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Purifying a high-temperature ensemble of quantum particles toward a known state is a key requirement
to exploit quantum many-body effects. An alternative to passive cooling, which brings a system to its
ground state, is active feedback, which stabilizes the system at a chosen target state. This alternative, if
realized, offers additional control capabilities for the design of quantum states. Here we present a feedback
algorithm applied to a quantum system, which is capable of stabilizing the collective state of an ensemble
from its maximum entropy state to the limit of single quantum fluctuations. Our algorithmic approach
maximizes the rate of state purification given the system’s physical constants; thus it remains the optimal
feedback approach even in the presence of dissipation and disorder. We test experimentally the robustness
of this feedback on the highly inhomogeneous nuclear-spin ensemble of a semiconductor quantum dot,
reducing nuclear-spin fluctuations 83-fold, down to 5.7(2) spin macrostates. Simulations demonstrate that
without system-specific inhomogeneities, our algorithm can purify the system down to single-spin
fluctuations. Further, we exploit our algorithmic approach to tailor nontrivial nuclear-spin distributions that
go beyond simple polarization, including weighted bimodality and latticed multistability. This control is a
precursor toward quantum-correlated macrostates, which an extended version of our algorithm could
generate in homogeneous systems.
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Quantum Physics
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I. INTRODUCTION

A controllable system of many interacting quantum
objects hosts a phenomenally large Hilbert space which
can serve as a versatile resource for both technological [1]
and fundamental physics applications [2]. These range

from realizing multiqubit registers for quantum information
processing [3–6] and storage [7–9] to exploring collective
phenomena such as superradiance [10,11] and discrete time
crystal formation [12,13]. Leveraging this resource requires
reducing the ambient-condition entropy of such systems
from that of a highly mixed thermal state to that of a pure
state that reveals their quantum properties. Advances in
cooling techniques have been transformative in achieving
this goal in multiple physical platforms. Laser cooling of
atomic gases and single trapped atoms [14]—including
Doppler, motional sideband-resolved, and spin-assisted
Raman-based techniques [15–18]—as well as sideband
cooling in electromechanical [19,20], optomechanical [21],
and superconducting qubit systems [22] have been the
trailblazers in this quest. In contrast to direct cooling, active
stabilization at a target quantum state, in principle, also
allows purification of a many-body state. Such an approach
further enables the programmable preparation of nonequi-
librium states and can be used to engineer designer
ensemble distributions with varied many-body correlations.
While the complex dynamics of highly degenerate many-
body systems make stabilizing a single microstate very
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challenging, techniques to purify toward a single macro-
state remain highly desirable. Toward this end, the field of
optimal quantum feedback control has developed an
extensive toolbox [23] that can be exploited for quantum
state engineering.
Feedback on a system comprises three elements [24]:

sensor, controller, and actuator. The sensor detects the
current state of the system, a controller processes this
information and tells the actuator how to correct the system
toward a target state. In the case of quantum feedback, the
control loop leverages quantum objects to enable sensing
and actuation at the fundamental level of single quanta. A
first example is measurement-based quantum feedback
[25], which employs weak measurement of quantum
observables to obtain classical information that is then
processed by external electronics and used to control the
actuator. This approach has been used for stabilizing single
qubit states [26], squeezed mechanical states [27], photonic
Fock states [28], and mesoscopic spin squeezing [29], but
limitations arise from measurement backaction and the
rate-limiting classical electronics required. Going further,
coherent quantum feedback [30] overcomes these limita-
tions by feeding quantum information directly from the
sensor to the actuator without a measurement step. This
enables autonomous stabilization, and has been imple-
mented in photonic [31] and few-spin [32,33] systems.
Extending it to complex mesoscopic systems remains an
open direction and, in this regime, a central spin coupled to
a dense ensemble of nuclear spins serves as an ideal
prototype. Techniques to stabilize the macrostate of this
spin ensemble via the central spin, even far from the
optimum of a single macrostate, have been a game changer:
in gate-defined quantum dots (QDs), coherent sensing via
an electronic proxy, combined with nuclear-spin pumping,
achieved a reduced-fluctuation, correlated state of two
nuclear-spin baths [34], while in optically active QDs
autonomous feedback has opened a window into the
many-body physics of the nuclei [35–37]. Preparation of
the large spin ensemble into a single macrostate, by
achieving single-quanta level of control, remains an out-
standing challenge.
In this work, we design an autonomous, time-sequenced

feedback algorithm capable of stabilizing and engineering a
mesoscopic spin system to within single-spin fluctuations
of a target macrostate. Through simulation, we verify this
capability for an idealized central spin system. Since our
algorithm optimizes the use of the available coherence
during gate operations, it constitutes the optimal feedback
even in nonideal systems. To demonstrate this experimen-
tally, we apply our optimum feedback control to the highly
inhomogeneous, noisy nuclear-spin ensemble of an opti-
cally active QD. This requires the deterministic correction
of deviations from a target state at the level of a single
quantum, which we achieve by exploiting the recent
advances of sensing [38] and coherent control [37] of

single collective excitations in a nuclear ensemble—
nuclear magnons. Leveraging the coherence of these
sensing and control processes, the central electron acts
as both the sensor and actuator in a feedback loop which,
followed by a spin initialization step via optical pumping,
removes entropy from the spin ensemble. We demonstrate a
reduction by 2 orders of magnitude in the thermal fluctua-
tions of the spin ensemble, only a factor of 3 away from the
fundamental quantum limit of single-spin fluctuations.
Within the broader context of autonomous feedback
[34,36,39,40], our algorithmic approach allows an
improvement of a factor 4 over the state of the art [37].
Such performance is a testament to the robustness and
applicability of this algorithmic approach which extends to
highly inhomogeneous, real-world systems. Further, the
control afforded by the use of quantum gates at each step
allows us to sculpt the feedback to generate tailored
nuclear-spin distributions of the ensemble. Going beyond
this, we propose a simple extension of our algorithm to
allow the proliferation of quantum coherences of the
ensemble that are otherwise destroyed by optical pumping.

II. RESULTS

A. Three-step feedback algorithm

The generality of our feedback algorithm allows it to be
applied to a general central-spin [41] or central-boson [42]
system [Fig. 1(a)]. We present each feedback step in
general terms and realize their implementation with the
physical system of a QD electron spin interfaced to N ≈
50 000 nuclear spins [43]. We parametrize this spin system
by its collective state consisting of a total angular momen-
tum I and a polarization along the quantization axis
Iz ∈ ½−I; I�. In the case of a homogeneous one-to-all
electron-nuclear coupling, the electron can change Iz via
single collective excitations, while I is protected by
symmetry [44]. Thus the feedback actuated by the electron
corrects one nuclear-spin deviation at a time, and in doing
so, purifies the state of the nuclear-spin system. An external
magnetic field of 3.5 T along the z-direction Zeeman splits
the electron spin, which we control with all-optical elec-
tron-spin resonance (ESR) allowing for fast multiaxis
control [45] (Appendix A 1). The system Hamiltonian,
expressed in a frame rotating at the ESR drive frequency ω,
is given by

H0 ¼ δSz þΩSx þ ωnIz þ AcSzIz þ AncSzIx; ð1Þ

where Si and Ii are electron- and nuclear-spin operators,
respectively. The ESR detuning, Rabi frequency, and
nuclear Zeeman frequency are denoted δ ¼ ωe − ω, Ω,
and ωn, respectively. The electron-nuclear coupling is
enabled by the collinear (Ac) and the noncollinear (Anc)
constituents of the hyperfine constant. The collinear hyper-
fine term AcSzIz facilitates sensing by the electron since the
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ESR frequency is modified by a mean Overhauser field
AcIz, and sensing of a single nuclear spin flip was recently
shown in this system [38]. The electron is also the actuator
thanks to the electron-nuclear exchange coupling enabled
by the nuclear quadrupolar interaction, which reduces to a
noncollinear hyperfine interaction AncSzIx [46,47]. This
coupling enables the injection of a single nuclear magnon
[37], with a rate fðI; IzÞAnc that depends on the ensemble’s
total angular momentum I and its polarization Iz via the
enhancement factor fðI; IzÞ ∼Oð ffiffiffiffi

N
p Þ [10,48].

During feedback we employ sensing and actuation as
sequential quantum gates. This allows us to leverage the
available coherence for maximum fidelity gate operations
at each step. With sensing and injection possible at the
fundamental level of single quanta (nuclear spin flips) in
the ensemble, the ideal feedback limit can be reached:
detecting single-unit deviations from a target macrostate
Ilockz and correcting them with exactly one unit. We first
consider evolution during the feedback in the ideal, fully
unitary case, except where dissipation is deliberately
introduced. The feedback algorithm proceeds through the
following three steps, which we visualize on the sequence

of Bloch spheres and the corresponding quantum circuit in
Fig. 1(b).
(1) Sense.—A straightforward sensing mechanism for

macrostate Iz is a linear energy shift on the central
spin: Hsense ¼ A0SzIz, with A0 as a general coupling
constant. The most efficient way to measure this
energy shift is via Ramsey interferometry [49], with
steps as follows. (i) The central spin starts spin j ↑i.
(ii) An Rxðπ=2Þ rotation places it in a coherent spin
superposition in the Bloch equator. (iii) A free
evolution time τ under Hsense causes precession of
the Bloch vector, whose projection along the x
direction will be the error signal for a deviation
ΔIz ¼ Iz − Ilockz from a target macrostate Ilockz :
hSxi ¼ − 1

2
sinð2πA0ΔIzτÞ, which for a single spin

flip ΔIz ¼ 1 reaches a maximum at τ ¼ 1=4A0. In
the quantum circuit, this optimum evolution time
corresponds to an R�zðπ=2Þ rotation conditional on
the state of the spin system. [(iv), optional] A final
rotation Ryðπ=2Þ may be required to convert this
signal to an hSzi polarization, depending on the type
of actuator gate that follows. Our example QD

FIG. 1. Quantum-algorithmic feedback. (a) Pulsed control (red shading) of a central spin (blue), homogeneously coupled to a spin
ensemble (red), can purify the state of the system, removing entropy via spontaneous scattering (orange). (b) The feedback algorithm.
Top: Bloch sphere representation of the electron-spin evolution during one algorithm cycle. The upper (lower) path represents the case of
a positive (negative)ΔIz. Bottom: quantum circuit representation of the feedback algorithm operating in the single-spin limit. The upper
and lower rails represent, respectively, the central spin and the fjI; Iz � 1i; jI; Izig states of the spin ensemble. (c) The rate of change
dhIzi=dt as a function of hIzi (gray curve) on a coarse-grained evolution time t ≫ τ þ T, displaying multiple (anti)stable setpoints
arising from the 1=A0τ periodicity of the sensing gate. The red dashed curve represents the initial thermal probability distribution. (d) To
purify an initially broad distribution (left, red shaded area) to a narrow single mode centered around Ilockz (right, red shaded area), we
increase the sensing time dynamically from τmin to τmax.
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system, where A0 ¼ Ac, implements this sensing
procedure naturally with Hsense ¼ ðδþ AcIzþ
AncIxÞSz. The ESR drive detuning δ≡ −AcIlockz
determines the primary setpoint of the algorithm
which feeds back on fluctuations ΔIz ¼ Iz − Ilockz .
The transverse field AncIx, which oscillates at ωn,
contributes to sensing errors up to

ffiffiffiffi
N

p
Anc=Ac, but

can in principle be circumvented by an appropriate
choice of B field or τ (Appendix E 3 b); it is an
important consideration in determining the ultimate
feedback limit.

