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ALGEBRAIC NORMS AND CAPITULATION OF p-CLASS

GROUPS IN RAMIFIED CYCLIC p-EXTENSIONS

GEORGES GRAS

Abstract. We examine the phenomenon of capitulation of the p-class
group HK of a number field K in totally ramified cyclic p-extensions L/K
of degree pN , taking the simplest abelian p-extensions L ⊂ K(µℓ), with
primes ℓ ≡ 1 (mod 2pN ). Using an elementary property of the algebraic
norm νL/K , we show that the kernel of capitulation is in relation with

the “complexity” of the structure of HL measured via its exponent pe(L)

and the length m(L) of the usual filtration {H i
L}i≥0 associated to HL

as Zp[Gal(L/K)]-module. We prove that a sufficient condition of capitu-

lation is given by e(L) ∈ [1, N − s(L)] if m(L) ∈ [ps(L), ps(L)+1 − 1] for
s(L) ∈ [0, N − 1] (Theorem 1.1 (i)); this improves the case of “stability”
#HL = #HK (i.e., m(L) = 1, s(L) = 0, e(L) = e(K)) (Theorem 1.1 (ii)).
Numerical examples (with PARI programs) showing most often capitula-
tion of HK in L, are given over cubic fields with p = 2 and real quadratic
fields with p = 3. Some conjectures on the existence of non-zero densities
of such ℓ’s are proposed (Conjectures 1.2, 2.4).
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1. Introduction

1.1. Statement of the main result. Let L/K be any cyclic p-extension of
number fields (p ≥ 2 prime), of degree pN , N ≥ 1, of Galois group G, and let
HK , HL be the p-class groups of K, L, respectively. We assume in all the
sequel that L/K is totally ramified.

Let JL/K : HK → H G
L be the transfer map (or extension of classes) and

let NL/K : HL → HK be the arithmetic norm induced by NL/K(P) := pf ,
for all prime ideal P of L and the prime ideal p of K under P with residue
degree f .

We know that NL/K(HL) is the subgroup of HK which corresponds to
Gal(Hnr

K /L ∩ Hnr
K ) by the Artin map of class field theory, where Hnr

K is the
p-Hilbert class field of K in the ordinary sense; thus, by the assumption of
total ramification, NL/K(HL) = HK .

Let rkp(A) := dimFp(A/A
p) be the p-rank of any finite abelian group A.

We can state:

Theorem 1.1. Let L/K be a totally ramified cyclic p-extension of number
fields, of degree pN , N ≥ 1, of Galois group G =: 〈σ〉:

(i) Let pe(L) be the exponent of HL and let m(L) be the minimal integer

such that (σ − 1)m(L) annihilates HL. Then, a sufficient condition for the
complete capitulation of HK in L, is that e(L) ∈ [1, N − s(L)] if m(L) ∈
[ps(L), ps(L)+1 − 1] for s(L) ∈ [0, N − 1].

A sufficient condition for a partial capitulation of HK in L, is that there
exists h′ ∈ HL such that NL/K(h′) 6= 1, h′ being of order pe and annihilated

by (σ − 1)m such that e ∈ [1, N − s] if m ∈ [ps, ps+1 − 1] for s ∈ [0, N − 1].

(ii) Let Kn, n ∈ [0, N ], be the subfield of L of degree pn over K and set
Gn := Gal(Kn/K). Then #HK1 = #HK implies the following properties:

• HKn = H
Gn
Kn

and HKn

NKn/K≃ HK , for all n ∈ [0, N ].

• For any e ≤ N , the subgroup HK [pe] of HK , of classes annihilated
by pe, capitulates in Ke; whence HK capitulates in Ke(K) if e(K) ≤ N .

(iii) If rkp(HK1) = rkp(HK), then rkp(HKn) = rkp(HK) for all n ∈ [0, N ].

The claim (i) will be given by Corollary 2.12 to Theorem 2.9. Then points
(ii), (iii) come from [Gras2022a, Theorem 3.1 & Section 6, § (b)] generalizing
[Fuku1994, KrSch1995, Band2007, LOXZ2022, MiYa2021]; it corresponds to

the case m(Kn) = 1 (from HKn = H
Gn
Kn

), whence s(Kn) = 0 and e(K) ≤ N

(from e(L) = e(K) due to the isomorphisms HKn

NKn/K≃ HK given by the
arithmetic norms); this particular case is called the p-class groups stability in
the tower L =

⋃
N

n=0Kn.

In practice, the knowledge of m(L) determines the unique s(L) ≥ 0 such

that m(L) ∈ [ps(L), ps(L)+1 − 1] and one must check if s(L) ∈ [0, N − 1]; this
condition is most often fulfilled, except possibly for very small N ’s, a necessary
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condition of capitulation being N ≥ e(K). Once this holds, one must have
e(L) ≤ N − s(L) to get the capitulation.

The case of the p-ranks for the case of Zp-extensions was given by Fukuda
[Fuku1994], then found again by Bandini [Band2007]. It holds for any cyclic
totally ramified p-extension as we have explained in [Gras2022a, § 6 (b)].

Of course, properties of stability may occur from a layer Kn0
as, more

generally, for any reasoning about capitulation.

Theorem 1.1 expresses that, if the “complexity” of HL is not too important,
then HK capitulates in L. Conversely, if one knows that capitulation is im-
possible (e.g., framework of abelian imaginary fields and minus p-class groups
H −), then the complexity of the H

−
Kn

’s is much more important compared

to that of H
−
K and strictly increases with n (see Theorem 3.2).

1.2. History and aims of the paper. The problem of capitulation 1 of HK

in L (measured by the capitulation kernel Ker(JL/K : HK → HL)) has been
studied in a very large number of publications, as, precisely in the purpose of
the factorization problem for Dedekind rings, exposed in [Mart2011]. It is im-
possible to give a complete bibliography, but one may cite, among many other
contributions subsequent to the historical works of Hilbert–Scholz–Taussky:
[Kisil1970, Tera1971, Bond1981, HeSc1982, Schm1985, GrJa1985, Jaul1986,
Jaul1988, Iwas1989, Suzu1991, Maire1996, Gras1997, Maire1998, Kuri1999,
Thie2000, GrWe2000, KoMo2000, GrWe2003, JauMi2006, Gonz2006, Vali2008,
Bosc2009, Bem2012, Mayer2014, AZT2016, AZTM2016, Bisw2016, AZT2017,
Jaul2019b, Jaul2022], in which the reader will find more history and references.

Except some Iwasawa’s theory results on capitulation, most of these pa-
pers are related to the Artin–Furtwängler theorem and its generalizations on
capitulation in the Hilbert class field Hnr

K (or to the Hilbert Theorem 94 in
cyclic subextensions), which is not our purpose since, on the contrary, we
will study totally ramified cyclic p-extensions L/K and more precisely the
simplest tamely ramified p-extensions L ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN) prime,
[L : K] = pN , which, surprisingly, are often capitulation fields of HK when K
is totally real or in some other cases when K is not totally imaginary.

Many classical articles give cohomological expressions of the capitulation in
terms of global units as the fact that, in the non-ramified case, the capitulation
kernel Ker(JL/K) is isomorphic to a subgroup of H1(G,EL), where EL is
the group of units of L (see, e.g., [Jaul1986, Chap. III, § 1] and [Jaul1988,
Bem2012] for more comments and references).

In the same spirit, using sets of places S, T and tamely ramified Galois
extensions, the result of Maire [Maire1996, Théorème 4.1] gives, in our context
L ⊂ K(µℓ), injective maps HL,(ℓ)/JL/K(HK,(ℓ)) →֒ H2(G,EL,(ℓ)), where E :=
E ⊗ Zp for groups of units and where HK,(ℓ), HL,(ℓ) are ray-class groups
modulo (ℓ) and EL,(ℓ) the group of units congruent to 1 modulo (ℓ).

But the aspect “global units” is more difficult since the behavior of the unit
groups in L/K is less known compared to that of p-class groups, even if there
are some links; indeed, we have the following classical exact sequence obtained
from the map which associates with the invariant class of the ideal a, a unit
ε := NL/K(α) where aσ−1 =: (α):

(1.1) 1 → JL/K(HK) · H ram
L → H

G
L → EK ∩NL/K(L×)/NL/K(EL) → 1,

1 I recently learned (from a Lemmermeyer text) that the word capitulation was coined by
Arnold Scholz. It is possible that this term may be considered as incongruous; a solution
is to consider that a non principal ideal a is a troublemaker with respect to elementary
arithmetic, in which case, the terminology is perfectly understandable. Conjectures about
ideal capitulations have perhaps a moral significance.
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where H ram
L ⊆ H G

L is generated by means of classes of the ramified prime
ideals of L; in the right term, if EK ∩ NL/K(L×) depends on easier local
considerations, NL/K(EL) is in general unknown.

On the contrary, JL/K(HK), H ram
L , are subgroups of H G

L and the or-
der of this group is known from the Chevalley–Herbrand formula [Chev1933,
pp. 4002–405] (see [Gras1978] for isotopic components of H G

L in the abelian
semi-simple case, [Jaul1986, Chapitre III, p. 167] with ramification and de-
composition, [Lemm2013] in the spirit of Jaulent’s work); then general higher
fixed points formulas [Gras1973, Gras2017a, LiYu2020] allow the algorithmic
computation of HL from a natural filtration (see Subsection 2.1.1).

In our previous paper [Gras2022a], giving extensive numerical computa-
tions with [PARI], we have proposed a conjecture, whose main consequence
should be an obvious and immediate proof of the real abelian Main Conjecture
“HK,ϕ = (EK,ϕ : FK,ϕ)” in terms of indices of Leopoldt’s cyclotomic units and

ϕ-components using p-adic characters ϕ of K, in the semi-simple case 2.

We can improve this conjecture taking into account the new criterion using
algebraic norms:

Conjecture 1.2. (i) Let K be any totally real number field and let HK be its

p-class group, of exponent pe(K).

• There exist infinitely many primes ℓ ≡ 1 (mod 2pN), N ≥ e(K), such
that HK capitulates in K(µℓ).

• There exist infinitely many primes ℓ ≡ 1 (mod 2pN), N large enough,
such that the capitulation of HK in L ⊂ K(µℓ), of degree pN over K, is

due to the property: e(L) ∈ [1, N − s(L)] if m(L) ∈ [ps(L), ps(L)+1 − 1] for
s(L) ∈ [0, N − 1].

• The case of stability (i.e., m(L) = 1, s(L) = 0, e(L) = e(K)) occurs for
infinitely many ℓ’s.

(ii) Let ℓ ≡ 1 (mod 2pN ), N ≥ 1, be a fixed prime number and let Kd,N

be the family of totally real number fields K, of degree d ≥ 2, whose p-class
group HK 6= 1 is of order smaller than pN .

• There exist infinitely many K ∈ Kd,N such that HK capitulates in K(µℓ).

• There exist infinitely many K ∈ Kd,N such that #HK1 = #HK (stability).

Remark 1.3. This restriction to the family of p-extensions L/K, L ⊂ K(µℓ),
is another point of view compared to the case of abelian capitulations ob-
tained in [Gras1997], [Kuri1999], [Bosc2009], [Jaul2019b, Jaul2022]. Indeed,
all techniques in these papers need to built a finite set of abelian p-extensions
Lk of Q, ramified at various primes, requiring many local arithmetic condi-
tions existing from Chebotarev theorem, whose compositum with K gives a
capitulation field of HK ; the method must apply to any abelian field K (of
suitable signature), of arbitrary increasing degree, obtained in an iterative
process giving, for instance, that the maximal real subfield of Q

(⋃
f>0 µf

)
is

principal (see in [Bosc2009] the most general statements).

Remark 1.4. Let’s introduce the p-ray class group HK,(ℓ) and the p-ray

class field Hℓram
K modulo (ℓ) (non-complexified), where ℓ is any prime number

2The complete statement being the following [Gras2022b , Section 1.4, then Theorem 4.6]:
Assume that K/Q is a real cyclic extension, of prime-to-p degree. Let ℓ ≡ 1 (mod 2pN ) be
a prime totally inert in K/Q and let L ⊂ K(µℓ) be the subfield of degree pN over K. Then,
if HK capitulates in L, the “Main Conjecture” on the p-adic components HK,ϕ, of HK ,
holds (i.e., #HK,ϕ = (EK,ϕ : FK,ϕ) for all irreducible p-adic character ϕ of K).
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distinct from p, unramified in K, and let EK,(ℓ) := EK,(ℓ)⊗Zp be the subgroup
of of units congruent to 1 modulo ℓ. We then have the exact sequence:

1 → EK/EK,(ℓ) −→
⊕

l | ℓ F
×
l ⊗ Zp −→ HK,(ℓ) −→ HK → 1,

where Fl is the residue field at the prime ideal l. This leads to the well-known
formula:

#HK,(ℓ) = #HK ×
∏

l | ℓ(ℓ
fl − 1)p

(EK : EK,(ℓ))
,

where fl is the residue degree of l in K/Q and ( )p the p-part of an integer.

For instance from [Gras2005, Theorem II.5.8.3], generalizing the principal
ideal theorem in the tame case, HK,(ℓ) capitulates in H

ℓram
K , as HK for trivial

reason. This enforces the conjecture by analogy with the fact that capitulation
of HK in Hnr

K may occur in various sub-extensions, a problem extensively
studied as recalled with many bibliographic items given in Section 1.2.

Assume, to simplify, that K/Q is cyclic of prime-to-p degree d and that
ℓ ≡ 1 (mod 2 pN) as usual; let f be the common residue degree and r the
number of prime ideals above ℓ; since the real field L ⊂ K(µℓ) is a subfield of

Hℓram
K , one gets:

[Hℓram
K : LHnr

K ] =
pN (r−1)

(EK : EK,(ℓ))
.

If ℓ is totally inert in K, then Hℓram
K = LHnr

K . If ℓ totally splits, then

(EK : EK,(ℓ)) may be any divisor of pN (d−1).

Returning to a class of p-power order, represented by an ideal a of K which
is principal in L, then (a)L =: (α), α ∈ L×, and there exists a unit u in Hℓram

K
such that α · u ≡ 1 (mod ℓ). Of course, since a is always principal in Hnr

K ,
the above equality holds replacing α ∈ L× by α ∈ Hnr

K
×. The difference of

nature between these two kinds of capitulation is that L is a straightforward
well-known abelian extension of Q, while Hnr

K and Hℓram
K are not.

2. Complexity of HL versus capitulation of HK

Let L/K be a totally ramified cyclic p-extension of degree pN , N ≥ 1, of
Galois group G =: 〈σ〉. Let:

νL/K :=
pN−1∑
i=0

σi,

be the algebraic norm in L/K. From the law of decomposition in L/K of
an unramified prime ideal q of K, of residue degree f , we get for Q | q in
L and using the fact that the decomposition group D of Q is of order f ,
(q)L =

∏
σ∈G/D Qσ, thus:

νL/K(Q) =
pN−1∏
i=0

Qσi
= (q)fL = (qf )L = (NL/K(Q))L;

whence:

(2.1) νL/K(HL) = JL/K ◦NL/K(HL) = JL/K(HK).

Thus, HK capitulates in L if and only if:

νL/K(HL) = 1.

A partial capitulation occurs as soon as #νL/K(HL) < #HK .

So, the action of the algebraic norm characterizes the capitulation (com-
plete or incomplete) and it is clear that the result mainly depends on the
Zp[G] structure of HL which is expressed by means of the canonical associ-
ated filtration {H i

L}i≥0 that we are going to recall.
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2.1. Filtration of HL in the totally ramified case. Let L/K be a cyclic p-
extension of degree pN , N ≥ 1, and Galois group G = 〈σ〉. To avoid technical
writings, we assume that any prime ideal l of K, ramified in L/K, is totally
ramified, and that there are r ≥ 1 such ramified prime ideals.

2.1.1. The higher rank Chevalley–Herbrand formulas. The generalizations of
the Chevalley–Herbrand formula to the corresponding filtration {H i

L}i≥0 gives
rise to the following expressions, where:

H
0
L = 1, H

1
L := H

G
L , H

i+1
L /H i

L := (HL/H
i
L)

G, i ≥ 0,

up to i = m(L) = min{m ≥ 0, H
(σ−1)m

L = 1}, for which H
m(L)
L = HL. We

put H i
L = HL for all i ≥ m(L).

Denote by I i
L a Zp[G]-module of ideals of L, of finite type, generating H i

L,

with I 0
L = 1, I

i+1
L ⊇ I i

L, for all i ≥ 0; the I i
L are defined up to the group

of principal ideals of L, thus NL/K(I i
L) is defined up to

(
NL/K(L×)

)
.

This filtration has the following properties [Gras2017a, Theorem 3.6]:

(2.2)





(i) #H
1
L = #HK × pN(r−1)

(EK : EK ∩NL/K(L×))
,

(ii) #(H i+1
L /H i

L) =
#HK

#NL/K(H i
L)

× pN(r−1)

(Λi
K : Λi

K ∩NL/K(L×))
,

Λi
K := {x ∈ K×, (x) ∈ NL/K(I i

L)} ⊗ Zp,

(iii) H
i
L = {h ∈ HL, h

(σ−1)i = 1}, for all i ≥ 0,

(iv) #(H i+1
L /H i

L) ≤ #H
1
L , for all i ≥ 0,

(v) #HL =
∏m(L)−1

i=0
#(H i+1

L /H i
L) ≤ (#H

1
L )m(L).

The Λi
K ’s are subgroups of K× containing EK , with Λ0

K = EK . In particular,
any x ∈ Λi

K is local norm in L/K at all the non-ramified places. So, for any
(x) = NL/K(A), A ∈ I i

L, which is also local norm at the ramified places,

then x = NL/K(y), y ∈ L× (Hasse’s norm theorem) and there exists an ideal

B of L such that A = (y)Bσ−1; this constitutes an algorithm by addition of
the B’s to I i

L to get I
i+1
L then H

i+1
L . 3 Since Λ0

K = EK is a Zp-module of

finite type, this algorithm allows to construct Λi
K of finite type for all i, with

Λi
K ⊆ Λi+1

K (indeed, NL/K(I i
L) is of finite type, there is a finite number of

relations of principality between the generators and Λi
K/Λ

i
K ∩NL/K(L×) is

of exponent ≤ pN).

The i-sequence #(H i+1
L /H i

L), 0 ≤ i ≤ m(L), is decreasing, from #H 1
L up

to 1, because of the injective maps H
i+1
L /H i

L →֒ H i
L/H

i−1
L →֒ · · · →֒ H 1

L
due to the action of σ − 1, giving the inequality in (v).

The first (resp. second) factor in (ii) is called the class (resp. norm) factor.

2.1.2. Properties of the class and norm factors. Since the ramified places v
(= prime ideals) of K are assumed to be totally ramified in L/K, their inertia
groups Iv(L/K) in L/K are isomorphic to G. Let ωL/K be the map which asso-

ciates with x ∈ Λi
K the family of Hasse’s norm symbols

(x , L/K
v

)
∈ Iv(L/K).

Since x is local norm at the unramified places, ωL/K(Λi
K) is contained in:

ΩL/K :=
{
(τv)v ∈ ⊕

vIv(L/K),
∏

vτv = 1
}
≃ Gr−1

(product formula); then Ker(ωL/K) = Λi
K ∩NL/K(L×).

3For explicit class field theory, Hasse’s norm theorem, norm residue symbols, product
formula, see, e.g., [Gras2005, Theorem II.6.2, Definition II.3.1.2, Theorems II.3.1.3, 3.4.1].
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It follows that #ωL/K(Λi
K) = (Λi

K : Λi
K ∩NL/K(L×)) divides pN(r−1).

Denote by Kn, 0 ≤ n ≤ N , the subfields of L of degree pn over K and
let Gn := Gal(Kn/K) =: 〈σn〉. All the previous definitions and formulas
apply to the Kn’s; we will denote by Λi

K(n) the invariant corresponding to
Kn/K instead of L/K; we have Λi

K(n) = {x ∈ K×, (x) ∈ NKn/K(I i
Kn

)}.
So Λi

K = Λi
K(N) in the previous notations.

Note thatm(K) = 1 for HK 6= 1, that I i
K(0) generates HK and that Λi

K(0)
contains Λ0

K(0) = EK and is given by relations between elements of I i
K(0).

Lemma 2.1. For any i fixed, we may assume that Λi
K(n + 1) ⊆ Λi

K(n), for
all n ∈ [0, N − 1].

Proof. For all n ∈ [0, N − 1], we have the following diagram, where the norm

NKn+1/Kn
, on HKn+1 and (HKn+1)

(σn+1−1)i , is surjective (total ramification),

but its restriction to H i
Kn+1

may be non injective nor surjective:

1 −→ H i
Kn+1

−−−−−→ HKn+1

(σn+1−1)i−−−−−→ (HKn+1)
(σn+1−1)i −→ 1

y NKn+1/Kn

y NKn+1/Kn

y

1 −→ H i
Kn

−−−−−→ HKn

(σn−1)i−−−−−→ (HKn)
(σn−1)i −→ 1 .

We have NKn+1/Kn
(H i

Kn+1
) ⊆ H i

Kn
; so, for any ideal An+1 ∈ I i

Kn+1
, one

may write NKn+1/Kn
(An+1) = (αn)An, where αn ∈ K×n and An ∈ I i

Kn
,

in which case modifying the definition of I i
Kn

modulo principal ideals of

Kn, one may assume NKn+1/Kn
(I i

Kn+1
) ⊆ I i

Kn
whence NKn+1/K(I i

Kn+1
) ⊆

NKn/K(I i
Kn

); this modifies Λi
K(n) modulo NKn/K(K×n ) which does not mod-

ify #ωKn/K(Λi
K(n)) in the formula giving #

(
H

i+1
Kn

/H i
Kn

)
. Using the process

from the top, we obtain Λi
K(N) ⊆ Λi

K(N − 1) ⊆ · · · ⊆ Λi
K(1) ⊆ Λi

K(0). �

Lemma 2.2. For i fixed, the integers #
(
H

i+1
Kn

/H i
Kn

)
define an increasing

n-sequence from #
(
H

i+1
K /H i

K

)
= 1 up to #

(
H

i+1
L /H i

L

)
; the #H i

Kn
’s define

an increasing n-sequence from #H i
K = HK up to #H i

L.

Proof. Consider, for i ≥ 0 fixed, the two factors of the finite n-sequence (for
n = 0, the two factors are trivial):

#
(
H

i+1
Kn

/H i
Kn

)
=

#HK

#NKn/K(H i
Kn

)
× pn(r−1)

#ωKn/K(Λi
K(n))

.

As NKn+1/K(H i
Kn+1

) ⊆ NKn/K(H i
Kn

), pc
i
Kn :=

#HK

#NKn/K(H i
Kn

)
defines an

increasing n-sequence from 1 up to a value pc
i
L | #HK . The norm factor:

pρ
i
Kn :=

pn(r−1)

#ωKn/K(Λi
K(n))

defines an increasing n-sequence from 1 up to pρ
i
L since, from Lemma 2.1:

p
ρiKn+1

−ρiKn =pr−1
#ωKn/K(Λi

K(n))

#ωKn+1/K(Λi
K(n+ 1))

≥ pr−1
#ωKn/K(Λi

K(n))

#ωKn+1/K(Λi
K(n))

;

then, in the restriction ΩKn+1/K −→−→ ΩKn/K (whose kernel is of order pr−1

because of the total ramification of each place), the image of ωKn+1/K(Λi
K(n))

is ωKn/K(Λi
K(n)) because of the properties of Hasse’s symbols, whence:

p
ρiKn+1

−ρiKn ≥ 1
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and the result for the n-sequence pρ
i
Kn , with maximal value pρ

i
L . The first

claim of the lemma holds for the n-sequence #
(
H

i+1
Kn

/H i
Kn

)
; for n = N , one

gets the formula #
(
H

i+1
L /H i

L

)
= pc

i
L · pρiL .

