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Mach-like capillary-gravity wakes

Frédéric Moisy and Marc Rabaud
Université Paris-Sud, CNRS, Laboratoire FAST, Bâtiment 502, 91405 Orsay, France

(Dated: September 14, 2021)

We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind
a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers BoD = D/λc

ranging between 0.1 and 4.2, where D is the cylinder diameter and λc the capillary length. In all
cases the wake angle is found to follow a Mach-like law at large velocity, α ∼ U−1, but with different
prefactors depending on the value of BoD. For small BoD (large capillary effects), the wake angle
approximately follows the law α ' cg,min/U , where cg,min is the minimum group velocity of capillary-
gravity waves. For larger BoD (weak capillary effects), we recover a law α ∼

√
gD/U similar to that

found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)].
Using the general property of dispersive waves that the characteristic wavelength of the wavepacket
emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes
the transition between these two Mach-like regimes as the Bond number is varied. We show that
the new capillary law α ' cg,min/U originates from the presence of a capillary cusp angle (distinct
from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates
for Bond numbers of order of unity. This model, complemented by numerical simulations of the
surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement
with experimental measurements.

PACS numbers: 47.35.-i,47.54.-r

I. INTRODUCTION

A ship moving on calm water generates gravity waves
presenting a characteristic V-shaped pattern. Lord
Kelvin [1] in 1887 was the first to describe the structure
of this pattern, using a stationary phase argument [2–7].
The key result of Kelvin’s analysis is that the energy ra-
diated by the disturbance remains confined in a wedge
of half-angle given by sin−1(1/3) ' 19.47o, independent
of its size and velocity. Interestingly, although the ge-
ometry of the crest lines is universal, different regions of
the pattern may be visible or hidden depending on which
wave numbers are effectively radiated by the disturbance
or how excited waves produce constructive or destructive
interferences [4, 6, 8, 9]. The full Kelvin pattern is visible
only if all wavelengths are equally radiated by the distur-
bance, but in general only a finite range of wavelengths
is visible, which affects the overall shape of the pattern.

To account for the large variety of wakes observed be-
hind ships of different size and velocities, the details of
the ship geometry and the nature of the flow around
it must be considered. However, focusing on the far-
field angle of maximum wave amplitude produced by
a disturbance characterized by a single length scale L,
the wake can be described solely by the Froude number
Fr = U/

√
gL, with U the velocity and g the gravitational

acceleration, provided that the capillary effects can be
neglected [4, 6]. The dependence of the angle with Fr,
and the physical origin of this dependence, have recently
received much attention [10–17]. Note that considering a
finite water depth H introduces another Froude number,
FrH = U/

√
gH, which has also a strong influence on the

geometry of the wake pattern, but which we shall not
consider in this paper.

In order to describe the far-field wake angle, we used
in Refs. [10, 14] the key property of dispersive waves that
the waves of maximum amplitude generated by a distur-
bance of size L are of wavelength of order of L. This is the
main result of the Cauchy-Poisson initial value problem
[2–6], which describes the evolution of the free surface
elevation originating from an initial disturbance: The
wave packet emitted by a disturbance of size L prop-
agates at the group velocity cg(kf ) = 1

2

√
g/kf , where

the local wave number kf at the maximum of the wave
packet is of order of L−1. Wave lengths much larger or
much smaller than L are found far from the maximum
of the wave packet, and are therefore of weak amplitude.
As a consequence, among the range of wavelengths nec-
essary to build the full Kelvin pattern (between 0 and
λg = 2πU2/g), only those of order of L have significant
amplitude, yielding an angle of maximum wave ampli-
tude smaller than the Kelvin angle when L � λg (i.e.

when Fr� 1/
√

2π ' 0.4). In this case the far-field wake
angle is simply obtained by considering the superposition
of wave packets emitted along the disturbance trajectory
and propagating at constant group velocity cg(kf ), which
plays the role of an effective sound velocity as in a non-
dispersive medium. The wake angle is therefore given by
a Mach-like law α ' sin−1(cg(kf )/U) [18], yielding at
large Froude number

α ' a

Fr
, (1)

with a ' O(1). This scaling has been confirmed an-
alytically by Darmon et al. [11] for an axisymmetric
Gaussian pressure disturbance. Equation (1) does not
apply at moderate Froude number, when L is of or-
der or larger than λg, for which most of the energy ra-
diated by the disturbance concentrates along the cusp
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lines at the Kelvin angle. The value of a in Eq. (1) de-
pends on the shape of the disturbance, which sets the
relation between its characteristic size L and the domi-
nant wavenumber kf emitted in the wave packet. The
simple choice kf = 2π/L proposed in Ref. [10] yields

a = 1/(2
√

2π) ' 0.20, which turns out to provide a rea-
sonable agreement with the wake angles measured from
airborne images of ship wakes.

The case of non-axisymmetric pressure disturbance, re-
cently discussed in Moisy and Rabaud [14] and Benza-
quen et al. [16], suggests that Eq. (1) remains asymp-
totically valid provided that the Froude number is based
on the width of the disturbance. Elongated pressure dis-
turbances actually show a transition between an inter-
mediate scaling α ' Fr−2 and the asymptotic scaling
α ' Fr−1 [14]. This intermediate scaling α ' Fr−2 has
been first proposed by Noblesse et al. [13] by considering
the interference between the Kelvin wakes emitted by two
point sources separated by a distance L, aiming to model
the bow and stern waves of a ship. In the range of Froude
numbers for which ships are usually designed (Fr < 2),
both laws α ' Fr−1 and Fr−2 are actually compatible
with the available data. Larger Froude numbers, up to
5 or 10, may be encountered for offshore powerboats (or
“go-fast boats”), although no wake angle measurements
are available in this regime to our knowledge.