(2) Actuate.—Evolution under a flip-flop Hamiltonian
Hff ¼ AffðS̃þI− þ S̃−IþÞ for a time T converts the
error signal hS̃zi ¼ − 1

2
sinð2πA0IzτÞ into a spin flip

toward the target macrostate. Here S̃ represents a
simple basis rotation, reflecting the fact that some
physical systems produce collinear flip-flop terms,
where S̃z ¼ Sz [and the final Ryðπ=2Þ is then
required in the sensing step to make the error signal
proportional to Sz], and others like our QD platform
yield noncollinear terms, where S̃z ¼ Sx. Evolution
under Hff for a time T ¼ 1=2fðI; IzÞAff performs a
SWAP operation between the central spin and a single
collective spin excitation. No measurement is made
between steps 1 and 2, meaning the operation thus
far is autonomous and reversible. In our QD system,
we engineer the flip-flop Hamiltonian from the
AncSzIx term by driving the central spin at
Hartmann-Hahn (HH) resonance [45,50], Ω ≈ ωn,
yielding H̃ff ¼ΩS̃zþωnIz− ðAnc=4ÞðS̃þI−þ S̃−IþÞ
[51], where Aff ¼ Anc=4.

(3) Reset.—Up until this point the quantum algorithm
has corrected deviations from the setpoint,
ΔIz ¼ Iz − Ilockz , by flipping a single spin within
the ensemble entirely coherently, and therefore
reversibly. To purify the spin ensemble further, we
perform an irreversible reset operation on the central
spin. In our QD system, this reset step is achieved by
exciting the central spin to the charged exciton
(trion) manifold with an optical pulse that incoher-
ently pumps and repolarizes the electron to state j ↑i
with > 98% probability. In doing so, we effectively
transfer entropy from the spin ensemble to the
photonic bath via the central spin, in analogy with
heat-bath algorithmic cooling [52].

Applying the above algorithm repeatedly increases the
purity of the spin bath and can, in principle, prepare a single
Iz macrostate to within single-spin fluctuations. In practice,
nuclear-spin diffusion mechanisms, which are external to
the feedback steps above, will compete with the feedback
loop and limit the purity of the steady-state preparation.
The approach to equilibrium under these competing effects
can be gleaned qualitatively from a simple semiclassical
rate equation governing the evolution of the mean value

hIzi [40,47] (Appendix D), valid over a coarse-grained
evolution time t ≫ τ þ T:

dhIzi
dt

¼ − sin ½2πA0hΔIziτ�
τ þ 1=2Aff

− ΓdhIzi: ð2Þ

The first term is the rate at which the sensing, actuate, and
reset gates together change hIzi as a function of hIzi—it is
the nonlinear dynamical function defining the feedback
dynamics. The second term is a standard relaxation term
capturing all spin diffusion mechanisms that relax a non-
zero polarization hIzi at a rate Γd. We see that in the low
diffusion regime Γd ≪ Aff=ð1þ 2AffτÞ, setting the sensing
time to τ ¼ 1=4A0 programs the feedback at its global
optimal T0 dhIzi=dt ¼ −1 for hΔIzi ¼ 1, where T0 ¼
1=4A0 þ 1=2Aff—i.e., a fluctuation of one unit is fully
corrected within a single algorithm cycle.
Figure 1(c) shows the curve described by Eq. (2), on

which we have highlighted the stable points of the feedback
dynamics defined by a zero crossing and a negative slope of
dhIzi=dt. A key feature is the existence of multiple stable
points split by 1=A0τ in the hIzi phase space. This arises
intuitively from the 2π-periodic temporal phase acquisition
during sensing, meaning the feedback does not distinguish
between points in the phase space where A0ΔIzτ ∈ Z. The
splitting between stable points is effectively the capture
range for each stable point in the Iz phase space—all
fluctuations within this capture range are shepherded back
toward the same stable point. Polarization fluctuations are
described fully by the probability distribution of macro-
states Iz: pðIzÞ ¼ hIzjTreðρÞjIzi, where we trace the full
system’s density matrix ρ over the central spin (e). In this
picture, a physical system with an initial state at large
temperature (that is, all microstates are equiprobable)
exhibits a broad initial pðIzÞ distribution [Fig. 1(c)], with
variance hΔI2zi ∼ N. Adapting the feedback capture range
to the system’s initial state is thus critical to lock the system
to a desired stable point Ilockz ; a capture range narrower than
the typical width of pðIzÞ splits the ensemble into multiple
stabilized modes. However, extending the capture range by
shortening the sensing duration results in a reduced feed-
back strength, as per Eq. (2). To resolve this tension, we
vary the sensing time dynamically, changing it from
sequence to sequence, such that the first in the series τmin ∼
1=4A0

ffiffiffiffi
N

p
has a capture range sufficient for a thermal state

and the last in the series τmax ∼ 1=4A0 optimally corrects
single-spin fluctuations [Fig. 1(d)].

B. Ultranarrow QD nuclear ensemble

Figure 2(a) shows the full control sequence we employ in
our QD system for feedback, where we have ∼15 μs of
nuclear-state purification, consisting of 44 elementary units
of the algorithm—this sequence is used throughout this
work. Between each unit, we increase the sensing time
linearly from τmin ¼ 30 ns to τmax ≤ 150 ns, and
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Fig. 2(a) shows the effective feedback curves at each step.
In contrast to Fig. 1 the dhIzi=dt curves have an envelope
function corresponding to the finite bandwidth of
our feedback implementation. This width is dictated by
the electron-nuclear coupling rate during actuation
1
4
Anc

ffiffiffiffiffiffiffiffiffi
N=2

p
∼ 4 MHz, which restricts efficient polarization

transfer to ΔIz fluctuations satisfying
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ ðAcΔIzÞ2

p
−

ωn ≲ 4 MHz, thereby defining a full bandwidth
jAcΔIzj ≈ 30 MHz. The preparation step is followed by
a probe step to determine the characteristic width of the
probability distribution pðΔIzÞ, which measures how close
the prepared system is to an ideal single macrostate Ilockz . To
measure pðΔIzÞ, we again use the electron’s sensing
capability; specifically, we use Ramsey interferometry
[Fig. 2(b)]. An Rxðπ=2Þ gate applied to an initialized
electron spin followed by a wait time τprobe leads to phase
accumulation which senses the mean field AcIz. This phase
is mapped to electron population ρ↑↑ with a final Rxðπ=2Þ
gate. We use a second Ramsey measurement but with a
final R−xðπ=2Þ gate to obtain a calibrated measurement of
electron polarization (Appendix A 2). By repeatingOð105Þ

such pump-probe measurements over a few seconds, we
obtain the ensemble average electronic evolution over
pðAcΔIzÞ, namely the free-induction decay (FID) of the
electronic spin. Figure 2(b) shows the electron polariza-
tion as a function of the probe time τprobe, that is, the
FID following preparation with the feedback sequence of
Fig. 2(a), with visible coherence extending to 300 ns.
Fitting the FID with a stretched exponential envelope

CðτprobeÞ ¼ exp ½−ðτprobe=T�
2Þα�, where α > 0 is a free

parameter, we find an electronic coherence time T�
2 ¼

125ð4Þ ns [Fig. 2(c), red curve]. This is an improvement by
a factor of 83 relative to the FID taken with a probe
measurement of the system without a preparation step.
Indeed, a probe measurement of the thermal ensemble at
the ambient temperature for our experiments (4 K) yields a
coherence time T�

2 ¼ 1.52ð5Þ ns [Fig. 2(c), blue curve].
Our experiments on the purified state are conducted by
probing for a few microseconds after ∼15 μs of state
preparation; each pump-probe unit is repeated 106–107

times for each data point. At all times, the ensemble is at
steady state as nuclear-spin relaxation is negligible on these

(c)

(d)

(a)

(b)

FIG. 2. Optimal feedback algorithm. (a) Feedback control sequence. We use 44 elementary blocks of the algorithm. Each block has an
Rxðπ=2Þ rotation to initiate sensing (purple), an RxðΩTÞ pulse to actuate a spin flip via a HH resonance (red), and optical pumping for
electron reset (blue). The sensing time is increased linearly over the 44 blocks from τmin to τmax, resulting in the schematic feedback
curves (gray) beneath. (b) Electronic FID under optimal feedback. We alternate ∼15 μs of feedback—where τmin ¼ 30 ns,
τmax ¼ 98 ns, Ω ¼ 29 MHz, and T ¼ 86 ns—with ∼2 μs of probing pðΔIzÞ via Ramsey interferometry (inset), yielding a 60 kHz
repetition rate for single shots of the experiment. Each data point is an ensemble average measurement integrated for 2 sec. The purple
circles are the FID hSzðτprobeÞi as a function of Ramsey delay τprobe. The FID oscillates at a frequency ωserr ¼ 60 MHz set by the phase,
2πωserrτprobe, which we add to the second Ramsey gate to make the process of fitting the envelope robust against small systematic
detunings. The red curve is a phenomenological fit to a cosine with envelope CðτprobeÞ ¼ exp ½−ðτprobe=T�

2Þα� (dotted curve), where
T�
2 ¼ 125ð4Þ ns and α ¼ 1.46ð9Þ. (c) Triangles (circles) are the FID envelopes resulting from a nuclear-spin ensemble without (with) the

application of our optimized feedback algorithm. Fitting these data with the blue and red CðτprobeÞ curves yields T�
2 ¼ 1.52ð5Þ ns,

α ¼ 1.60ð12Þ and T�
2 ¼ 125ð4Þ ns, α ¼ 1.46ð9Þ, respectively. (d) Fourier transform of data (circles) and FID envelopes (curves) from

Fig. 2(c), yielding explicitly the probability distribution pðAcΔIzÞ for the purified (thermal) ensemble shown in red (blue).
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microsecond timescales. Previous measurements on this
device indicate that, when prepared from thermal equilib-
rium, spin fluctuations reach their purified steady state on a
millisecond timescale, and when subsequently left to relax,
electron-mediated relaxation thermalizes the nuclei within
10–100 ms [36,48]; this can be prolonged by engineering
the electronic relaxation rate [53].
The envelope function CðτprobeÞ contains all the infor-

mation about the nuclear macrostate distribution pðAcΔIzÞ
via a Fourier transform [54]. Figure 2(d) shows pðAcΔIzÞ
for the thermal ensemble (red curve), whose full width at
half maximum (FWHM) is approximately 313 MHz, in
agreement with a standard deviation of Ac

ffiffiffiffiffiffiffiffiffiffiffi
5N=4

p
for Ac ¼

0.63ð2Þ MHz and N ¼ 4.9ð4Þ × 104 (Appendix B 2), and
representing a distribution over 497 macrostates FWHM.
By comparison, the cooled distribution has a FWHM of
3.6 MHz, equivalent to a probability distribution over
approximately 5.7(2) macrostates. We note here that while
these macrostates are not necessarily resolved owing to a
nonuniform one-to-all hyperfine coupling, the ratio of the
width of the distribution to the average Ac is still repre-
sentative of an effective number of macrostates contained
within the distribution.

