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Scaling of far-field wake angle of non-axisymmetric pressure disturbance
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Université Paris-Sud, CNRS, Laboratoire FAST. Bâtiment 502, 91405 Orsay, France.

(Dated: September 25, 2018)

It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a
disturbance of finite size can be significantly narrower than the maximum value αK = sin−1(1/3) '
19.47o predicted by the classical analysis of Kelvin. For axisymmetric disturbance, simple argument
based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following
a Mach-like law at large velocity, α ' Fr−1

L , where FrL = U/
√
gL is the Froude number based

on the disturbance velocity U , its size L, and gravity g. In this paper we extend this analysis to
the case of non-axisymmetric disturbances, relevant to real ships. We find that, for intermediate
Froude numbers, the wake angle follows an intermediate scaling law α ' Fr−2

L , in agreement with
the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that

beyond a critical Froude number, which scales as A1/2 (where A is the length-to-width aspect ratio

of the disturbance), the asymptotic scaling α ' Fr−1
B holds, where now FrB = A1/2FrL is the

Froude number based on the disturbance width. We propose a simple model for this transition, and
provide a regime diagram of the scaling of the wake angle as a function of parameters (A,FrL).

PACS numbers: 47.35.-i,47.54.-r

I. INTRODUCTION

Lord Kelvin was the first to explain why a ship moving
at constant velocity in deep water generates waves con-
fined in a triangular wedge [1, 2]. He demonstrated that
the stationary wave pattern is composed of a transverse
and a divergent wave system delimited by a cusp line
making a constant half-angle αK = sin−1(1/3) ' 19.47o

with the ship trajectory [3–7]. Recently, airborne im-
ages of ship wakes showing angle of maximum wave am-
plitude significantly smaller than the Kelvin prediction
have been analyzed [8], renewing the interest in this clas-
sical subject [9–13]. We propose here to extend the phe-
nomenological approach introduced in Ref. [8] to non-
axisymmetric disturbances, providing a more realistic de-
scription of elongated boats.

For pure gravity waves in deep water, the governing pa-
rameter for the wake angle is the Froude number based
on the hull length L, FrL = U/

√
gL, which is the ratio

of the boat velocity U and velocity of gravity waves of
wavelength of the order of L [5, 7]. Ignoring the exact
shape of the boat and retaining L as the unique length
scale of the problem, it is possible to infer the scaling
of the wake angle from the following general property of
dispersive waves: A disturbance of size L mostly excites
a wave packet containing wave numbers kf of order L−1

and propagating at the group velocity cg = 1
2

√
g/kf .

This is the main result of the Cauchy-Poisson initial-
value problem, first analyzed in 1815 [2–5, 7]. It follows
that the energy emitted by a disturbance of finite size
is effectively radiated at a constant group velocity. Ac-
cordingly, the maximum amplitude of the waves at large
FrL is found at the Mach-like angle α ' cg/U ' Fr−1L
(this law does not apply for moderate FrL because of the
cusp in the wave pattern, which concentrates the max-
imum amplitude at the Kelvin angle αK). This law is
compatible with the airborne images of ship wakes and

numerical simulations of Ref. [8], and has recently re-
ceived mathematical confirmation by Darmon et al. [9]
for an axisymmetric disturbance.

Recently Noblesse et al. [11] proposed an alternate
scaling for the decrease of the wake angle at large veloc-
ity, α ' Fr−2L , which turns out to also fit well the air-
borne data of Ref. [8], at least in an intermediate range
of Froude numbers. Their analysis relies on the modeling
of a real boat as two out-of-phase point sources separated
by a distance of order L. This simple model classically
reproduces the double Kelvin wedge originating at the
bow and the stern of poorly streamlined boats at small
Froude numbers [4]. In their approach the decrease of
the wake angle is described in terms of destructive in-
terferences between the two Kelvin patterns which occur
when the wavelength of the transverse waves becomes of
the order or larger than the hull length.