Very large Froude numbers up to 10 are more com-
monly encountered for small objects, such as subma-
rine periscopes, water skis, or hydrofoils. In these cases,
the object size (10− to 20−cm diameter for a periscope
and 3 cm × 30 cm cross-section for a small sailboat
hydrofoil) is comparable to the capillary length, λc =
2π(γ/ρg)1/2 ' 1.5 cm, suggesting significant influence of
the capillary effects (ρ is the fluid density and γ the sur-
face tension). The geometry of the capillary-gravity crest
lines has been described in detail in Refs. [3, 19–22]. To
account for the finite size effects of the disturbance, two
non-dimensional numbers must be introduced: In addi-
tion to the Froude number Fr, capillary-gravity wakes
are also characterized by a Bond number, Bo = L/λc,
or, equivalently, by the velocity ratio U = U/cmin, where
cmin = (4gγ/ρ)1/4 ' 22 cm s−1 is the minimum phase ve-
locity (the three non-dimensional numbers are related by

U = Fr
√
πBo). Capillary-gravity wakes have been mostly

investigated in connection with the wave resistance prob-
lem, in particular with the nature of the drag onset as the
disturbance velocity crosses cmin [23–28]. On the other
hand, the effect of the finite size of the disturbance on
the far-field wake angle at small Bond number (strong
capillary effect) has not been described.

The aim of this paper is to characterize the wake be-
hind a moving disturbance of size of order of the capil-
lary length λc, focusing on the far-field angle of max-
imum wave amplitude. A series of experiments has
been performed using surface-piercing vertical cylinders
(periscopes) of various diameters and large immersion
depth translated at constant velocity. Using a two-
dimensional geometry for the disturbance eliminates the

dependence with respect to the immersion depth, which
would have varied with velocity for a three-dimensional
partially immersed body. The wake angle here is there-
fore uniquely determined by the Froude and Bond num-
bers based on the cylinder diameter.

Our observations suggest that the most remarkable ef-
fect of capillarity on the wake geometry is the presence
of a capillary-gravity cusp angle (distinct from the usual
gravity cusp angle at αK ' 19.47o), which is related to
the minimum of the group velocity at cg,min ' 0.77cmin

(17 cm s−1 for the air-water interface). We find that,
for Bond number of order unity, the angle of maximum
wave amplitude is governed by this capillary-gravity cusp
angle, yielding at large velocity

α ' cg,min

U
. (2)

This law is similar to Eq. (1), although here the effective
“sound velocity” cg has a different physical content. This
is because if this disturbance size is not too far from
the wavelength of the capillary cusp (' 2.54λc ' 4 cm),
then the energy radiated by the disturbance accumulates
along this capillary cusp angle. On the other hand, for
larger disturbance the wake angle is governed by the pure
gravity waves and the law (1) is recovered.

The two simple scaling laws (1) and (2) are derived un-
der the strong assumption that the disturbance is char-
acterized by a single length scale, as is the case for a
moving Gaussian pressure disturbance of prescribed size.
In the case of a moving solid body the relation between
the disturbance size and the resulting pressure distribu-
tion depends on the shape of the body, and also on var-
ious flow phenomena such as detached boundary layers,
wave breaking, vortex shedding, and so on. In spite of
these limitations, the present measurements are well de-
scribed by Eqs. (1) and (2), provided that the effective
size of the pressure disturbance is chosen of order of a few
cylinder diameters. This is in contrast with streamlined
bodies such as ships, for which the effective pressure dis-
turbance at large velocity has essentially the size of the
ship.

II. EXPERIMENTS

A. Experimental setups

The experiments consists in translating a vertical cylin-
der, partially immersed in water, at constant velocity,
and imaging the resulting wake to measure the angle of
maximum wave amplitude. Two series of experiments
have been carried out: one in a small-scale towing tank
for small cylinder diameters (Fig. 1), and the other in a
swimming-pool for larger diameters (Fig. 2).

The small-scale towing tank is 2 m long and 0.4 m wide
and filled to a depth of 0.2 m of tap water. The cylinders
are 30-cm-long stainless steel rods, of diameter D = 1.5
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FIG. 1. (Color online) Wake patterns in the small-scale tow-
ing tank experiments, for a cylinder of diameter D = 1.5 mm
(Bond number BoD = 0.10), at velocity U = 0.60, 0.80 and
1.80 m s−1. The tank is 2 m long, and only the last 0.85 m
are shown. The waves are visualized by shadowgraphy on the
bottom of the water tank.

and 5 mm, with at least 10 cm immersed under the wa-
ter surface. They are hung on a horizontal translation
stage driven by a servo-control constant current motor.
For each cylinder, a series of typically 20 runs at different
translation velocities have been performed, with U rang-
ing from cmin to 3 m s−1 (U = U/cmin between 1 and 13).
The acceleration of the translation stage is set between 1
and 10 m s−2 depending on the desired cylinder velocity,
so the acceleration length is less than 25% of the tank
length even at the largest velocity.

The swimming pool is 25 m long, 12.5 m wide, and 2 m
deep. The cylinders are hollow plastic tubes, 60 cm long,
to at least 20 cm of immersion depth, and diameters D =
10, 30, and 62 mm. The cylinder is mounted on a carriage
with pulley wheels, which is translated along a stainless
steel wire rope stretched across the pool. The carriage is
pulled by a thread winded on a spool driven by a motor at
one end of the pool. While the cylinders remained strictly
vertical in the small-scale towing tank, they were slightly
sloped backward at high velocities in the swimming-pool
experiments because of the strong drag (for the largest
diameter the angle relative to the vertical remains less

FIG. 2. (Color online) Wake patterns in the swimming pool
experiments, for a cylinder of diameter D = 16 mm (Bond
number BoD = 1.0), at velocity U = 0.63 and 2.5 m s−1. The
wake angle is determined from the intersection (shown by the
vertical arrow) of the dashed line, going through the waves of
maximum amplitude, to the back edge of the pool.

than 5o up to 2 m s−1, but it reaches 20o at 3 m s−1).