C. Optimizing feedback in a QD system

We arrive at this global optimal of approximately 6
macrostates by tuning the constitutive variables of the
feedback algorithm, namely, the maximal sensing time
τmax, the ESR Rabi frequency Ω, and the duration of the

actuate gate T. The feedback performance is characterized
using two different metrics: the electron dephasing time T�

2,
which we wish to maximize, and an information entropy
Sp, which we wish to minimize. The characteristic dephas-
ing time T�

2 is obtained as in Fig. 2 by fitting an envelope
CðτprobeÞ ¼ exp ½−ðτprobe=T�

2Þα� to the FID data. This T�
2

works well to capture the effect of purifying the spin
ensemble as long as the nuclear-spin distribution remains in
a single mode, but fails otherwise. The information entropy
Sp of pðAcΔIzÞ is the limiting density of discrete points
(Appendix B 1), where pðAcΔIzÞ is the Fourier transform
of the FID data. This entropy measure, which extends the
notion of Shannon entropy to probability density functions,
is a complete, model-independent measure of our data
which does not require fitting. It captures the purification in
Iz, which we treat as a classical noise source, irrespective of
the underlying I degeneracy.
Figure 3(a) shows the electron dephasing time T�

2

(orange circles) and the information entropy Sp (purple
triangles) as a function of the maximum sensing time τmax,
in a linear sweep from τmin ¼ 30 ns to τmax [as in Fig. 2(a)].
In Appendix C 1, we verify that this τmin is sufficiently
short to ensure a capture range large enough to stabilize the
ensemble distribution around a single mode. Our actuate
gate has a finite bandwidth (∼30 MHz) corresponding to a
sensing time of approximately 30 ns, and it is not necessary
to use shorter sensing times because nuclear diffusion
brings any initial nuclear state to this relatively broad
30 MHz window. We find the optimum τmax at

(c)(a) (b)

FIG. 3. Optimizing feedback parameters. (a) Top: varying sensing gate τmax in the feedback sequence. Bottom: T�
2 (orange circles, left

vertical axis) and entropy Sp (purple triangles, right vertical axis) versus τmax for Ω ¼ 29 MHz and T ¼ 86 ns. The blue curve is a fit of
T�
2 versus τmax obtained from numerical simulation, with the blue shading as a 68% confidence interval. (b) Top: varying actuate gate Ω

and T in the feedback sequence. Bottom: T�
2 (orange circles, left vertical axis) and entropy Sp (purple triangles, right vertical axis) versus

Ω for τmax ¼ 100 ns and T ¼ 86 ns. Vertical dashed lines indicate the position of the HH resonances for arsenic and indium. (c) Top:
ESR shift from ultraprecise Ramsey measurement [38] as a function of actuate gate duration T (orange circles), fitted (blue curve) with
the same microscopic model as for the feedback (Appendix E), shows a maximum population transfer at T ∼ 114 ns. The fit parameters
of this model are Ac ¼ 0.63ð2Þ MHz, Anc ¼ 140ð13Þ kHz, and a pure nuclear dephasing rate Γ ¼ 6ð2Þ MHz. Bottom: T�

2 (orange
circles, left vertical axis) and entropy Sp (purple triangles, right vertical axis) versus T for Ω ¼ 31 MHz and τmax ¼ 100 ns. The blue
curve is a fit of T�

2 versus T obtained from numerical simulation, with the blue shading as a 68% confidence interval. The parameters for
the simulated T�

2 curves in (a) and (c) are Ac ¼ 0.63 MHz, Anc ¼ 166ð8Þ kHz, and Γ ¼ 6 MHz.
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approximately 90 ns, where the maximum value of T�
2 and

the minimum value of Sp coincide. This value is signifi-
cantly shorter than the theoretical optimum of 1=4Ac ≈
400 ns given a fitted hyperfine constant Ac ≈ 0.63ð2Þ MHz
(Appendix E 6). To understand this deviation, we simulate
numerically the effect of our cooling algorithm on N ¼
49 000 spin-1=2 nuclei after mapping the problem to a
smaller Hilbert space for computational feasibility. For
tractability we further employ exact diagonalization for the
unitary evolution during sensing and actuate gates [44],
while Kraus operators capture relaxation and dephasing via
amplitude- and phase-damping channels (Appendices E 2
and E 3). For independently measured values of Ac ¼
0.63 MHz and pure nuclear dephasing rate Γ ¼ 6 MHz,
we obtain good agreement between simulation (blue curve)
and measurements, for Anc ¼ 166ð8Þ kHz and, in line with
previous work [37,38], a subset of nuclei (∼21 000)
partaking in the actuate gate (Appendix E 6).
Our simulations show that electron dephasing during

sensing, caused by fluctuations of the finite transverse field
AncIx [see Eq. (1)], has a strong adverse affect on feedback
performance. Furthermore, it explains quantitatively the
observed optimal sensing time. We model this process with
a semiclassical, transverse magnetic field noise of ampli-
tude ∼

ffiffiffiffi
N

p
Anc. The highly inhomogeneous noncollinear

hyperfine coupling in our QD platform responsible for this
noise also reduces the actuate gate fidelity; this can also
affect the feedback performance. However, simulations
show that even the modest gate fidelity in our system is
sufficient to purify down to single-spin fluctuations in the
absence of transverse noise (Appendices B 3 and E 7 a).
Hence we identify transverse noise during sensing as the
main impediment to feedback, which limits the purification
of the spin ensemble to approximately 6 macrostates.
Importantly, this is not a fundamental feature of the
feedback algorithm, or of optically active QDs in general
[6,55]. We verify that when this transverse noise is removed
the optimum indeed occurs at the expected time 1=4Ac, and
results in purification down to single-spin fluctuations
(Appendix E 7).
Figure 3(b) shows the electron dephasing time T�

2

(orange circles) and the information entropy Sp (purple
triangles) as a function of the ESR Rabi frequency Ω used
to activate the flip-flop exchange gate. With a fixed drive
time of T ¼ 86 ns we see an optimum Rabi frequency of
Ω ≈ 29 MHz. This is in close agreement with our theo-
retical expectation that the strongest feedback occurs when
the actuate gate consists of an ESR drive on HH resonance.
This QD system exhibits two such resonances at the
corresponding Zeeman energies of two nuclear species:
arsenic at ωAs

n ¼ 25 MHz and indium at ωIn
n ¼ 33 MHz.

Thanks to the quadrupolar-induced, few-megahertz inho-
mogeneous broadening of the nuclear Zeeman levels [56],
the optimal ESR Rabi frequency occurs around the average
of the two resonances.

In seeking to optimize the duration of the activate gate,
we expect the optimum setting to leverage the available
coherence during the electron-nuclear interaction to
achieve a maximal fidelity SWAP gate. As a first step, we
thus characterize the coherence of the electron-nuclear
interaction in a direct measurement of the electron-nuclear
polarization transfer during the exchange gate, as shown in
the top panel of Fig. 3(c). Following a preparation sequence
as in Fig. 2(a), the probe step alone is replaced with an
actuate gate of duration T, which swaps polarization from
the electron to a single nuclear magnon, followed directly
—without an intervening projective measurement—by an
ultraprecise Ramsey measurement [38] that measures the
Ac-scale ESR shift induced by the magnon (orange circles).
An unconstrained fit of this data with the same modeling
approach used for the actuate gate of the algorithm (blue
curve) confirms that the electron-nuclear exchange is under-
damped, with finite electron-nuclear coherences after the
SWAP operation. Maximum population transfer occurs at
T ≈ 114 ns. Furthermore, these data yield a directmeasure of
the collinear hyperfine constant [38], Ac ¼ 0.63ð2Þ MHz
and pure nuclear dephasing rate Γ ¼ 6ð2Þ MHz, which we
use to constrain the model for the feedback algorithm
(Appendix E 6).
Figure 3(c) (bottom panel) shows the electron dephasing

time T�
2 (orange circles) and the information entropy Sp

(purple triangles) as a function of the duration T of the
actuate gate, where we find the optimum at T ≈ 86 ns. The
model values Anc and the number of nuclei partaking in the
actuate gate for both the T�

2 dependence and electron-
nuclear polarization transfer agree very closely
(Appendix E 6). From these values, we would predict an
optimum for feedback at the π time of the interaction
T ∼ 2=ðAnc

ffiffiffiffiffiffiffiffiffi
N=2

p Þ ∼ 120 ns. The approximate agreement
between our measured optimum and this simple theoretical
estimate confirms that the feedback is optimal close to the
maximum achievable fidelity of the SWAP operation.
Furthermore, our model informs us that our measured
optimum is modified from the theoretical optimum by an
optically induced electronic spin relaxation process whose
rate is proportional to the power of the incident laser light
enabling spin control (Appendix E 3 c) [45]. Under our
experimental conditions, this electronic relaxation rate is
such that the electron spin is close to completely depolar-
ized when the electron-nuclear exchange reaches its maxi-
mum at the π time of the interaction. This can also be seen
in the sensing measurement of Fig. 3(c), top panel. When
we turn on the actuate gate on an unpolarized electron spin,
the effect of the gate is to diffuse the nuclear state away
from the lock point. Thus the cooling performance can
improve by reducing the drive time T, which in the vicinity
of the π time reduces the driven diffusion significantly more
than the electron-nuclear polarization transfer. Finally, we
verify separately that removing altogether this relaxation
process from our numerical simulations indeed returns the
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optimal drive time to approximately the π time
∼2=ðAnc

ffiffiffiffiffiffiffiffiffi
N=2

p Þ (Appendix E 7).