Assuming, by induction, that the n-sequence #H i
Kn

is increasing, the prop-

erty follows for the n-sequence #H
i+1
Kn

. �

Remarks 2.3. (i) The i-sequences pc
i
L, pρ

i
L , #(H i+1

L /H i
L) = pc

i
L · pρiL are

decreasing up to a divisor of #HK , pN(r−1), #HK · pN(r−1), respectively.

(ii) The n-sequence m(Kn) is an increasing sequence from 1 up to m(L).
Then the #HKn ’s define an increasing n-sequence from #HK up to #HL since
we have:

#HKn+1 ≥ #
(
H

Gal(Kn+1/Kn)
Kn+1

)
= #HKn

pr−1

ωKn+1/Kn(EKn)
≥ #HKn .

The integers e(Kn) and rkp(HKn) define increasing n-sequences.

The interest of this filtration is that standard probabilities may apply at
each level n to the algorithm computing H

i+1
Kn

from H i
Kn

by means of the

factors pc
i
Kn and pρ

i
Kn , giving plausible heuristics in the spirit of the works of

[KoPa2022, Smith2022] leading to a considerable generalization of pioneering
works as that of [Mort1982], [Gerth1986] and many others.

Indeed, let x ∈ Λi
K be such that (x) = NKn/K(A) (when it holds for

A ∈ I i
Kn

), and let x = NKn/K(y), when ωKn/K(x) = 1 (depending on Hasse’s

symbols), so that A = (y)Bσ−1 giving B ∈ I
i+1
Kn

.

So we propose the following conjecture on the evolution of the class and
norm factors, respectively:

Conjecture 2.4. Let L/K be a cyclic p-extension of degree pN , N ≥ 1, of
Galois group G; we assume that L/K is ramified at r ≥ 1 places of K, totally
ramified in L/K. Then, the orders of each of the two factors (class and norm)
in the i-sequence #(H i+1

L /H i
L), follow binomial laws as i increases, based on

the following probabilities:

• Let c ∈ HK ; the probability, for an ideal C of L, that the p-class of the

ideal NL/K(C) equals c, is
1

#HK
.

• Let γ ∈ Gr−1; the probability, for x ∈ K× local norm at all the non-

ramified places, that ωL/K(x) = γ, is
1

pN(r−1)
.

2.1.3. Program computing the filtrations {H i
Kn

}i≥1. The following program
may be used for the calculation of the Galois structure of the HKn ’s, Kn ⊆
L ⊂ K(µℓ), whatever the base field K given, as usual, by means of a monic
polynomial of Z[x] (here, of prime-to-p degree to simplify the computation of
a generator S of Gal(Kn/K)).

For this, one must indicate the prime p in p, the number Nn of layers
Kn considered, the polynomial PK defining K, a prime ell congruent to 1

modulo 2pN , N ≥ Nn, and a value mKn for computing the hij := h
(S−1)i

j for
1 ≤ i ≤ mKn, where the hj’s are the generators of the whole class group HKn

given by PARI (in CKn = Kn.clgp), and where the generator S of Gn is chosen
in G = nfgaloisconj(Kn) by testing the orders. 4

4 The reader must be warned that for class group computations, PARI uses random
primes in some analytic contexts, so that the generators given by Kn.clgp may vary; but
the corresponding matrices of exponents are “equivalent”. For this observation, run the
programs several times.
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So H i
Kn

= Ker(HKn → H
(σn−1)i

Kn
), 1 ≤ i ≤ m(Kn) (see (2.2) (iii)). The

invariant m(Kn) is obtained (assuming mKn large enough) for the first i giving
zero matrices in the test of principality of the hij’s. PARI works with inde-

pendent generators hi of HKn , of orders p
niti, p ∤ ti (given in CKn[2]); thus,

for any data [e1, . . . , er] given by bnfisprincipal(Kn,Y)[1] for an ideal Y whose
class is he11 · · · herr , the program gives, instead, the list E := [e1, . . . , er] defining

the p-class of Y (in HKn) as h
e1
1 · · · herr , where ei = lift(Mod(ei, p

ni)); this does
not modify the Galois structure of HKn and the outputs are more readable.
So, the ideal Y is p-principal if and only if E = [0, . . . , 0].

The corresponding outputs are written under the form h
(σ−1)j

i = [e1, . . . , er]

instead of h
(σ−1)j

i = h
e1
1 · · · herr .

Below, we take as example a cyclic cubic field of conductor f = 703, for
which, using the structure of Z-module, where Z = Z2[exp(

2iπ
3 )], we have

HK ≃ Z/2Z, ell = 97, mKn = 3; the results are given for n = 1 and n = 2
and r is the number of prime ideals of K dividing ℓ:

PROGRAM COMPUTING THE h_i^[(S-1)^j]:

{p=2;Nn=2;PK=x^3+x^2-234*x-729;ell=97;mKn=3;K=bnfinit(PK,1);CK0=K.clgp;

r=matsize(idealfactor(K,ell))[1];print("p=",p," Nn=",Nn," PK=",PK,

" ell=",ell," mKn=",mKn," CK0=",CK0[2]," r=",r);

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);CKn=Kn.clgp;dn=poldegree(Pn);

print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

\\Search of a generator S of Gal(Kn/K):

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the image of CKn by (S-1)^j:

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

\\computation in Ehij of the modified exponents of B:

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij));print()))}

p=2 Nn=2 f=703 PK=x^3+x^2-234*x-729 ell=97 mKn=3 CK0=[6,2] r=1

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

CK2=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,1,1] h_2^[(S-1)^1]=[0,2,1,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,2,0,0] h_2^[(S-1)^2]=[2,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

This gives m(K1) = 2, H
σ1−1
K1

= 〈h1h2, h3h4〉, H
G1
K1

= 〈h1h−12 , h3h
−1
4 〉 =

〈h1h2, h3h4〉 ≃ Z/2Z. Then m(K2) = 3, H
σ2−1
K2

= 〈h22h3h4, h22h3, h21h22, h21〉
= 〈h21, h22, h3, h4〉 ≃ (Z/2Z)2, whence H

G2
K2

= (HK2)
2 ≃ Z/2Z. We have

H
(σ2−1)2

K2
= 〈h21, h22〉 ≃ (HK2)

2 ≃ Z/2Z, H 2
K2

= 〈h21, h22, h3, h4〉 ≃ (Z/2Z)2.

These computations will prove later a partial capitulation of HK in K1 and
a complete capitulation in K2.

Remark 2.5. An astonishing fact, in a diophantine viewpoint, is that, when
the class of a capitulates in some Kn, the writing of the generator α ∈ K×n ,
of the extended ideal (a)Kn , on the Q-basis Kn.zk of the field Kn, needs most
often oversized coefficients (several thousand digits and, often, PARI proves
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the principality without giving these coefficients). If the reader wishes to
verify this fact, it suffices to add the instruction print(bnfisprincipal(Kn,Y))
giving the whole data for the ideal Y considered.

2.2. On the structures of the main invariants. In this subsection, we
restrict ourselves to the case L ⊆ K(µℓ), ℓ ≡ 1 (mod 2pN), with K abelian
real of prime-to-p degree, so that L/K is totally ramified at all the r prime
ideals l | ℓ of K.

The exact sequence (1.1) and the Chevalley–Herbrand formula:

#H
G
L = #HK × pN(r−1)

#
(

EK/EK ∩NL/K(L×)
)

lead to the relation:

(2.3) #
(
JL/K(HK)H

ram
L

)
× #

(
EK/NL/K(EL)

)
= #HK × pN (r−1).

Since L0 ⊂ Q(µℓ), of degree pN , is p-principal (indeed, H
Gal(L0/Q)
L0

= 1)

and since p ∤ [K : Q], the primes Li | li of L, i = 1, . . . , r, fulfill a dependent
relationship of the form L1 · · ·Lr = (α0)L, α0 ∈ L×0 ; moreover, (H ram

L )pN =
JL/K(H ram

K ) and NL/K(H ram
L ) = H ram

K , where H ram
K ⊆ HK is generated

by the p-classes of the li’s; this gives some information on the structures.

One verifies easily that, in L =
⋃

N

n=0Kn, #H ram
Kn

, #
(
EK/NKn/K(EKn)

)

and
pN(r−1)

#
(

EK/EK ∩NL/K(L×)
) (see Lemma 2.2) define increasing n-sequences and

that only #JKn/K(HK) is decreasing. This suggests that for some ℓ’s, with
N ≫ 0, there is capitulation of HK and relations of the form:

#H
ram
Kn

= pan+a0 , #
(
EK/NKn/K(EKn)

)
= pbn+b0 , n ≥ n0,

with a+ b = r − 1 and a0 + b0 = vp(#HK).

2.2.1. Case r = 1. The case r = 1 is particular since, whatever n, all the
factors are finite in the relation (2.3) which becomes for all n ≥ 0:

#
(
JKn/K(HK)H

ram
Kn

)
× #

(
EK/NKn/K(EKn)

)
= #HK ,

giving, possibly, stationary sequences from some level. The case r = 1 sup-
poses that ℓ does not split in K and we can assume, for instance, that K/Q
is cyclic of prime-to-p degree, in which case H ram

Kn
= 1 for all n ≥ 0, whence:

#JKn/K(HK)× #
(
EK/NKn/K(EKn)

)
= #HK ,

so that complete capitulation in Kn0 is equivalent to the stationary relation:

(2.4) #
(
EK/NKn/K(EKn)

)
= #HK , n ≥ n0.

Of course, only orders coincide in (2.4) since structures may be very differ-
ent; let’s consider the following two examples, given in [Gras2022b, § 5.4] that
we have checked again with the forthcoming Programs 6.1 and 7.1:

Example 2.6. We consider a cubic field with p = 2, ℓ = 257 (N = 7).

p=2 f=31923 PK=x^3-10641*x+227008 CK0=[6,2,2,2] ell=257 r=1

CK1=[18,6,2,2,2,2]=[2,2,2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0,0]

h_3^[(S-1)^1]=[0,1,0,0,1,0] h_4^[(S-1)^1]=[0,0,0,0,1,1]

h_5^[(S-1)^1]=[0,0,0,0,0,0] h_6^[(S-1)^1]=[0,0,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,1,0,0,1,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,1,1]
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norm in K1/K of the component 5 of CK1:[0,0,0,0,0,0]

norm in K1/K of the component 6 of CK1:[0,0,0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=1

CK2=[36,12,2,2,2,2]=[4,4,2,2,2,2]

h_1^[(S-1)^1]=[2,2,0,0,0,0] h_2^[(S-1)^1]=[2,2,1,1,1,0]

h_3^[(S-1)^1]=[0,2,1,1,1,0] h_4^[(S-1)^1]=[0,2,0,0,1,1]

h_5^[(S-1)^1]=[0,2,1,1,0,1] h_6^[(S-1)^1]=[2,0,1,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,2,0,0,0,0]

h_3^[(S-1)^2]=[0,2,0,0,0,0] h_4^[(S-1)^2]=[2,2,0,0,0,0]

h_5^[(S-1)^2]=[2,0,0,0,0,0] h_6^[(S-1)^2]=[2,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

The data for K2 give:

H
G2
K2

= 〈h1h5h6, h2h4h6〉 ≃ Z/4Z,

since the two independent generators h1, h2, are of order 4.

The exact sequence (1.1) reduces to the isomorphism of Z-modules H
G2
K2

≃
EK/NK2/K(EK2), which are of order #HK = 16, but are not isomorphic to
HK . We have, from the relation (2.4) and since EK ≃ Z⊗Z3, the isomorphisms
of Z-modules:

H
G2
K2

≃ EK/NK2/K(EK2) ≃ Z/4Z, HK ≃ Z/2Z× Z/2Z.

Example 2.7. We consider a quadratic field with p = 3, ℓ = 19 (N = 2). Let
K = Q(

√
32009) for which HK ≃ Z/3Z × Z/3Z. The general Program gives

an incomplete capitulation in K1, then a complete capitulation in K2:

PK=x^2-32009 CK0=[3,3] ell=19 r=1

CK1=[9,3]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

The data for K2 give:

H
G2
K2

= 〈h1〉 ≃ Z/9Z.

Since JK2/K(HK) = 1, H ram
K2

= 1 and EK ≃ Z3, the relation (2.4) becomes,
in K2/K, the isomorphism of cyclic groups:

H
G2
K2

≃ EK/NK2/K(EK2) ≃ Z/9Z,

while HK ≃ Z/3Z × Z/3Z.

2.2.2. Case r > 1. In that case, an heuristic is that there is no obstruction
about H ram

Kn
, EK/NKn/K(EKn) as Zp[Gn]-modules of standard p-ranks, except

a bounded exponent which may increase as soon as the orders of the modules
increase in (2.3), regarding N . Under complete capitulation, one gets:

(2.5) #H
ram
Kn

× #
(
EK/NKn/K(EKn)

)
= #HK × pn (r−1), n ≥ n0.
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Example 2.8. Consider K3 in the following example with p = 2, ℓ = 17
totally split in the cubic field K of conductor 1951, and complete capitulation
of HK in K1; we have HK ≃ Z/2Z and HK3 ≃ Z/8Z× Z/4Z:

p=2 f=1951 PK=x^3+x^2-650*x-289 CK0=[2,2] ell=17 r=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,2,0] h_4^[(S-1)^1]=[0,2,0,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K1)=2

CK3=[8,8,4,4]

h_1^[(S-1)^1]=[0,0,2,0] h_2^[(S-1)^1]=[2,2,2,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[6,2,0,2]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K3/K of the component 1 of CK3:[0,0,0,0]

norm in K3/K of the component 2 of CK3:[0,0,0,0]

norm in K3/K of the component 3 of CK3:[0,0,0,0]

norm in K3/K of the component 4 of CK3:[0,0,0,0]

Complete capitulation, m(K3)=3, e(K3)=3

We compute H ram
K1

, H ram
K2

and H ram
K3

, adding the following instructions
after a program execution:

For K1:

A=component(idealfactor(Kn,ell),1)[3]

bnfisprincipal(Kn,A)[1]=[2,0,0,0]

\\Checking the principality of A^2 with components of a generator:

A2=idealpow(Kn,A,2)

bnfisprincipal(Kn,A2)=[[0,0,0,0]~,[-51,0,-2,2,0,0]~]

For K2:

B=component(idealfactor(Kn,ell),1)[3]

bnfisprincipal(Kn,B)[1]=[0,0,2,2]

\\Checking the principality of B^2 with components of a generator:

B2=idealpow(Kn,B,2)

bnfisprincipal(Kn,B2)=[[0,0,0,0]~,

[-199260,-90688,102100,13880,4054,-14216,-8292,8559,-6223,-3433,3403,7557]~]

For K3:

C=component(idealfactor(Kn,ell),1)[3]

bnfisprincipal(Kn,C)[1]=[2,2,0,2]

C2=idealpow(Kn,C,2)

bnfisprincipal(Kn,C2)[1]=[4,4,0,0]

\\Checking the principality of C^4 with components of a generator:

C4=idealpow(Kn,C,4)

bnfisprincipal(Kn,C4)=[[0,0,0,0]~,

[-57074733,49681698,-55181004,32125541,42753200,-11450554,20535876,

-4037958, -4486534,-2178833,-1875179,3883122,-1527899,1665071,4332070,

2101150,1108465,-1251165, -1504106,445954,-292536,-677913,157262,-159406]~]
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The previous data and formula (2.5) give:
{

HK1 ≃ Z/4Z× Z/2Z, H
σ−1
K1

= 〈h21, h22〉,
H

G2
K1

≃ Z/2Z× Z/2Z, H
ram
K1

≃ Z/2Z, EK/NK1/K(EK1) ≃ Z/4Z,

since EK is a free Z-module of rank 1 and EK/NK1/K(EK1) is of order 16.{
HK2 ≃ Z/4Z× Z/4Z, H

σ−1
K2

= H
2
K2
,

H
G2
K2

≃ Z/2Z× Z/2Z, H
ram
K2

≃ Z/2Z, EK/NK2/K(EK2) ≃ Z/4Z,
{

HK3 ≃ Z/8Z× Z/4Z, H
σ−1
K3

= H
2
K3
,

H
G3
K3

≃ Z/4Z× Z/2Z, H
ram
K3

≃ Z/4Z, EK/NK3/K(EK3) ≃ Z/4Z,

The Chevalley–Herbrand formulas #H
Gn
Kn

= #HK × 4n

(EK : EK ∩NKn/K(K×
n ))

leads to EK/EK ∩ NK1/K(K×1 ) = 1, EK/EK ∩ NK2/K(K×2 ) ≃ Z/2Z, and

EK/EK ∩NK3/K(K×3 ) ≃ Z/2Z.

2.2.3. Conclusion about orders versus structures. One may ask (for instance in
the cubic case with p = 2 to simplify): what happens in the tower L = K(µℓ) if
HK has a large p-rank and a large exponent and if we suppose the capitulation
of HK (necessarily in a large layer Kn0) ?

The exact sequence (1.1) looks like:

1 → Z/2RnZ −→ H
Gn
Kn

≃ Z/2xnZ× Z/2ynZ −→ Z/2EnZ → 1,

since H ram
Kn

≃ Z/2RnZ and EK ∩NKn/K(K×n )/NKn/K(EKn) ≃ Z/2EnZ are Z-
monogenic (all exponents being ≥ 0). Then the Chevalley–Herbrand formula
looks like 4xn+yn = 4H × 4n ρn , where #HK = 4H (ρn = 0 for all n if r = 1,
otherwise ρn increases up to some limit ρN ).

So, H
Gn
Kn

is at most the product of two Z-monogenic components, possibly
of large orders since xn + yn = Rn + En = H + nρn. In the case r = 1 where
Rn = ρn = 0, H

Gn
Kn

is isomorphic to EK/NKn/K(EKn).

The philosophy of such examples is that whatever the structure of HK ,
there is no obstruction for the relations between orders and structures of
invariants associated to the HKn ’s by means of the exact sequence (1.1)
and the Chevalley–Herbrand formula, invariants whose algebraic structures
have canonical limitations, especially in terms of p-ranks (more precisely,
EK/NKn/K(EKn) as monogenic Zp[Gal(K/Q)]-module and H ram

Kn
of p-rank

bounded by the number of ramified places).

In the case of a real abelian base field K, this is typical of the Main Con-
jecture philosophy due to the analytic framework giving only orders and not
precise structures.

2.3. Decomposition of the algebraic norm νL/K. Put x := σ − 1; then:

νL/K =
pN−1∑
i=0

σi =
pN−1∑
i=0

(x+ 1)i =
(x+ 1)p

N − 1

x
=

pN∑
i=1

(pN
i

)
xi−1.

We have the following elementary property which is perhaps known in
Iwasawa’s theory, but we have not found suitable references; see however
[Jaul1986, IV.2 (b)], [Wash1997, § 13.3] or [BaCa2016, Cald2020] for possible
informations:

Theorem 2.9. The prime number p ≥ 2 and the integer N ≥ 1 being given,

the algebraic norm νL/K =
pN−1∑
i=0

σi is, for all k ∈ [1, pN − 1], of the form:

νL/K = (σ − 1)k · Ak(σ − 1, p) + pf(k) · Bk(σ − 1, p),
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Ak, Bk ∈ Z[σ − 1, p], where f(k) = N − s if k ∈ [ps, ps+1 − 1], s ∈ [0, N − 1].

Proof. From:

νL/K =
(pN

1

)
+x

(pN
2

)
+ · · ·+ xk−1

(pN
k

)

+ xk
[( pN

k+1

)
+ x

( pN
k+2

)
+ · · ·+ xp

N−1−k
(pN
pN

)]
,

we deduce that Ak(x, p) =
( pN
k+1

)
+ x

( pN
k+2

)
+ · · · + xpN−1−k

(pN
pN

)
.

The computation of Bk(x, p) depends on the p-adic valuations of the
(pN

j

)
,

j ∈ [1, k]. To find the maximal factor pf(k) dividing all the coefficients of the

polynomial
(pN

1

)
+ x

(pN
2

)
+ · · ·+ xk−1

(pN
k

)
, in other words, to find the p-part

of gcd
((

pN
1

)
,
(
pN
2

)
, . . . ,

(
pN
k

))
, we consider s ∈ [0, N − 1]. Let v the p-adic

valuation map.

Lemma 2.10. One has v
((

pN
ps

))
= N − s, for all s ∈ [0, N − 1].

Proof. We have
(pN
ps

)
=

pN !

ps! · (pN − ps)!
; then, using the well-known formula:

v(m!) =
m− S(m)

p− 1
, m ≥ 1,

where S(m) is the sum of the digits in the writing of m in base p, we get:

v(pN !) =
pN − 1

p− 1
, v(ps!) =

ps − 1

p− 1
, v((pN − ps)!) =

pN − ps − (p− 1)(N − s)

p− 1
,

since pN − ps may be written ps(pN−s − 1) with:

pN−s −1 = 1(p−1)+p(p−1)+p2(p−1)+ · · ·+pN−s−2(p−1)+pN−s−1(p−1),

giving N − s times the digit p− 1. Whence:

v
((pN

ps

))
=

1

p− 1

(
pN − 1− (ps − 1)− (pN − ps − (p− 1)(N − s))

)
= N − s,

for all s ∈ [0, N − 1]. �

Lemma 2.11. For k ∈ [ps + 1, ps+1 − 1], s ∈ [0, N − 1], we have v
((

pN
k

))
≥

N − s.

Proof. Consider
(
pN
k

)(
pN
ps

)−1
, k ∈ [ps + 1, ps+1 − 1] to check that its valuation

is non-negative (the interval is empty for p = 2, s = 0, so, for p = 2 we assume
implicitly s > 0):

(pN
k

)
(pN
ps

) =
pN !

k! (pN − k)!
× ps! (pN − ps)!

pN !

=
ps!

k!
× (pN − ps)!

(pN − k)!

=
1

(ps + 1)(ps + 2) · · · (ps + (k − ps))
× (pN − ps)!

(pN − k)!

=
(pN − k + 1)(pN − k + 2) · · · (pN − k + (k − ps))

(ps + 1)(ps + 2) · · · (ps + (k − ps))
.
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Put k = ps + h, h ∈ [1, ps(p− 1)− 1]; then we can write:
(pN

k

)
(pN
ps

)=[pN − (ps + h) + 1][pN − (ps + h) + 2] · · · [pN − (ps + h) + h]

[ps + 1][ps + 2] · · · [ps + h]

=
[pN − (ps + h) + 1][pN − (ps + h) + 2] · · · [pN − (ps + h) + h]

[ps + h][ps + h− 1] · · · [ps + h− (h− 1)]

=
[pN − (ps + h) + 1]

[(ps + h)− 1]

[pN − (ps + h) + 2]

[(ps + h)− 2]
· · · [p

N − (ps + h) + (h− 1)]

[(ps + h)− (h− 1)]

× pN − ps

ps + h
.