In the small-scale experiment, the surface tension of
water has been estimated in situ from the measured wave-
lengths using the following procedure. The cylinder is
towed at a constant velocity U chosen just above the min-
imum velocity cmin of wake onset, for which the gravity
wave behind and the capillary wave before the cylinder
have nearly the same wavelength. From the measurement
of these two wavelengths, the velocity ratio U = U/cmin

can be computed [using Eq. (4), see next section], from
which we deduce the minimum phase velocity cmin. We
found cmin = 21.6 ± 0.2 cm s−1, which corresponds to
a surface tension γ ' 55 ± 2 mN m−1 and a capillary
length λc = 2π(γ/ρg)1/2 = 14.9 ± 0.3 mm. The sur-
face tension of water in the swimming pool has been
measured using a Wilhelmy plate tensiometer, yielding
γ ' 66± 3 mN m−1 and hence cmin = 22.6± 0.3 cm s−1

and λc = 16.3± 0.4 mm. For the range of cylinder diam-
eters used here, the Bond number BoD = D/λc ranges
from 0.1 to 4.2, with a precision of ±5%. The maximum
wavelength excited by the disturbance being of order of
the cylinder diameter, which is comfortably smaller than
the water depth in both setups, the wakes can be con-
sidered in the deep water regime. The Reynolds number
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Re = UD/ν covers a wide range, from 350 to 180 000,
for which the hydrodynamic wake is unstationary to fully
turbulent.

During each run movies were taken using a digital
camera. The camera was located above the tank for
the small-scale experiments, and at one end of the wire
rope at a height of 3 m above the water surface for the
swimming-pool experiments. The images are analyzed
in the second half of the cylinder course, well after the
acceleration phase, so the wake is well developed. For
each image, the wake arms are defined from the most
visible waves, i.e. from the waves showing the most con-
trasted light pattern. For the small-scale experiments,
the waves appear in the form of dark and bright stripes
on the bottom of the water tank (shadowgraphy), while
for the swimming-pool experiments they are visualized
by reflection of natural light. The biases introduced by
the different visualization methods are discussed in the
appendix. For the swimming-pool experiments, the wake
angle is determined by drawing lines going through the
waves of larger amplitude and extended to the back edge
of the pool (see dashed lines in Fig. 2). The uncertainty
is ±1o for the small-scale experiments and ±2o for the
swimming-pool experiments.

B. Experimental wake angles

The wake angles measured in the two setups for the
various cylinder diameters, plotted in Fig. 3, display a
systematic decrease as U−1 at large velocity. In order to
discreminate the wakes dominated by capillary or grav-
ity effects, two normalizations are used: U = U/cmin in
Fig. 3(a) and FrD = U/

√
gD in Fig. 3(b).

The normalization U = U/cmin in Fig. 3(a) provides a
good collapse of the wake angles at small Bond numbers,
essentially for the two data sets from the small-scale ex-
periments (BoD = 0.10 and 0.34) but also to some extent
for the smaller cylinder diameter in the swimming-pool
experiments (BoD = 0.67). No evidence of Kelvin wake
angle αK = 19.47o is found for the smaller Bond num-
bers, but rather a continuous decrease from α ' 30o

to ∼ 4o. A best fit of the first two data sets gives
α ' 0.85 cmin/U (the prefactor is given for α in radians).

The normalization FrD = U/
√
gD in Fig. 3(b) provides

a better collapse at larger Bond numbers, essentially for
the two largest cylinder diameters in the swimming-pool
experiments (BoD = 2.0 and 4.2). Here, a clear transi-
tion is found between the Kelvin angle, for FrD < 1.5,
and a Mach-like regime consistent with α ' a/FrD at
larger Froude number. A best fit of the last two data
sets for FrD > 2 gives a ' 0.5± 0.1.

Interestingly, the value a ' 0.5 is significantly larger
than the one found for ship wakes, a ' 0.2. According
to the analysis of Ref. [10], this prefactor is expected
to scale as (λf/D)1/2, where λf is the dominant wave
length excited by the disturbance. Its value depends on
the shape of the disturbance, and on the detail of the flow

FrD = U / (gD)1/2
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FIG. 3. (Color online) Wake angle as a function of the cylinder
velocity U , normalized by cmin in (a), and by

√
gD in (b).

Open symbols (blue): Small-scale experiments; filled symbols
(red): swimming-pool experiments. The solid lines show best
fits of the data at large velocity: (a) α = 0.85 cmin/U for
BoD = 0.10 and 0.34 and (b) α = 0.5/FrD for BoD = 2.0 and
4.2 (numerical values are given for α in radians).

around it. The detached flow around bluff bodies such as
cylinders implies a disturbed region significantly larger
than the body, and hence a value of a larger than for
streamlined bodies such as ships. Comparing the values
of a for ships and cylinders suggests that a ship of length
L primarily excites waves of wavelength λf ' L, whereas

we have λf ' (6±2)D here, yielding a ' 0.2(λf/D)1/2 '
0.5. Consistently, the transition Froude number between
the Kelvin and the Mach regimes is also shifted: one has
FrL ' 0.6 for ships, and FrD ' 0.6(λf/D)1/2 ' 1.5 here.

III. CAPILLARY-GRAVITY CREST LINES

In order to model the far-field wake angle of a distur-
bance of finite size, it is necessary to describe first the
geometry of the crest lines, which provides the skeleton
of the capillary-gravity wake pattern, without specifying
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FIG. 4. Construction of the stationary wake pattern. The
disturbance is at point O at time 0, and we consider a wave
vector k emitted at point M at time −t. In the frame of
the disturbance, its energy propagates along the radiation
angle α(k). This is the direction of the relative group velocity
c′g(k) = cg(k)−U.

at this point where energy radiated by the disturbance
is actually located on this skeleton. The reader is re-
ferred to Refs. [3, 19–22] for a complete description of
the capillary-gravity crest line pattern, which we briefly
summarize here for convenience. We give special empha-
sis on the gravity and capillary cusp angles, which are of
first importance when examining the effects of the finite
size of the disturbance (Sec. IV).