D. Tailoring nontrivial spin distributions

Our feedback algorithm allows further engineering of the
spin distribution by tuning the feedback curve to host a set
of desired locking points—single or multiple. Within the
dynamical landscape experienced by the collective spin
state Iz, this creates programmable trapping points for the
spin ensemble. This is made possible by direct control over
parameters that define the sense and actuate quantum gates,
namely, the ESR detuning δ, the relative phase ϕ between
sense and actuate gates, and the sense time τ.
Using the ESR detuning δ as a tuning parameter, Fig. 4(a)

demonstrates precise control over the mean of the Iz
distribution by translating the lock point Ilockz from that of
an unpolarized ensemble (Ilockz ¼ 0). Our polarizing
sequence steps the ESR detuning as a function of time t,
δðtÞ ¼ −AcIlockz , in steps of 20 MHz, thereby stepping the
setpoint by ∼30 spin flips, which is detected by the sensing
step as a nonzero error signal. At each new value of δðtÞ we
perform ∼2500 complete cooling sequences to fully correct
this error signal. Doing so slowly enough relative to the
typical feedback rates and in stepsmuch less than thewidthof

the feedback capture range allows nuclear polarization to
build up, leading to an average dragging process equivalent
to dynamic nuclear polarization [47]. Crucially, we find that
the feedback remains stable over a range of fractional nuclear
polarization of approximately −20% toþ30%, as estimated
from the measured Overhauser shift by assuming equal
fractional polarization for each species and an indium
concentration of 0.5 [56]. This is evidenced by a nuclear-
spin distribution whose width remains within a factor of 2 of
the optimal and whose information entropy remains largely
unchanged over this domain [Fig. 4(a), right-hand panel].
The dynamic locking range, defined as the range of achieved
lock points over the width of the distribution, corresponds to
well over 1000 distinct accessible macrostates.
Using the relative phase ϕ between the sense and the

actuate gates as a tuning parameter, we can transform the
probability distribution pðAcΔIzÞ from a single-mode to a
bimodal distribution, with a programmable frequency-mode
splitting equal to the inverse sensing time1=τ. This is doneby
modifying the first pulse of the algorithm Rxðπ=2Þ to have
instead a phase ϕ relative to the RxðΩTÞ actuate gate. This
alters the phase of the error signal acquired during sensing,
such that hSxi ¼ − 1

2
sinð2πA0ΔIzτ − ϕÞ. Its effect on the

feedback curve is shown in Fig. 4(b) (left-hand panel), where
given the envelope function associated with our feedback

(a)

(c)

(b)

FIG. 4. Engineering spin-ensemble distributions. From left to right: sketch of how the feedback curves (solid blue) are programmed to
engineer pðIzÞ (orange shaded areas); plots of the measured probability density functions pðAcΔIzÞ (purple circles) and their fits (solid
curves) at a salient point in the relevant parameter space; full experimental two-dimensional map, from which these salient slices (gray
boxes) are taken, showing continuous tuning over the parameter space; information entropy Sp (purple circles) of the pðAcΔIzÞ
distribution versus the relevant tuning parameter. (a) Varying δ sets the central lock point Ilockz of the feedback. The extrema of the mean
field AcIlockz possible with our feedback algorithm are þ12.0 GHz and −15.2 GHz, where the FWHM of pðAcΔIzÞ are measured as 5.9
and 3.7 MHz, respectively. (b) Tuning the drive phase ϕ allows continuous variation between mono- and bimodal feedback as seen in the
ϕ − ΔIz map. (c) Using a single sensing time τ during feedback determines a well-defined steady-state lock point splitting. Varying τ in
the two-dimensional map shows we can tune the number of modes in the probability distribution.
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bandwidth, the phase ϕ is equivalent to a carrier-envelope
phase. By changing this phase, we can tune the relative
weight of the two possible modes of the distribution, as
shown in the two-dimensional map of Fig. 4(b), for values of
ϕ from 0 to 2π. As can be seen from the right-hand panel of
Fig. 4(b), the entropy is maximized for ϕ ¼ π, where there
exists an equal weighting between the two modes. This
particular point can be seen as a balanced classicalmixture of
two Iz states separated by∼55 nuclear spin flips, each with a
width of a few spins. Detecting this classical signal is a first
step toward the investigation of a Schrödinger kitten state
[57]: in this case a quantum superposition of two collective
states with small nuclear polarization.
Finally, using the sense time τ as a tuning parameter, we

create multimodal frequency-comb-like spin distributions.
To do so, we apply a fixed sense time τ during our feedback
sequence [Fig. 2(a)], which tunes a correspondingly fixed
capture range, set by the spacing 1=A0τ between two lock
points within the feedback function. When this capture
range is smaller than the width of the initial nuclear
distribution, the nuclear state Iz probabilistically falls into
any one of the lock points contained within the initial
distribution, as shown in Fig. 4(c) (left-hand panel). In
Fig. 4(c), we demonstrate this for τ ¼ 40 ns to τ ¼ 250 ns,
achieving from 3 to 11 simultaneous modes of the spin
distribution, respectively. Strikingly, at the long sensing
times τ ≳ 140 ns, the initial state is frozen into ≳9 modes,
each with a width of 3.3 MHz or approximately 5Ac, which
is narrower than the 3.6 MHz width measured for the
optimal single-mode preparation. The increased feedback
strength at these long sensing times gets the system closer
to its ultimate narrowing limit at the expense of populating
other nearby modes. While the individual modes of the
distribution become narrower, the information entropy
[Fig. 4(c), right-hand panel] of the overall distribution
increases with sensing time as the distribution is spread over
an increasingly large phase space. These multimode spin
distributions can be seen as a freezingof the initial state onto a
one-dimensional lattice of points in the phase space of
nuclear polarization, which we call latticed multistability.
Because of a finite probability of hopping between lattice
sites, integrating over a sufficiently long time yields the
observed ensemble average. With added phase coherence
between sites, this lattice could simulate a one-dimensional
quantum walk where the lattice spacing and depth can be
tuned with the sensing time and the amplitude of electronic
coherence during sensing, respectively.

III. TOWARD SCHRÖDINGER KITTEN STATES
OF THE NUCLEAR ENSEMBLE

We have thus far demonstrated control over the modes of
a spin distribution via a tailored dynamical landscape that is
equivalent to engineering classical mixtures of collective
states on demand. However, the actuation gate fundamen-
tally generates quantum coherences between the electron

and the collective nuclear state, which have thus far been
eliminated during electronic reset. As such, we propose an
extension to the algorithm to include a disentangling step,
which maps electron-nuclear coherences to purely nuclear
ones, prior to electronic reset. This preserves nuclear
coherences and allows the engineering of quantum states
of the ensemble. Figure 5 depicts a concrete example of an
extension designed to engineer Schrödinger kitten states
[57], which we discuss in more detail in Appendix E 8. In
short, the disentangling operation is performed by a free
evolution, which is present in the original algorithm
between the actuation and reset steps. If the evolution time
is chosen appropriately, the free evolution performs an
electronic rotation conditional on the nuclear state, pro-
ducing a separable electron-nuclear state. Starting from a
purified nuclear state, which is precisely what our feedback
algorithm is designed to prepare, the operation of our
minimally modified algorithm can generate quantum super-
positions jψi ¼ jI; Iz þMi þ eiϕM jI; Iz −Mi. Note that to
achieve M > 1, one needs to further modify the algorithm
to repeat actuation M times, as in Fig. 5. The state
jI; Iz þMi is a collective state of the entire ensemble,
and such a quantum superposition is thus analogous to a
Schrödinger kitten state. In our InGaAs QD platform the
low fidelity of the actuation gate, owing to considerable
nuclear inhomogeneity, prevents an experimental realiza-
tion of this modified algorithm. However, recent work on

FIG. 5. Preparation of a Schrödinger kitten state. The quantum
state preparation sequence closely resembles that of the elemen-
tary unit of our feedback algorithm [Fig. 2(a)], but with two
modifications. Firstly, a ðπÞz rotation of the electron after the
actuate gate allows us to repeat actuation M times for the
excitation of M magnons. Secondly, the wait time between
actuation and reset is now precisely chosen to perform a
ðπ=2Þ rotation about the z axis conditional on the nuclear state,
R�zðπ=2Þ. Markers 1–5 track the quantum state evolution during
the preparation sequence. The relative phase ϕ comes from
evolution under the nuclear Zeeman and hyperfine terms and,
while precisely known, is inconsequential.
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lattice-matched GaAs QDs has shown greatly reduced
nuclear inhomogeneities [6,55], promising a realization
of our extended quantum algorithm in the near future.

IV. DISCUSSION

We presented a quantum-algorithmic approach to feed-
back to stabilize the fluctuations of an ensemble down to
single quanta. It can be applied to a central spin or central
boson that can do the following: sense the collective state of
an ensemble via an Ising coupling; modify the collective
state of the ensemble via an exchange coupling (e.g., a
hyperfine interaction combined with single or double
resonance at the HH condition); and be reinitialized with
little backaction on the ensemble. This means that our
algorithm can be applied to a wide range of physical
platforms including quantum dots in III-V materials
(InGaAs, GaAs), rare-earth ions, donor spins in silicon,
and defect centers in diamond and SiC [58].
Despite the substantial noise and inhomogeneity inherent

in our QD nuclear-spin ensemble, applying our feedback
algorithm to this system enabled an 83-fold reduction in spin
fluctuations, purifying to within a factor 3 of the single-
quantum limit. Compared to the previous state of the art,
where a 20-fold reduction was reported [37], our feedback
approach further reduces spin fluctuations by a factor 4.
Incidentally, we also report here the longest inhomogeneous
dephasing time to date for any spin qubit in optically active
quantum dots:T�

2 ¼ 296ð5Þ ns for a secondQD investigated
in less detail but with fully consistent feedback performance
(Appendix C 3). Yet we stress that the primary achievement
of this work is the conceptual leap from a continuous, driven,
dissipative feedback approach to an algorithmic one, capable
of suppressing and engineering spin noise down to single-
spin fluctuations.
Indeed, we demonstrated the engineering of nontrivial

classically correlated nuclear states, including a classical
mixture of two Iz states separated by tens of spin flips: a
classical precursor to a Schrödinger kitten state of nuclei. To
this end we formulated a concrete proposal for the extension
of this algorithm for the production of quantum super-
positions of collective states. A future direction also includes
investigating the limit cycle during feedback operation at the
single-spin level: applying the algorithm to an initial pure
state jIzi, the nuclear state would cycle between jIzihIzj↔
1
2
ðjIz−1ihIz−1jþ jIzþ1ihIzþ1jÞ subharmonically with a
periodicity twice that of the algorithm.The appearance of this
limit cycle could be a witness for the dissipative preparation
of a well-defined total angular momentum state [48] I
constituting the initialization of a pure Dicke state in this
central-spin system.
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APPENDIX A: EXPERIMENTAL METHODS

1. Setup

a. Sample

The heterostructure of the wafer used in this work, which
has been used in previous studies [36,45,48,56,59], is
depicted schematically in Fig. 6. The InGaAs QD layer
(shown in red) is capped above and below with GaAs
(gray). The layer below is 35 nm deep and forms a tunnel

FIG. 6. Sample. A 3D render of the heterostructure of our QD
sample (not to scale) with a cutout above the QD layer. A full
breakdown of the structure is given in the text. Abbreviations:
DBR, distributed Bragg reflector; SIL, solid immersion lens.
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barrier between the QD and the Fermi sea of the n-doped
GaAs back contact (light blue). The back contact combined
with the semitransparent titanium top gate (6 nm) forms a
Schottky diode structure which allows us to control the
charge state of the QD. An electron in the ground state is a
stable configuration for a time T1 ¼ 50 μs thanks to a
tunnel barrier between the QD layer and the Fermi sea of
the back contact. The two diode gates are electrically
contacted with Ohmic AuGeNi contacts (shown in gold).
Above the top capping layer is a blocking barrier of
AlGaAs (black) to prevent charge leakage, and then a final
capping of GaAs. At the bottom of the heterostructure is a
distributed Bragg reflector to improve photon emission
from the top surface. The photon collection is further
enhanced to 10% at the first lens with a superhemispherical
cubic-zirconia solid immersion lens.

b. Optics

Figure 7 shows the optical and microwave setup. We use a
confocal microscope with crossed polarizers on excitation
and collection arms to excite the QD resonantly, and collect
its emission. We excite the QDwith circularly polarized light
by using a quarter wave plate between the polarizers. The
collected emission is spectrally filtered with an optical
grating with a 20 GHz passband before being sent to a
superconducting-nanowire single-photon detector (SNSPD,
Quantum Opus One).