We remark that each factor of the form
pN − [(ps + h) − j]

[(ps + h)− j]
is a p-adic unit

for j ∈ [1, h− 1]; indeed, one sees that (ps+h)− j ≤ ps+1− 2 with s+1 ≤ N ,
whence vp((p

s + h)− j) ≤ N − 1.

Now, consider the remaining factor
pN − ps

ps + h
=

ps(pN−s − 1)

ps + h
=

ps

ps + h
, up to

a p-adic unit since s ∈ [0, N − 1]. As h ≤ ps(p− 1)− 1, one can put h = λpu,
p ∤ λ, u ≤ s; the case u < s is obvious and gives a positive valuation; if u = s,
the relation h ≤ ps(p− 1)− 1 implies λ ≤ p− 2, thus ps + h = ps(1 + λ) with

1+λ ≤ p− 1 and
ps

ps + h
is, in this case, a p-adic unit, whence the lemma. �

This leads to the expression of f(k) on
⋃N−1

s=0 [ps, ps+1 − 1] = [1, pN − 1], to
the proof of the theorem. �

The following corollary, proving Theorem 1.1 (i) and some generalizations,
is of easy use in practice; we assume, to simplify, that L/K is totally ramified:

Corollary 2.12. (i) Let m(L) be the minimal integer such that (σ − 1)m(L)

annihilates HL and let pe(L) be the exponent of HL. A sufficient condition
for the complete capitulation of HK in L, is that e(L) ∈ [1, N − s(L)] if

m(L) ∈ [ps(L), ps(L)+1 − 1] for s(L) ∈ [0, N − 1].

A sufficient condition for a partial capitulation of HK in L, is that there
exists h ∈ HL such that NL/K(h) 6= 1, h being of order pe and annihilated by

(σ−1)m, for e,m such that e ∈ [1, N−s] if m ∈ [ps, ps+1−1] for s ∈ [0, N−1].

(ii) For t ≥ 1, put HL := HL/H
pt

L and let m(L), e(L), be the corresponding
invariants for which we have m(L) ≤ m(L) and e(L) ≤ e(L); the capitulation

of HK in L holds as soon as e(L) ∈ [1, N − s(L)] if m(L) ∈ [ps(L), ps(L)+1 − 1]
for s(L) ∈ [0, N − 1].

(iii) Stability of the HKn’s in the tower L =
⋃

N

n=0Kn corresponds to
m(Kn) = 1, s(Kn) = 0, e(Kn) = e(K).

Proof. If h ∈ HL, νL/K(h) = JL/K(NL/K(h)) =
(
h(σ−1)

k)A×
(
hp

f(k))B
, for all

k ∈ [1, pN − 1]. Thus, JL/K is non-injective as soon as h fulfills the conditions

stated in the second part of (i) with k = m ∈ [ps, ps+1− 1], s ∈ [0, N − 1], and
f(k) = N − s ≥ e. For the triviality of νL/K(HL), it suffices that m = m(L),
s = s(L) and e = e(L) be solution. One obtains Theorem 1.1 (i).

The case (ii) of quotients is immediate; their capitulation is “easier” and

means that any ideal a of K becomes of the form (a)L = (α) ·Apt, where A is
an ideal of L and α ∈ L×. The case t = 1 of the stability property (iii) gives
the stability of the p-ranks. �

In other words, if the length m(L) of the filtration is not too large as well

as the exponent pe(L) of HL, then we obtain νL/K(h) = 1 for all h ∈ HL (or
only for some ones), whence complete (or partial) capitulation of HK in L.
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Another way to interpret this result is to say that if N is large enough and
if the Galois complexity of the p-class groups HKn , for the layers Kn, does
not increase too much, then HK capitulates in L.

For this, we introduce the following definition:

Definition 2.13. Let L/K be any cyclic p-extension totally ramified of degree
pN , N ≥ 1, and let σ be a generator of Gal(L/K). Let HK and HL be the

p-class groups of K and L, respectively. We denote by pe(L) the exponent of
HL and by m(L) the length of the filtration

{
H i

L

}
i≥0

(i.e., the least integer

m(L) such that (σ − 1)m(L) annihilates HL, cf. § 2.1.1).

Then we say that L/K is of smooth complexity if the conditions e(L) ≤
N − s(L) if m(L) ∈ [ps(L), ps(L)+1 − 1] for s(L) ∈ [0, N − 1], are fulfilled.

2.3.1. The Furtwängler property. This property is the strong equality:

KerHL
(NL/K) = H

σ−1
L ;

it is obviously equivalent (in our context L ⊂ K(µℓ)) to #H G
L = #HK , thus

to the triviality of the norm factor in the Chevalley–Herbrand formula. This
is for instance the case when ℓ is non-split in K. We have discovered some
applications in Bembom’s thesis, about the Galois structure of HL via its
filtration and the problem of capitulation (see for instance [Bem2012, § 2.6,
Theorem 2.6.3; § 2.8, Theorem 2.8.9]).

Under the Furtwängler property, Nakayama’s Lemma gives immediately:

Proposition 2.14. Let L/K be a totally ramified cyclic p-extension such that

#H G
L = #HK . Set HK =

r⊕
i=1

〈hi〉 and let H ′
L =

r⊕
i=1

〈h′i〉 where the h′i ∈ HL

are such that hi = NL/K(h′i), for all i. Then HL is generated by H ′
L as

Zp[σ − 1]-module. So, any h′ ∈ HL may be written h′ =
∏r

i=1 h
′
i
ωi, where

ωi =
∑m(L)−1

j=0 ai,j(σ − 1)j , ai,j ∈ Zp.

2.3.2. Program giving the decompositions of νL/K . The following program put

νL/K in the form P (x, p) = xkA(x, p) + pf(k)B(x, p), 1 ≤ k ≤ pN − 1, where
x = σ − 1 and p are considered as indeterminate variables. This is necessary
to have universal expressions for any HL as Zp[G]-module; in other words,
we do not reduce modulo p the coefficients of A and B. One must note that,
except the cases k = 1, B = 1 and k = pN − 1, A = 1, the polynomials A and
B are not invertible in the group algebra, which allows improvements of the
standard reasoning of annihilation with (k, pf(k)).

One must precise the numerical prime number p in Prime and N in N:

PROGRAM OF DECOMPOSITION OF THE ALGEBRAIC NORM

{Prime=2;N=3;P=0;for(i=1,Prime^N,C=binomial(Prime^N,i);

v=valuation(C,Prime);c=C/Prime^v;P=P+c*p^v*x^(i-1));print("P=",P);

for(k=1,Prime^N-1,B=lift(Mod(P,x^k));w=valuation(B,p);print();

print("P=x^",k,".A+p^",w,".B");print("A=",(P-B)/x^k);print("B=",B/p^w))}

2.3.3. Case p = 2, N = 1: P = x+ p.
P=x+p

A=1 B=1

2.3.4. Case p = 3, N = 1: P = x2 + p ∗ x+ p.
P=x^1.A+p^1.B P=x^2.A+p^1.B

A=x+p B=1 A=1 B=x+1

2.3.5. Case p = 2, N = 2: P = x3 + p2 ∗ x2 + 3 ∗ p ∗ x+ p2.
P=x^1.A+p^2.B P=x^2.A+p^1.B P=x^3.A+p^1.B

A=x^2+p^2*x+3*p B=1 A=x+p^2 B=3*x+p A=1 B=p*x^2+3*x+p

For the next examples, we only write P.
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2.3.6. Case p = 3, N = 2:

P=x^8+p^2*x^7+4*p^2*x^6+28*p*x^5+14*p^2*x^4+14*p^2*x^3+28*p*x^2+4*p^2*x+p^2

2.3.7. Case p = 2, N = 3:

P=x^7+p^3*x^6+7*p^2*x^5+7*p^3*x^4+35*p*x^3+7*p^3*x^2+7*p^2*x+p^3

2.3.8. Case p = 2, N = 4:

P=x^15+p^4*x^14+15*p^3*x^13+35*p^4*x^12+455*p^2*x^11+273*p^4*x^10

+1001*p^3*x^9+715*p^4*x^8+6435*p*x^7+715*p^4*x^6+1001*p^3*x^5

+273*p^4*x^4+455*p^2*x^3+35*p^4*x^2+15*p^3*x+p^4

Thus, as soon as νL/K = (σ− 1)k ×Ak(σ− 1, p)+ pf(k)×Bk(σ− 1, p), with
k ≥ m(L) and f(k) ≥ e(L), then HK capitulates in L. But the reciprocal
does not hold and capitulation may occur whatever m(L) and e(L). Indeed, if

m(L) ∈ [ps(L), ps(L)+1−1] for s(L) ∈ [0, N−1], with e(L) > N−s(L), reducing
P modulo the ideal

(
xm(L), pe(L)

)
, the capitulation of HK is equivalent to the

annihilation of HL by an explicit polynomial of the form:

j+h∑
j=1

aj p
ejxmj , p ∤ aj, ej ∈ [1, e(L)− 1], mj ∈ [0,m(L)− 1],

which may hold by accident depending on the numerical data of the filtration;
we give such a case in Example 2.15 (ii). We will also give examples where
the above property of νL/K applies, apart from the obvious case of stability.

2.4. Illustrations using the decomposition of νL/K. In what follows, the
cyclic p-extensions L/K are always totally ramified.

Example 2.15. Let’s begin with an example where the structure of HKn

grows sufficiently with n, giving no capitulation up to n = 3; next, another
choice of ℓ leads to capitulation, but where Theorem 1.1 (i) does not apply.

(i) We consider the cyclic cubic field K of conductor f = 703, p = 2 and
ℓ = 17. Then HK ≃ Z/2Z and we get, from the Program 6.1 (with several
hours for the level n = 3):

p=2 Nn=3 f=703 PK=x^3+x^2-234*x-729 mKn=3 CK0=[6,2] ell=17 r=1

CK1=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

h_1^[(S-1)^3]=[0,0] h_2^[(S-1)^3]=[0,0]

norm in K1/K of the component 1 of CK1:[2,2]

norm in K1/K of the component 2 of CK1:[2,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[24,8]=[8,8]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[6,6]

h_1^[(S-1)^2]=[4,4] h_2^[(S-1)^2]=[4,0]

h_1^[(S-1)^3]=[0,0] h_2^[(S-1)^3]=[0,0]

norm in K2/K of the component 1 of CK2:[4,4]

norm in K2/K of the component 2 of CK2:[4,0]

No capitulation, m(K2)=3, e(K2)=3

CK3=[48,16]=[16,16]

h_1^[(S-1)^1]=[8,10] h_2^[(S-1)^1]=[10,14]

h_1^[(S-1)^2]=[4,12] h_2^[(S-1)^2]=[12,8]

norm in K3/K of the component 1 of CK3:[8,8]

norm in K3/K of the component 2 of CK3:[8,0]

No capitulation, m(K3)=4, e(K3)=4

For n = 1, we havem(K1) = 2, s(K1) = 1, n−s(K1) = 0 and e(K1) = 2 > 0.

For n = 2, we havem(K2) = 3, s(K2) = 1, n−s(K2) = 1 and e(K2) = 3 > 1.

For n = 3, we havem(K3) = 4, s(K3) = 2, n−s(K3) = 1 and e(K3) = 4 > 1.

In this case the complexity increases due to successive exponents 1, 2, 3, 4.
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Nevertheless HK = HK/H
2
K capitulates in K1 because m(K1) = 1 since

h
[(S−1)1]
1 = [0, 2] and h

[(S−1)1]
2 = [2, 2] (s(K1) = 0), then e(K1) = 1 ≤ n−s(K1).

(ii) Changing ℓ = 17 into ℓ = 97 gives complete capitulation in K2 because
of a smooth complexity, but higher than a stability:

p=2 Nn=2 f=703 PK=x^3+x^2-234*x-729 CK0=[6,2] ell=97 r=1

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,0,0]

norm in K1/K of the component 2 of CK1:[1,1,0,0]

norm in K1/K of the component 3 of CK1:[0,0,1,1]

norm in K1/K of the component 4 of CK1:[0,0,1,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,1,1] h_2^[(S-1)^1]=[0,2,1,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,2,0,0] h_2^[(S-1)^2]=[2,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

For n = 2, P = x3 + 22 ∗ x2 + 3 ∗ 2 ∗ x+ 22, m(K2) = 3, s(K2) = 1 and
e(K2) = 2 > n − s(K2) = 1; so the property deduced from the use of νK2/K

does not hold. Then, modulo the ideal (x3, 22), it follows that 3 ∗ 2 ∗ x must

annihilate HK2 , which is confirmed by the data since h
2(σ2−1)
i = 1 for all i.

So, Theorem 1.1 (i) gives a sufficient condition of capitulation, not neces-
sary, but some information remains when the condition is not fulfilled.

Example 2.16. We consider the cyclic cubic field K of conductor 1777, p = 2
and ℓ = 17. Then HK ≃ Z/4Z is of exponent 4.
p=2 Nn=3 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] ell=17 r=3

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=3

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=3

CK3=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation, m(K3)=1, e(K3)=3

In this case, the stability from K1 implies necessarily the capitulation in
K3 (so the third computation is for checking). Moreover, for all n ≥ 1, HKn

is annihilated by σ − 1 and HKn = H
Gn
Kn

as expected from Theorem 1.1 (ii)
and given by Program 2.1.3. Whence m(Kn) = 1, s(Kn) = 0, e(Kn) = 3
giving e(Kn) ≤ n − s(Kn) only from n = 3. Note that HK/H

2
K capitulates

in K1 and that, considering the HKn := HKn/H
4
Kn

, then HK = HK/H
4
K

capitulates only in K2.
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Example 2.17. (i) We consider the quadratic field Q(
√
142) with p = 3 and

various primes ℓ ≡ 1 (mod 3), ℓ 6≡ 1 (mod 9), so that N = 1, L = K1, and
the sufficient conditions of Theorem 1.1 (i) are e(K1) = 1 ≤ 1− s(K1), whence
s(K1) = 0 and m(K1) ∈ [1, 2]:

p=3 PK=x^2-142 N=1 CK0=[3] ell=13 r=2

CK1=[3,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=1, e(K1)=1

p=3 PK=x^2-142 N=1 CK0=[3] ell=1123 r=2

CK1=[21,3]=[3,3]

h_1^[(S-1)^1]=[1,2] h_2^[(S-1)^1]=[1,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=2, e(K1)=1

p=3 PK=x^2-142 N=1 CK0=[3] ell=208057 r=2

CK1=[3,3,3,3]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,1,1,1] h_4^[(S-1)^1]=[2,1,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=2, e(K1)=1

(ii) For p = 5 and N = 1 the conditions become e(K1) = 1 ≤ 1 − s(K1),
whence s(K1) = 0, with m(K1) ∈ [1, 4], which offers more possibilities:

p=5 PK=x^2-401 N=1 CK0=[5] ell=1231 r=2

CK1=[5,5]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=1, e(K1)=1

p=5 PK=x^2-401 N=1 CK0=[5] ell=1741 r=1

CK1=[5,5]

h_1^[(S-1)^1]=[3,3] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=2, e(K1)=1

p=5 PK=x^2-401 CK0=[5] ell=4871 r=1

CK1=[10,10,10,2]=[5,5,5]

h_1^[(S-1)^1]=[4,0,4,0] h_2^[(S-1)^1]=[1,4,0,0] h_3^[(S-1)^1]=[3,4,2,0]

h_1^[(S-1)^2]=[3,1,4,0] h_2^[(S-1)^2]=[3,1,4,0] h_3^[(S-1)^2]=[2,4,1,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0] h_3^[(S-1)^3]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=3, e(K1)=1

Example 2.18. We consider the cubic field of conductor f = 20887 with
p = 2 and ℓ = 17 totally split:

p=2 Nn=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=17 r=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]
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h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

We note that NK1/K(hi) 6= 1 for i = 3, 4, otherwise NK1/K(HK1) = HK

would be of 2-rank 2 instead of 4 (absurd). Since m(K1) = 1 (all classes are
invariant), Theorem 1.1 (i) applies non-trivially for the classes h3, h4 of order 2
(m = 1, s = 0, e ∈ [1, 1], which is indeed the case).

Let’s give the complete data checking the capitulation of the two classes of
K of order 2; the instruction CK0 = K.clgp gives:
[64,[4,4,2,2],[[2897,2889,2081;0,1,0; 0,0,1],[2897,825,2889;0,1,0;0,0,1],

[17,16,13;0,1,0;0,0,1],[53,36,44;0,1,0; 0,0,1]]]

it describes HK with 4 representative ideals of generating classes; that of order
2 are a3 = [17, 16, 13; 0, 1, 0; 0, 0, 1], a4 = [53, 36, 44; 0, 1, 0; 0, 0, 1]; the following
6 large coefficients (on the integral basis computed by PARI) give integers αi

of L with the relations (ai)L = (αi):

[[0,0,0,0]~,[4482450896,-1173749328,81969609,69123722,7646555,39729395]~]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

[[0,0,0,0]~,[-4877380814,1968946273,-1411818,102996743,38571732,40207952]~]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

At the level n = 2, the result is similar, but shows that the classes of order
4 of HK never capitulate:

CK2=[16,16,2,2]

h_1^[(S-1)^1]=[8,0,0,0] h_2^[(S-1)^1]=[0,8,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=4

3. Arithmetic invariants that do not capitulate

The non capitulation of p-class groups HK in cyclic p-extensions L/K im-
plies necessarily, as we have seen, that the structure of HL does not allow the
previous use of the algebraic norm (Theorem 1.1 (i)) and the complexity is not
smooth according to the Definition 2.13; that is to say, either m(Kn) ≥ pn or
m(Kn) ∈ [ps, ps+1 − 1] for s ∈ [0, n− 1] but in that case, e(Kn) > n− s. This
may be checked by means a more general framework.

3.1. General case of injective transfers JL/K . Let p be any prime number
and let K a family of number fields stable by taking subfields, extensions,
compositum (e.g., family of totally real number fields).

Definition 3.1. Assume given a family Xk of finite invariants of p-power
order, indexed by the set of number fields K , fulfilling the following conditions
for k, k′ ∈ K :

(i) For any Galois extension k′/k, of Galois group G, Xk′ is a Zp[G]-module.

(ii) There exist surjective arithmetic norms Nk′/k : Xk′ → Xk and transfer
maps Jk′/k : Xk → Xk′ , such that Jk′/k ◦Nk′/k = νk′/k for all k, k′, k ⊆ k′.

(iii) If G is a cyclic p-group, we define the associated filtration
{
X i

k′
}
i≥0

defined by X
i+1
k′ /X i

k′ := (Xk′/X
i
k′)

G, for all i ≥ 0.
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Thus, for a cyclic p-extension L/K, L,K ∈ K , let m(L) be the length of

the filtration; the condition e(L) ∈ [1, N−s(L)] ifm(L) ∈ [ps(L), ps(L)+1−1] for
s(L) ∈ [0, N − 1], of Theorem 1.1 (i), applies in the same way, independently
of the fact of being able to calculate the orders of the X i

L’s by means of a

suitable algorithm moving from X i
L to X

i+1
L .

Theorem 3.2. Let L/K, K,L ∈ K , be a cyclic p-extension of degree pN ,
N ≥ 1, and let Kn be the subfield of L of degree pn over K, n ∈ [0, N ].
We assume that, for all n ∈ [0, N − 1], the arithmetic norms NKn+1/Kn

are
surjective and that the transfer maps JKn+1/Kn

are injective.

Then #Xn+h ≥ #Xn ·#Xn[p
h], for all n ∈ [0, N ] and all h ∈ [0, N −n], where

Xn[p
h] := {x ∈ Xn, x

ph = 1}.
In particular, if for n+ h ≤ N ], ph annihilates Xn, then #Xn+h ≥ (#Xn)

2.

Proof. Put Gn+h
n := Gal(kn+h/kn) and in the same way forNn+h

n , Jn+h
n . From

the exact sequence:

1 → Jn+h
n Xn → Xn+h → Xn+h/J

n+h
n Xn → 1,

we get:

1 → X
Gn+h

n
n+h /Jn+h

n Xn → (Xn+h/J
n+h
n Xn)

Gn+h
n

→ H1(Gn+h
n ,Jn+h

n Xn) → H1(Gn+h
n ,Xn+h),

where H1(Gn+h
n ,Jn+h

n Xn) = (Jn+h
n Xn)[p

h] ≃ Xn[p
h] (injectivity of Jn+h

n ),

#H1(Gn+h
n ,Xn+h) = #H2(Gn+h

n ,Xn+h) = #(X Gn+h
n

n+h /Jn+h
n Xn),

since νn+h
n Xn+h = Jn+h

n ◦ Nn+h
n Xn+h = Jn+h

n Xn (surjectivity of Nn+h
n ),

giving an exact sequence of the form:

1 → A→ (Xn+h/J
n+h
n Xn)

Gn+h
n → Xn[p

h] → A′, with #A′ = #A.

We then obtain the inequality #Xn+h ≥ #Xn · #Xn[p
h]. �

Corollary 3.3. Let pen be the exponent of XKn and let rn be its p-rank,
n ∈ [0, N ]. The n-sequence #XKn stabilizes from some n0 ∈ [0, N − 1] (i.e.,
#XKn0+1 = #XKn0

) if and only if XKn = 1 for all n ∈ [0, N ].
In an Iwasawa’s theory context with µ = 0 and λ > 0, then rn is a constant r
for all n≫ 0 and en → ∞ with n; in particular, if λ = µ = 0, then XKn = 1
for all n ≥ 0.

Proof. The first claim is obvious. The stability from n0 means XKn0
[p] = 1,

whence XKn0
= 1, then XKn = 1 for all n ≥ 0 (injectivity of JKn/K).

If µ = 0 in the formula #Xn = pλn+µpn+ν for all n large enough, the
relation #Xn+1 ≥ #Xn · Xn[p] implies rn ≤ λ; since the p-rank is increasing,
rn = r for all n≫ 0; then one may write #HKn ≥ pr en , whence λn+ ν ≤ ren
proving that en → ∞ with n. If λ = µ = 0, then #Xn is constant for n large
enough, whence Xn = 1 for all n ≥ 0. �

We remark that if the p-rank rn is unbounded, necessarily µ > 0.

We must notice, in the practice, that Theorem 1.1 (i) does not apply since
the complexity of the XKn crucially increases with n.

3.2. Case of imaginary quadratic field and p-class groups. If K is an
imaginary quadratic field and L = L0K, L0/Q real cyclic of degree pN , we
know that there is never capitulation of HK 6= 1. In the following example,
for p = 3, n = 1, 2, we will examine the structure of HKn .

Example 3.4. Consider K = Q(
√
−199), p = 3 and ℓ = 19, inert in K, and

use a modified version of Program 7.1 given further:
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{p=3;Nn=2;m=199;ell=19;mKn=2;PK=x^2+m;K=bnfinit(PK,1);

CK0=K.clgp;r=(kronecker(-m,ell)+3)/2;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

dn=poldegree(Pn);Kn=bnfinit(Pn,1);if(n==1,print();

print("PK=",PK," CK0=",CK0[2]," ell=",ell," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu)))}

p=3 Nn=2 PK=x^2+199 CK0=[9] ell=19 r=1

CK1=[513]=[27]

h_1^[(S-1)^1]=[9] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=3

CK2=[749493,19,19]=[81]

h_1^[(S-1)^1]=[45,0,0] h_1^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=2, e(K2)=4

(i) Case n = 1. We have HK ≃ Z/32Z and HK1 ≃ Z/33Z; then m(K1) = 2
(s(K1) = 1) and one obtains e(K1) = 3 > n− s(K1) = 0. We get the equality
#HK1 = #HK · #HK [3].

