied. The CFL number

is set to 0.25 in this case.

Fig. 12 shows the velocity components at the last time step of the simulation,

where the wake displays alternating vortex pairs being shed. One vortex pair is280

in vertical ascent while the other pair moves downstream following a descending

path. This double vortex pair generates a double wake structure downstream

of the airfoil.
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Figure 11: Overall and close-up views of the grid used for the NACA 0010 airfoil.

St Cl Cd

Present 0.36 1.1 0.77

Rossi et al. [27] 0.34 1.1 0.75

Table 3: Comparison of the Strouhal number, mean lift coefficient and mean drag coefficient

for NACA 0010 at [Re] = 500 and α = 30◦.
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(a) Horizontal velocity component.
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(b) Vertical velocity component.

Figure 12: Colormaps of the velocity components around the airfoil at Re = 500.
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6. Conclusion

The proposed cut cell methodology relies on Morninishi’s discrete calculus285

to formulate discrete operators for the solution of the incompressible Navier-

Stokes equations on staggered Cartesian grids in arbitrarily-shaped domains.

Emphasis is set on both accuracy and structural properties of the first- and

second-order operators. The geometric information is encapsulated in a set

of surface and volume moments, designed to preserve constant states, recover290

classical formulas away from the boundary and in the vicinity of mesh-aligned

boundaries, and retain a nearest-neighbor stencil. By construction, the spatial

operators conserve volume and linear momenta locally and globally as well as

kinetic energy in the inviscid limit. The method is shown to perform well in

canonical two-dimensional flow configurations. Future work includes the gen-295

eralisation to more complex boundary conditions as well as the replacement of

the segregated approximation by a monolithic pressure-velocity solver.
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conservative cut-cell method for rigid bodies interacting with viscous com-

pressible flows. Journal of Computational Physics, 311:62–86, 4 2016.

[29] J. Sethian. Level set methods and fast marching. Cambridge University

Press, 1999.

[30] K. Taira and T. Colonius. The immersed boundary method: A projection385

approach. Journal of Computational Physics, 225:2118–2137, 8 2007.

32