Two lasers are required for our experiments. The first—a
NewFocus Velocity laser diode—is resonant with the j↓i ↔
j⇓ ↑ ↓i transition and is used for spin pumping and electron
spin readout (reset). The second is used for electron-spin
control via a two-photon stimulated Raman process [45] and
is generated by a Toptica DL Pro laser diode fed through a
Toptica BoosTA tapered amplifier. This Raman laser is
800 GHz detuned from the trion excited state manifold.
As required for Raman control, we derive two coherent laser
fields from this single mode by feeding it through a fiber-
based EOSPACE electro-optic amplitudemodulator (EOM),
which is drivenwith amicrowavewaveform(AppendixA 1 c).
The resulting first-order sidebands after amplitude modu-
lation are two coherent laser fields, separated by twice the
microwave drive frequencyωμw, and whose relative phase is
twice the phase of the microwave [45]. With these we can
drive the electron-spin resonance at a frequency ω ¼ 2ωμw.

c. Microwave

Controlling the electron spin with a two-photon Raman
process gives us effective microwave control over its Bloch
vector. We can control the Rabi frequency, phase, and
detuning of the qubit drive by modifying, respectively, the
power, phase, and frequency of the EOM’s microwave
drive, all of which are imprinted onto the Raman beams by
the EOM. An experimental sequence is thus defined by a
microwave signal where all of these parameters, along with

FIG. 7. Optical and microwave setup. Adapted from Ref. [48]. From left to right we have a Raman laser 800 GHz detuned from the
trion manifold that is fed through an electro-optic modulator (EOM). The EOM is driven by a microwave signal derived from the IQ
mixing of an arbitrary waveform generator (AWG) with a local oscillator (LO). The EOM output is then 2 coherent laser fields. A beam
splitter combines the Raman laser with a resonant laser for readout, which is sent to the sample. The sample sits in a bath cryostat at 4 K,
with a 3.5 T magnetic field applied in Voigt geometry. The QD emission is collected and excitation light is filtered by polarization and
color before being counted on a superconducting-nanowire single-photon detector (SNSPD). The rightmost section depicts the QD
energy level diagram and excitation laser frequencies.
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pulse timing and duration, are set programmatically with an
arbitrary waveform generator (Tektronix AWG70001A), at
a sampling rate of 6 Gsamples/s. We use 2 channels of the
AWG to produce the I and Q components of this signal,
which has a carrier frequency of ωAWG ¼ 600 MHz. With
these we can perform single-sideband mixing with a
frequency-doubled local oscillator (LO) of frequency
ωLO ∈ ½3.665; 10.065� GHz to up-convert to the final
microwave frequency ωμw ¼ 2ωLO − ωAWG. The IQ mixer,
which is an Analog Devices ADRF6780 board, handles
internally the frequency doubling of the LO, which is
derived from a Rohde & Schwarz SMF100A source.

2. Techniques

a. Full experimental pulse sequence

Figure 8 depicts the pulse sequence that makes up a single
repeating block of the experiment. This block repeats at a rate
of 50kHzand is composedof a15 μs pumpsection,wherewe
run the feedback algorithm to prepare a target state of the
nuclearensemble, anda5 μsprobesection,wherewemeasure
the resulting electronic free-induction decay to extract the
probability distribution pðAcΔIzÞ. The pump section is
described in detail in themain text. The probe section consists
of four separateRamsey interferometrymeasurements, twoof
which probe the spin-↑ population, ρe↑↑, and two of which
probe ρe↓↓. Having two of each is not necessary, and is only
done to improve the signal-to-noise ratio.
Selecting which spin population we read out is done as

follows: The readout laser is always resonant with the
j↓i ↔ j⇓ ↑ ↓i transition making j↓i the bright state. Thus
we select which population to read out by choosing to swap
the electron spin populations with a π pulse before optical
pumping, yielding a spin fluorescence signal, S↓↓ or S↑↑,
proportional to the population, ρe↓↓ or ρe↑↑, respectively. In
practice we replace this additional π pulse with a π phase on
the second Ramsey gate, which achieves the same result.
This avoids an erroneous disparity in the two populations
that would result from the addition of a pulse with finite
fidelity. Note that S is the integrated fluorescence over the
entire spin-pumping transient after background subtraction.
We may then calculate the average spin populations:

ρe↑↑ ¼
�

S1↑↑ þ S2↑↑
S1↑↑ þ S2↑↑ þ S1↓↓ þ S2↓↓

�
; ðA1Þ

where we combine the two repeated spin readouts, 1 and 2,
for improved signal-to-noise ratio, and we average over the
many repetitions made during a given integration time.
Finally, we note that each of the 4 Ramsey interferometry
measurements has a phase θ ¼ 2πτprobeωserr added to the
second ðπ=2Þ gate, where ωserr is a serrodyne frequency.
This adds a Fourier component at frequencyωserr to the FID
making fitting the decay envelope robust against a few-
megahertz systematic detuning arising from the optical
Stark shift during the Ramsey gates [38].

b. Polarization protocol

In the main text we describe how we can polarize the QD
nuclear ensemble by stepping in time the ESR drive detuning,
δðtÞ ¼ ωe − ω ¼ −AcIlockz . We achieve this by varying the
LO frequency in discrete steps ΔωLO resulting in steps of
detuningΔδ ¼ −4ΔωLO. In this waywe step the detuning by
20 MHz every ∼50 ms, amounting to ∼2500 repeats of the
entire experimental sequence (Appendix A 2 a) per step
ensuring that the nuclear-spin system reaches steady state at
every step.Aswepolarize thenuclei, the resultingOverhuaser
shift alters the electron-spin splitting and thus the optical
transition frequency to the trionmanifold. In order to polarize
beyond the trion linewidth we therefore need to compensate
this effectwithadcStarkshift.Westep theSchottkydiodegate
bias with the LO frequency to maintain single-photon reso-
nance with the fixed-frequency readout laser.

APPENDIX B: ADDITIONAL
NOTES ON DATA ANALYSIS

1. Entropy

In the main text, the concept of entropy was applied to
quantify the purity of an arbitrary distribution. To this end,
we employed the limiting density of discrete points, which
is an extension of Shannon entropy to continuous proba-
bility distributions. It is defined by

FIG. 8. Experimental pulse sequence. A schematic of the ESR control pulses (pink and red square pulses) and readouts (gray, purple,
and yellow spin-pumping transients) that make up a single repeating block of the entire experiment (timings not to scale). The purple and
yellow spin-pumping transients correspond to reading out opposite electronic spin populations, achieved with a relative π phase shift on
the second Ramsey gate ðπ=2Þθþπ . The phase of the second Ramsey gate is serrodyned at a frequency ωserr via θ ¼ 2πτprobeωserr.
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HNðXÞ ¼ logðNÞ þHðXÞ;

with HðXÞ ¼ −
Z

pðxÞ log pðxÞ
mðxÞ dx;

whereN is the number of points discretizing the continuous
distribution pðxÞ, and mðxÞ is an invariant measure of the
density of points as N → ∞.
In our case, we evaluated the probability distribution

pðAcΔIzÞ in the range from −250 to 250 MHz; hence,
mðxÞ ¼ 2 GHz−1. We chose N ¼ 800, which leads to a
constant offset of log 800 ≈ 6.7.

2. Calculating number of nuclei

We can extract the number of nuclei in the QD from a
measurement of the hyperfine constant per nucleus Ac and
T�
2 at thermal equilibrium at infinite temperature. The

former is provided by the ESR-shift measurement [38]
reported in Fig. 3(c) of the main text, and the latter from the
FID in Fig. 2(c) of the main text. This FID was measured at
thermal equilibrium at 4 K, which is effectively infinite
temperature when comparing to the relevant nuclear
Zeeman energy scale. This means we can safely assume
that the nuclear state is fully mixed. In this case the nuclear
probability distribution is a Gaussian, pðΔIzÞ ¼ e−ΔI

2
z=2σ2 ,

with standard deviation given by

σ2 ¼ hI2zi ¼
��XN

i

Ii;z

�
2
�

¼
XN
i

hI2i;zi ¼
1

3
NIjðIj þ 1Þ;

where i indexes an individual spin and we have assumed
hIzi ¼ 0. Taking a single species with Ij ¼ 3=2 gives

σ ¼ ffiffiffiffiffiffiffiffiffiffiffi
5N=4

p
. Since pðΔIzÞ and the FID are related by a

Fourier transform, the FID is also Gaussian with
T�
2 ¼ 1=

ffiffiffi
2

p
πAcσ. Using T�

2 ¼ 1.52ð5Þ ns and Ac ¼
0.63ð2Þ MHz we can then calculate N ¼ 49ð4Þ × 103.
One can also extract an estimate of N from T�

2 by using
the hyperfine constants of the material and assuming an
indium concentration [56]. Since indium is the species with
the highest spin and the largest hyperfine constant, its
concentration has a significant effect onN, which can range
from 48 000 to 110 000 for concentrations from 0.2 to 0.7.
As such, our estimate of N ¼ 49 000 is entirely reasonable.

3. Quantum gate fidelities

We seek to give some quantification of gate fidelities
using the following simple metric [45]: we calculate a
quality factor Q for the electronic and electron-nuclei Rabi
oscillations separately, which is the ratio of the 1=e time to
the π time of the oscillations. From this we calculate a
fidelity F ¼ ð1þ e−1=QÞ=2. For the electronic Rabi oscil-
lations (not shown) we calculate Q ¼ 34, yielding
F ¼ 98.6%. For the electron-nuclear exchange [Fig. 3(c),
top panel], we separately fit an unconstrained, damped

simple harmonic oscillator model to the data [38], resulting
in Q ¼ 1.65, yielding F ¼ 77%.

APPENDIX C: ADDITIONAL DATA

1. Minimum feedback capture range

Asdetailed in themain text, ifwe seek to purify the nuclear
ensemble to a single mode we must start feedback with a
sufficiently broad capture range as not to populate the next-
nearest stable points, Fig. 1(c). Given the feedback band-
width of ∼30 MHz, determined by the width of the HH
resonance, we expect that the broadest capture range we
require is 1=τmin ∼ 30 MHz or equivalently τmin ∼ 33 ns. In
this way, at the beginning of the feedback preparation
sequence the next-nearest stable points are beyond the
bandwidth of the feedback and thus are very weak attractors
ensuring purification to a single mode. In Fig. 9 we plot the
results of an identical experiment to Fig. 3(c) of themain text,
i.e., feedbackwith a single sensing time, but for small τ. From
this we can see a region of τ ≲ 35 ns where it is not possible
to populate neighboring stable points which justifies using
τmin ¼ 30 ns throughout our experiments.

2. Hahn echo

We note here that our quantum-algorithmic purification
has no appreciable effect on the electron-spin coherence time
as measured in Hahn echo. Figure 10 reports a Hahn-echo
measurement after optimal purification of the nuclear spin
bath (purple circles) and an accompanying exponential fit
(yellow curve). The extracted THE

2 ¼ 1.10ð9Þ μs is a typical
value for QDs on this wafer for a nuclear ensemble at thermal
equilibrium at 4 K and magnetic field of 3.5 T [37,56].