We consider the stationary phase wake pattern gener-
ated by a disturbance moving at constant velocity U in
the x direction (Fig. 4). For any wave vector k emitted
from point M at time −t, the condition of stationarity
with respect to the disturbance in O implies

U cos θ = cϕ(k), (3)

where θ is the angle between k and U and cϕ(k) = ω(k)/k
is the phase velocity. Equation (3) is the statement
that the relative frequency in the moving frame, Ω(k) =
ω(k)−U · k, is zero. The frequency is given by the dis-
persion relation for capillary-gravity waves in deep water,
ω(k) = (gk+γk3/ρ)1/2, with ρ the density, γ the surface
tension and g the gravity. The phase velocity (plotted
in Fig. 5) has a minimum, equal to cmin = (4gγ/ρ)1/4,
at the capillary-gravity wavenumber κ = (ρg/γ)1/2. The
stationary condition (3) therefore can be satisfied only
for U ≥ cmin. For a given velocity ratio U = U/cmin > 1,
there is a range of wave numbers k ∈ [k1, k2] satisfying
Eq. (3), such that

k1,2
κ

= U2 ∓ (U4 − 1)1/2. (4)

For U ' 1, one has k1 ' k2 ' κ. On the other hand, for
U � 1, k1 tends to the pure gravity wavenumber kg =
g/U2, and k2 tends to the pure capillary wavenumber
kc = ρU2/γ, so the range of wavenumbers satisfying (3)
rapidly grows as k2/k1 ' 4U4.

Each wavenumber k ∈ [k1, k2] contributing to the sta-
tionary pattern is associated to a radiation angle α(k),
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0
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k / κ

c ϕ
 / c

m
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m
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(0.39, 0.77)
(1, 1)

cg cϕ

U
k1 k2

FIG. 5. Phase velocity cϕ and group velocity cg, normalized
by the minimum phase velocity cmin, as a function of the nor-
malized wavenumber k/κ, with κ = (ρg/γ)1/2. The minimum
group velocity is cg,min/cmin ' 0.77, at k/κ ' 0.39. A distur-
bance velocity U = U/cmin > 1 selects a range [k1, k2] such
that the stationary condition (3) is satisfied.

i.e. an angle at which the energy radiated from the dis-
turbance propagates. This is the angle between −U
and the group velocity in the moving frame, given by
c′g = ∇kΩ = cg −U, where cg = ∇kω is the group ve-
locity in the frame of the liquid at rest, and ∇k denotes
the gradient in the Fourier space. The general derivation
of α(k) for arbitrary dispersion relation can be found
in Refs. [29, 30]. We briefly recall here this derivation,
following the geometrical approach of Crawford [31] ex-
tended to the case of capillary-gravity waves (see Caru-
sotto and Rousseaux [9] and Doyle and McKenzie [22] for
a similar derivation in the Fourier space).

We consider in Fig. 4 a wave of wavenumber k emit-
ted from a point M at time −t satisfying the stationary
condition (3). At time 0, the phase of the wave reaches
the point I, with MI = cϕt, such that MI ⊥ OI. Denot-
ing ϕ the angle between OM and OI, one has tanϕ =

MI/OI= cϕ/
√
U2 − c2ϕ. Since the energy emitted from

M at time −t travels at the group velocity cg = ∂ω/∂k, it
reaches the point H, with MH = cgt. For k < κ (gravity
waves), one has cg < cϕ, so the wave packet in H does not
reach the point I, whereas for k > κ (capillary waves) the
wave packet travels beyond I. In the limit case of pure
gravity waves, one has cg = cϕ/2, so H is the middle of
MI.

The direction OH defines the radiation angle α(k) at
which the energy of a given wavenumber k emitted from
all points between M and O and satisfying the station-
ary condition is located. Using the relation tan(ϕ−α) =

HI/OI = (cϕ − cg)/
√
U2 − c2ϕ finally yields the follow-
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FIG. 6. (Color online) Radiation angle α(k) as a function of
the wavenumber k normalized by the minimum wavenumber
k1 given by Eq. (4). The bold curve shows the pure gravity
case (U → ∞), and the thin curves show capillary-gravity
cases for U between 1 and 8. The dashed lines show the locus
of the upper and lower extrema of α(k), corresponding to
the gravity and capillary cusp angles, αcusp

g (−−, red) and
αcusp
c (− · −, blue). ◦ : Onset of existence of the two cusps

for U∗ = 1.938, at α∗ ' 22.06o. � : Asymptotic gravity
cusp angle for U � 1, which corresponds to the Kelvin angle
sin−1(1/3) ' 19.47o.

ing [29, 30]:

tanα(k) =
cg(k)

√
U2 − c2ϕ(k)

U2 − cg(k)cϕ(k)
. (5)

This angle is plotted in Fig. 6 for different ratios U =
U/cmin. It is defined for k in the interval [k1, k2] allowed
by the disturbance velocity U . It satisfies α(k1) = 0,
corresponding to the transverse gravity waves radiated
behind the disturbance, and α(k2) = 180o, corresponding
to the transverse capillary waves radiated in the front of
the disturbance.