The aim of this paper is to investigate the influence
of the aspect ratio of a non-axisymmetric disturbance on
the far-field angle of maximum wave amplitude, focusing
on the case of pure gravity linear waves in deep water.
We consider the simplest non-axisymmetric disturbance,
a Gaussian pressure field of elliptic iso-level lines with
aspect ratio A = L/B, where L and B are the distur-
bance length and width (beam), respectively. Of course
this crude simplification does not pretend to reproduce
the complexity of real ship wakes. Hulls are rigid ob-
jects that cannot be reduced to a simple applied pressure
disturbance, with a trim being moreover a function of
the ship velocity (the effective aspect ratio is a decreas-
ing function of the Froude number for rapid boats in the
planing regime). An asymptotic analysis of the Fourier
integral defining the surface elevation in this linear model
can be performed to compute the wake angle as a func-
tion of the Froude number and the disturbance aspect ra-
tio [12]. Here we propose a simple geometrical approach
to determine the scaling of this wake angle, by extend-
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ing the phenomenological model of Ref. [8, 13] to non-
axisymmetric disturbances. A regime diagram in terms
of these two parameters is proposed, which brings to-
gether the axisymmetric disturbance regime (α ' Fr−1B
for A = 1) of Refs. [8, 9, 12] and the strongly elongated
disturbance regime (α ' Fr−2L for A� 1) of Ref. [11].

II. NUMERICAL SIMULATIONS

The wave pattern is computed using the classical sim-
plification due to Havelock [3], in which the motion of a
rigid hull is modeled by the translation at the water sur-
face of a pressure disturbance P (r). The resulting wave
field is given by [7, 9, 14]:

ζ(x) = − lim
ε→0

1

(2π)2

∫∫
kP̂ (k)/ρ

ω(k)2 − (k ·U− iε)2
eik·xd2k,

(1)

with P̂ (k) the two-dimensional Fourier transform of
P (r), ρ the fluid density, U = Uex the disturbance ve-

locity, ω(k) =
√
g|k| the wave frequency for pure gravity

waves in deep water, and ε > 0 a small parameter in-
troduced to avoid the divergence of the integrand. In
Refs. [8–10, 13] an axisymmetric pressure distribution is
used. Here we use a Gaussian pressure distribution with
elliptical iso-values of longitudinal axis L (along the dis-
turbance motion ex) and transverse axis B,

P (r) = P0 exp

[
−π2

(
x2

L2
+
y2

B2

)]
. (2)

For pure gravity waves in deep water, there are three
length scales in the problem, L, B and U2/g, so the far-
field wake angle of this non-axisymmetric disturbance is
governed by two independent non-dimensional parame-
ters. The first one is the aspect ratio

A = L/B. (3)

The second one can be either the longitudinal Froude
number based on the disturbance length L,

FrL =
U√
gL

or the transverse Froude number based on the distur-
bance width B,

FrB =
U√
gB

= A1/2FrL.

Both sets of non-dimensional numbers (A,FrL) and
(A,FrB) turn out to be useful to describe the various
wake angle regimes in the following.

We have computed the wake pattern for a wide range
of aspect ratios, from A = 0.25 (ellipse traveling along its
smallest dimension) to A = 64 (very thin ellipse traveling
along its largest dimension), and for Froude numbers FrL

FIG. 1. (Color online) Wave field computed for the non-
axisymmetric Gaussian pressure disturbance (2) at fixed lon-
gitudinal Froude number FrL = 1.5 for various aspect ratio:
(a) A = 0.25, (b) A = 1, (c) A = 4, (d) A = 16. Color maps
and scales are the same for the four images. Dashed line: clas-
sical Kelvin angle αK ; solid line: angle α of maximum wave
amplitude.
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ranging from 0.1 to 100. These numbers go well beyond
realistic values for ships (typically FrL ' 0.1 − 2 and
A ' 2 − 10), but they are nonetheless useful to infer
asymptotic scaling laws for the wake angle. The Fourier
integral (1) is integrated on a square domain of size Lbox,
discretized on a grid of N ×N collocation points. For an
aspect ratio A � 1, the resolution N must be such that
Lbox � L� B � Lbox/N . We take here N = 3× 212 =
12288, which is sufficient to simulate the wake pattern
for the largest aspect ratio, A = 64.
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FIG. 2. (Color online) Angle of maximum wave amplitude
α as a function of the longitudinal Froude number FrL
(a) and the transverse Froude number FrB (b), for a non-
axisymmetric Gaussian pressure disturbance at five values of
the aspect ratio, A = L/B = 0.25, 1, 4, 16 and 64.