3. Second quantum dot

By way of gathering statistics we tested our algorithmic
cooling on a second quantum dot, QD2. After the same
optimization procedures performed on QD1 of the main

FIG. 9. Minimum capture range. 2D plot of pðAcΔIzÞ versus
frequency, AcΔIz, and sensing time τ. In this experiment we do
not dynamically sweep the sensing time, but rather use a constant
value for all 44 repeats (per preparation cycle) of the algorithm.
For sufficiently small τ ≲ 35 ns we avoid multistability and
prepare a single-mode distribution.
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text, we plot in Fig. 11 the FIDs for QD2 at thermal
equilibrium (triangles) and after purification (circles). From
these data, and using the same notation as the main text, we
extract fit parameters of T�

2 ¼ 3.3ð3Þ ns, α ¼ 1.9ð4Þ and
T�
2 ¼ 296ð5Þ ns, α ¼ 1.65ð8Þ for thermal and purified,

respectively. Although the purified T�
2 is 2.4 times longer

than QD1, the improvement factor from thermal equilib-
rium is 89, entirely consistent with QD1. Compared to the
previous state-of-the art feedback approach [37] (purple
curve), our algorithmic feedback reduces spin fluctuations
by a further factor 5. We do not plot the corresponding

curve for QD1, but we note here that the improvement over
the state of the art is similar: a factor 3.
Despite the optimally purified T�

2 being 2.4 times longer
for QD2 than QD1, it represents worse purification in terms
of an absolute number of nuclear macrostates: Comparing
the T�

2 values of the two QDs at thermal equilibrium tells us
that QD2 contains approximately 4.7 times more nuclei,
and its hyperfine constant per nucleus Ac is 4.7 times
smaller [56]. Thus, although the width of pðAcΔIzÞ for
QD2 is 2.4 times narrower in frequency space (AcΔIz), its
width in absolute macrostates (ΔIz) is 2.0 times larger than
QD1, and is less pure.

APPENDIX D: FEEDBACK FUNCTION
FORMALISM

With the spin bath evolving under drive and dissipation
we can construct semiclassically a rate equation that
captures the evolution of the mean value hIzi valid over
a coarse-grained timescale much larger than the time of a
single algorithm cycle [40,47]. We stress that the fully
quantum approach used in our modeling (Appendix E) is
the most complete, but we can nevertheless gain intuition
about the feedback with this method. The algorithm itself
results in directional hIzi-changing rates W�ðhΔIziÞ that
stabilize the value of hIzi. Further, there will be relaxation
processes in any central-spin system that lead to spin
diffusion, either intrinsic or electron mediated, which
rethermalizes the bath at a rate Γd. For example, in our
QD system electron-mediated nuclear-nuclear spin inter-
actions [60,61] lead to diffusion at a rate Oð10 HzÞ [48].
The rate equation then reads

dhIzi
dt

¼ WþðhΔIziÞ −W−ðhΔIziÞ − ΓdhIzi: ðD1Þ

The directional rates can be constructed intuitively,
since we will drive one spin flip per algorithm cycle in
response to a ΔIz fluctuation provided τ ¼ 1=4A0ΔIz.
Assuming unitarity in the flip-flop interaction and that
one cycle takes τ þ 1=2Aff , neglecting the spin-pumping
time, we have

W�ðhΔIziÞ ¼
1 ∓ sin½2πA0hΔIziτ�

2τ þ 1=Aff
: ðD2Þ

The feedback curve then becomes

dhIzi
dt

¼ − sin½2πA0hΔIziτ�
τ þ 1=2Aff

− ΓdhIzi; ðD3Þ

which we report in the main text with Γd ≪ 1=τ þ 1=2Aff .

FIG. 10. Hahn echo after optimal purification. Hahn-echo
visibility versus delay (purple circles) is fitted with an exponential
decay (yellow curve) to extract a THE

2 ¼ 1.10ð9Þ μs.

FIG. 11. FIDs for QD2. Triangles, squares, and circles are the
FID envelopes resulting from a nuclear-spin ensemble at thermal
equilibrium, after state-of-the art purification [37], and after our
optimal purification, respectively. Fitting these data with the blue,
purple, and orange CðτprobeÞ curves yields T�

2 ¼ 3.3ð3Þ ns,
α ¼ 1.9ð4Þ; T�

2 ¼ 64ð3Þ ns, α ¼ 2.0ð2Þ; and T�
2 ¼ 296ð5Þ ns,

α ¼ 1.65ð8Þ, respectively.
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APPENDIX E: MODELING

1. Outline

We seek to model the coupled electron-nuclear dynamics
in our QD system during the feedback algorithm. From the
resulting complete density matrix we may take a partial
trace over the electron to leave only the density matrix of
the nuclear-spin system. From this we calculate pðIzÞ and
compare to our experimental data via either of our feedback
metrics: entropy or T�

2.
The nuclear ensemble comprises three species: arsenic

(I ¼ 3=2), indium (I ¼ 9=2), and gallium (I ¼ 3=2), but
we may safely neglect gallium’s contribution to the feed-
back dynamics owing to a much weaker quadrupolar
contribution [56]. To reduce the computational complexity
of our model we make our first approximation: we run two
independent simulations for arsenic and indium separately
and average the results. In this way we avoid squaring the
dimensionality of the nuclear Hilbert space and its asso-
ciated complexity.
Our second simplifying approximation is to model the

nuclei as an ensemble of N spin-1=2 particles, with a
uniform hyperfine coupling to the electron. This allows us
to parametrize the nuclear state by the set of quantum
numbers I; Iz, where the integers I and Iz range from 0 to
N=2 and −I to I, respectively. In this way we reduce the
calculation on the full (2 × 2N)-dimensional Hilbert space
to N=2 calculations on 2 × ð2I þ 1Þ-dimensional Hilbert
spaces, which are uncorrelated and evolve independently.
In this basis the full electron-nuclear density operator can
be written as

ρ ¼
X
Sz

X
S0z

X
I;Iz

X
I0;I0z

ρSz;S0z;I;Iz;I0;I0z jSzihS0zj ⊗ jI; IzihI0; I0zj:

ðE1Þ

Solving for the driven-dissipative dynamics of the
coupled electron-nuclear system via a Lindblad master
equation requires the use of superoperators of size
D2 ×D2, where D is the Hilbert space dimensionality.
In each I manifold we have D ¼ 2ð2I þ 1Þ, meaning that
for realistic N ∼ 105, the large-I manifolds would require
prohibitively large matrices of sizeN2 × N2 to represent the
superoperators. To overcome this we make a second
approximation to split the evolution into distinct unitary
quantum operations and nonunitary dissipation and dephas-
ing operations. This reduces the computational complexity
to simple D ×D matrix multiplication for both coherent
processes, via exact diagonalization, and incoherent proc-
esses, via Kraus operators.
Even after reducing the matrix size to D ×D, this is still

prohibitively large for manifolds of I ∼ N ≈ 105, which is
where the third approximation comes in: manifolds of very

large I can be neglected. This is because we weight the
outcome of a simulation in a given I manifold ρI by its
degeneracy when calculating the final expectation value of
any observable A:

TrρA ¼
X
I

wI;NTrρIA: ðE2Þ

We calculate these weights exactly in Appendix E 5, but
suffice to say that they are peaked strongly around
I ¼ ffiffiffiffiffiffiffiffiffi

N=2
p

≈ 160, and decay exponentially with I from
there on. As such, assuming I is indeed distributed
thermally according to these weights, we capture the vast
majority of the dynamics by a coarse-grained simulation in
only 46 manifolds with I values of 0; 14; 28;…; 630. In
each of the manifolds we further truncate the Hilbert space
by only simulating with Iz values ranging from −I=14 to
I=14, i.e., only around states of low polarization, which is a
good approximation given that our feedback procedure
purifies the nuclear state very close to the zero-polarization
macrostate.

2. Unitary evolution during the algorithm

During the sensing and actuate parts of step j
of the feedback algorithm we consider the unitary part
of the evolution to act on the density operator in the usual
way:

ρjþ1 ¼ UjρjU
†
j : ðE3Þ

The engineered Hamiltonians during sensing and actua-
tion are Hsense ¼ δSz þ ωnIz þ AcSzIz þ AncSzIx and
Hact ¼ ΩSx þ ωnIz − ðAnc=4ÞðS̃þI− þ S̃−IþÞ, respec-
tively, where S̃� ¼ Sz � iSy. Given these, the unitary
evolution during step j of the algorithm is generated by

Uj ¼ e−iTHact|fflfflffl{zfflfflffl}
Uact

e−iτjHsense|fflfflfflfflffl{zfflfflfflfflffl}
Usense;j

1ffiffiffi
2

p ð1 − iσxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Rxðπ2Þ

; ðE4Þ

where RiðθÞ represent rotations of angle θ about axis i ¼ x,
y, z, and σi are the Pauli matrices.
The action of Usense;jRxðπ=2Þ on the density operator

expressed as in Eq. (E1) is straightforward, provided we
assume Anc ≪ Ac and neglect the AncSzIx term—we reintro-
duce the effect ofAncSzIxwith a semiclassical approximation
in Appendix E 3. In this caseHsense is diagonal in the jSzi ⊗
jI; Izi basis and the matrix exponential of UsenseRxðπ=2Þ
leads to a simple phase acquisition. The action ofUact is less
straightforward to compute since Hact is not diagonal. We
first rewrite asUact ¼ e−iTH

0
actR−yðπ=2Þ, whereH0

act¼ΩSzþ
ωnIz− ðAnc=4ÞðSþI−þS−IþÞ, which is 2 × 2 block
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diagonal and can be diagonalized efficiently [44]. The price
we pay for this computational speedup is the implicit
assumption that the electron-nuclear actuate gate is per-
formed exclusively on HH resonance [50,51], other-
wise block diagonality is broken. To this end we model
two nuclear species by running two simulations with
nuclear Zeeman frequencies ωAs

n ¼ 25.3 MHz and
ωIn
n ¼ 32.7 MHz, in each case imposing HH resonance,

and average the resulting pðIzÞ distributions. To summarize
this section, Eq. (E3) generates the exact unitary time
evolution by simple matrix multiplication.

a. Quantum circuit

This unitary part of the evolution, Uj ¼
UactR−yðπ=2ÞUsense;jRxðπ=2Þ is depicted as a quantum
circuit in Fig. 1(b) of the main text. Specifically, we depict
the action of Uj, where τj ¼ 1=4Ac, on a pure nuclear state
in the manifold fjI; Izi; jI; Iz � 1ig. In this way Usense;j

effectively becomes a Z rotation of the electron conditional
on the nuclear polarization fluctuating one unit away from
the lock point. Furthermore, by choosing a drive time
T ¼ 2=Anc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þp

, the action of the Uact gate becomes
an exact SWAP operation (around zero polarization, Iz ¼ 0).
These specific choices mean the quantum circuit depicts the
limit cycle behavior at the ultimate limit of the cooling
algorithm: fluctuations of a single unit are detected with a
conditional electron rotation and corrected deterministi-
cally with a SWAP operation.