(ii) Case n = 2. Then HK2 ≃ Z/34Z and m(K2) = 2 (s(K2) = 1) and
e(K2) = 4 > n − s(K2) = 1. Here, #HK2 > #HK1 · #HK1 [3], but #HK2 =
#HK · #HK [32].

Example 3.5. We consider K = Q(
√
−199), ℓ = 37, inert in K.

p=3 Nn=2 PK=x^2+199 CK0=[9] ell=37 r=1

CK1=[54,6,3]=[27,3,3]

h_1^[(S-1)^1]=[21,1,0] h_2^[(S-1)^1]=[18,0,1] h_3^[(S-1)^1]=[18,0,0]

h_1^[(S-1)^2]=[0,0,1] h_2^[(S-1)^2]=[18,0,0] h_3^[(S-1)^2]=[0,0,0]

h_1^[(S-1)^3]=[18,0,0] h_2^[(S-1)^3]=[0,0,0] h_3^[(S-1)^3]=[0,0,0]

h_1^[(S-1)^4]=[0,0,0] h_2^[(S-1)^4]=[0,0,0] h_3^[(S-1)^4]=[0,0,0]

norm in K1/K of the component 1 of CK1:[12,0,1]

norm in K1/K of the component 2 of CK1:[18,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=4, e(K1)=3

CK2=[42442542,18,9]=[81,9,9]

No capitulation, m(K2)=4, e(K2)=4

(i) Case n = 1. In this case, HK1 ≃ Z/33Z×Z/3Z×Z/3Z; the above data
shows that m(K1) = 4 for e(K1) = 3, and a more complex structure, since
s(K1) = 1, but e(K1) = 3 > n− s(K1) = 0.

(ii) Case n = 2. Then HK2 ≃ Z/34Z × Z/32Z × Z/32Z. So m(K2) ≥ 4
(from relation (2.2) (v)), s(K2) ≥ 1 with e(K2) = 4 > n− s(K2) = 1. One has
#HK2 = #HK1 · #HK1 [3].

3.3. Case of torsion groups in abelian p-ramification theory. We will
evoke the case of the torsion group TK of the Galois group of the maximal
abelian p-ramified pro-p-extension of a number fieldK; then, under Leopoldt’s
conjecture, the transfer map is always injective, whatever the extensions of
number fields L/K considered. This has some consequences because of the
formula:

#TK = #H̃K · #RK · #WK ,
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where WK is a canonical invariant built on the groups of (local and global)
roots of unity of p-power order of K, RK is the normalized p-adic regulator

and H̃K a sub-group of HK (see, for instance [Gras2005, Theorem IV.2.1],
[Gras2018, Diagram § 3 and § 5], [Gras2021a]). Note that for the Bertrandias–

Payan module T
bp
K of K (isomorphic to TK/WK) the transfers JL/K are

injective, except few special cases discussed in [GJN2016].

Thus, as we have seen, in any cyclic p-extension L/K of Galois group G, the
complexity of the invariants TKn will never be smooth and will be increasing
with n, regarding that of K.

Example 3.6. We use the program [Gras2019a, Corollary 2.2, Program I,
§ 3.2] computing the group structure of the TKn ’s for quadratic fields K =
Q(

√
m), p = 2, Kn ⊂ K(µℓ) (so the number r2 + 1 of independent Zp-

extensions is 1 for m > 0 and 2n+1 for m < 0). One must chose an arbitrary
constant E, “assuming” E > en + 1, to be controlled a posteriori:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (real quadratic fields):

{p=2;ell=257;Nn=4;E=16;for(m=2,150,if(core(m)!=m,next);PK=x^2-m;

print("p=",p," PK=",PK," ell=",ell);for(n=0,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-1,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))}

In a very simple context (K = Q(
√
m), p = 2, L ⊂ K(µ257)), the complexity

of the torsion groups TKn is growing dramatically (for the pk-ranks as well as
the exponents) as shown by the following excerpts:

p=2 PK=x^2-2 ell=257

TK0=[]

TK1=[8,8]

TK2=[16,16,4,4,2,2]

TK3=[32,32,8,8,4,4,4,2,2,2,2]

TK4=[64,64,16,16,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2]

p=2 ell=257 PK=x^2-73

TK0=[2]

TK1=[64,8,2,2]

TK2=[128,16,8,4,4,2,2,2]

TK3=[256,32,16,16,8,8,8,4,2,2,2,2,2,2,2,2]

TK4=[512,64,32,32,16,16,16,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 ell=257 PK=x^2-105

TK0=[2,2]

TK1=[16,8,2,2]

TK2=[32,16,8,4,2,2,2,2]

TK3=[64,32,8,8,8,8,8,2,2,2,2,2,2,2,2,2]

TK4=[128,64,16,16,16,16,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 ell=257 PK=x^2-113

TK0=[4]

TK1=[128,16,4]

TK2=[256,32,8,4,4,4,2]

TK3=[512,64,16,8,8,8,2,2,2,2,2,2,2,2,2]

TK4=[1024,128,32,16,16,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

In the context L ⊂ K(µℓ), the analogue of the Chevalley–Herbrand formula

gives #T
Gn
Kn

= #TK · pr n, where r = 1 or 2 is the number of primes l | ℓ in
K/Q [Gras2005, Theorem IV.3.3, Exercise 3.3.1]; unfortunately, we do not
know formulas, similar to that of (2.2), for the orders of the T i

Kn
for i > 1.

Consider, for instance, the above case of m = 113, for K4, #TK4 = 259,
r = 2, νK4/K(TK4) ≃ Z/4Z, with the associated polynomial:

P=x^15+p^4*x^14+15*p^3*x^13+35*p^4*x^12+455*p^2*x^11+273*p^4*x^10

+1001*p^3*x^9+715*p^4*x^8+6435*p*x^7+715*p^4*x^6+1001*p^3*x^5

+273*p^4*x^4+455*p^2*x^3+35*p^4*x^2+15*p^3*x+p^4
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Since #(T i+1
K4

/T i
K4

) ≤ #T
G4
K4

= 210, this gives m(K4) ≥ 10 (s(K4) ≥ 3).

These computations show that m(K4) and e(K4) = 10 are large. Moreover,
the conditions of Theorem 1.1 (i), e(K4) ≤ 4− s(K4) can not be satisfied.

Taking imaginary quadratic fields does not modify the behavior of the TKn ’s
since, for all n, JKn/K is still injective and NKn/K surjective:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (imaginary quadratic fields):

{p=2;ell=257;Nn=3;E=16;for(m=2,150,if(core(m)!=m,next);PK=x^2+m;print("p=",p,

" ell=",ell," PK=",PK);for(n=0,Nn,r2=2^n+1;PKn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,PKn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-r2,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))}

p=2 PK=x^2+2 ell=257

TK0=[]

TK1=[16,2]

TK2=[16,4,4,4,4]

TK3=[32,8,4,4,4,4,4,4,4]

TK4=[64,16,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4]

p=2 ell=257 PK=x^2+3

TK0=[]

TK1=[16]

TK2=[32,8,4]

TK3=[64,16,4,4,4,4,4]

TK4=[128,32,4,4,4,4,4,4,4,4,4,4,4,4,4]

p=2 ell=257 PK=x^2+7

TK0=[2]

TK1=[8,2,2]

TK2=[16,4,2,2,2,2,2]

TK3=[32,8,2,2,2,2,2,2,2,2,2,2,2,2,2]

TK4=[64,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

For cyclic cubic fields, p = 2, ℓ = 257, we obtain for instance:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (cyclic cubic fields):

{p=2;ell=257;Nn=3;E=16;bf=7;Bf=10^3;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);print("p=",p," f=",f,

" PK=",PK," ell=",ell);for(n=0,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-1,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))))}

p=2 f=31 PK=x^3+x^2-10*x-8 ell=257

TK0=[2,2]

TK1=[8,2,2,2,2]

TK2=[16,4,2,2,2,2,2,2,2,2,2]

TK3=[32,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=43 PK=x^3+x^2-14*x+8 ell=257

TK0=[2,2]

TK1=[16,16,8,2,2]

TK2=[32,32,16,4,4,4,2,2,2,2,2]

TK3=[64,64,32,8,8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=171 PK=x^3-57*x-152 ell=257

TK0=[8,8]

TK1=[16,16,8,2,2]

TK2=[32,32,16,4,2,2,2,2,2,2,2]

TK3=[64,64,32,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=277 PK=x^3+x^2-92*x+236 ell=257

TK0=[4,4]

TK1=[8,4,4,4,4]
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TK2=[16,8,8,4,4,4,4,4,2,2,2]

TK3=[32,16,16,8,8,8,8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Remark 3.7. Consider, in the framework of Theorem 3.2, Yn := Xn/X
p
n for

all n ∈ [0, N ], and assume that the transfer maps Yn → Yn+1 are injective;
thus, #Yn+1 ≥ #Yn ·#Yn[p] = (#Yn)

2, whence rkp(Xn+1) ≥ 2 rkp(Xn) for all
n ∈ [0, N − 1]. This doubling of the p-ranks does not seem exceptional; for

instance, for X = T , K = Q(
√
105), p = 2, ℓ = 257, computed above, we

obtain precisely, for rn := rkp(Tn), r0 = 2, r1 = 4, r2 = 8, r3 = 16, r4 = 32,
and in the other similar examples, some irregularities appear, but for all them,
ℓ splits in K.

The case X = H and K imaginary quadratic may give similar results; for
instance K =

√
−53, p = 3, ℓ = 109, leads to:

PK=x^2+53 CK0=[6] ell=109 r=1

CK1=[114,6,6]=[3,3,3]

CK2=[7510662,342,18,3,3]=[9,9,9,3,3]

for which r0 = 1, r1 = 3, r2 = 5.

Then, with K =
√
−5, p = 2, ℓ = 257, one obtains:

PK=x^2+5 CK0=[2] ell=257 r=1

CK1=[6,6]=[2,2]

CK2=[174,6,2,2]=[2,2,2,2]

CK3=[19662,6,6,6,2,2,2,2]=[2,2,2,2,2,2,2,2]

CK4=[5353549698,42,6,6,2,2,2,2,2,2,2,2,2,2,2,2]

=[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

for which rn = 2n for all n ≤ 4.

Note that, even if the transfers Xn → Xn+1 are injective, Yn → Yn+1 may
be non injective, meaning that some xn ∈ Xn become pth powers in Xn+1,
which “explains” that the exponents pen increase with n in many of the above
numerical examples. So one may hope that any pair (pen , rn), compatible with
Galois action, does exist.

This study suggests that classical bounds given by genus theory in L/K,
in the form of the genus exact sequence (e.g., [AnJau2000, Théorème 2.2.9],
[Jaul1986, Théorème III.2.7]), [Gras2005, Corollary IV.4.5.1], [Maire2018, Th-
eorem 2.2], [Liu2022, Theorem 6.5]), may be much largely exceeded, including
totally real base fields K.

4. Capitulation in Zp-extensions

The problem of capitulations in a Zp-extension K̃ =
⋃

n≥0Kn of K has a
long history from Iwasawa pioneering works showing, for instance, that the
capitulation kernels Ker(J

K̃/Kn
) have a bounded order as n → ∞ [Iwas1973,

Theorem 10, § 5]. The reader may refer for instance to [GrJa1985, BaCa2016,
Cald2020] for classical context of p-class groups and to [KoMo2000, Vali2008]

for wild kernels, [Jaul2016, Jaul2019a] for logarithmic class groups (see § Ê5).

Let X
K̃

:= lim
←−
n

HKn (for the arithmetic norms), isomorphic to the Galois

group of the maximal unramified abelian pro-p-extension of K̃ and let H
K̃

:=

lim
−→
n

HKn (for the transfer maps) be the p-class group of K̃.

4.1. Survey of known results under the assumption µ = 0. If µ = 0, in
the writing #HKn = pλn+µpn+ν for n≫ 0, the following properties are proved
in [GrJa1985, Théorème, p. 214]:

• XK̃ ≃ T
⊕

Zλ
p , where T is a finite p-group,
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• NK̃/Kn
: XK̃ → HKn induces an isomorphism of T onto Ker(JK̃/Kn

), for

all n≫ 0,

• HKn ≃ Ker(J
K̃/Kn

) ⊕ J
K̃/Kn

(HKn) ≃ Ker(J
K̃/Kn

)
λ⊕

i=1
Z/pn+αiZ, for all

n≫ 0, with some relative integers αi.

In [Vali2008, Théorème 3.2.5] is proved analogous results for even groups
of the K-theory of rings of integers of number fields, after similar results as
that of [KoMo2000].

From now on, we take the base field Kn0 , n0 large enough, in such a way

that K̃/Kn0 is totally ramified and such that all the above properties are
fulfilled from n0. By abuse of notation, we write K instead of Kn0 and Kn

now denotes Kn0+n. So, the Zp-extension K̃/K has new Iwasawa invariants
of the form (λ, µ = 0, ν + λn0) that we still denote (λ, ν).

Thus, #HKn = pλn+ν for all n ≥ 0, #HK = pν , and:

(4.1) HKn ≃ Ker(JK̃/Kn
)⊕

λ⊕
i=1

Z/pn+αiZ, with Ker(JK̃/Kn
) ≃ T , ∀n ≥ 0.

In particular, in this new context, αi ≥ 0 and:

(4.2) HK ≃ Ker(JK̃/K)⊕
λ⊕

i=1
Z/pαiZ, αi ≥ 0.

Proposition 4.1. Under the above choice of the base field K in the Zp-exten-

sion K̃ and assuming µ = 0, the capitulation of HK in K̃ is equivalent to the

isomorphism HKn ≃ HK ⊕ J
K̃/Kn

(HKn) ≃ HK ⊕
(
Z/pnZ

)λ
, for all n ≥ 0.

Proof. If HK capitulates in K̃, then Ker(JK̃/K) = HK and, from (4.2), αi = 0

for all i ∈ [1, λ]. So HKn ≃ HK ⊕
(
Z/pnZ

)λ
, for all n ≥ 0, since each

capitulation kernel Ker(J
K̃/Kn

) is isomorphic to T, whence isomorphic to

Ker(JK̃/K) = HK (isomorphisms given by the arithmetic norms).

Reciprocally, assume that HKn ≃ HK ⊕
(
Z/pnZ

)λ
, for all n ≥ 0; then,

from (4.1):

HKn = Ker(JK̃/Kn
)⊕

λ⊕
i=1

Z/pn+αiZ ≃ HK ⊕
(
Z/pnZ

)λ
.

Comparing the structures for n large enough gives αi = 0 for all i ∈ [1, λ] and

Ker(J
K̃/Kn

) ≃ HK for all n, whence the capitulation of HK in K̃. �

4.2. Case of the cyclotomic Zp-extension of K. Assume that K is totally
real and let K∞ =

⋃
n≥0Kn be the cyclotomic Zp-extension of K, assuming

the previous choice of the base field K in K∞ (it is still real with same cyclo-
tomic Zp-extension). Greenberg’s conjecture [Gree1976] for K∞ (λ = µ = 0)
is equivalent to the stability of the #HKn ’s from K, giving capitulations of

all the class groups in K∞ from n = 0, then equalities HKn = H
Gn
Kn

for all

n ≥ 0, and the isomorphisms HKn

NKn/K≃ HK , for all n ≥ 0; thus, m(Kn) = 1
(s(Kn) = 0) with e(Kn) = e(K), which is exactly the limit case of application
of the Theorem 1.1 (i) for n ≥ e(K).

In [KrSch1995, Paga2022] such properties of stability are used to check the
conjecture by means of analytic formulas.

In [Jaul2016, Jaul2019a, Jaul2019b], it is proved that Greenberg’s conjecture

is equivalent to the capitulation of the logarithmic class group H
log
K in K∞;

this may be effective if, by chance, a capitulation occurs in the firsts layers
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over the base field K; indeed, this criterion is probably the only one giving an
algorithmic test (using [BeJa2016, DJPPS2005]) from the base field.

In what follows, we will analyze the generalized Chevalley–Herbrand for-
mula in K∞/K.

Conventions 4.2. Taking in the sequel, as totally real base field K, a suitable
layer Kn0 in K∞, we may assume the following properties of K∞/K:

(i) p is totally ramified in K∞/K;

(ii) Iwasawa’s formula #HKn = pλn+µpn+ν is valid for all n ≥ 0 with
the new invariants (λ, µpn0 , ν + λn0) that we still denote (λ, µ, ν). Thus,
#HK = pµp

n0+ν+λn0 and, except the trivial case λ = µ = ν = 0, HK 6= 1 in
this new writing.

Then, as for the “tame casee”, formulas (2.2) hold with r = #{p, p |p in K}
and the filtration still depends on the class and norm factors. However, the
norm factors can be interpreted, from generalizations of Taya results, as divisor
of the normalized p-adic regulator of K, as follows from class field theory:

Definitions 4.3. (i) Let Hgen
Kn

be the genus field of Kn (i.e., the subfield of the
p-Hilbert class field Hnr

Kn
, abelian over K and maximal, whence the subfield of

Gal(Hnr
Kn
/K) fixed by the image of H

σn−1
Kn

), and letK∞H
gen
Kn

, which is abelian

p-ramified over K, whence K∞H
gen
Kn

⊆ Hpr
K , the maximal p-ramified abelian

pro-p-extension of K. So TK := Gal(Hpr
K /K∞) is finite under Leopoldt’s

conjecture.

We define Hgen
K∞

:=
⋃

nK∞H
gen
Kn

and put GK := Gal(Hgen
K∞

/K∞).

We denote by Kn1 , n1 ≥ 0, the minimal layer such that K∞H
gen
Kn1

= Hgen
K∞

(even with the above conventions, Kn1 may be distinct from K).

(ii) Let Hbp
K be the Bertrandias–Payan field fixed by WK ≃

(
⊕v|pµKv

)/
µK ,

where Kv is the v-completion of K and µk the group of pth-roots of unity of
the field k (local or global); if Uv is the group of principal units of Kv, then
µKv

= torZp
(Uv).

(iii) Let ιEK be the image of EK in UK :=
∏

v|p Uv and let Iv(H
pr
K /K∞) :=

torZp
(Uv/ιEK ∩ Uv) be the inertia groups of v in Hpr

K /K∞; the subgroup of

TK generated by these inertia groups fixes Hgen
K∞

.

(iv) Let Rnr
K := Gal(Hgen

K∞
/K∞H

nr
K ) and let Rram

K := Gal(Hbp
K /Hgen

K∞
),

where RK := Gal(Hbp
K /K∞H

nr
K ) is the normalized p-adic regulator defined

in [Gras2018, Section 5].

These definitions may be summarized by the following diagram [Gras2021a,
Section 2]:

TK

RK

R
nr
K R

ram
K

HK
Hgen

K∞

Hbp
K WK

K∞Hnr
KK∞ Hpr

K

GK

Recall, under the above Conventions 4.2 about the choice of the base fieldK,
some results, given in [Gras2017b, Gras2019b] and generalizing some particular
results of Taya [Taya1996, Taya1999, Taya2000]:

Proposition 4.4. For all n ≥ 0, the norm factor
pn·(r−1)

ωKn/K(EK)
divides #Rnr

K

and #H
Gn
Kn

= #HK × pn·(r−1)

ωKn/K(EK)
divides #GK = #HK · #Rnr

K ; then, equality

holds for all n ≥ n1.
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Thus, the norm factors
pn·(r−1)

ωKn/K(Λi
K)

, associated to the filtration, divide #Rnr
K ,

which allows computations in the base fieldK without Hasse’s symbols. Recall
that m(Kn) is the length of the filtration for Kn and thatm(K) = 1 if HK 6= 1
(m(K) = 0 if HK = 1); so, formulas (2.2) apply in general for L = Kn, n ≥ 0:

Proposition 4.5. Let vp denotes the p-adic valuation. Under the previous
Conventions 4.2 about the base field K, we have for all n ≥ 0:

m(Kn) ≤ λ · n+ µ · pn + ν ≤ vp(#HK · #R
nr
K ) ·m(Kn).

From these recalls and conventions about the base field K we can deduce
(under Leopoldt’s conjecture):

Corollary 4.6. Greenberg’s conjecture is equivalent to m(Kn) = 1 (resp. 0)

if HK 6= 1 (resp. HK = 1) and Rnr
K = 1, whence HKn = H

Gn
Kn

for all n ≥ 0.

Proof. (i) If λ = µ = 0, there is stability from the level n = 0 and we know

that HKn = H
Gn
Kn

NKn/K≃ HK for all n ≥ 0 (whence m(Kn) ∈ {0, 1} for all n).

There exists n1 ≫ 0 such that Gal(K∞H
gen
Kn1

/K∞) = GK by definition; thus,

since #H
Gn
Kn

= #HK , for all n ≥ n1, it follows that Rnr
K = 1.

(ii) Reciprocally, if Rnr
K = 1 and m(Kn) ∈ {0, 1}, then Proposition 4.5

implies λ = µ = 0 if HK 6= 1 (or λ = µ = ν = 0 if HK = 1). �

We can wonder, due to Proposition 4.1, if Greenberg’s conjecture is equiva-
lent, under Conventions 4.2 and µ = 0, to νKn/K(HKn) = 1 for all n ≥ e(K),
obtained with the stronger particular conditions m(Kn) = 1 (i.e., s(Kn) = 0)
and e(Kn) = e(K).

Indeed, under Greenberg’s conjecture, in the non trivial case HK 6= 1,

one has HKn

NKn/K≃ HK , for all n ≥ 0, which characterizes the stability with
m(Kn) = 1 and e(Kn) = e(K), precisely the kind of annihilation of the HKn ’s
by νKn/K with m(Kn) = 1 (i.e., s(Kn) = 0) and e(Kn) = e(K).

Reciprocally, if HK capitulates because of the conditions m(Kn) = 1 and
e(Kn) = e(K) for all n ≥ e(K), then λ = 0.

But, unfortunately, in the practice, these phenomenon (if any) holds from
an unknown level.

This possibility may be suggested by the following example of the cyclic
cubic field of conductor f = 2689, of 2-class group Z/2Z and its cyclotomic
Z2-extension, giving HK1 ≃ Z/4Z, HK2 ≃ Z/8Z, and HK3 ≃ Z/8Z (see
details of the PARI programs and data in § 6.3):

p=2 f=2689 PK=x^3+x^2-896*x+5876 CK0=[2,2]

CK1=[28,4]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=2

CK2=[56,8]=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation, m(K2)=1, e(K2)=3

CK3=[56,8]=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]
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Complete capitulation, m(K3)=1, e(K3)=3

At any layer, σn−1 annihilates HKn (i.e., m(Kn) = 1) and capitulations in
K∞ hold for all n. Stability occurs from K2 giving a checking of Greenberg’s
conjecture.