Typical wave patterns are shown in Fig. 1 for a con-
stant longitudinal Froude number FrL = 1.5 with vary-
ing aspect ratios A from 0.25 to 16. The far-field wake
angle α is measured as the angle between the disturbance
trajectory and the line going through the maximum am-
plitude of the waves. For this value of FrL the wake
angle α is smaller than the Kelvin value, and is clearly a
decreasing function of the aspect ratio A.

Figure 2 shows the angle α for various aspect ratio, as

a function of both the longitudinal and transverse Froude
numbers, FrL (Fig. 2a) and FrB (Fig. 2b). From these
two sets of non-dimensional parameters it is possible to
identify the following three regimes:

(1) At low velocity, angles α close to the classical
Kelvin angle αK ' 19.47o are found. This regime is
valid up to FrL ' 0.5 for A > 1 [see Fig. 2(a)], whereas
it is valid up to FrB ' 0.5 for A < 1, i.e. up to
FrL ' 0.5A−1/2 [see Fig. 2(b)]. In other words, the
Kelvin regime holds when the Froude number based on
the smallest size of the disturbance is below 0.5.

(2) At intermediate velocity, provided that the aspect
ratio A is sufficiently large, the wake angle is governed
by the longitudinal Froude number, and follows the law

α ' C2

Fr2L
(4)

with C2 ≈ 0.073 ± 0.003. This intermediate regime is
compatible with the analysis of Noblesse et al. [11]. It
must be noted that its extent is moderate: For A = 64
(a value unrealistically large for real ships), this scaling
holds in the range 0.5 < FrL < 2 only.

(3) At larger velocity, the wake angle is governed now
by the transverse Froude number FrB , and follows the
law

α ' C3

FrB
(5)

with C3 ≈ 0.22±0.01. This law is in excellent agreement
with the analytical prediction C3 = 1/(π1/2401/4) '
0.224 of Ref. [9] for an axisymmetric Gaussian pressure
disturbance [Eq. (2) with A = 1].

A = L / B

Fr
L =

 U
 / 

(g
 L

)1
/2

α = C2 / FrL
2

α  = C3 / (A1/2 FrL)

(1)   Kelvin

0.3
 A

1/2

0.5 A -1/2

0.5

1

(2)

(3)

FIG. 3. The three regimes of wake angle in the plan of pa-
rameters (A,FrL) in logarithmic scales.

The three wake regimes are summarized in the plan of
parameters (A,FrL) in Fig. 3. The boundary between
regimes (2) and (3) is given by FrL ' (C2/C3)A1/2 '
0.33A1/2. Interestingly, for nearly axisymmetric distur-
bances (typically A < 2), only the first and third regimes
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are observed: the wake angle directly proceeds from
α ' 19.47o to α ' Fr−1B as the velocity is increased,
in agreement with the analysis of Refs. [8, 9] for axisym-
metric disturbance.

III. PHENOMENOLOGICAL MODEL

We introduce in the following a simple model which
describes the transition between the three wake regimes
found in the simulation. The basic assumption is that the
amplitude of the waves excited by a moving disturbance
is small when their wave lengths are much larger or much
smaller than the disturbance size. This hypothesis is a
direct consequence of the Cauchy-Poisson initial value
problem. It was first used in Ref. [8] for axisymmetric
disturbance, and we extend this approach here to the
case of non-axisymmetric disturbance.

The physical content of the Cauchy-Poisson problem
can be described as follows. When a stone of size L
is thrown in a pound, a wave packet containing all the
wavelengths is excited. However, in the far field, waves
of significant amplitude have their wave length of the
order of the stone size. Let us consider for simplicity the
case of a Gaussian initial perturbation of the interface,
which excites a Gaussian spectrum of wave numbers, each
propagating with its group velocity cg(k) = 1

2

√
g/k. In

this spectrum, the small wave numbers of large initial
amplitude propagate faster, so they spread over a larger
distance and their spatial density of energy (and hence
their amplitude) rapidly decreases. On the other hand,
the large wave numbers do not spread much, but they
are of small initial amplitude. As a result, the waves of
intermediate wave number k, of the order of L−1, are of
maximum amplitude.