3. Adding nonunitary evolution

There are several nonunitary processes to include in our
model, the first of which is necessary for the feedback
algorithm, and the remainder are dephasing and relaxation
processes that hamper feedback.

a. Electron reset

This nonunitary process crucial to the operation of
feedback resets the state of the electron spin via incohe-
rent spin pumping. We simulate this process with the
following amplitude-damping channel [62] on the electron
spin:

Kreset∶ ρ → Kr
0ρK

r†
0 þ Kr

1ρK
r†
1 ; ðE5Þ

where the Kraus operators are defined as

Kr
0 ¼

�
1 0

0 0

�
⊗ 1n; Kr

1 ¼
�
0 1

0 0

�
⊗ 1n; ðE6Þ

and we have safely assumed unit fidelity spin pump-
ing [63].

b. Transverse nuclear noise

In Appendix E 2 a we neglected the noncollinear term
Anc during sensing since including its effect explicitly in the
jSzi ⊗ jI; Izi is computationally inefficient. Instead, we
capture its effect on the dynamics by assuming Ix to be a
zero-mean, classical Gaussian random variable IxðtÞ.
This time-fluctuating transverse nuclear polarization indu-
ces broadening of the electronic energy levels, which
results in electronic decoherence, that limits the cooling
efficiency.
Within this model, the postsensing density operator is

given by

ρðτÞ ¼ hUðτÞρð0ÞUðτÞ†i; ðE7Þ

where

UðτÞ ¼ e−iτAcIzSz−iAnc

R
τ

0
dt0Ixðdt0ÞSz ; ðE8Þ

and the averaging h� � �i is done over all noise realizations
through a path integral that commutes with the other
operators in the evolution equation. The net effect of the
evolution can be viewed as a coherence buildup due to the
longitudinal polarization AcIz, alongside decoherence due
to the transverse noise AncIx. Commuting with the
collinear term, the noise imposes a transfer function
WðτÞ on electronic coherences [64], which we will now
calculate.
We start from writing this transfer function explicitly:

WðτÞ ¼ he−i
R

τ

0
dt0AncIxðt0Þi: ðE9Þ

Since the transverse polarization is a Gaussian random
variable, the sum over all its realizations in time—labeled
as X—is also a Gaussian random variable:

WðτÞ ¼
Z

∞

−∞
dX

1ffiffiffiffiffiffi
2π

p
στ

e−X
2=2σ2τeiX ¼ e−σ

2
τ=2: ðE10Þ

We can find στ by taking (without loss of gene-
rality) hXi ¼ 0 and evaluating the autocorrelation
function:

σ2τ ¼ hX2ðτÞi ¼ A2
nc

Z
τ

0

dt1

Z
τ

0

dt2hIxðt1ÞIxðt2Þi: ðE11Þ

Assuming that the noise is stationary, this correlator is
dependent only on T ¼ jt1 − t2j, such that
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hIxðt1ÞIxðt2Þi ¼ hIxðTÞIxð0Þi ∀ t1; t2: ðE12Þ

In line with previous works [65,66] we take the amplitude of this classical variable to be equal to the correlator of our
simplified model:

hIxðTÞIxð0Þi ¼ e−ΓT=2 cosðωnTÞhIxð0Þ2i; ðE13Þ

where Γ is the rate of pure nuclear dephasing. Assuming Ixð0Þ2 ¼ Iyð0Þ2, Eq. (E13) is equal to

hIxðTÞIxð0Þi ¼
1

2
e−ΓT=2 cosðωnTÞðI2 − hIzð0Þ2iÞ: ðE14Þ

Putting this all together, we have

σ2τ ¼
1

2
ðI2 − hIzð0Þ2iÞA2

nc

Z
τ

0

dt1

Z
τ

0

dt2e−Γjt1−t2j=2 cosωnðt1 − t2Þ ðE15Þ

¼ ðI2 − hIzð0Þ2iÞA2
nc

� Γ
2
τ

Γ2

4
þ ω2

n

−
Γωne−Γτ=2 sinωnτ þ ðΓ2

4
− ω2

nÞð1 − e−Γτ=2 cosωnτÞ
ðΓ2

4
þ ω2

nÞ2
	
; ðE16Þ

where the second line is the result of a change of variables
T ¼ t1 − t2 such that dt2 ¼ −dT, and a straightforward
double integral. Since we have access to I and hIzð0Þ2i
throughout the simulations, we have everything required to
calculate WðτÞ ¼ e−σ

2
τ=2. Intuitively, we can see from

Eq. (E16) that at short times one observes some revivals
of coherence related to Larmor precession, and at long
times the decay of coherence becomes exponential.
Incorporating the above decay of electronic coherences

into our calculation is achieved via the an electronic phase-
damping channel:

KTN∶ρ →
X2
i¼0

KTN
i ρKTN†

i ; ðE17Þ

where TN stands for transverse noise, and

KTN
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
WðτÞ

p
1e ⊗ 1n;

KTN
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −WðτÞ

p
j↓ih↑ j ⊗ 1n;

KTN
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −WðτÞ

p
j ↑ih↓j ⊗ 1n: ðE18Þ

c. Optically induced electron relaxation

When shining nonresonant light on our QD system there
exists an optically induced electron spin relaxation at a
power-dependent rate Γopt ∝ Ω, likely the result of photo-
activated charge noise in the device [45]. This relaxation
has the largest effect during the actuate gate, where we
illuminate the sample for a significant time. We incorporate
this into the model with a generalized amplitude damping
channel:

Kopt∶ρ →
X2
i¼0

Kopt
i ρKopt†

i ; ðE19Þ

where

Kopt
0 ¼

�
1 0

0 eΓoptT=2

�
⊗ 1n;

Kopt
1 ¼

�
eΓoptT=2 0

0 1

�
⊗ 1n;

Kopt
2 ¼

�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eΓoptT

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eΓoptT

p
0

�
⊗ 1n: ðE20Þ

We measure this relaxation rate via a separate Rabi driving
measurement as per previous work [45]. For Ω ¼
402 MHz we measure this relaxation rate to be
23.6 MHz, which we can rescale linearly with Rabi
frequency allowing us to fix Γopt ¼ 1.7 MHz during
actuation.

d. Pure nuclear dephasing

In Appendix E 3 b we considered pure nuclear dephasing
acting to damp transverse nuclear coherences that couple to
the electron during sensing. The same nuclear dephasing
processes, which arise from inhomogeneity in the quad-
rupolar coupling strength underpinning the noncollinear
term and electron-mediated nuclear-nuclear spin coupling,
are present during actuation. We include pure nuclear
dephasing at a rate Γ, the same rate as in Appendix E 3 b,
via a nuclear phase-damping channel in each I manifold:
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KPD∶ ρ →
X2Iþ1

i¼0

KPD
i ρKPD†

i ; ðE21Þ

where

KPD
0 ¼ e−ΓT=41e ⊗ 1n;

KPD
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−ΓT=2

p
1e ⊗ jI; i− I−1ihI; i− I−1j; i≠ 0:

ðE22Þ

4. Combined evolution

Having introduced all the individual ingredients that
comprise the simulation, here we combine them into what
constitutes a simulation of a single run of the feedback
algorithm. To complete our quantum channel shorthand
notation for the unitary gates, we define

U1
j∶ρ → Usense;jRx

�
π

2

�
ρRx

�
π

2

�†
U†

sense;j;

U2∶ρ → R−y

�
π

2

�
ρR−y

�
π

2

�†
;

U3∶ρ → UactρU
†
act: ðE23Þ

A simulation of a single run of the feedback algorithm then
proceeds as

ρjþ1 ¼ KresetKPDU3KoptU2KTNU1
jρj: ðE24Þ

As in the preparation part of our physical implementa-
tion, in simulations we increase the sensing time in each
step τj linearly from τ0 ¼ 30 ns to τ43 ¼ τmax over 44 runs
of the fundamental feedback cycle [Eq. (E24)]. Since our
experimental sequence repeats this preparation indefinitely
(interleaved with the experiment for a duty cycle of 88%,
cf. Fig. 8), we operate in steady state. To this end we repeat
the simulated preparation (constituting 44 fundamental
feedback cycles) twice. We find this is sufficient to go
from initial to steady state.

5. Weighting I manifolds

We now have a complete description of how we simulate
the feedback dynamics in a given I manifold; the last
consideration to make is how we weight the results from
each manifold to obtain the quantity of interest pðIzÞ. The
first step is to trace over the electron degrees of freedom as
we are interested solely in the nuclear density matrix, as
such ρ refers to the nuclei only. We can reexpress the
(2N × 2N)-dimensional total nuclear density operator in
terms of the density matrices in individual, uncorrelated I
manifolds ρI as

ρ ¼ ⨁
N=2

I¼0

wI;Nρ
⊕DI;N
I ; ðE25Þ

where ⊕ stands for matrix block concatenation and DI;N is
the degeneracy of an I manifold [10]:

DI;N ¼ N!ð2I þ 1Þ
ðN
2
− IÞ!ðN

2
þ I þ 1Þ! : ðE26Þ

The weighting factors wI;N can be found by considering the
T ¼ ∞ initial state for the simulations:

ρT¼∞ ¼ 1

2N
12N

¼ 1

2N
⨁
N=2

I¼0

�XI

Iz¼−I
jI; IzihI; Izj

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
12Iþ1

�
⊕DI;N

¼ 1

2N
⨁
N=2

I¼0

ð2I þ 1Þρ⊕DI;N
I;T¼∞: ðE27Þ

Comparing ρI;T¼∞ [Eq. (E27)] to ρI [Eq. (E25)], we obtain
wI;N ¼ ð2I þ 1Þ=2N . With this we have everything required
to calculate the expectation value of an arbitrary observable
A as

TrρA ¼
XN=2

I¼0

wI;NDI;NTrρIA; ðE28Þ

which we use to extract the probability distribution of Iz:

pðIzÞ ¼
XN=2

I¼0

wI;NDI;NhI; IzjρIjI; Izi: ðE29Þ

The weights defined as w0
I;N ¼ wI;NDI;N are difficult to

compute on a desktop computer for N > 30 000, and so we
use the approximate form [44]:

w0
I;N ≈

25=2Ið2I þ 1Þffiffiffi
π

p
N3=2 e−2I

2=N: ðE30Þ

In Fig. 12 we compare this approximate form (yellow
curve) to the exact result (purple dotted curve) for
N ¼ 30 000, where the quantitative agreement is clear.
We further plot the approximate result for N ¼ 49 000, as
well as the weights for the 46I values used in the
simulations (blue crosses) as discussed in Appendix E 1.
Note than since we require the weights to sum to 1 we
renormalize these 46 values while preserving their relative
weight.
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6. Fitting model to data

There are four free parameters in our model: Ac; Anc, Γ,
and an additional parameter ξ not yet discussed, which is
the fraction of nuclei partaking in the magnon mode during
actuation. This parameter is strongly motivated by previous
work [37,38], where it was inferred from modeling that
only a small fraction of the total N partake in coherent
electron-nuclear exchange. This fraction ξ is included
ad hoc as a scaling of I →

ffiffiffi
ξ

p
I during the actuate gate,

and thus scales the collective enhancement factor fðI; IzÞ,
which combined with Anc sets the electron-nuclear cou-
pling rate ∼fðI; IzÞAnc. At the maximum degeneracy (wI;N)
point we have fðI; IzÞ ≈ I ¼ ffiffiffiffiffiffiffiffiffi

N=2
p

, as such our scaling is
conceptually equivalent to scaling N → ξN, during actua-
tion only.
We get the first estimate of these four parameters from a

least-squares fit of our model to the electron-nuclear
exchange measurement of Fig. 3(c) of the main text.
Specifically, we isolate the actuate step of our model,
and extract the simulated ESR shift, Δω ¼ AchIzi, versus T
as per Eq. (E28). Fitting this simulated curve to the data
fixes precisely Ac ¼ 0.63ð2Þ MHz and Γ ¼ 6ð2Þ MHz,
which we then use in our feedback model. However, since
ξ and Anc are heavily coupled, this measurement only
constrains the product

ffiffiffiffiffiffi
ξN

p
Anc.