For U → ∞, the pure gravity radiation angle is re-
covered [10]: One has cg = cϕ/2, and Eq. (5) reduces
to

tanα(k) =

√
k/kg − 1

2k/kg − 1
, (6)

with kg = k1 = g/U2. This law, plotted as bold line in

Fig. 6, shows a single extremum at αK = sin−1(1/3) =
19.47o: this is the classical Kelvin angle, at which the
pattern of crest lines show a cusp. For finite U ≥ 1, the
radiation angle curve is more complicated, and it is in-
structive to examine its behavior in relation to the shape
of the crest lines, which we plot in Fig. 7 [3, 19, 20]. At
small disturbance velocity, α(k) is a monotonous function
of k, increasing from 0 to 180o in the interval [k1, k2], in-
dicating that energy is smoothly radiated all around the

αg
cusp

= αc
cusp

αg
cusp

αc
cusp

(a) U  )b(2.1 = U = U* = 1.938

(c) U  )d(3 = U = 4

(e) U  )f(8 = U = 20

αg
cusp

αc
cusp

αg
cusp

αc
cusp

αg
cusp

FIG. 7. (Color online) Patterns of iso-phase lines (e.g., crest
lines) for six velocity ratios U . For each velocity, only two
crest lines are shown, corresponding to the capillary branch
(long dashed line) and the gravity branch (continuous line).
Note that a phase shift of π/2 appears at each cusp point. The
filled circles (red) show the gravity cusp and the empty circles
(blue) show the capillary cusp, present for U > U∗ = 1.938
[the two cusps merge at U∗ (b)]. The short dashed lines show
the cusp angles αcusp

g (red) and αcusp
c (blue), along which the

energy radiated from the source accumulates.

disturbance (this radiation tends to be isotropic in the
limit U → 1). The resulting smooth and slightly curved
capillary ripples in front of the disturbance are known as
Poncelet ripples [7, 32] [Fig. 7(a)]. As the velocity is in-
creased, α(k) is no longer monotonous, and shows two lo-
cal extrema. In the vicinity of these extrema, there exists
a small range of wavenumbers for which α(k) is locally
constant, indicating the formation of two cusps in the
crest lines, both located behind the disturbance (see the
dashed lines in Fig. 7). We call them gravity (αcusp

g ) and
capillary (αcusp

c ) cusp angles — although the second one
actually results from mixed gravity and capillary effects.
The locus (kcuspg , αcusp

g ) and (kcuspc , αcusp
c ) are shown as

dashed curves in Fig. 6. These two cusp angles play a
major role in the shape of the far-field wake when the
finite size of the disturbance is considered (Sec. IV): In
the presence of such cusps, the energy of the disturbance
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FIG. 8. (Color online) (a) Gravity and capillary cusp an-
gles αcusp

g and αcusp
c , and (b) normalized cusp wavenumbers

kcuspg /κ and kcuspc /κ, as a function of the normalized velocity
U . The circle indicates the onset of the cusp at U∗ ' 1.938
(α∗ ' 22.06o and k∗/κ ' 0.275). The line − · − shows the
cusp precursor (angle such that ∂α/∂k is minimum), where
a preferential accumulation of energy may take place even
before the apparition of the cusps.

is no longer radiated smoothly around the disturbance
but rather concentrates along the cusps.

The two cusp angles and the corresponding wavenum-
bers are plotted in Fig. 8 as a function of the velocity
ratio U . They appear through a saddle-node bifurcation
at the velocity U∗ ' 1.938, as first noticed by Binnie [20]
(see also Refs. [21, 22]). Note that the angle correspond-
ing to the minimum of ∂α/∂k is also of interest: The
energy of the disturbance may already accumulate near
this cusp precursor even for U < U∗. At the onset, αcusp

g

and αcusp
c are both equal to α∗ ' 22.06o (marked by a

symbol ◦ in Figs. 6 and 8), which is slightly larger than
the Kelvin angle 19.47o for pure gravity waves. At this
point the crest lines [Fig. 7(b)] show only a weak change
of curvature. As the disturbance velocity is increased,
αcusp
g tends rapidly towards the classical Kelvin angle,

shown by a symbol � in Fig. 6, with a departure from
the Kelvin angle decreasing as U−4. On the other hand,
the capillary cusp angle αcusp

c is a decreasing function of

U . In the limit U � 1, since the wavenumbers k in the
vicinity of the minimum of α(k) satisfy cg(k) � U and
cϕ(k)� U , Eq. (5) can be approximated by

α(k) ' cg(k)

U
.

The capillary cusp angle αcusp
c is therefore found at the

wavenumber kcuspc satisfying ∂α/∂k = U−1∂cg/∂k = 0,
i.e. at the minimum group velocity cg,min (see Fig. 5).
The capillary cusp angle is therefore given by

αcusp
c ' cg,min

U
=
A

U
, (7)

where A = cg,min/cmin = 1
233/8(

√
3 − 1)(2 −

√
3)−1/4 '

0.768. Figure 8(a) shows that the law (7) turns out to
hold even very close to the onset of the cusp U∗. The
wavenumber of this minimum group velocity, kcuspc /κ =√

2/
√

3− 1 ' 0.393, is in the gravity branch of the

dispersion relation, indicating that capillary effects may
be important even for disturbance of size significantly
larger than the capillary length (in practice for size
2.54λc ' 40 mm for the air-water interface).

IV. ANGLE OF MAXIMUM WAVE
AMPLITUDE

A. Modeling of the finite size effects of the
disturbance

We now consider the influence of the disturbance size
on the angular distribution of energy in the far-field wake,
with the assumption that the waves remain linear in this
problem. Although the pattern of crest lines itself is not
affected by the disturbance size, different regions of the
pattern receive different amounts of energy depending on
the spectrum of the disturbance, which has a strong im-
pact on the overall shape of the surface elevation pattern.