We start by describing the wake pattern in the Fourier
space. The waves in the wake being stationary in the
frame of reference of the disturbance traveling at velocity
U = Uex, their wave vectors must be such that their rela-
tive (i.e., Doppler-shifted) frequency, Ω(k) = ω(k)−k·U,
is zero [ω(k) =

√
gk is the dispersion relation of gravity

waves, with k = |k|]. Introducing the non-dimensional
wave vector K = k/kg, with kg = g/U2, the stationary
condition Ω(k) = 0 writes

K2
y = K2

x(K2
x − 1). (6)

This relation is plotted in Fig. 4 (it corresponds to a
family of curves because of the use of the axis normalized
by the disturbance size—see below). The energy of a
given wave vector K propagates according to its relative
group velocity (in the frame of the disturbance), c′g =
∇kΩ = cg −U, where cg = ∇kω is the group velocity in
the frame of the liquid at rest. Accordingly, the relative
group velocity c′g is a vector normal to the curves (6), as
illustrated by the arrows in Fig. 4 [15, 16]. The angle of
c′g with respect to −U, which we call the radiation angle,

is therefore given by

tanα(K) =

(
∂Ky

∂Kx

)−1
=

√
K2
x − 1

2K2
x − 1

(7)

(see Ref. [8, 13] for an alternate derivation of this angle in
the physical space). This radiation angle is 0 for Kx =
1 and for Kx → ∞, and reaches the maximum αK =
tan−1(1/

√
8) ' 19.47o at the inflection point of the curve

(6), which is located at K0 = (
√

3/2,
√

3/4), with K0 =
|K0| = 3/2.

For a disturbance characterized by a given spectrum,
the energy density of each wave number of the spectrum
propagates in the direction given by Eq. (7). The re-
sulting wake angle α, i.e. the angle of maximum wave
amplitude, is therefore given by the radiation angle α(k)
at which most of the energy supplied by the disturbance
is effectively radiated. Two cases must be considered: (i)
if the maximum of the radiated energy is in the vicin-
ity of the inflection point K0 = 3/2, the radiated energy
focuses along the Kelvin angle αK ; (ii) otherwise, the
wake angle is given by the radiation angle evaluated at
the most excited wave number.

In order to determine the wake angle it is now nec-
essary to model the effect of the non-axisymmetric dis-
turbance in the Fourier space. We extend the analysis
stemming from the Cauchy-Poisson problem by assum-
ing that the wave of maximum amplitude in each direc-
tion has a wavelength of the order of the disturbance size
along that direction. Accordingly, the energy-containing
domain in the spectral space is an ellipse, of semi-axes
2π/L and 2π/B = 2πA/L:(

Lkx
2π

)2

+

(
Lky
2πA

)2

= 1 (8)

(plotted as the bold gray line in Fig. 4 in the case A = 4).
In practice, because of the finite extent of the distur-
bance, this energy-containing ellipse has a thickness of
the order of unity in the spectral space; for simplicity
we do not consider this thickness in the following. Nor-
malizing Eq. (8) by kg = g/U2 and using the relation

Lkg = Fr−2L , the ellipse writes

K2
x + (Ky/A)2 = (2π)2Fr4L. (9)

For a given Froude number FrL > 1/
√

2π ' 0.4,
the energy-containing ellipse (9) intersects the stationary

curve Ω(k) = 0 (6) at the point K̃ = (K̃x, K̃y) satisfying

K̃2
x =

1

2

[
1−A2 ±

√
(A2 − 1)2 + 4A2(2π)2Fr4L

]
(10)

(where only the sign + has a physical meaning). If this
intersection falls in the vicinity of the inflection point,
K̃ ' K0 [case (i) above], the energy radiated by the
disturbance focuses at the Kelvin angle. Otherwise, en-
ergy is mostly found at the radiation angle (7) evaluated