We then run our feedback simulation for each of the
independent variables in the optimization curves of Figs. 3(a)
and 3(c), extracting a T�

2 value at each point. We then
manually search the 2D space fAnc; ξg to match the two
simulated optimization curves to the two datasets simulta-
neously. There is an optimum in this space since Anc also
strongly affects the transverse nuclear noise and in turn the
attainable T�

2 values. As such only one set of fAnc; ξg
reproduces simultaneously the coherent coupling rate and
the scale ofT�

2. After this manual searchwe fix ξ and perform
a least-squares fit to obtain our best estimate of Anc for this

measurement. In conclusion, we obtain the fitted parameter
set Ac ¼ 0.63ð2Þ MHz, Γ ¼ 6ð2Þ MHz, ξ ¼ 0.42, and very
similar Anc values of 140(13) and 166(8) kHz for the
exchange measurement and T�

2 optimization curves,
respectively.

7. Modeling the ideal system

a. Optimization curves

The yellow curves of Fig. 13 are the result of our fitted
simulation, extrapolated beyond the domain of the exper-
imental data (black points). For the blue curve we simulate
purely unitary evolution, i.e., Γopt ¼ Γ ¼ 0, and we neglect
the transverse noise term AncSzIx. This latter consideration
would be true of physical systems where a flip-flop actuator
Hamiltonian could be engineered from a purely collinear
hyperfine interaction. The other three colors represent
simulations where we add one of the three sources of
amplitude or phase damping present in our system to see
the dominant effects (Appendices E 3 b–E 3 d).
Consider first the entirely unitary simulation (blue

curve); strikingly we see oscillations in T�
2 at the nuclear

(a)

(b)

FIG. 13. Effects of relaxation and dephasing on feedback
performance. (a),(b) T�

2 versus maximum sensing time τmax
and actuation time T, respectively. Black circles are the measured
values (also shown in the main text, Fig. 3) with error bars
representing the 68% confidence intervals. The solid curves are
simulations of the data using the model parameters found in
Appendix E 6, but where we include only one amplitude or
phase-damping channel at a time. The blue curve is an entirely
unitary quantum evolution, except for the explicit dissipative
reset step. For the purple curvewe include pure nuclear dephasing
during actuation (Appendix E 3 d). For the pink curve we instead
include optically induced electron relaxation (Appendix E 3 c).
For the orange curve we include instead electron dephasing due to
transverse noise during sensing (Appendix E 3 b). Lastly the
yellow curve contains all three damping channels, and is the best-
fit model included in the main text Fig. 3. Shaded regions
represents the 68% confidence intervals.

FIG. 12. Weighting factors for each I manifold. The purple
dotted curve is the exact expression for the weights w0

I;N for
N ¼ 30 000, with the corresponding approximate version in
yellow. We show only the latter for the case of N ¼ 49 000,
overlaid with the 46 sampled points used in our simulations (blue
crosses).
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Zeeman frequency in both the τmax and T dependence,
which is due to the buildup of transverse nuclear coher-
ences during feedback which then oscillate in the magnetic
field. Since we have two species with different gyromag-
netic ratios, these oscillations beat, resulting in what looks
like high-frequency noise. To get a clearer physical picture,
we plot the same simulation but for a single nuclear species
in Fig. 14. The T dependence therein shows clearly that
these high-frequency oscillations exist on top of a much
lower-frequency, low-visibility oscillation corresponding to
coherent electron-nuclear exchange. In the absence of any
purification of I, as is the case in these simulations, the
different exchange frequencies in different I manifolds
alone combine to heavily damp the exchange. As such,
even in the absence of dephasing, we only observe the first
maximum in T�

2 versus T, which occurs at approximately
75 ns, in rough agreement with the π time measured in
Fig. 2(d) of the main text. In the τmax dependence of Fig. 14
we see that behind the nuclear oscillations there is a broad
optimum in sensing time around τmax ≈ 400 ns. This is
entirely consistent with our intuition that feedback is best
when we are sensitive to single-spin fluctuations, namely,
τmax ¼ 1=4Ac ≈ 400 ns.
Returning to Fig. 13, the first nonunitary process we

consider is pure nuclear dephasing Γ during the actuate step
(purple curves). Its main effect is that transverse coherences
get damped sufficiently to remove the oscillations at the
nuclear Zeeman frequency, smoothing the dependencies.
This pure dephasing also contributes to the finite actuate
gate fidelity, along with optically induced electron relax-
ation Γopt. The pink curves of Fig. 13 result from a

simulation where we add this relaxation to the unitary
case. From this we can see that even the modest actuate gate
fidelity of 77% (Appendix B 3) does not modify the
optimum performance greatly. Its predominant effect is
on the T dependence, whereby it reduces the maximum T�

2

achievable and slightly reduces the optimum exchange time
thanks to driven diffusion, as discussed in the main text.
Finally, the process which has the most marked effect on

the performance of our feedback algorithm is the dephasing
introduced by transverse noise during sensing, which we
add to the unitary simulation to obtain the orange curves of
Fig. 13. Optimum feedback is now a competition between
minimizing the effect of transverse noise and maximizing
sensitivity to spin fluctuations, reducing the optimal τmax
and the maximum T�

2 attainable.

b. Purifying down to single quanta

In Fig. 15, we report the result of a simulation of our
quantum-algorithmic feedback as applied to an ideal system,
where all dephasing and damping rates have been set to zero.
We plot pðAcΔIzÞ versus AcΔIz for the physical parameters
found in Appendix E 6 and for the experimental parameters
that lead to optimal purification, as quantified byT�

2; namely,
Ω ¼ 29 MHz, T ¼ 86 ns, and τmax ¼ 450 ns. The resulting
T�
2 is 510 ns, but most strikingly we see that the nuclear state

is purified to a single macrostate Iz to within fluctuations of
one quantum, ΔIz ¼ �1.

8. Nuclear Schrödinger cat state protocol

Herein we detail a simple extension to our algorithmic
feedback protocol that allows for the generation of certain
quantum states of the nuclear ensemble. Specifically, we
generate Schrödinger kitten states, which we define as

FIG. 15. Optimally purified state in the ideal case. pðAcΔIzÞ
versus AcΔIz for the parameters found in Appendix E 6. With all
dephasing and damping rates set to zero, we model the ideal
system under optimal purification, which occurs atΩ ¼ 29 MHz,
T ¼ 86 ns, and τmax ¼ 450 ns. The system is purified to a single
macrostate Iz to within fluctuations of a single quantum, i.e.,
ΔIz ¼ �1. We plot only a small range of ΔIz, since the total
probability outside this range is negligible.

(a)

(b)

FIG. 14. Feedback performance for a single-species unitary
algorithm. (a),(b) Simulated T�

2 versus maximum sensing time
τmax and actuation time T, respectively. The evolution during the
feedback algorithm is entirely unitary, except for the explicit
dissipative reset step. Here we use the model parameters found in
Appendix E 6, but we only simulate a single nuclear species with
Zeeman frequency ωn ¼ 29 MHz. Shaded regions represent the
68% confidence intervals.
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superpositions of two collective states with small nuclear
polarization, in analogy with coherent optical states with
small amplitude [57]. This is made possible since our
algorithm is entirely coherent except for the explicit
dissipation operation on the electron. In general, the actuate
gate generates electron-nuclear coherences. It is the dis-
sipative reset step that prevents the proliferation of quantum
coherences as the algorithm cycles. Any extension to our
algorithm that seeks to generate quantum states of the
nuclei must therefore map electron-nuclear coherences to
the nuclear part of Hilbert space prior to reset.
Figure 16(a) presents a concrete example of such an

extension. Suppose we start in a pure nuclear state jI; Izi.
Our unmodified algorithm is designed for the purification
of Iz and, while not fully elucidated theoretically, feedback
applied to optically active quantum dots has been found to
also produce a weak purification in I. This I purification

can be witnessed as dark-state correlations of the ensemble
[41,48,67]. Impurity in I or Iz will limit the fidelity of the
nuclear state we can prepare using the protocol proposed
below. That said, for clarity, we take a pure initial state,
j ↑ijI; Izi, and omit I in our notation henceforth, as it is
unchanged by the protocol.
The first part of the modified protocol is simply the sense

and actuate step of our feedback algorithm, which gen-
erates the electron-nuclear entangled state, j↓̃ijIz þ 1i þ
eiϕj↑̃ijIz − 1i (where proper normalization is implied
hereupon). Note that the phase ϕ results from the diagonal
part of the actuate Hamiltonian H0

act ¼ ΩSx þ ωnIz, in the
eigenbasis of Sx, i.e., fj↑̃i; j↓̃ig. The first modification
from the original feedback algorithm is an unconditional
electronic RzðπÞ rotation immediately after the actuate gate.
This allows us to repeat the actuate and RzðπÞ gates M
times, which does nothing to the degree of electron-nuclear
coherence, but pushes the coherences out to higher nuclear
polarization, i.e., j↑̃ijIz þMi þ eiϕ

0 j↓̃ijIz −Mi.
The second, crucial extension to the feedback algorithm

is then a disentangling gate, which is the wait time depicted
in Fig. 16(a). Selecting the appropriate wait time,
τ ¼ 1=4ðM þ 1ÞA0, leads to a R�zðπ=2Þ rotation condi-
tional on the sign of nuclear polarization, yielding the
separable state ðj↑̃i þ ij↓̃iÞðjIz þMi þ eiϕM jIz −MiÞ.
Finally, the reset step polarizes the electron, while pre-
serving the purely nuclear coherences, thus preventing the
electron from becoming reentangled with the nuclei. Since
the states jI; Iz �Mi are collective states of the entire
ensemble, a quantum superposition thereof constitutes a
Schrödinger kitten state [57].
For completeness, we note that as the nuclear state is

pushed out in polarization, the actuation time required to
achieve the SWAP operation must be chosen as T ¼
2=Anc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðI þ 1Þ −MðM − 1Þp

(assuming the initial state
for the protocol is the zero-polarization state jI; 0i).
In Fig. 16(b), we present the result of a simulation
of the proposed kitten-state protocol, for M ¼ 7, operating
in the nuclear Hilbert space spanned by I ¼ 7; Iz ∈
fI; I − 1;…;−Ig. We capture the essence of this extension
to our feedback algorithm by simulating purely unitary
evolution, using the methods described in Appendix E 2.
As expected, the final density matrix ρ features nuclear
coherences, albeit with an arbitrary but known phase ϕM,
between jIz ¼ þ7i and jIz ¼ −7i, confirming the quantum
nature of the superposition.
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