We model in the following the disturbance as a pressure
distribution and make use of the key result of the Cauchy-
Poisson initial value problem [2–6]: The waves of larger
amplitude generated by an initial pressure disturbance of
characteristic size L are contained in a wavepacket trav-
eling at the group velocity selected by the size L. For in-
stance, in the case of pure gravity waves [of group velocity

cg(k) = 1
2

√
g/k], although wavelengths much larger than

L may be excited by the disturbance, they travel much
faster than the wavelengths of order of L, so their energy
is stretched over large distances, and their amplitude de-
creases accordingly. Let us consider the axisymmetric
wave dispersion originating from an initial surface ele-
vation ζ0(r) at t = 0. Using the method of stationary
phase, the envelope of the wave train for arbitrary dis-
persion relation can be written as [3]

ζ(r, t) ∼ ζ̂(k = k0(r, t))

(
r2t
∣∣∣∂cg
∂k

(k = k0(r, t))
∣∣∣)−1/2

(8)
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[provided that ∂cg/∂k(k0) 6= 0], where ζ̂(k) is the Fourier
transform of ζ0(r), and k0(r, t) is the local wave number
satisfying cg(k0) = r/t. We consider here for simplicity
pure gravity waves excited by an initial Gaussian sur-
face elevation [33] given by ζ0(r) = h exp[−π2(r/L)2],

of Fourier transform ζ̂(k) ∝ h exp[−(kL)2/4π2]. Solv-
ing for cg(k0) = r/t yields k0(r, t) = gt2/4r2, from
which the maximum of the wave envelope (8) at given
time t is found at rmax(t) = Ct, with C = a

√
gL and

a = 1/(401/4π1/2) ' 0.22. If we consider now the wake
problem as a succession of such wave trains emitted by
a moving surface elevation at velocity U , the resulting
stationary pattern has maximum energy approximately
at sinα ' C/U = a/Fr with Fr = U/

√
gL, in agreement

with Ref. [11]. The local wave number k0(r, t) in the cen-
ter of the wave packet [at r ' rmax(t)] is given in this

case by λf = 8πa2L =
√

2L, confirming that the wave-
length of maximum amplitude in the wave packet is of
order of the disturbance size [34].

The generalization of this simplified approach to the
capillary-gravity case is complicated by the fact that
cg(k0) = r/t has now two solutions, one on the capil-
lary branch and one on the gravity branch, resulting in
two superimposed wave packets [5]. One can, however,
proceed qualitatively as follows. Since the wave packet
radiated by the disturbance of size L is composed near
its maximum of wave numbers of order of kf ' L−1, it
may be characterized by an effective spectrum centered
around k ' kf . The wave packet being localized in space,
the typical width ∆k of the energy-containing wave num-
ber range is also of order of kf . In the frame of the
disturbance, the energy of each wave number k is radi-
ated along the direction given by the radiation angle α(k)
shown in Fig. 6. As a consequence, the dominant wave
number kf is radiated along the angle α(kf ) and, except
in the vicinity of one of the two cusp angles, this radiation
takes place within an angular aperture ∆α ' |∂α/∂k|∆k.
On the other hand, if a significant amount of energy is
radiated in the vicinity of a cusp wave number, i.e., if
either kcuspg or kcuspc fall in the energy-containing range
∆k, the wake angle is given by the corresponding cusp
angle, which concentrates most of the energy radiated by
the disturbance.

B. Wake regimes

The previous analysis suggests the following picture,
sketched in Fig. 9. Provided that U > U∗ (so the two
cusp angles are defined), the following regimes may be
found depending on where the energy-containing range
of wave numbers ∆k centered on kf ' L−1 falls in the
radiation angle curve α(k):

(1) If kf ' kcuspg , the energy of the disturbance feeds
the gravity cusp angle αcusp

g , so the angle of max-
imum wave amplitude is classically given by the
Kelvin angle. This regime assumes that Fr '

0.01 0.1 1
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k / κ

α
(k

)  
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eg
)

0.39
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αc
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(1) (2) (3) (4)

kg
cusp / κ kc

cusp / κ

FIG. 9. Radiation angle α(k) in the case U = 6. Regions in
gray represent the range of wave numbers centered on kf '
L−1 and of characteristic width ∆k ' kf present in the wave
packet radiated by the disturbance. See text for the definition
of the regimes 1− 4.

√
kf/k

cusp
g ' O(1) and Bo ' kcuspc /kf � 1.

(2) If kcuspg � kf � kcuspc , most of the energy is radi-
ated along the angle α(kf ), so the resulting wake
angle is given by α = a/Fr: this is the first Mach-
like regime governed by pure gravity waves. This
regime holds for Fr � 1, so kf � kcuspg , and
Bo� 1, so that kf � kcuspc .

(3) If kf ' kcuspc , the energy of the disturbance feeds
the capillary cusp angle, and the resulting wake
angle is given by α = αcusp

c ' cg,min/U = 0.77/U .
This is the second Mach-like regime, found for Bo '
O(1).

(4) If kf � kcuspc , the energy is radiated at arbitrary
large angle, possibly in front of the disturbance
(α > 90o). However this pure capillary regime,
which should be present in principle for Bo� 1, is
not relevant for the air-water interface because of
the strong viscous attenuation at large wave num-
bers.

The first three regimes are compatible with the ex-
perimental wake angles reported in Fig. 3. The data
at BoD > 2 and FrD < 1.5 correspond to regime 1,
with an angle of maximum wave amplitude close to the
Kelvin prediction. For FrD > 1.5, the observed decrease
α ' a/Fr, with a ' 0.5, corresponds to regime 2, simi-
larly to that of rapid boats. Finally, the experiments at
BoD < 2 are compatible with regime 3, with a best fit
α ' 0.85/U close to the prediction 0.77/U . The present
experimental data do not show evidence of increasing
wake angle at small Bond number (regime 4), and we
focus on regimes 1-3 in the following.
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FIG. 10. (Color online) Wake pattern of a Gaussian pressure
disturbance at Bond number Bo = 1, for increasing veloc-
ity U between 1.2 and 6. The computation domain Lbox is
200L, and only a subdomain of size Lbox/4 is shown here.
The arrows and dashed lines show the cusp precursor angle
[panels (a) and (b) for U < U∗], and the gravity αcusp

g and
capillary αcusp

g cusp angles [panels (c), (d), (e), and (f)]. The
black contours show the isoenergy level given by 0.3 times the
maximum energy.