Remark 4.7. It is interesting to check the numerical examples given by
Fukuda [Fuku1994] for real quadratic fields and p = 3 (stability from K)
with the simplified usual program and suitable polynomials defining the lay-
ers of the cyclotomic Z3-extension; here we limit the computations at the first
level (n = 1) and use the fact that the HKn ’s are cyclic:

{p=3;n=1;Lm=List([3137,3719,4409,6809,7226,9998]);for(i=1,6,PK=x^2-Lm[i];

K=bnfinit(PK,1);CK0=K.clgp;Pn=polcompositum(PK,polsubcyclo(p^(n+1),p^n))[1];

Kn=bnfinit(Pn,1);CKn=Kn.clgp;print();G=nfgaloisconj(Kn);Id=x;for(k=1,2*p^n,

Z=G[k];ks=1;while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,

S=G[k];break));A0=CKn[3][1];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));C=bnfisprincipal(Kn,A)[1];print("PK=",PK,

" CK0=",CK0[2]," CK",n,"=",CKn[2]," norm in K",n,"/K of CK",n,":",C))}

PK=x^2-3137 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-3719 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-4409 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-6809 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-7226 CK0=[18] CK1=[18] norm in K1/K of CK1:[3]~

PK=x^2-9998 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

The stability from K implies Greenberg’s conjecture and capitulation of
HK in K2, with an incomplete capitulation in K1 and m(Kn) = 1 for all n.

5. Capitulation of the logarithmic class group

Questions of capitulation, in various p-extensions, of other arithmetic in-
variants, are at the origin of many papers, (see, e.g., [Maire1996, KoMo2000,
JauMi2006, Brig2007, Vali2008, Jaul2016, GJN2016, Jaul2019a, Jaul2019b,
KhPr2000, Jaul2022, Gras2022a] and their references); they are related to
generalized p-class groups with conditions of ramification and decomposition,
to wild kernels of K-theory, then, in a nearby setting, to torsion groups in p-
ramification theory, to Tate–Chafarevich groups, Bertrandias–Payan modules
about the embedding problem and logarithmic class groups.

The same techniques, using the algebraic norm, may be applied; the results
essentially depend on the properties of the associated filtration, whence on
the variation of the complexity in the p-extension L/K considered.

We shall focus on transfers of the logarithmic class groups in some totally

ramified cyclic p-extensions. This invariant, usually denoted C̃ℓK or T̃K , was
defined in [Jaul1994] and is, in the class field theory viewpoint, isomorphic to
Gal(H lc

K/K
cyc), where H lc

K is the maximal abelian locally cyclotomic pro-p-
extension of K and Kcyc = K∞ its cyclotomic Zp-extension.

It is well known that tame places totally split in Hpr
K /K

cyc, so that H lc
K is

the subfield of Hpr
K fixed by the decomposition groups of the p-places. In the

sequel we will denote H
log
K this group since it behaves more like a class group

rather than a torsion group TK which never capitulates.

In [Jaul2019a] one finds the following diagram of the main invariants, show-

ing in particular that HK and H
log
K are quotients of TK where the groups

Gal(Hbp
K /K∞H

nr
K ) and Gal(Hbp

K /H lc
K) are suitable regulators of units:
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Hpr
K

WK

Hbp
K

H lc
KH

nr
K

H lc
K K∞H

nr
K

K∞H
split
K

K∞

T
bp
K

TK

RKR̃K
✑

✑
✑

✑
✑

✑✑

◗
◗
◗
◗
◗
◗◗

◗
◗

◗
◗

◗
◗

◗

✑
✑
✑
✑
✑
✑✑

H
[p]
KH

log
K

[p]

H
log
K HK

H ′
K

In this diagram, H
log
K

[p] (resp. H
[p]
K ) is the subgroup, of the logarithmic class

group H
log
K (resp. of the p-class group HK), generated by the classes of the

primes dividing p. So H ′
K is the quotient HK/H

[p]
K and Hsplit

K is the splitting

field of p in Hnr
K , hence the subfield fixed by the image of H

[p]
K , noting that

in our case, Hnr
K ∩Kcyc = K (compare with the diagram in Definitions 4.3).

These invariants are connected by means of the exact sequences:

1 → H
log
K

[p] −→ H
log
K −→ H

′
K → 1, 1 → H

[p]
K −→ HK −→ H

′
K → 1.

In our context (K totally real, L ⊂ K(µℓ), ℓ ≡ 1(mod 2pN)), Theorem 1.1

applies to the logarithmic class groups H
log
K and H

log
L , computable using

[BeJa2016, DJPPS2005]. Indeed, since L/K is tamely and totally ramified
at ℓ, then Lcyc = LKcyc, thus H lc

K is linearly disjoint from Lcyc and the norm

NL/K : H
log
L = Gal(H lc

L /L
cyc) → H

log
K = Gal(H lc

K/K
cyc) is surjective.

Remark 5.1. For logarithmic class groups in totally ramified (in the classical
sense) cyclic p-extensions, the theory of stability does exist, essentially because
the arithmetic norms are surjective allowing the criterion of capitulation with
νL/K = JL/K ◦NL/K , but in numerical applications, our extensions L/K may
be partially locally cyclotomic, say in Kn0/K, which gives some logarithmic
non-ramification (see [Jaul1994, Théorème 1.4]). For instance, if K is a cyclic

cubic field, p = 2 and ℓ = 17, then p splits in K1 = K(
√
17) and is inert in

L/K1; for K quadratic real, p = 3, ℓ = 109, p is totally inert in L/K leading
to the classic reasoning in totally logarithmically ramified cyclic p-extensions.

Nevertheless, one can illustrate the problem of capitulation in the tricky
case, from the base field K1 (instead of K), or by using Theorem 1.1 (i) with
a direct proof as follows:

Proposition 5.2. Let L ⊂ K(µℓ), ℓ ≡ 1 (mod pN), as usual. Assume that

for some n0 ≥ 0 and h ≥ 1, H
log
Kn0+h

≃ H
log
Kn0

with e(Kn0) ∈ [1, n0 + h]. Then

H
log
K capitulates in Kn0+h.
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Proof. Assume that H
log
Kn0+h

≃ H
log
Kn0

and let G0 = Gal(Kn0+h/Kn0) =: 〈σ0〉;
necessarily the isomorphism is given by the norm NKn0+h/Kn0

which is sur-

jective; thus NKn0+h/Kn0
((H log

Kn0+h
)σ0−1) ≃ 1 giving H

log
Kn0+h

= (H log
Kn0+h

)G0 ,

whence m(Kn0+h) = 1, s(Kn0+h) = 0, which yields the capitulation of H
log
Kn0

in H
log
Kn0+h

and, a fortiori, that of H
log
K . �

5.1. Examples with real quadratic fields and p = 3. We give examples
for quadratic field K = Q(

√
m), p = 3, ℓ = 109. There are many stabili-

ties, allowing to conclude the capitulation. Recall that PARI gives the data[
H

log
Kn

,H log
Kn

[p],H ′
Kn

]
in this order.

{p=3;Nn=2;bm=2;Bm=10^4;ell=109;for(m=bm,Bm,if(core(m)!=m,next);

PK=x^2-m;K=bnfinit(PK,1);ClogK0=bnflog(K,p);if(ClogK0==[[],[],[]],next);

r=(kronecker(m,ell)+3)/2;for(n=1,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);if(n==1,print();

print("PK=",PK," ClogK0=",ClogK0," ell=",ell," r=",r));

ClogKn= bnflog(Kn,p);print("ClogK",n,"=",ClogKn)))}

In the case r = 1, we obtain examples of the following form:

PK=x^2 - 67 ClogK0=[[3],[3],[]] ell=109 r=1

ClogK1=[[9],[9],[]]

ClogK2=[[9],[9],[]]

Complete capitulation in K2

PK=x^2 - 321 ClogK0=[[3],[],[3]] ell=109 r=1

ClogK1=[[9],[],[9]]

ClogK2=[[9],[],[9]]

Complete capitulation in K2

PK=x^2 - 454 ClogK0=[[3],[3],[]] ell=109 r=1

ClogK1=[[3],[3],[]]

ClogK2=[[3],[3],[]]

Complete capitulation in K1

PK=x^2 - 473 ClogK0=[[3],[],[3]] ell=109 r=1

ClogK1=[[3],[],[3]]

ClogK2=[[3],[],[3]]

Complete capitulation in K1

PK=x^2 - 610 ClogK0=[[3],[3],[]] ell=109 r=1

ClogK1=[[9],[9],[]]

ClogK2=[[27],[27],[]]

No conclusion

The last example (m = 610) is the only one of non stability in the interval

considered. Its 3-class group is trivial, then H ′
K = 1 and H

log
Kn

= H
log
Kn

[3].

The following list deals with the case r = 2. If H log
Kn

[p] = 1, we can conclude,
using the general Program 7.1 for p-class groups.

PK=x^2-106 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[3,3],[3],[3]]

ClogK2=[[9,3],[9],[3]]

No conclusion

PK=x^2-238 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[9,3],[9],[3]]

ClogK2=[[27,9],[27],[9]]

No conclusion

PK=x^2-253 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[9],[9],[]]

ClogK2=[[27],[27],[]]

No conclusion

PK=x^2-254 ClogK0=[[3],[],[3]] ell=109 r=2

ClogK1=[[3,3],[],[3,3]]

ClogK2=[[3,3],[],[3,3]]
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Complete capitulation in K2

PK=x^2-326 ClogK0=[[3],[],[3]] ell=109 r=2

ClogK1=[[3],[],[3]]

ClogK2=[[3],[],[3]]

Complete capitulation in K1

PK=x^2-443 ClogK0=[[3],[],[3]] ell=109 r=2

ClogK1=[[9],[],[9]]

ClogK2=[[9],[],[9]]

Complete capitulation in K2

PK=x^2-659 ClogK0=[[3],[],[3]] ell=109 r=2

ClogK1=[[9],[],[9]]

ClogK2=[[9],[],[9]]

Complete capitulation in K2

PK=x^2-679 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[9],[9],[]]

ClogK2=[[27],[27],[]]

No conclusion

PK=x^2-727 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[9],[9],[]]

ClogK2=[[27],[27],[]]

No conclusion

PK=x^2-785 ClogK0=[[3],[],[3]] ell=109 r=2

ClogK1=[[9],[],[9]]

ClogK2=[[27],[],[27]]

No conclusion

PK=x^2-790 ClogK0=[[3],[3],[]] ell=109 r=2

ClogK1=[[3,3],[3],[3]]

ClogK2=[[9,3],[3],[9]]

No conclusion

5.2. Examples with cyclic cubic fields and p = 2. With an analogous
program, one obtains the following results, taking into account Remark 5.1:

PK=x^3 + x^2 - 54*x - 169 ClogK0=[[2,2],[],[2,2]] ell=17 r=3

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[2,2],[],[2,2]]

ClogK3=[[2,2],[],[2,2]]

Complete capitulation in K1

PK=x^3 + x^2 - 182*x - 81 ClogK0=[[2,2],[],[2,2]] ell=17 r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[2,2],[],[2,2]]

ClogK3=[[2,2],[],[2,2]]

Complete capitulation in K1

PK=x^3 - 201*x + 1072 ClogK0=[[2,2],[2,2],[]] ell=17 r=1

ClogK1=[[2,2],[2,2],[]]

ClogK2=[[4,4],[4,4],[]]

ClogK3=[[8,8],[8,8],[]]

No conclusion (fake stability in K1/K)

PK=x^3 + x^2 - 202*x - 1169 ClogK0=[[2,2],[],[2,2]] ell=17 r=1

ClogK1=[[2,2,2,2],[],[2,2,2,2]]

ClogK2=[[2,2,2,2],[],[2,2,2,2]]

ClogK3=[[2,2,2,2],[],[2,2,2,2]]

Complete capitulation in K2

PK=x^3 + x^2 - 234*x - 729 ClogK0=[[2,2],[],[2,2]] ell=17 r=1

ClogK1=[[4,4],[],[4,4]]

ClogK2=[[8,8],[],[8,8]]

ClogK3=[[16,16],[],[16,16]]

No conclusion, probably no capitulation

(...)

PK=x^3 - 291*x - 1358 ClogK0=[[2,2],[2,2],[]] ell=17 r=1

ClogK1=[[4,4],[4,4],[]]

ClogK2=[[4,4],[4,4],[]]
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Complete capitulation in K2

PK=x^3 + x^2 - 336*x - 1719 ClogK0=[[2,2],[],[2,2]] ell=17 r=1

ClogK1=[[4,4],[],[4,4]]

ClogK2=[[4,4],[],[4,4]]

Complete capitulation in K2

PK=x^3 + x^2 - 340*x + 416 ClogK0=[[2,2],[2,2],[]] ell=17 r=1

ClogK1=[[2,2],[2,2],[]]

ClogK2=[[2,2,2,2],[2,2,2,2],[]]

No conclusion (fake stability in K1/K)

PK=x^3 + x^2 - 386*x + 1760 ClogK0=[[4,4],[4,4],[]] ell=17 r=1

ClogK1=[[4,4],[4,4],[]]

ClogK2=[[8,8],[8,8],[]]

No conclusion (fake stability in K1/K)

PK=x^3 + x^2 - 486*x + 2864 ClogK0=[[2,2],[2,2],[]] ell=17 r=3

ClogK1=[[2,2],[2,2],[]]

ClogK2=[[4,4,2,2],[4,4],[2,2]]

No conclusion (fake stability in K1/K)

PK=x^3 + x^2 - 650*x - 289 ClogK0=[[2,2],[],[2,2]] ell=17 r=3

ClogK1=[[4,4,2,2],[],[4,4,2,2]]

ClogK2=[[4,4,4,4],[],[4,4,4,4]]

No conclusion

PK=x^3 + x^2 - 692*x - 7231 ClogK0=[[2,2],[],[2,2]] ell=17 r=1

ClogK1=[[2,2,2,2],[],[2,2,2,2]]

ClogK2=[[2,2,2,2,2,2],[],[2,2,2,2,2,2]]

No conclusion

To verify the capitulations as for the p-class groups, it would be interesting
to have available the logarithmic instructions replacing K.clgp, once the field
K is given as usual with K = bnfinit(PK) and the logarithmic class group by
bnflog(K, p), then an instruction replacing bnfisprincipal(K,A) for an ideal A
in the logarithmic sense.

5.3. Capitulation in the Z2-extension of Q(
√
m). The program elimi-

nates trivial cases (as the stability from K) and only considers totally ramified
cyclotomic Z2-extensions of K. The capitulation is obtained in K3/K for al-
most cases; we give an excerpt of the results and the case where no conclusion
is possible for n ≤ 3 with m up to 1250:

{p=2;Nn=3;bm=2;Bm=10^4;for(m=bm,Bm,if(core(m)!=m,next);if(Mod(m,8)==2,next);

PK=x^2-m;K=bnfinit(PK,1);r=matsize(idealfactor(K,2))[1];ClogK0=bnflog(K,p);

if(ClogK0==[[],[],[]],next);for(n=1,Nn,Qn=x;for(i=1,n,Qn=Qn^2-2);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);if(n==1,print();

print("PK=",PK," ClogK0=",ClogK0," r=",r));ClogKn= bnflog(Kn,p);

if(n==1 & ClogKn==ClogK0,break);print("ClogK",n,"=",ClogKn)))}

PK=x^2-113 ClogK0=[[2],[2],[]] r=2

ClogK1=[[2],[],[2]]

ClogK2=[[2],[],[2]]

ClogK3=[[2],[],[2]]

PK=x^2-119 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[2,2],[],[2,2]]

ClogK3=[[2,2],[],[2,2]]

PK=x^2-161 ClogK0=[[4],[4],[]] r=2

ClogK1=[[4],[2],[2]]

ClogK2=[[4],[],[4]]

ClogK3=[[4],[],[4]]

PK=x^2-221 ClogK0=[[2],[],[2]] r=1

ClogK1=[[4],[],[4]]

ClogK2=[[4],[],[4]]

ClogK3=[[4],[],[4]]
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PK=x^2-255 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[4,2],[],[4,2]]

ClogK3=[[4,2],[],[4,2]]

PK=x^2-323 ClogK0=[[2],[],[2]] r=1

ClogK1=[[8],[],[8]]

ClogK2=[[8],[],[8]]

ClogK3=[[8],[],[8]]

PK=x^2-357 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[4,2,2],[],[4,2,2]]

ClogK3=[[4,2,2],[],[4,2,2]]

PK=x^2-527 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[2,2,2],[],[2,2,2]]

ClogK3=[[2,2,2],[],[2,2,2]]

PK=x^2-627 ClogK0=[[2,2],[],[2,2]] r=1

ClogK1=[[4,4],[],[4,4]]

ClogK2=[[8,8],[],[8,8]]

ClogK3=[[16,8],[],[16,8]]

No conclusion up to K3

PK=x^2-791 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[2,2,2,2],[],[2,2,2,2]]

ClogK3=[[2,2,2,2],[],[2,2,2,2]]

PK=x^2-799 ClogK0=[[4],[],[4]] r=1

ClogK1=[[4,2],[],[4,2]]

ClogK2=[[8,2,2],[],[8,2,2]]

ClogK3=[[8,2,2],[],[8,2,2]]

PK=x^2-805 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[8,4],[],[8,4]]

ClogK3=[[8,4],[],[8,4]]

PK=x^2-1023 ClogK0=[[4],[],[4]] r=1

ClogK1=[[8],[],[8]]

ClogK2=[[16],[],[16]]

ClogK3=[[32],[],[32]]

No conclusion up to K3

PK=x^2-1067 ClogK0=[[2],[],[2]] r=1

ClogK1=[[8],[],[8]]

ClogK2=[[16],[],[16]]

ClogK3=[[32],[],[32]]

No conclusion up to K3

PK=x^2-1217 ClogK0=[[8],[8],[]] r=2

ClogK1=[[16,2],[8],[4]]

ClogK2=[[16,2],[4],[4,2]]

ClogK3=[[16,2],[2],[8,2]]

PK=x^2-1221 ClogK0=[[4],[],[4]] r=1

ClogK1=[[8],[],[8]]

ClogK2=[[16],[],[16]]

ClogK3=[[16],[],[16]]

PK=x^2-1243 ClogK0=[[2],[],[2]] r=1

ClogK1=[[2,2],[],[2,2]]

ClogK2=[[8,4],[],[8,4]]

ClogK3=[[8,8],[],[8,8]]

No conclusion up to K3

PK=x^2-1245 ClogK0=[[2],[],[2]] r=1

ClogK1=[[8],[],[8]]

ClogK2=[[16],[],[16]]

ClogK3=[[32],[],[32]]

No conclusion up to K3
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PK=x^2-1249 ClogK0=[[4],[4],[]] r=2

ClogK1=[[8],[4],[2]]

ClogK2=[[8],[2],[4]]

ClogK3=[[8],[],[8]]

PK=x^2-1254 ClogK0=[[2,2],[],[2,2]] r=1

ClogK1=[[4,4],[],[4,4]]

ClogK2=[[8,8],[],[8,8]]

ClogK3=[[16,8],[],[16,8]]

No conclusion up to K3

5.4. Conclusion. As a conclusion, one can say, from the above examples,
that the logarithmic class group of a totally real field K may capitulate in
the simplest cyclic p-extensions L/K, L ⊂ K(µℓ), as for p-class groups; this

was not so obvious, but in [Jaul2019b] is proved the existence (as for p-class
groups) of abelian extensions L0/Q such that L = L0K is a capitulation field

for H
log
K (some more general conditions of signature may be assumed for K).

Clearly, for imaginary quadratic fields, the fact that, probably, H
log
K never

capitulates in L seems plausible, because of a systematic non-smooth increas-
ing complexity (p-rank and/or exponent) as shown by the following excerpt:

PK=x^2 + 14 ClogK0=[[3],[3],[]] ell=109 r=1

ClogK1=[[9],[9],[]]

ClogK2=[[27],[27],[]]

PK=x^2 + 41 ClogK0=[[27],[27],[]] ell=109 r=1

ClogK1=[[81],[81],[]]

ClogK2=[[243],[243],[]]

PK=x^2 + 74 ClogK0=[[9],[9],[]] ell=109 r=2

ClogK1=[[27,3],[27],[3]]

ClogK2=[[81,9],[81],[9]]

PK=x^2 + 107 ClogK0=[[9],[9],[]] ell=109 r=1

ClogK1=[[27,9,3],[27],[9,3]]

ClogK2=[[81,27,9],[81],[27,9]]

6. Tables for cubic fields and p = 2

We consider various totally ramified cyclic p-extensions L/K, where K is
a cyclic cubic field and L = KL0 with L0/Q cyclic, especially L0 ⊂ Q(µℓ),
ℓ ≡ 1 (mod 2pN).

6.1. Cyclic cubic fields, L ⊂ K(µℓ), ℓ ∈ {17, 97}. In that examples, L0

is the real subfield of degree 8 of Q(µℓ). The program eliminates the cases
of stability #HK1 = #HK since complete capitulation holds in a suitable
layer if e(K) ≤ 3. The number vHK defines the minimal p-adic valuation
of the #HK ’s to be considered; it may be chosen at will. The submodules
νKn/K(HL) = JKn/K(HK) are computed for n ≤ 2. The number r ∈ {1, 3}
is the number of prime ideals above ℓ in K.