5

0 1 2 3
0

1

2

3

4

L k x  / 2

L 
k y

 / 
2

0.350.512

α

π

π

FIG. 4. (Color online) Graphical solution in the Fourier space
for the wake angle of a non-axisymmetric disturbance. Thin
(color) lines: Wave vectors k satisfying the stationary condi-
tion Ω(k) = 0 [Eq. (6)], for longitudinal Froude numbers FrL
= 0.35, 0.5, 1 and 2. The normal to the curve gives the group
velocity relative to the disturbance, c′g, making angle α(k)
with the axis x. Thick (gray) line: Energy-containing domain
radiated by a disturbance [Eq. (8), shown here for A = 4].
The wake angle α for a disturbance of a given Froude number
is given by the normal to the curve Ω(k) = 0 taken at the

point of intersection (k̃x, k̃y) between the bold gray line and
the thin line.

at the intersection point (10). This geometrical construc-
tion can be readily generalized for any dispersion relation,
e.g. for finite-depth gravity waves, for capillary-gravity
waves, etc.

The wake angle α given by this model (7)-(10) is plot-
ted as a function of FrL and FrB for various aspect ratios
A in Fig. 5. For parameters such that the wake angle is a
decreasing function of FrL, the model shows an excellent
agreement with the wake angle determined numerically
in Fig. 2 for the elliptical Gaussian disturbance. On the
other hand, since the model does not contain the physics
of the wave focusing along the inflection point (cusp an-
gle), it cannot describe the wake angle at small Froude
numbers, when α is close to the Kelvin angle, and the
sharp jump to smaller angles observed in Fig. 2 as the
Froude number is increased.

The two scaling laws found numerically [Eq. (4) and
(5)] are readily recovered in the case of a very elongated
disturbance (A� 1):

For 1� FrL �
√
A, Eq. (10) reduces to K̃x ' 2πFr2L,

yielding the wake angle:

α ' 1

4πFr2L
.

This is the intermediate regime (2) of Fig. 3, in which the
wake angle does not depend on the aspect ratio A, and

100 101 10210−1
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FrL = U / (g L)1/2

(a)
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)

FrB = U / (g B)1/2
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FIG. 5. (Color online) Wake angle according to the model (7)-
(10), as a function of the longitudinal Froude number FrL (a)
and transverse Froude number FrB (b), for aspect ratios A
= 0.25, 1, 4, 16 and 64.

is governed by FrL only. The numerical constant C2 =
1/4π ' 0.080 is very close to the one found numerically,
C2 ' 0.073± 0.003.

For FrL �
√
A, Eq. (10) reduces to K̃x '

(2πA)1/2FrL, yielding the wake angle:

α ' 1

2
√

2π
√
AFrL

=
1

2
√

2πFrB
.

This is the asymptotic regime (3) of Fig. 3, in which
the wake angle is governed now by the transverse Froude
number FrB = U/

√
gB. The numerical constant is

C3 = 1/(2
√

2π) ' 0.20, very close to the one found nu-
merically, C3 ' 0.22± 0.01.

IV. CONCLUSION

We have investigated, by means of numerical simula-
tions and a simple phenomenological model, the influence
of the aspect ratio A of the disturbance on the scaling
of the angle of maximum wave amplitude. The model
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stems from the general property of dispersive waves that
a disturbance of finite size excites a wave packet contain-
ing wave lengths of order of the disturbance size, which
we apply here to the case of non-axisymmetric distur-
bances. In spite of its simplicity, the present model suc-
cessfully reproduces the two wake regimes reported in the
literature, governed by the Froude number based either
on the disturbance length L or width B: For axisym-
metric or weakly elongated disturbances the asymptotic
law α ' Fr−1B of Refs. [8, 9] is recovered, whereas for

elongated disturbances an intermediate scaling Fr−2L is
found. This intermediate scaling is compatible with the
analysis of Noblesse et al. [11], which applies for two sep-
arated point sources.

Of course the application of this highly simplified
model for real ship wakes is questionable, since it ignores

the complexity of the flow around real ship hulls (with de-
tached boundary layers, turbulence, wave breaking etc.).
In particular, the cross-over between the two scaling laws
at FrL ' A1/2, which can be hardly tested from exist-
ing data of airborne wake images [8], should be confirmed
by systematic measurements of ship models of various as-
pect ratios or numerical simulations reproducing realistic
hull shapes.
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