C. Numerical simulations

In order to characterize the transitions between the
various wake regimes, we compute the far-field angle of
maximum wave amplitude produced by an applied pres-
sure distribution P (r) traveling at constant velocity U .
We chose an axisymmetric Gaussian pressure distribu-
tion defined as [33]

P (r) = P0 exp

[
−π2

( r
L

)2]
, (9)

and we note Bo = L/λc and Fr = U/
√
gL the Bond and

Froude numbers based on L. Assuming linear potential
flow, the surface elevation is classically obtained from the

FIG. 11. (Color online) Wake pattern at constant velocity
U = 6, for increasing disturbance size: Bo = 1 to 32. Same
line patterns as in Fig. 10. As the disturbance size increases,
the angle of maximum wave amplitude drifts from the capil-
lary cusp angle αcusp

c (blue dashed line) to the gravity cusp
angle αcusp

g ' sin−1(1/3) (red dashed line).

Fourier transform of the linearized Euler equation [5, 6],

ζ(x) = − lim
ε→0

1

(2π)2

∫∫
kP̂ (k)/ρ

ω(k)2 − (k ·U− iε)2
eik·xd2k,

(10)

with P̂ (k) ∝ P0 exp[−(kL)2/4π2] the Fourier transform
of P (r). The properties of this integral have been the
subject of a number of papers in the case of pure gravity
waves [4]. This integral is also discussed by Lamb [3]
for capillary-gravity waves but is restricted to a one-
dimensional wave pattern. Here we evaluate numerically
Eq. (10) for capillary-gravity waves on a square domain
of size Lbox, discretized on a grid of N2 = 81922 collo-
cation points. We set ε = 1.5U/Lbox as a compromise
between the unphysical oscillations induced by the diver-
gence of the integrand for small ε and a strong damping
for large ε. Ideally, Lbox and N should be chosen such
that the mesh size Lbox/N is much larger than the dis-
turbance size and the smallest wavelength selected by the
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disturbance velocity k2 [see Eq. 4]. Since the range of
wavenumbers satisfying the stationary condition grows
rapidly as k2/k1 ' 4U4 for large U , the full spectrum
can be resolved up to U ' 4 − 5 at the resolution of
N = 8192, whereas the largest wavenumbers are neces-
sarily truncated for larger velocities. This truncation is
not a limitation here, provided that the energy contained
in these high wavenumbers is low, which is the case when
the disturbance size is significantly larger than the mesh
size.

Two series of simulations are shown in Figs. 10 and 11
to illustrate the various wake regimes. In each panel, the
dashed lines show the two cusp angles αcusp

g and αcusp
c , or

the cusp precursor (minimum of ∂α/∂k) when U < U∗,
and the black line shows an iso-energy contour.

In Fig. 10 we show the wake patterns for a small dis-
turbance, characterized by Bo = 1, at increasing velocity
U between 1.2 and 6. Although no cusp angle is defined
at U < U∗ = 1.938 [Fig. 10(a) and 10(b)], a signifi-
cant amount of energy concentrates in the vicinity of the
cusp precursor. At U = 2 [Fig. 10 (c)], slightly above
the cusp onset U∗, the two cusp angles are both almost
equal to 21.6o, and this is where the largest wave am-
plitude is found. As U is further increased [Fig. 10(d),
10(e) and 10(f)], the cusp angles gradually separate, but
since Bo = 1 the most energetic wave number is close to
the capillary wave number, so the energy concentration
is mostly found around the capillary cusp (regime 3 in
Fig. 9).

In Fig. 11 we show the evolution of the wake pattern
at constant velocity U = 6 for increasing disturbance
size (Bo from 1 to 32). For this particular velocity, the
cusp angles are αcusp

g ' 19.50o (i.e., almost equal to
the Kelvin angle) and αcusp

c ' 7.33o. The wave num-
bers corresponding to these two cusps are well separated
(kcuspc /kcuspg ' 20), so the three regimes can be clearly
identified in this case. At small Bond number, the energy
concentrates in the direction of αcusp

c [Figs. 11(a) and
11(b)], in agreement with regime 3. As Bo is increased,
the angle of maximum amplitude gradually shifts from
αcusp
c to αcusp

g [Figs. 11(c), 11(d) and 11(e)], as expected
for regime 2, with an energy envelope not as sharp as in
Figs. 11(a) and 11(b). Finally, for the largest Bond num-
bers [Fig. 11(f)], the energy concentrates around αcusp

g ,
and the wake pattern resembles the classical Kelvin wake
(regime 1).

The angle of maximum wave amplitude has been sys-
tematically measured for Bo ∈ [0.1, 60] and U ∈ [1, 100],
and the results are summarized in Figs. 12 and 13. Using
the set of parameters (Bo,U), the iso-α curves are inde-
pendent of Bo for Bo < 3 [Fig. 12(a)], and the decrease
of α with velocity is in excellent agreement with the law
cg,min/U at large velocity [Fig. 12(b)]. At small velocity,
α approximately follows the precursor cusp angle shown
in Fig. 8(a). Plotting now the same data in terms of
the parameters (Bo,Fr), we find that the iso-α curves
are now independent of Bo for Bo > 4 [Fig. 13(a)], and
the law α = a/Fr with a = 1/(401/4π1/2Fr) of Darmon
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FIG. 12. (a) Map of the iso-values of the angle of maxi-
mum wave amplitude α in the plane (Bo,U) for the Gaus-
sian pressure disturbance defined by Eq. (9). The three wake
regimes are as follows: (1) Kelvin regime, α ' sin−1(1/3); (2)
Mach regime for gravity waves, α ' a/Fr; (3) Mach regime
for capillary waves, α ' cg,min/U . The numbers in boxes
indicate the angle α in degrees. (b) Plot of α as a func-
tion of U , for different Bond numbers Bo. The solid line is
α = cg,min/U = 0.77/U (regime 3).

et al. [11] for pure gravity waves is accurately recovered
[Fig. 13(b)]. Considering that the transition Bond num-
ber corresponds to a disturbance size L equal to the wave-
length of minimum group velocity 2π/kcuspc ' 2.54λc sim-
ply predicts Boc ' 2.54, which is close to the actual
transition.