6.1.1. Case ℓ = 17. We give an excerpt of the various cases obtained (all
these examples show the randomness of the structures and of the capitulations,
complete or incomplete). We indicate if HK capitulates in K3 (not computed)
which holds as soon as #HK2 = #HK1 (stability from K1) and e(K) ≤ 2
(Theorem 1.1 (ii)):
MAIN PROGRAM FOR CYCLIC CUBIC FIELDS

{p=2;Nn=2;bf=7;Bf=10^4;vHK=2;ell=17;mKn=2;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);
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K=bnfinit(PK,1);r=matsize(idealfactor(K,ell))[1];

\\Testing the order of the p-class group of K compared to vHK:

HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print("f=",f," PK=",PK," CK0=",CK0[2]," ell=",ell," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

\\Search of a generator S of Gal(Kn/K):

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the filtration:

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

\\Computation of the algebraic norms of the rKn generators h_i:

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

\\Reduction modulo suitable p-powers of the exponents:

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);

c=lift(Mod(c,p^w));listput(Enu,c,ii));

print("norm in K",n,"/K of the component ",i," of CK",n,":",Enu))))))}

p=2 f=607 PK=x^3+x^2-202*x-1169 CK0=[2,2] ell=17 r=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[0,1,1,1]

h_3^[(S-1)^1]=[1,1,1,0] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[0,1,1,1]

norm in K1/K of the component 3 of CK1:[1,1,1,0]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,1,0] h_2^[(S-1)^1]=[0,1,0,1]

h_3^[(S-1)^1]=[1,0,1,0] h_4^[(S-1)^1]=[0,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=1009 PK=x^3+x^2-336*x-1719 CK0=[2,2] ell=17 r=1

CK1=[28,4]=[4,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,2]

norm in K1/K of the component 2 of CK1:[2,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[28,4]=[4,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=1197 PK=x^3-399*x+2926 CK0=[6,6] ell=17 r=3

CK1=[12,12]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]
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norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=2

CK2=[12,12]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=1789 PK=x^3+x^2-596*x-5632 CK0=[2,2] ell=17 r=1

CK1=[24,8]=[8,8]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[4,0]

norm in K1/K of the component 2 of CK1:[0,4]

No capitulation, m(K1)=3, e(K1)=3

CK2=[312,8]=[8,8]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=3, e(K2)=3

p=2 f=2077 PK=x^3+x^2-692*x-7231 CK0=[6,2] ell=17 r=1

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[0,0,1,1]

h_3^[(S-1)^1]=[1,1,0,1] h_4^[(S-1)^1]=[1,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[1,1,0,1]

norm in K1/K of the component 4 of CK1:[1,1,0,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[6,2,2,2,2,2]=[2,2,2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,0,1,0] h_2^[(S-1)^1]=[0,1,0,0,0,1]

h_3^[(S-1)^1]=[1,1,0,1,0,1] h_4^[(S-1)^1]=[1,0,0,1,0,0]

h_5^[(S-1)^1]=[1,0,0,1,0,0] h_6^[(S-1)^1]=[0,0,1,1,0,1]

h_1^[(S-1)^2]=[0,0,0,1,1,0] h_2^[(S-1)^2]=[0,1,1,1,0,0]

h_3^[(S-1)^2]=[0,1,1,0,1,0] h_4^[(S-1)^2]=[0,0,0,1,1,0]

h_5^[(S-1)^2]=[0,0,0,1,1,0] h_6^[(S-1)^2]=[0,1,1,1,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=1

p=2 f=2817 PK=x^3-939*x+6886 CK0=[12,4] ell=17 r=1

CK1=[84,4]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[84,4]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=3357 PK=x^3-1119*x+9325 CK0=[6,2] ell=17 r=3

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]
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norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=1, e(K1)=1

CK2=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=3409 PK=x^3+x^2-1136*x-10732 CK0=[6,2] ell=17 r=3

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[1,1,0,1]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[1,1,0,1]

norm in K1/K of the component 3 of CK1:[0,0,1,1]

norm in K1/K of the component 4 of CK1:[0,0,1,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,0,1] h_2^[(S-1)^1]=[1,1,0,1]

h_3^[(S-1)^1]=[0,0,0,1] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=5479 PK=x^3+x^2-1826*x+13799 CK0=[2,2] ell=17 r=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[1,1,1,0]

h_3^[(S-1)^1]=[0,1,1,1] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[1,1,1,0]

norm in K1/K of the component 3 of CK1:[0,1,1,1]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[3,1,3,1] h_2^[(S-1)^1]=[3,3,0,3]

h_3^[(S-1)^1]=[0,2,2,2] h_4^[(S-1)^1]=[0,2,3,0]

h_1^[(S-1)^2]=[0,2,2,0] h_2^[(S-1)^2]=[2,2,2,0]

h_3^[(S-1)^2]=[2,2,2,2] h_4^[(S-1)^2]=[2,0,2,0]

norm in K2/K of the component 1 of CK2:[0,0,2,0]

norm in K2/K of the component 2 of CK2:[2,2,2,2]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[2,2,0,2]

No capitulation, m(K2)=4, e(K2)=2

p=2 f=6247 PK=x^3+x^2-2082*x-35631 CK0=[4,4] ell=17 r=1

CK1=[24,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[0,2,0,1] h_2^[(S-1)^1]=[6,6,1,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[0,4,0,0] h_2^[(S-1)^2]=[4,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]
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norm in K1/K of the component 1 of CK1:[2,2,0,1]

norm in K1/K of the component 2 of CK1:[6,0,1,0]

norm in K1/K of the component 3 of CK1:[0,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

No capitulation, m(K1)=4, e(K1)=3

CK2=[24,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[0,6,1,1] h_2^[(S-1)^1]=[2,6,0,1]

h_3^[(S-1)^1]=[4,4,0,0] h_4^[(S-1)^1]=[0,4,0,0]

h_1^[(S-1)^2]=[0,4,0,0] h_2^[(S-1)^2]=[4,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=3, e(K2)=3

Complete capitulation in K3 (stability from K1)

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] ell=17 r=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=8629 PK=x^3+x^2-2876*x-50176 CK0=[14,2] ell=17 r=1

CK1=[56,8]=[8,8]

h_1^[(S-1)^1]=[2,4] h_2^[(S-1)^1]=[4,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[4,4]

norm in K1/K of the component 2 of CK1:[4,0]

No capitulation, m(K1)=3, e(K1)=3

CK2=[112,16]=[16,16]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[12,10]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,8]

norm in K2/K of the component 2 of CK2:[8,8]

No capitulation, m(K2)=4, e(K2)=4

p=2 f=9247 PK=x^3+x^2-3082*x-27056 CK0=[12,4] ell=17 r=3

CK1=[24,8]=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=3

CK2=[48,16]=[16,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation, m(K2)=1, e(K2)=4

p=2 f=9283 PK=x^3+x^2-3094*x-5501 CK0=[2,2] ell=17 r=1

CK1=[48,16]=[16,16]
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h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[0,8]

No capitulation, m(K1)=4, e(K1)=4

CK2=[48,16]=[16,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=4, e(K2)=4

(...)

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=17 r=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

CK2=[16,16,2,2]

h_1^[(S-1)^1]=[8,0,0,0] h_2^[(S-1)^1]=[0,8,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=4

p=2 f=25119 PK=x^3-8373*x+2791 CK0=[12,4] ell=17 r=1

CK1=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,1] h_2^[(S-1)^1]=[0,0,1,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,1]

norm in K1/K of the component 2 of CK1:[0,2,1,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[24,8,2,2,2,2]=[8,8,2,2,2,2]

h_1^[(S-1)^1]=[6,4,0,0,1,1] h_2^[(S-1)^1]=[4,6,1,0,0,1]

h_3^[(S-1)^1]=[0,4,0,0,0,0] h_4^[(S-1)^1]=[4,4,0,1,1,0]

h_5^[(S-1)^1]=[0,0,0,1,1,0] h_6^[(S-1)^1]=[0,4,1,0,0,0]

h_1^[(S-1)^2]=[4,4,1,1,1,0] h_2^[(S-1)^2]=[0,4,1,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[4,4,0,0,0,0]

h_5^[(S-1)^2]=[4,4,0,0,0,0] h_6^[(S-1)^2]=[0,4,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)=4, e(K2)=3

p=2 f=29467 PK=x^3+x^2-9822*x-20736 CK0=[84,4] ell=17 r=3

CK1=[168,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[4,0,1,0] h_2^[(S-1)^1]=[4,4,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,0,1,0]

norm in K1/K of the component 2 of CK1:[4,6,1,1]
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norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

No capitulation, m(K1)=2, e(K1)=3

CK2=[336,16,2,2]=[16,16,2,2]

h_1^[(S-1)^1]=[0,8,1,0] h_2^[(S-1)^1]=[8,8,0,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

No capitulation, m(K2)=2, e(K2)=4

p=2 f=33061 PK=x^3+x^2-11020*x-262039 CK0=[6,2,2,2] ell=17 r=1

CK1=[12,4,2,2,2,2]=[4,4,2,2,2,2]

h_1^[(S-1)^1]=[0,0,1,0,1,1] h_2^[(S-1)^1]=[0,2,1,1,0,1]

h_3^[(S-1)^1]=[2,0,0,0,0,0] h_4^[(S-1)^1]=[0,2,0,0,0,0]

h_5^[(S-1)^1]=[0,2,0,0,0,0] h_6^[(S-1)^1]=[2,2,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,1,0,1,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1,0,1]

norm in K1/K of the component 3 of CK1:[2,0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,2,0,0,0,0]

norm in K1/K of the component 6 of CK1:[2,2,0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[24,8,4,4,2,2]=[8,8,4,4,2,2]

h_1^[(S-1)^1]=[6,4,2,2,0,1] h_2^[(S-1)^1]=[6,0,2,0,1,0]

h_3^[(S-1)^1]=[2,2,0,2,0,0] h_4^[(S-1)^1]=[2,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,2,2,0,0] h_6^[(S-1)^1]=[0,0,0,2,0,0]

h_1^[(S-1)^2]=[4,4,0,2,0,0] h_2^[(S-1)^2]=[0,4,2,2,0,0]

h_3^[(S-1)^2]=[4,0,0,0,0,0] h_4^[(S-1)^2]=[4,0,0,0,0,0]

h_5^[(S-1)^2]=[0,4,0,0,0,0] h_6^[(S-1)^2]=[4,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[4,4,0,0,0,0]

norm in K2/K of the component 4 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)=4, e(K2)=3

p=2 f=37087 PK=x^3+x^2-12362*x-401089 CK0=[2,2,2,2] ell=17 r=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=3

p=2 f=44857 PK=x^3+x^2-14952*x-704421 CK0=[6,2,2,2] ell=17 r=3

CK1=[12,12,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]
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h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[12,12,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=48769 PK=x^3+x^2-16256*x-7225 CK0=[24,8] ell=17 r=3

CK1=[48,16]=[16,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=4

CK2=[48,16]=[16,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=4

p=2 f=55609 PK=x^3+x^2-18536*x-823837 CK0=[4,4,2,2] ell=17 r=3

CK1=[56,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[4,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[4,0,0,0] h_4^[(S-1)^1]=[0,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[4,0,0,0]

norm in K1/K of the component 4 of CK1:[0,4,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

CK2=[56,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=3

Let’s give some comments on interesting examples found above:

p=2 f=9283 PK=x^3+x^2-3094*x-5501 CK0=[2,2] ell=17 r=1

CK1=[48,16]=[16,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

h_1^[(S-1)^3]=[8,0] h_2^[(S-1)^3]=[0,8]

h_1^[(S-1)^4]=[0,0] h_2^[(S-1)^4]=[0,0]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[0,8]

No capitulation, m(K1)=4, e(K1)=4

CK2=[48,16]=[16,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

h_1^[(S-1)^3]=[8,0] h_2^[(S-1)^3]=[0,8]
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h_1^[(S-1)^4]=[0,0] h_2^[(S-1)^4]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=4, e(K2)=4

There is complete capitulation, even if conditions of Theorem 1.1 (i) are
not fulfilled for the Kn/K’s (for n = 2, m(K2) = 4, s(K2) = 2, e(K2) = 4,
n−s(K2) = 0). Moreover, the exponent of HK1 is 2

4 giving a larger complexity
in K1/K, but in Kn, n ≥ 2, the exponent is still 24 (no increasing of the
complexity). Some other examples are:

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] ell=17 r=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=44857 PK=x^3+x^2-14952*x-704421 CK0=[6,2,2,2] ell=17 r=3

CK1=[12,12,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[12,12,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

they suggest that the size of the p-rank is not an obstruction to a capitulation
in such cyclic sub-p-extensions of K(µℓ); here, the 2-ranks are even because of
the structure of Z-module of the HKn ’s. In the above cases, the capitulation
is obtained by means of a stability in larger layers.

6.1.2. Case ℓ = 97. Similarly, we give a table for ℓ = 97 allowing capitula-
tions up to K4. One finds much more cases of capitulation (not in the table
below since they are very numerous); it seems clearly that a larger value of N
intervenes in the phenomenon of capitulation:

p=2 f=349 PK=x^3+x^2-116*x-517 CK0=[2,2] ell=97 r=1
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CK1=[4,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,2]

norm in K1/K of the component 2 of CK1:[2,2]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=547 PK=x^3+x^2-182*x-81 CK0=[2,2] ell=97 r=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[0,1,0,1]

h_3^[(S-1)^1]=[1,0,1,1] h_4^[(S-1)^1]=[0,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[0,1,0,1]

norm in K1/K of the component 3 of CK1:[1,0,1,1]

norm in K1/K of the component 4 of CK1:[0,1,0,1]

Incomplete capitulation, m(K1)=2, e(K1)=1

CK2=[2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,1,0,0] h_4^[(S-1)^1]=[1,1,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=607 PK=x^3+x^2-202*x-1169 CK0=[2,2] ell=97 r=1

CK1=[8,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[0,4]

norm in K1/K of the component 2 of CK1:[4,4]

Incomplete capitulation, m(K1)=3, e(K1)=3

CK2=[104,8]=[8,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=3, e(K2)=3

p=2 f=1957 PK=x^3+x^2-652*x+6016 CK0=[6,2] ell=97 r=3

CK1=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation, m(K1)=1, e(K1)=2

CK2=[24,8]=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation, m(K2)=1, e(K2)=3

p=2 f=4207 PK=x^3+x^2-1402*x+14335 CK0=[6,2] ell=97 r=3

CK1=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[0,2,0,0] h_4^[(S-1)^1]=[2,2,0,0]
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h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[0,2,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=32

CK2=[12,4,4,4]=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[0,0,0,2] h_4^[(S-1)^1]=[0,0,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=4639 PK=x^3+x^2-1546*x+6529 CK0=[2,2] ell=97 r=1

CK1=[4,4]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=9391 PK=x^3+x^2-3130*x-24347 CK0=[2,2] ell=97 r=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,2,0,1] h_2^[(S-1)^1]=[0,0,2,0,1,0]

h_3^[(S-1)^1]=[2,0,2,0,1,0] h_4^[(S-1)^1]=[0,0,2,0,0,1]

h_5^[(S-1)^1]=[0,2,2,0,0,0] h_6^[(S-1)^1]=[2,0,0,2,0,0]

h_1^[(S-1)^2]=[2,0,0,2,0,0] h_2^[(S-1)^2]=[0,2,2,0,0,0]

h_3^[(S-1)^2]=[0,2,2,0,0,0] h_4^[(S-1)^2]=[2,0,0,2,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8] ell=97 r=3

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

Incomplete capitulation, m(K1)=1, e(K1)=3

CK2=[8,8]
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h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=3

Complete capitulation in K3 (stability from K)

p=2 f=11149 PK=x^3+x^2-3716*x+39228 CK0=[2,2] ell=97 r=3

CK1=[12,4]=[4,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,2]

norm in K1/K of the component 2 of CK1:[2,2]

No capitulation, m(K1)=2, e(K1)=2

CK2=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=15823 PK=x^3+x^2-5274*x+141821 CK0=[4,4] ell=97 r=3

CK1=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=19177 PK=x^3+x^2-6392*x-79549 CK0=[6,2] ell=97 r=3

CK1=[24,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[6,4,0,1] h_2^[(S-1)^1]=[0,6,1,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,4,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

No capitulation, m(K1)=3, e(K1)=3

CK2=[336,112,4,4]=[16,16,4,4]

h_1^[(S-1)^1]=[2,4,1,2] h_2^[(S-1)^1]=[12,6,1,1]

h_3^[(S-1)^1]=[0,8,0,2] h_4^[(S-1)^1]=[8,0,2,2]

h_1^[(S-1)^2]=[4,8,2,2] h_2^[(S-1)^2]=[8,12,0,2]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[8,8,2,0]

norm in K2/K of the component 2 of CK2:[8,0,2,2]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

No capitulation, m(K2)=4, e(K2)=2

p=2 f=20419 PK=x^3+x^2-6806*x-3025 CK0=[42,2] ell=97 r=3

CK1=[84,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]
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No capitulation, m(K1)=2, e(K1)=2

CK2=[84,4,4,4,2,2]=[4,4,4,4,2,2]

h_1^[(S-1)^1]=[0,0,2,0,1,0] h_2^[(S-1)^1]=[0,2,0,2,1,0]

h_3^[(S-1)^1]=[2,2,2,2,0,0] h_4^[(S-1)^1]=[0,2,2,2,1,1]

h_5^[(S-1)^1]=[2,0,0,2,0,0] h_6^[(S-1)^1]=[0,0,2,2,0,0]

h_1^[(S-1)^2]=[2,0,0,2,0,0] h_2^[(S-1)^2]=[2,0,0,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[2,0,2,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=97 r=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[4,4,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[4,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,4,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[4,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,4,0,0] h_2^[(S-1)^1]=[4,4,0,0]

h_3^[(S-1)^1]=[4,0,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=3

Complete capitulation in K3 (stability from K1)

p=2 f=21931 PK=x^3+x^2-7310*x-3249 CK0=[12,12] ell=97 r=3

CK1=[24,24]=[8,8]

h_1^[(S-1)^1]=[4,4] h_2^[(S-1)^1]=[4,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[6,4]

norm in K1/K of the component 2 of CK1:[4,2]

No capitulation, m(K1)=2, e(K1)=3

CK2=[24,24]=[8,8]

h_1^[(S-1)^1]=[0,4] h_2^[(S-1)^1]=[4,4]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=2, e(K2)=3

Complete capitulation in K3 (stability from K1)

p=2 f=24589 PK=x^3+x^2-8196*x-33696 CK0=[6,2] ell=97 r=3

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[0,1,1,0]

h_3^[(S-1)^1]=[0,1,1,0] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[0,1,1,0]

norm in K1/K of the component 3 of CK1:[0,1,1,0]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

No capitulation, m(K1)=2, e(K1)=1

CK2=[6,2,2,2,2,2]=[2,2,2,2,2,2]
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h_1^[(S-1)^1]=[0,0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0,0]

h_3^[(S-1)^1]=[1,1,0,1,0,0] h_4^[(S-1)^1]=[1,1,0,0,0,0]

h_5^[(S-1)^1]=[0,1,0,1,1,1] h_6^[(S-1)^1]=[1,1,0,1,1,1]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0]

h_3^[(S-1)^2]=[1,1,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,1,0,0,0,0] h_6^[(S-1)^2]=[0,1,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=1

p=2 f=25171 PK=x^3+x^2-8390*x+273152 CK0=[14,2] ell=97 r=3

CK1=[84,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=2, e(K1)=2

CK2=[84,4,4,4]=[4,4,4,4]

h_1^[(S-1)^1]=[0,0,2,0] h_2^[(S-1)^1]=[0,0,2,0]

h_3^[(S-1)^1]=[0,0,2,0] h_4^[(S-1)^1]=[2,0,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

6.2. Cyclic cubic fields, L ⊂ K(µ17·97). We use the same program with
suitable defining polynomials, of degrees 2 and 4, respectively, given in the list
L4 = [x2 − x− 412, x4 − x3 − 618 ∗ x2 + 1752 ∗ x+ 8960], so that L0/Q be cyclic with
total ramification of 17 and 97. Since two primes ramify in Kn/K, the factor
norm is in general non trivial, which gives larger 2-class groups with HL0 6= 1.
The number r of ramified primes is equal to 2, 4 or 6 depending on the
splitting of 17 and 97; as we have explained, capitulation is favored as soon
as the complexity is smooth (in the meaning of Definition 2.13).

{p=2;Nn=2;bf=7;Bf=10^6;vHK=4;mKn=2;L4=List;

L4=[x^2-x-412,x^4-x^3-618*x^2+1752*x+8960];

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);K=bnfinit(PK,1);

HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

r=matsize(idealfactor(K,17))[1]+matsize(idealfactor(K,97))[1];

for(n=1,Nn,Qn=L4[n];Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);

HKn=Kn.no;dn=poldegree(Pn);if(n==1 & valuation(HKn,p)==vHK,break);

if(n==1,print();print("f=",f," PK=",PK," CK0=",CK0[2]," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));
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listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))))}

p=2 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] r=6

CK1=[8,8,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=1, e(K1)=3

CK2=[16,16,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

No capitulation, m(K2)=1, e(K2)=4

p=2 f=2817 PK=x^3-939*x+6886 CK0=[12,4] r=2

CK1=[444,4,2,2,2]=[4,4,2,2,2]

h_1^[(S-1)^1]=[2,0,1,0,1] h_2^[(S-1)^1]=[0,2,1,1,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,1,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[888,8,4,2,2]=[8,8,4,2,2]

h_1^[(S-1)^1]=[2,4,2,1,0] h_2^[(S-1)^1]=[0,2,2,0,1]

h_3^[(S-1)^1]=[0,4,0,0,0] h_4^[(S-1)^1]=[4,4,0,0,0]

h_5^[(S-1)^1]=[4,0,0,0,0]

h_1^[(S-1)^2]=[0,4,0,0,0] h_2^[(S-1)^2]=[4,4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=3

p=2 f=4297 PK=x^3+x^2-1432*x+20371 CK0=[4,4] r=2

CK1=[4,4,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[4,4,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] r=2

CK1=[4,4,2,2,2]

h_1^[(S-1)^1]=[2,2,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0,0] h_4^[(S-1)^1]=[2,0,0,0,0]
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h_5^[(S-1)^1]=[2,2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0,0]

norm in K1/K of the component 3 of CK1:[2,2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,0,0,0,0]

norm in K1/K of the component 5 of CK1:[2,2,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0,0] h_2^[(S-1)^1]=[2,0,0,0,0]

h_3^[(S-1)^1]=[2,0,2,0,0] h_4^[(S-1)^1]=[0,0,2,0,0]

h_5^[(S-1)^1]=[2,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8] r=4

CK1=[8,8,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

CK2=[8,8,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=3

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] r=6

CK1=[8,8,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

CK2=[16,16,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=4

p=2 f=21931 PK=x^3+x^2-7310*x-3249 CK0=[12,12] r=6

CK1=[12,12,2,2,2,2,2]=[4,4,2,2,2,2,2]

h_1^[(S-1)^1]=[2,0,0,1,0,0,0] h_2^[(S-1)^1]=[0,2,0,0,1,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0,0,0] h_6^[(S-1)^1]=[0,0,0,0,0,0,0]

h_7^[(S-1)^1]=[0,0,0,0,0,0,0]
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h_1^[(S-1)^2]=[0,0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0,0]

h_7^[(S-1)^2]=[0,0,0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,1,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0,1,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 6 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 7 of CK1:[0,0,0,0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[24,24,4,4,4,2,2]=[8,8,4,4,4,2,2]

h_1^[(S-1)^1]=[6,0,3,0,3,1,1] h_2^[(S-1)^1]=[2,0,2,3,1,1,0]

h_3^[(S-1)^1]=[4,0,0,2,2,0,0] h_4^[(S-1)^1]=[0,0,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0,0,0] h_6^[(S-1)^1]=[4,0,2,0,2,0,0]

h_7^[(S-1)^1]=[4,0,0,2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0,0]

h_7^[(S-1)^2]=[0,0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,2,0,2,0,0]

norm in K2/K of the component 2 of CK2:[4,4,0,2,2,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 7 of CK2:[0,0,0,0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=3

6.3. Cyclic cubic fields, L = K(
√

2 +
√
2). In that case, L is a subfield

of the cyclotomic Z2-extension of K and this leads to a checking of Green-
berg’s conjecture, equivalent to the stability from some layer, but capitula-
tion of HK may occur before, as shown by some examples of the follow-
ing list. The program is unchanged, except that the cyclotomic polynomials
Qn = polsubcyclo(ell, pn) are replaced by Q1 = x2 − 2 and Q2 = x4 − 4 ∗ x2 + 2; we find
very often cases of capitulation from stability at some level, noting that “N”
is unlimited; so we only write few examples of the various structures obtained:

{p=2;Nn=2;bf=7;Bf=10^6;vHK=2;mKn=2;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

K=bnfinit(PK,1);r=matsize(idealfactor(K,p))[1];HK=K.no;

if(valuation(HK,p)<vHK,next);CK0=K.clgp;for(n=1,Nn,Qn=x;

for(i=1,n,Qn=Qn^2-2);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

if(n==1,print();print("f=",f," PK=",PK," CK0=",CK0[2]," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))))}
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p=2 f=1879 PK=x^3+x^2-626*x-5289 CK0=[2,2] r=1

CK1=[6,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[1,0,0,0]

h_3^[(S-1)^1]=[1,1,1,1] h_4^[(S-1)^1]=[0,1,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[1,0,0,0]

norm in K1/K of the component 3 of CK1:[1,1,1,1]

norm in K1/K of the component 4 of CK1:[0,1,1,1]