We can conclude that the overall behavior of the wake
angles computed numerically confirms the picture given
in Fig. 9. Of course, the agreement with the experi-
mental measurements of Fig. 3 remains qualitative: the
complex flow around a bluff body cannot be reduced to
a simple pressure disturbance characterized by a single
scale. In particular, the transition Bond number be-
tween regimes 1-2 and regime 3 for the pressure distur-
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FIG. 13. (a) Map of the iso-values of the angle of maximum
wave amplitude α in the plane (Bo,Fr). The lower border

U = 1 is given by Fr = 1/
√
πBo. (b) Plot of α as a function

of Fr, for different values of Bo. The solid line shows the law
α = 1/(401/4π1/2Fr) of Darmon et al. [11] (regime 2).

bance (Boc ' 4) is significantly larger than the exper-
imental one (BoD,c ' 0.7). This discrepancy is consis-
tent with the argument proposed in Sec. II B: The ratio
between the experimental and the numerical transition
Bond number suggests that a cylinder of diameter D has
an effect comparable to a Gaussian pressure distribution
of size L ' 6D. Another difference is the presence of
sharp jumps of α in the simulations, when the maximum
wave amplitude switches from the gravity cusp (Kelvin
angle) to the intermediate regime 2 (α ' 1/Fr), whereas
a smooth transition is found in the experimental data. In
spite of these differences, it is remarkable that the scaling
laws for the three wake regimes identified experimentally
could be well reproduced by the present model and sim-
ulations.

V. CONCLUSION

We have shown that the decrease with velocity of the
angle of maximum wave amplitude, found in Ref. [10]
for ship wakes in the gravity regime, is also present for
the capillary-gravity wakes generated by a disturbance
of size comparable to the capillary length. In all cases,
the wake angle is found to decrease following a law in the
form cg/U at large velocity, as in the Mach cone prob-
lem, where the “sound velocity” cg is the group velocity
of the dominant wavepacket excited by the disturbance.
At large Bond number (weak capillary effects), cg cor-
responds to the group velocity of the gravity waves of
wavelength comparable to the disturbance size, whereas
at Bond number of order unity (large capillary effects)
it is given by the minimum group velocity of capillary-
gravity waves, cg,min ' 0.77cmin. Using the general prop-
erty of dispersive waves that the waves of maximum am-
plitude excited by a disturbance have their wavelength of
order of the disturbance size, we provide a simple linear
model based on an applied pressure disturbance which
describes the transition between the Kelvin regime and
the two Mach-like regimes. Although the complex flow
phenomena present in the experiments (detached bound-
ary layers, vortex shedding, wave breaking, turbulence)
cannot be accounted for by such a pressure disturbance,
it is remarkable that this simple model reproduces with
reasonable accuracy the behavior of the far-field wake
angle. Note that although the angle of maximum wave
amplitude follows a Mach-like law, the problem remains
dispersive in nature, which is illustrated by the fact that
the crest angle (governed by the phase velocity) never
coincides with the wake angle (governed by the group
velocity).

Amusingly, we note that the wake behind a duck, often
used to illustrate the universal properties of the Kelvin
wake pattern, nearly falls in the complex intermediate
situation where Bo ' O(1), U ' O(1) and Fr ' O(1).

Appendix A: Influence of the wake angle definition

The wake angle in the model and in the numerical sim-
ulations of Sec. IV is defined as the angle of maximum
wave amplitude. On the other hand, the visualization
methods used in the experiments of Sec. II and in the
analysis of the airborne images of ship wakes in Ref. [10]
are not based on the wave amplitude, but rather on the
wave slope or curvature, which may introduce a bias. It is
therefore important to check the robustness of the results
with respect to the definition used for the wake angle.

We have simulated the wake pattern of a Gaussian
pressure disturbance in the pure gravity regime (large
Bo) following the method described in Sec. IV C, and de-
termined the wake angle according to the following defi-
nitions:

1. Maximum of wave amplitude ζ. This is the reference
definition, which is used in Sec. IV C and in Refs. [10–
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12, 14, 16, 17].

2. Maximum of longitudinal wave slope ∂ζ/∂x. This
definition is relevant to the swimming-pool experiments,
in which the wake angle is determined from reflection of
natural light (Fig. 2).

3. Maximum of lateral wave slope ∂ζ/∂y.

4. Maximum of absolute wave slope |∇ζ|.
5. Maximum of curvature ∇2ζ. This definition is rele-

vant to the shadowgraphy visualization used in the small-
scale experiments (Fig. 1).

For each definition, the measured wake angle is equal
to the Kelvin angle αK = sin−1(1/3) at small Froude
number and decreases as α ' a/Fr at larger Fr, indi-
cating that this transition is not sensitive to the exact
definition of the wake angle, at least in the case of a
Gaussian pressure disturbance. However, a dependence
of the prefactor a is found depending on the definition
used, as shown when plotting the compensated angle αFr
(Fig. 14). For the reference definition 1 we recover the
exact value a1 ' 1/(401/4π1/2) ' 0.224 of Ref. [11], but
smaller values are found for the other definitions as fol-
lows: a2 ' 0.207(−8%), a3 ' a4 ' 0.195(−13%) and
a5 ' 0.178(−21%) (definitions 3 and 4 give essentially
the same result because at large Fr the dominant con-
tribution to the wave slope is in the transverse direction
y). If we consider, for instance, Fr = 2 (corresponding to
a cylinder-based Froude number FrD ' 5), the angle of
maximum wave amplitude is 6.4o, the angle of maximum
slope is 5.6o, and the angle of maximum curvature is 5.1o.
These differences are comparable to the experimental un-
certainties in Fig. 3, suggesting that the present results
are not significantly affected by these measurement bi-
ases.
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