No capitulation, m(K1)=2, e(K1)=2

CK2=[6,2,2,2,2,2]=[2,2,2,2,2,2]

h_1^[(S-1)^1]=[0,1,0,0,0,1] h_2^[(S-1)^1]=[0,1,1,0,1,0]

h_3^[(S-1)^1]=[1,1,0,1,0,1] h_4^[(S-1)^1]=[0,1,0,0,0,1]

h_5^[(S-1)^1]=[1,1,0,0,1,0] h_6^[(S-1)^1]=[1,1,1,1,1,0]

h_1^[(S-1)^2]=[1,0,0,1,0,0] h_2^[(S-1)^2]=[0,1,1,1,0,1]

h_3^[(S-1)^2]=[1,0,0,1,0,0] h_4^[(S-1)^2]=[1,0,0,1,0,0]

h_5^[(S-1)^2]=[1,1,1,0,0,1] h_6^[(S-1)^2]=[0,1,1,1,0,1]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=1

p=2 f=6381 PK=x^3-2127*x+21979 CK0=[6,2] r=1

CK1=[24,8]=[8,8]

h_1^[(S-1)^1]=[2,4] h_2^[(S-1)^1]=[4,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[4,4]

norm in K1/K of the component 2 of CK1:[4,0]

No capitulation, m(K1)=3, e(K1)=3

CK2=[48,16]=[16,16]

h_1^[(S-1)^1]=[10,12] h_2^[(S-1)^1]=[12,14]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[8,8]

norm in K2/K of the component 2 of CK2:[8,0]

No capitulation, m(K2)=4, e(K2)=4

p=2 f=11899 PK=x^3+x^2-3966*x+19391 CK0=[6,2] r=1

CK1=[24,8]=[8,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[0,4]

norm in K1/K of the component 2 of CK1:[4,4]

No capitulation, m(K1)=3, e(K1)=3

CK2=[24,8]=[8,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=3, e(K2)=3

p=2 f=13531 PK=x^3+x^2-4510*x-98225 CK0=[6,2] r=1

CK1=[78,2,2,2]=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,1,1] h_2^[(S-1)^1]=[1,1,1,1]

h_3^[(S-1)^1]=[1,1,0,0] h_4^[(S-1)^1]=[1,1,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,1]

norm in K1/K of the component 2 of CK1:[1,1,1,1]

norm in K1/K of the component 3 of CK1:[1,1,0,0]

norm in K1/K of the component 4 of CK1:[1,1,0,0]

No capitulation, m(K1)=2, e(K1)=1

CK2=[156,4,2,2]=[4,4,2,2]
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h_1^[(S-1)^1]=[2,0,1,1] h_2^[(S-1)^1]=[0,0,1,0]

h_3^[(S-1)^1]=[0,2,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[2,0,0,0] h_2^[(S-1)^2]=[0,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

p=2 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] r=3

CK1=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] r=1

CK1=[12,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[24,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[0,6,0,0] h_2^[(S-1)^1]=[6,2,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[4,4,0,0] h_2^[(S-1)^2]=[4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=3, e(K2)=3

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8] r=1

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0])

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=3

Complete capitulation in K3 (stability from K)

p=2 f=16363 PK=x^3+x^2-5454*x-16969 CK0=[2,2,2,2] r=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]
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Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=20599 PK=x^3+x^2-6866*x+216671 CK0=[28,4] r=1

CK1=[28,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,1] h_2^[(S-1)^1]=[0,2,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[56,8,2,2]=[8,8,2,2]

h_1^[(S-1)^1]=[0,6,0,1] h_2^[(S-1)^1]=[2,6,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,4,0,0] h_2^[(S-1)^2]=[4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=3, e(K2)=3

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] r=1

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,4,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=3

Complete capitulation in K3 (stability from K1)

p=2 f=31513 PK=x^3+x^2-10504*x-417839 CK0=[28,4] r=1

CK1=[84,4,2,2]=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,1] h_2^[(S-1)^1]=[0,2,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[0,0,0,0]
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norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[168,8,2,2,2,2]=[8,8,2,2,2,2]

h_1^[(S-1)^1]=[2,0,1,0,1,1] h_2^[(S-1)^1]=[0,6,0,0,0,1]

h_3^[(S-1)^1]=[0,0,1,0,0,1] h_4^[(S-1)^1]=[4,0,0,1,1,0]

h_5^[(S-1)^1]=[4,4,0,1,1,0] h_6^[(S-1)^1]=[4,4,1,0,0,1]

h_1^[(S-1)^2]=[4,0,0,1,1,0] h_2^[(S-1)^2]=[4,0,1,0,0,1]

h_3^[(S-1)^2]=[4,4,0,0,0,0] h_4^[(S-1)^2]=[0,4,0,0,0,0]

h_5^[(S-1)^2]=[0,4,0,0,0,0] h_6^[(S-1)^2]=[4,4,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,4,0,0,0,0]

norm in K2/K of the component 2 of CK2:[4,4,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)=4, e(K2)=3

p=2 f=35353 PK=x^3+x^2-11784*x+45828 CK0=[2,2] r=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[0,2,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[0,2,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[0,2,2,2] h_4^[(S-1)^1]=[2,2,2,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

6.4. Statistics varying the primes ℓ. In this subsection, we fix a cyclic
cubic field and consider the primes ℓ ≡ 1 (mod 2pN) for N ≥ Nell:
{p=2;Nell=3;Nn=2;f=20887;PK=x^3+x^2-6962*x-225889;K=bnfinit(PK,1);

CK0=K.clgp;forprime(ell=1,10^3,N=valuation(ell-1,p)-1;if(N<Nell,next);

r=matsize(idealfactor(K,ell))[1];for(n=1,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

if(n==1,print("f=",f," PK=",PK," CK0=",CK0[2]," ell=",ell," N=",N," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))}

(i) For the cubic field of conductor f = 1777, with PK = x3+x2−592x+724
and HK ≃ Z/4Z, a complete capitulation in K2 holds for the following primes
ℓ ≡ 1 (mod 8):

ℓ ∈ {41, 89, 97, 137, 233, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521,
569, 577, 593, 601, 617, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009,
1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1361, 1409, 1433, 1489, 1553,
1601, 1609, 1657, 1721, 1777, 1801, 2017, 2089, . . .};
exceptions are ℓ ∈ {17, 73, 113, 193, 241, 257, 641, 1033, 1289, 1297, 1321,
1481, 1697, 1753, 1873, 1889, 1913, 1993, 2081, . . .}.
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(ii) For the cubic field of conductor f = 20887, with the more complex
structure HK ≃ Z/4Z × Z/2Z, a complete capitulation in K2 does not hold
since e(K) = 2, but computations inK3 is out of reach; however, the results for
K2 allow to distinguish between incomplete capitulation in K2, then possible
capitulation in Kn, n ≥ 3; more precisely, we obtain the following matrices
for K2 showing always an incomplete capitulation and/or a stability, up to
ℓ = 449 (the mention Im(J2) = [a, ..., z] denotes the structure of JK2/K(HK)
to be compared to CK0 = [4, 4, 2, 2]):

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2]

ell=17 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[16,16,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[4,4]

ell=97 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=113 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=193 r=1 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=241 r=1 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=257 r=1 CK0=[4,4,2,2] CK1=[24,24,2,2] CK2=[48,48,2,2]

norm in K2/K of the component 1 of CK2:[4,8,0,0]

norm in K2/K of the component 2 of CK2:[8,12,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[4,4]

ell=337 r=1 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=353 r=3 CK0=[4,4,2,2] CK1=[4,4,4,4,2,2] CK2=[8,8,4,4,2,2]

norm in K2/K of the component 1 of CK2:[0,0,2,2,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,2,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Im(J2)=[2,2]

ell=401 r=3 CK0=[4,4,2,2] CK1=[40,8,2,2] CK2=[40,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]
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norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=433 r=1 CK0=[4,4,2,2] CK1=[8,8,2,2,2,2] CK2=[8,8,4,4,2,2]

norm in K2/K of the component 1 of CK2:[0,4,2,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,2,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Im(J2)=[2,2]

ell=449 r=1 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[104,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=577 r=3 CK0=[4,4,2,2] CK1=[56,8,2,2] CK2=[112,16,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[4,4]

ell=593 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=641 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[80,16,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[4,4]

ell=673 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[8,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=769 r=1 CK0=[4,4,2,2] CK1=[156,4,2,2,2,2] CK2=[156,4,4,4,4,4]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,2,0]

norm in K2/K of the component 4 of CK2:[0,2,0,0,2,2]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Im(J2)=[2,2]

ell=881 r=3 CK0=[4,4,2,2] CK1=[8,8,2,2] CK2=[16,16,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[4,4]

ell=929 r=1 CK0=[4,4,2,2] CK1=[104,8,2,2] CK2=[104,8,2,2]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Im(J2)=[2,2], Capitulation in K3

ell=977 r=3 CK0=[4,4,2,2] CK1=[8,8,4,4] CK2=[80,16,4,4]

norm in K2/K of the component 1 of CK2:[4,8,0,0]

norm in K2/K of the component 2 of CK2:[8,4,0,0]
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norm in K2/K of the component 3 of CK2:[0,8,0,0]

norm in K2/K of the component 4 of CK2:[8,0,0,0]

Im(J2)=[2,2]

ell=1009 r=1 CK0=[4,4,2,2] CK1=[56,8,4,4] CK2=[56,8,4,4]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[4,0,0,0]

norm in K2/K of the component 4 of CK2:[4,4,0,0]

Im(J2)=[2,2]

In the above interval of primes ℓ, there is always partial capitulation.

6.5. Kummer fields, L ⊂ K(µ17). The purpose is to consider fields of the

form K = Q( q
√
R), q ≥ 3; although these fields are not totally real, it is known

that capitulation may exist in compositum L = KL0, with suitable abelian
p-extensions L0/Q (conjectured in [Gras1997], proved in [Bosc2009]); so we
limit ourselves to the usual L ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN).

6.5.1. Pure cubic fields, L ⊂ K(µ17). We consider the set of pure cubic fields

K = Q( 3
√
R) The extension L/Q is not Galois, but, by chance, the instruction

G = nfgaloisconj(Kn) of PARI computes the group of automorphisms, whence
Gal(Kn/K) in our case; this simplifies the search of S of order pn.

Taking p = 2, ℓ = 17, Nn = 3 and restricting to fieldsK such that #HK ≥ 4,
we obtain many capitulations (the program eliminates cases of stability):

MAIN PROGRAM FOR PURE CUBIC FIELDS:

{p=2;Nn=3;vHK=2;ell=17;mKn=2;for(R=2,10^4,PK=x^3-R;

if(polisirreducible(PK)==0,next);K=bnfinit(PK,1);

r=matsize(idealfactor(K,ell))[1];

\\Testing the order of the p-class group of K compared to vHK:

HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print();print("PK=",PK," CK0=",CK0[2]," ell=",ell," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,p^n,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))}

p=2 PK=x^3-43 CK0=[12] ell=17 r=2

CK1=[12,6]=[4,2]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,1]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[12,12]=[4,4]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,2]

norm in K2/K of the component 2 of CK2:[0,0]

Incomplete capitulation, m(K2)=2, e(K2)=2

CK3=[12,12]=[4,4]

h_1^[(S-1)^1]=[0,3] h_2^[(S-1)^1]=[0,0]
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h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation (stability from K2), m(K3)=2, e(K3)=2

p=2 PK=x^3-113 CK0=[2,2] ell=17 r=2

CK1=[6,2,2]=[2,2,2]

h_1^[(S-1)^1]=[0,1,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,1,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=1

CK2=[6,2,2,2,2]=[2,2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,1,0] h_2^[(S-1)^1]=[0,1,1,1,0]

h_3^[(S-1)^1]=[0,1,1,1,0] h_4^[(S-1)^1]=[1,1,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

h_1^[(S-1)^2]=[1,1,0,0,0] h_2^[(S-1)^2]=[1,1,0,0,0]

h_3^[(S-1)^2]=[1,1,0,0,0] h_4^[(S-1)^2]=[0,1,1,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,1,1,0,0]

norm in K2/K of the component 2 of CK2:[0,1,1,0,0]

norm in K2/K of the component 3 of CK2:[0,1,1,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Incomplete capitulation, m(K2)=3, e(K2)=1

CK3=[12,2,2,2,2]=[4,2,2,2,2]

h_1^[(S-1)^1]=[2,1,0,0,1] h_2^[(S-1)^1]=[0,0,1,1,0]

h_3^[(S-1)^1]=[0,1,0,0,0] h_4^[(S-1)^1]=[2,0,1,1,1]

h_5^[(S-1)^1]=[0,1,0,0,1]

h_1^[(S-1)^2]=[0,1,1,1,1] h_2^[(S-1)^2]=[2,1,1,1,1]

h_3^[(S-1)^2]=[0,0,1,1,0] h_4^[(S-1)^2]=[2,0,1,1,0]

h_5^[(S-1)^2]=[0,1,1,1,1]

norm in K3/K of the component 1 of CK3:[0,0,0,0,0]

norm in K3/K of the component 2 of CK3:[0,0,0,0,0]

norm in K3/K of the component 3 of CK3:[0,0,0,0,0]

norm in K3/K of the component 4 of CK3:[0,0,0,0,0]

norm in K3/K of the component 5 of CK3:[0,0,0,0,0]

Complete capitulation, m(K3)=4, e(K3)=2

p=2 PK=x^3-122 CK0=[12] ell=17 r=2

CK1=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,2] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,1]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=3, e(K1)=2

CK2=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,3] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,2] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,2]

norm in K2/K of the component 2 of CK2:[0,0]

Incomplete capitulation, m(K2)=3, e(K2)=2

CK3=[12,4]=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[2,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation (stability from K1), m(K3)=3, e(K3)=2

p=2 PK=x^3-141 CK0=[4,2] ell=17 r=2

CK1=[8,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3
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CK2=[16,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,0]

Incomplete capitulation, m(K2)=1, e(K2)=4

CK3=[288,18]=[32,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K3/K of the component 1 of CK3:[8,0]

norm in K3/K of the component 2 of CK3:[0,0]

Incomplete capitulation, m(K3)=1, e(K3)=5

p=2 PK=x^3-174 CK0=[6,2] ell=17 r=2

CK1=[12,6,2]=[4,2,2]

h_1^[(S-1)^1]=[2,1,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,1,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[2040,12,2,2]=[8,4,2,2]

h_1^[(S-1)^1]=[4,0,1,1] h_2^[(S-1)^1]=[0,0,0,1]

h_3^[(S-1)^1]=[0,2,0,1] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,1] h_2^[(S-1)^2]=[0,2,0,0]

h_3^[(S-1)^2]=[0,2,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,2,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=4, e(K2)=3

CK3=[4080,12,2,2]=[16,4,2,2]

Unfortunately, the computations for n = 3 in this last example take too
much time; probably, the capitulation is still incomplete. We are going to
examine separately this field:

6.5.2. Case of K=Q( 3
√
174), ℓ ≡ 1(mod 16). Varying ℓ, we find many capit-

ulations in the layer K2:

p=2 PK=x^3-174 CK0=[6,2] ell=193 r=1

CK1=[12,6]=[4,2]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[2,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[12,6]=[4,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 PK=x^3-174 CK0=[6,2] ell=353 r=2

CK1=[48,6]=[16,2]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[8,0]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[8,0]

Incomplete capitulation, m(K1)=4, e(K1)=4

CK2=[48,6,3,3]=[16,2]

h_1^[(S-1)^1]=[6,0,0,0] h_2^[(S-1)^1]=[8,0,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=4, e(K2)=4

p=2 PK=x^3-174 CK0=[6,2] ell=401 r=2
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CK1=[60,6,3]=[4,2]

h_1^[(S-1)^1]=[2,0,0] h_2^[(S-1)^1]=[2,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0]

norm in K1/K of the component 2 of CK1:[2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=1

CK2=[60,6,3]=[4,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[2,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 PK=x^3-174 CK0=[6,2] ell=577 r=1

CK1=[84,6,2]=[4,2,2]

h_1^[(S-1)^1]=[0,1,1] h_2^[(S-1)^1]=[2,1,1] h_3^[(S-1)^1]=[2,1,1]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,1,1]

norm in K1/K of the component 2 of CK1:[2,1,1]

norm in K1/K of the component 3 of CK1:[2,1,1]

Incomplete capitulation, m(K1)=2, e(K1)=2

CK2=[168,6,6,3]=[8,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[4,0,0,0] h_3^[(S-1)^1]=[4,1,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,0,0,0] h_3^[(S-1)^2]=[4,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0] h_3^[(S-1)^3]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=3, e(K2)=3

The last case ℓ = 577 shows that the complexity of the HKn ’s is increasing,
but nevertheless leads to complete capitulation in K2; so conditions of Theo-
rem 1.1 (i) are not necessary for capitulation. Indeed, we obtain the following

information on the structure of the HKn ’s for K = Q( 3
√
174) and ℓ = 577:

In K1, m(K1) = 2, s(K1) = 1 but e(K1) = 2. In K2, m(K2) = 3, s(K1) = 1,
e(K2) = 3; thus νK2/K acts like 4(σ − 1)2 + 6(σ − 1) + 4. The above data
show that this reduces to the annihilation by A = 6(σ − 1) + 4; indeed,
hA1 = h121 h

4
1 = 1, hAi = 1 for the other generators.

6.5.3. Pure quintic fields, L ⊂ K(µ17). Replacing, in the program, the polyno-
mial PK = x3 − R by PK = x5 − R (or with any odd degree), we get analogous
results, as:

p=2 PK=x^5-13 CK0=[4] ell=17 r=2

CK1=[40]=[8]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[2]

No capitulation, m(K1)=1, e(K1)=3

CK2=[40]=[8]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[4]

Incomplete capitulation, m(K2)=1, e(K2)=3

Complete capitulation in K3 (stability from K1)

p=2 PK=x^5-122 CK0=[10,2] ell=17 r=2

CK1=[10,2,2]=[2,2,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[1,1,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[1,1,0]

Incomplete capitulation, m(K1)=2, e(K1)=1

CK2=[20,2,2]=[4,2,2]
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h_1^[(S-1)^1]=[2,0,1] h_2^[(S-1)^1]=[2,0,1] h_3^[(S-1)^1]=[2,0,0]

h_1^[(S-1)^2]=[2,0,0] h_2^[(S-1)^2]=[2,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

7. Tables for real quadratic fields and p = 3

We consider various (totally ramified) cyclic p-extensions L/K, where L =
KL0, L0/Q cyclic of p-power degree. As for the case of cubic base fields, we
favor the case L ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN).

7.1. Quadratic fields, L ⊂ K(µℓ), ℓ ∈ {19, 109, 163}. Thus, L0 is the real
subfield of maximal 3-power degree of Q(µℓ). We eliminate the cases of sta-
bility in K1/K. The images JKn/K(HK) are computed for n = 1 and n = 2.
The number r ∈ {1, 2} is the number of prime ideals above ℓ in K:

MAIN PROGRAM FOR REAL QUADRATIC FIELDS

{p=3;Nn=2;bm=2;Bm=10^8;vHK=1;ell=109;mKn=2;

for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;K=bnfinit(PK,1);

\\Testing the order of the p-class group of K compared to vHK:

HK=K.no;if(valuation(HK,p)<vHK,next);

CK0=K.clgp;r=(kronecker(m,ell)+3)/2;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print();print("PK=",PK," CK0=",CK0[2]," ell=",ell," r=",r));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))}

7.1.1. Case ℓ = 19 (N = 2).

PK=x^2-142 CK0=[3] ell=19 r=2

CK1=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=1, e(K2)=2

PK=x^2-229 CK0=[3] ell=19 r=2

CK1=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=1, e(K2)=2

PK=x^2-346 CK0=[6] ell=19 r=2

CK1=[18]=[9]
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h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[18]=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=1, e(K2)=2

PK=x^2-359 CK0=[3] ell=19 r=2

CK1=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[27]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=1, e(K2)=3

PK=x^2-574 CK0=[6] ell=19 r=2

CK1=[18]=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[18]=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=2, e(K2)=2

PK=x^2-761 CK0=[3] ell=19 r=2

CK1=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[27]

h_1^[(S-1)^1]=[18] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=2, e(K2)=3

PK=x^2-786 CK0=[6] ell=19 r=2

CK1=[18]=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[54]=[27]

h_1^[(S-1)^1]=[15] h_1^[(S-1)^2]=[9]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=3, e(K2)=3

PK=x^2-895 CK0=[6] ell=19 r=1

CK1=[18]=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[54]=[27]

h_1^[(S-1)^1]=[24] h_1^[(S-1)^2]=[9]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=3, e(K2)=3

PK=x^2-934 CK0=[3] ell=19 r=1

CK1=[9]

h_1^[(S-1)^1]=[3] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[27]

h_1^[(S-1)^1]=[12] h_1^[(S-1)^2]=[9]

norm in K2/K of the component 1 of CK2:[9]

No capitulation, m(K2)=3, e(K2)=3

PK=x^2-1090 CK0=[6,2] ell=19 r=2

CK1=[18,2]=[9]
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h_1^[(S-1)^1]=[6,0] h_1^[(S-1)^2]=[0,0]

h_2^[(S-1)^1]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[18,2]=[9]

h_1^[(S-1)^1]=[6,0] h_1^[(S-1)^2]=[0,0]

h_2^[(S-1)^1]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

7.1.2. Case ℓ = 109 (N = 3).

p=3 PK=x^2-142 CK0=[3] ell=109 r=1

CK1=[18,2]=[9]

h_1^[(S-1)^1]=[3,0] h_1^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[54,2]=[27]

h_1^[(S-1)^1]=[24,0] h_1^[(S-1)^2]=[9,0]

norm in K2/K of the component 1 of CK2:[9,0]

No capitulation, m(K2)=3, e(K2)=3

p=3 PK=x^2-223 CK0=[3] ell=109 r=2

CK1=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[3] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-229 CK0=[3] ell=109 r=1

CK1=[9]

h_1^[(S-1)^1]=[3] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=2, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-254 CK0=[3] ell=109 r=2

CK1=[3,3]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[1,1]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation, m(K1)=2, e(K1)=1

CK2=[3,3]

h_1^[(S-1)^1]=[1,1] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=3 PK=x^2-427 CK0=[6] ell=109 r=2

CK1=[18]=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation, m(K1)=1, e(K1)=2

CK2=[18]=[9]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=1, e(K2)=2
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p=3 PK=x^2-574 CK0=[6] ell=109 r=2

CK1=[18,2,2]=[9]

h_1^[(S-1)^1]=[0,0,0] h_1^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=1, e(K1)=2

CK2=[54,2,2]=[27]

h_1^[(S-1)^1]=[0,0,0] h_1^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[9,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

No capitulation, m(K2)=1, e(K2)=3

7.1.3. Case ℓ = 163 (N = 4).

p=3 PK=x^2-79 CK0=[3] ell=163 r=1

CK1=[18,2]=[9]

h_1^[(S-1)^1]=[3,0] h_1^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[18,2]=[9]

h_1^[(S-1)^1]=[3,0] h_1^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-223 CK0=[3] ell=163 r=2

CK1=[18,2]=[9]

h_1^[(S-1)^1]=[3,0] h_1^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=2, e(K1)=2

CK2=[18,2]=[9]

h_1^[(S-1)^1]=[3,0] h_1^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-254 CK0=[3] ell=163 r=2

CK1=[18,2]=[9]

h_1^[(S-1)^1]=[0,0] h_1^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=1, e(K1)=2

CK2=[18,2]=[9]

h_1^[(S-1)^1]=[0,0] h_1^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

7.1.4. Examples with rk3(HK) = 2. Due to a very large calculation time for
the degrees [K2 : Q] = 18, we have only some results showing that, as for the
case of cubic fields and p = 2 (degrees [K2 : Q] = 12) capitulation does occur
at the level n = 2:

p=3 PK=x^2-23659 CK0=[6,3] ell=19 r=2

CK1=[18,3]=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=2 ,e(K1)=2

CK2=[18,3]=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]
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norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-23659 CK0=[6,3] ell=37 r=2

CK1=[18,3,3]=[9,3,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[6,0,1] h_3^[(S-1)^1]=[6,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[6,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0]

norm in K1/K of the component 2 of CK1:[3,0,0]

norm in K1/K of the component 3 of CK1:[3,0,0]

Incomplete capitulation, m(K1)=3 ,e(K1)=2

CK2=[18,3,3]=[9,3,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[3,1,1] h_3^[(S-1)^1]=[0,2,2]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[3,0,0] h_3^[(S-1)^2]=[6,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation, m(K2)=3, e(K2)=2

p=3 PK=x^2-32009 CK0=[3,3] ell=19 r=1

CK1=[9,3]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=2 ,e(K1)=2

CK2=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=3 PK=x^2-32009 CK0=[3,3] ell=37 r=2

CK1=[9,3]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[6,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=2 ,e(K1)=2

CK2=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

7.2. Quadratic fields, L ⊂ K(µ109·163). In this subsection, we consider
cyclic 3-extensions L ⊂ K(µ109·163) with the two totally ramified primes 109
and 163, giving larger 3-class groups, especially when these primes split in the
quadratic field K = Q(

√
m). We limit ourselves to the layer K1 of degree 3 for

which a defining polynomial is for instance QK1 = x3 − x2 − 5922 ∗ x− 17109.
The number r of ramified primes is equal to 2, 3 or 4 depending on the splitting
of 109 and 163.

We have, quite often, #H
G1
K1

= #HK (m(K1) = 1); we give an excerpt

of cases where m(K1) ≥ 2, but we have only two examples of m(K1) ≥ 3
(m = 116279 and m = 370878) in the interval selected (m < 106).

{p=3;bm=2;Bm=10^6;vHK=3;mKn=2;for(m=bm,Bm,if(core(m)!=m,next);

PK=x^2-m;K=bnfinit(PK,1);HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

QK1=x^3-x^2-5922*x-17109;Pn=polcompositum(PK,QK1)[1];Kn=bnfinit(Pn,1);

HKn=Kn.no;dn=poldegree(Pn);if(valuation(HKn,p)==valuation(HK,p),break);

r=(kronecker(m,109)+3)/2+(kronecker(m,163)+3)/2;CKn=Kn.clgp;

print("p=3"," PK=",PK," CK0=",CK0[2]," r=",r);print("CK",1,"=",CKn[2]);
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rKn=matsize(CKn[2])[2];G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;

while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",1,"/K of the component ",i,

" of CK",1,":",Enu)))}

p=3 PK=x^2-8761 CK0=[27] r=2

CK1=[27,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

p=3 PK=x^2-36073 CK0=[27] r=2

CK1=[27,3,3]

h_1^[(S-1)^1]=[0,2,1] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

p=3 PK=x^2-65029 CK0=[27] r=3

CK1=[81,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=1, e(K1)=4

p=3 PK=x^2-116054 CK0=[27] r=4

CK1=[81,3,3]

h_1^[(S-1)^1]=[0,0,2] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=2, e(K1)=4

p=3 PK=x^2-116279 CK0=[27] r=3

CK1=[81,3,3]

h_1^[(S-1)^1]=[54,2,2] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[54,0,0]

h_1^[(S-1)^2]=[27,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[30,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=3, e(K1)=4

p=3 PK=x^2-156566 CK0=[9,3] r=2

CK1=[27,3,3]

h_1^[(S-1)^1]=[18,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[18,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

p=3 PK=x^2-255973 CK0=[9,3] r=2

CK1=[9,9,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,6,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,3,0]
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norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

p=3 PK=x^2-339887 CK0=[27] r=3

CK1=[81,3,3,3]

h_1^[(S-1)^1]=[27,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[27,1,0,2] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=4

p=3 PK=x^2-370878 CK0=[54] r=4

CK1=[1134,6,6,3]=[81,3,3,3]

h_1^[(S-1)^1]=[27,2,2,0] h_2^[(S-1)^1]=[0,0,1,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,2,0]

h_1^[(S-1)^2]=[0,0,2,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,2,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

No capitulation, m(K1)=3, e(K1)=4

As for the previous case of cubic fields with p = 2, since the complexity
of K1/K (in the meaning of Definition 2.13) is non-smooth in most cases
because of larger HK1 ’s, there is often no capitulation in K1, which confirms,
once again, the heuristic about capitulation versus complexity.

8. Isotopic components and capitulation

Consider a real cyclic field K of prime-to-p degree d and L = L0K with
L0/Q real cyclic of degree pN , N ≥ 1. Then L/Q is cyclic of degree D = d ·pN
with Galois group Γ = g ⊕G where g = Gal(L/L0) and G = Gal(L/K). The
field L is associated to an irreducible rational character χ, sum of irreducible
p-adic characters ϕ of “order” the order D of any ψ | ϕ of degree 1.

This non semi-simple context is problematic for the definition of isotopic
p-adic components of the form HL,ϕ and HKn,ϕn for the subfields Kn of L
with corresponding rational and p-adic characters χn and ϕn | χn; this is
extensively developed in [Gras2021b]. So we just recall the definitions and
explain how the phenomenon of capitulation gives rise to difficulties about
the classical algebraic definition of the literature, compared to the arithmetic
one that we have introduced to state the Main Conjecture in the general case.

Indeed, classical works deal with an algebraic definition of the ϕ-components
of p-class groups, which presents an inconsistency regarding analytic formulas;
this definition is, for Γ cyclic of order D = d pN and for all ϕ | χ:

H
alg
L,ϕ := HL

⊗
Zp[Γ]

Zp[µD],

with the Zp[µD]-action τ ∈ Γ 7→ ψ(τ), with ψ | ϕ of order D (see [Solo1990,
Lemma II.2] or [Grei1992, Definition, p. 451]). We then have proved, with
this definition [Gras2021b, § 3.2.4, Theorem 3.7], the following interpretation:





H
alg
L,χ = {x ∈ HL, P (σχ) · x = 1} = {x ∈ HL, νL/k(x) = 1, ∀ k & L},

H
alg
L,ϕ = {x ∈ HL, νL/k(x) = 1, ∀ k & L} ⊗Zp[Γ]

Zp[µD],
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where P is the Dth cyclotomic polynomial and σχ a generator of Gal(L/Q),
which gives rise to our corresponding arithmetic definitions:

{
H

ar
L,χ := {x ∈ HL, NL/k(x) = 1, ∀ k & L},

H
ar
L,ϕ := {x ∈ HL, Pϕ(σ) · x = 1 & NL/k(x) = 1, ∀ k & L},

where Pϕ | P is the corresponding local cyclotomic polynomial associated to
the above action τ ∈ Γ 7→ ψ(τ), with ψ | ϕ.

We then have (since L/K is totally ramified):

(8.1) #H
ar
L =

∏
χ∈RL

#H
ar
L,χ,

where RL is the set of irreducible rational characters of L. More precisely,
χ is of the form χ0 χn for the rational characters χ0 of K and the rational
characters χn of L0 of order pn, n ∈ [1, N ]; then H ar

L,χ = H ar
Kχ

0
L0,χn ,χ

, where

Kχ0
⊆ K (resp. L0,χn

⊆ L0) correspond to χ0 (resp. χn).

This notion leads to an unexpected semi-simplicity, especially in accordance
with analytic formulas, which enforces the Main Conjecture in that case:

H
ar
L,χ =

⊕
ϕ|χ

H
ar
L,ϕ, for all χ = χ0χn ∈ RL, ϕ = ϕ0ϕn, ϕ0 | χ0, ϕn | χn.

The Zp[Γ]-modules of the form H ar
L,χ (resp. H ar

L,ϕ), annihilated by all the

arithmetic norms NL/k, are called arithmetic χ-objects (resp. ϕ-objects).

We have H ar
L,ϕ = H

alg
L,ϕ as soon as the JL/k’s are injective for all k & L,

but as we have seen, this does not hold in general when K ⊆ k & L since
there is often partial capitulation. One can even say that the classic admitted
definition is ineffective and fallacious in the real case for p-class groups.

Remark 8.1. Let χ be the rational character associated to L. Our Main
Conjecture [Gras1977] (not yet proven in the non semi-simple case contrary
to some claims) requires that the equality of orders of χ-objects:

#H ar
L,χ = #(EL/E

0
L · FL) (see [Gras2021b, Theorem 7.5 (i)]),

be valid for the ϕ-components, for all ϕ | χ; in these formula, E 0
L is the

subgroup of EL generated by the units of the strict subfields of L and FL is
the group of classical Leopoldt’s cyclotomic units (see [Gras2021b, Examples
3.12, 3.13]).

In the case of cubic fields and p = 2 or in the case of real quadratic fields,
χ = ϕ, so that the Main Conjecture is trivial, but not the definition of arith-
metic ϕ-objects regarding the algebraic ones.

Let’s give numerical examples showing the consequences of capitulation for
the non-arithmetic definitions:

Example 8.2. Consider K = Q(
√
4409), p = 3, ℓ = 19 and L = K2 ⊂ K(µℓ)

of degree 9 over K. We are going to see that HKn ≃ Z/9Z for all n ≤ 2
(stability); Program 7.1 gives:

p=3 PK=x^2-4409 CK0=[9] ell=19 r=2

CK1=[9]

h_1^[(S-1)^1]=[0]

norm in K1/K of the component 1 of CK1:[3]

Incomplete capitulation, m(K1)=1, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation, m(K2)=1, e(K2)=2
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The capitulation, incomplete in K1, is complete in K2 as expected (stability

from K giving HKn = H
Gn
Kn

for n ∈ {1, 2}).
We use obvious notations for the characters defining the fields Kn. Since

arithmetic norms are surjective, the above computations prove that:



νK2/K1

(HK2) = (HK2)
1+σ3

2+σ6
2 = (HK2)

3 ≃ Z/3Z,

νK1/K(HK1) = (HK1)
1+σ1+σ2

1 = (HK1)
3 ≃ Z/3Z,

whence:




H
ar
χ2

= {x ∈ HK2 , NK2/K1
(x) = 1} = 1,

H
alg
χ2

= {x ∈ HK2 , νK2/K1
(x) = 1} = HK2 [3] ≃ Z/3Z.

H
ar
χ1

= {x ∈ HK1 , NK1/K(x) = 1} = 1,

H
alg
χ1

= {x ∈ HK1 , νK1/K(x) = 1} = HK1 [3] ≃ Z/3Z.

Formula (8.1) gives the product of orders of the χ-components H ar
χn

:

#HK2 = #H ar
χ0

· #H ar
χ1

· #H ar
χ2

, #HK1 = #H ar
χ0

· #H ar
χ1

,

of the form (since #H ar
χ0

= #HK = 9) #HK2 = 9× 1× 1, #HK1 = 9× 1.

These formulas are not fulfilled in the algebraic sense, because:

#H
alg
χ0

· #H
alg
χ1

· #H
alg
χ2

= 9× 3× 3 = 34, #H
alg
χ0

· #H
alg
χ1

= 9× 3 = 33.

Example 8.3. This example is analogous for a cyclic cubic field, p = 2,
ℓ = 17, except that capitulation takes place from K1; Program 6.1.1 gives:

p=2 f=1951 PK=x^3+x^2-650*x-289 CK0=[2,2] ell=17 r=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation, m(K1)=2, e(K1)=2

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,2,0] h_4^[(S-1)^1]=[0,2,0,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

CK3=[8,8,4,4]

h_1^[(S-1)^1]=[0,0,2,0] h_2^[(S-1)^1]=[2,2,2,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[6,2,0,2]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K3/K of the component 1 of CK3:[0,0,0,0]

norm in K3/K of the component 2 of CK3:[0,0,0,0]

norm in K3/K of the component 3 of CK3:[0,0,0,0]

norm in K3/K of the component 4 of CK3:[0,0,0,0]

Complete capitulation, m(K3)=3, e(K3)=3
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Numerical data give, with Z = Z2[exp(
2iπ
3 )]:





νK3/K2
(HK3) = H

1+σ4
3

K3
= H

2
K3

≃ Z/4Z× Z/2Z,

νK2/K1
(HK2) = H

1+σ2
2

K2
= H

2
K2

≃ Z/2Z× Z/2Z,

νK1/K(HK1) = H
1+σ1
K1

= 1.

Whence:




H
ar
χ3

= {x ∈ HK3 , NK3/K2
(x) = 1} ≃ Z/2Z,

H
alg
χ3

= {x ∈ HK3 , νK3/K2
(x) = 1} = HK3 [2] ≃ Z/2Z× Z/2Z,

H
ar
χ2

= {x ∈ HK2 , NK2/K1
(x) = 1} ≃ Z/2Z,

H
alg
χ2

= {x ∈ HK2 , νK2/K1
(x) = 1} = HK2 [2] ≃ Z/2Z× Z/2Z,

H
ar
χ1

= {x ∈ HK1 , NK1/K(x) = 1} ≃ Z/2Z× Z/2Z,

H
alg
χ1

= {x ∈ HK1 , νK1/K(x) = 1} = HK1 ≃ Z/4Z×Z/2Z.

Which gives, noting that #(Z/2kZ) = 4k:

#HK3 = #H ar
χ0

·#H ar
χ1

·#H ar
χ2

·#H ar
χ3

= 210, #HK2= #H ar
χ0

·#H ar
χ1

·#H ar
χ2

= 28,

#HK1 = #H ar
χ0

· #H ar
χ1

= 26,

contrary to:

#H
alg
χ0

·#H
alg
χ1

·#H
alg
χ2

·#H
alg
χ3

= 22 ·26 ·24 ·24 = 216, #H
alg
χ0

·#H
alg
χ1

·#H
alg
χ2

=

22 · 26 · 24 = 212, #H
alg
χ0

· #H
alg
χ1

= 22 · 26 = 28.

We will illustrate, in K1, the analytic equality, discussed in Remark 8.1, to
compare the two notions of χ-objects O (i.e., Oalg versus Oar):

#H
ar
χ1

= #(EK1/E
0
K1

· FK1).

Let k := Q(
√
17), Gal(K1/k) =: {1, τ, τ2} and G1 = {1, σ}. Since 17 splits

in K and 1951 splits in k, the generating cyclotomic unit η of K1 is of norm 1,

both in K1/k and K1/K, so it generates Fχ1
that we write 〈ητ , ητ2〉Z.

Computing in Q(µ17·1951)/K1 gives (taking logarithms for convenience):

log(η) = −5.0471877568101617791471884206853207885,
log(ητ ) = +32.072728696925313868267792411432213485,

log(ητ
2
) = −27.025540940115152089120603990746892715,

then:

log(η) = −5.0471877568101617791471884206853207885,
log(ησ) = 5.0471877568101617791471884206853207885.

The group EK1 of units of K1 given by PARI is of the form:

EK1 = Ek ⊕ EK ⊕ 〈e4, e5〉Z,
where NK1/K(e4) = NK1/K(e5) = 1, NK1/k(e4) = NK1/k(e5) = 1, so that
Eχ1

= 〈e4, e5〉Z.
Similarly we get:

log(e4) = −8.0181821742313284670669481028585732345,

log(e5) = +6.7563852350287880222801509976867231766,

yielding immediately ητ = e−44 , ητ
2
= e−45 . Thus, in this example:

EK1/E
0
K1
·FK1 = Eχ1

/Fχ1
= 〈e4, e5〉Z/〈ητ , ητ

2〉Z ≃ Z/4Z,

of order 16. So, we have #H ar
χ1

= #(Eχ1
/Fχ1

), but with the different structures

Z/2Z×Z/2Z and Z/4Z, respectively, which relativizes the interest of algebraic
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definitions, regarding analytic formulas, since H
alg
χ1

= HK1 ≃ Z/4Z×Z/2Z
in that example.

Remark 8.4. More generally, Galois cohomology groups are based on alge-
braic definitions of the norms, so that results strongly depend on capitulation
phenomena. For instance, let L/K be a cyclic p-extension of Galois group G;
assuming, to simplify, that all the ramified prime ideals of K ramified in L/K
are totally ramified, then:

H1(G,HL) = KerHL
(νL/K)/H σ−1

L & H2(G,HL) = H
G
L /νL/K(HL),

are of same order
#H

G
L

#JL/K(HK)
=

#HK

#JL/K(HK)
× pN (r−1)

#ωL/K(EK)
.

So, if Ker(JL/K) = 1, one gets the order
pN (r−1)

#ωL/K(EK)
; if HK capitulates,

the order becomes #HK × pN (r−1)

#ωL/K(EK)
= #H G

L and any intermediate situation

does exist.

9. Conclusions and prospects

a)We have conjectured in Conjecture 1.2 (i) that, varying ℓ ≡ 1 (mod 2pN),
N large enough, there are infinitely many cases with stability from a suit-
able layer in K(µℓ), yielding capitulation of HK (Theorem 1.1 (ii)), which
reinforces the general capitulation phenomenon; this would be coherent with
Greenberg’s conjecture, equivalent to the stability of the HKn ’s in the cyclo-
tomic Zp-extension, from n0 ≫ 0. In other words, our conjecture may be seen
as the “tame version”, it being understood that our towers are finite, so that
capitulation needs large N ’s allowing a kind of “finite Iwasawa’s theory”.

Furthermore, the more general criterion of Theorem 1.1 (i), using the al-
gebraic norm by means of the invariants m(L) and e(L), yields capitulation
without there necessarily being stability; it shows the link between capitula-
tion and complexity of the filtration of the HKn ’s, likely to be governed by
natural density results (Conjecture 2.4). It is reasonable to think that, re-
stricting to primes ℓ ≡ 1 (mod 2pN) with N → ∞, N − s(L) becomes larger

than e(L) taking into account that s(L) =
[
log(m(L))

log(p)

]
is logarithmic regarding

m(L) which essentially depends, from the algorithm defining H
i+1
L from H i

L,
on the magnitude of HK (exponent and p-rank) and of local norm symbols
associated to the r − 1 ramified prime ideals.

When capitulation is, on the contrary, structurally impossible (e.g., case of
minus parts of p-class groups or case of torsion groups TK of p-ramification
theory), the complexity of the corresponding invariants necessarily increases
in any totally ramified cyclic p-tower.

b) Due to the computations given in various frameworks in this paper, it
is difficult to imagine that, for all ℓ ≡ 1 (mod 2pN), HK does not capitulate
in K(µℓ), all the more that we were limited to testing with few values of ℓ
(among infinitely many !) and only for the levels n ≤ 3. Similarly, we were
limited to small primes p because of the degrees [Kn : Q] = [K : Q] pn for
PARI calculations; but the nature of the theoretical results does not seem to
depend on it; this is strengthened by the algorithmic aspect of formulas 2.2.

c) The remarkable circumstance of capitulations in these simplest tamely
ramified cyclic p-extensions L/K, is certainly a basic principle for many arith-
metic properties, as the following ones:

(i) The abelian Main Conjecture for real abelian fields, whose proof be-
comes trivial in the semi-simple case as soon as ℓ is taken inert in K/Q and if
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HK capitulates in some Kn’s; indeed, in the case r = 1 the filtration is only

defined by the class factors #(H i+1
Kn

/H i
Kn

) =
#HK

#NKn/K(H i
Kn

)
, i ∈ [0,m(Kn)].

(ii) In the non semi-simple Iwasawa context of the Main Conjecture, we
refer for instance to [AsMaOu2017, Mazigh2016, Mazigh2017] and their ref-
erences about generalization of Main Conjectures associated to Euler systems
built over Stark units replacing Leopoldt’s cyclotomic units, hoping that ca-
pitulation phenomena may give new insights in these theories using auxiliary
cyclic p-extensions L/K in which exact sequence (1.1) is still valid.

(iii) Capitulations prevent to get efficient algebraic definitions of p-adic

isotopic components (i.e., H
alg
ϕ ) of arithmetic invariants in the non semi-

simple real case; which suggests to replace algebraic norms by arithmetic ones
in the definitions and thus to use instead arithmetic ϕ-objects (i.e., H ar

ϕ ).

(v) Some speculative questions can be asked, such as the following: An
obstruction to a cyclotomic proof of Fermat’s Last Theorem is Vandiver’s
conjecture. But if an ideal a of K := Q(ζp + ζ−1p ) is non principal of the

form, say ap = (a), a ∈ K×, the existence of a capitulation field of the form
L = K(µℓ) in which the above relation becomes αp

L = a · ηL, αL, ηL ∈ L×,
would allow some classical reasonings in an abelian context over Q as that of
[Wash1997, Chap. 1, 6, 9].

d) Because capitulation of p-class groups, in totally real ramified cyclic
p-extensions L/K, is in connection with the class group complexity of the
layers Kn, one may wonder if this has some repercussion on the very nu-
merous heuristics on repartition of p-class groups when Galois groups are of
order divisible by p (see, e.g., [BarLen2020, BarJoLe2022] dealing with some
difficulties about the classical heuristics of Cohen–Lenstra–Martinet–Malle,
and giving attempts to modify them). In other words, is the capitulation a
governing principle for complexity, or, on the contrary, is the complexity a
governing principle for capitulation ? This is a difficult question all the more
that numerical examples show that if the tower L/K is hight enough, com-
plexity seems to become as smooth as possible (for instance, stability from
some layer), while the discriminants become oversized in the tower.
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totalement réels, Ann. Math. Blaise Pascal 24(2) (2017), 235–291.
https://doi.org/10.5802/ambp.370 27
Numerical table: https://www.dropbox.com/s/tcqfp41plzl3u60/R

[Gras2018] G. Gras, The p-adic Kummer–Leopoldt Constant: Normalized p-adic Regu-
lator, Int. J. of Number Theory, 14(2) (2018), 329–337.
https://doi.org/10.1142/S1793042118500203 23, 27

[Gras2019a ] G. Gras, On p-rationality of number fields. Applications–PARI/GP pro-
grams, Publ. Math. Fac. Sc. Besançon (Algèbre et théorie des nombres)
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Nombres Bordeaux 12(1) (2000), 219–226.
http://www.numdam.org/item/JTNB 2000 12 1 219 0/ 3

[GrWe2003] K.W. Gruenberg, A. Weiss, Capitulation and Transfer Triples, Proc. London
Math. Soc. 87(2) (2003), 273–290.
https://doi.org/10.1112/S0024611503014199 3

[HeSc1982] F-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverz-
weigten primzyklischen Erweiterungen, J. Reine Angew. Math. 336 (1982),
1–25. https://doi.org/10.1515/crll.1982.336.1 3

[Iwas1973] K. Iwasawa, On Zℓ-extensions of algebraic number fields, Ann. Math. 98
(1973), 243–326. https://doi.org/10.2307/1970784 25

[Iwas1989] K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan
Acad. Ser. A Math. Sci. 65(6) (1989), 183–186.
https://doi.org/10.3792/pjaa.65.183 3

[Jaul1986] J-F. Jaulent, L’arithmétique des ℓ-extensions (Thèse d’état), Publ. Math.
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