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ALGEBRAIC NORM AND CAPITULATION OF p-CLASS

GROUPS IN RAMIFIED CYCLIC p-EXTENSIONS

GEORGES GRAS

Abstract. We examine the phenomenon of capitulation of the p-class
group HK of a number field K in totally ramified cyclic p-extensions L/K
of degree pN and Galois group G. Using an elementary property of the
algebraic norm νL/K , we show that the kernel of capitulation is in relation
with the “complexity” of the structure of HL measured via its exponent
pe(L) and the length m(L) of the usual filtration {H i

L}i≥0 associated to
HL as Zp[G]-module. We prove that a sufficient condition of capitulation
is given by e(L) ∈ [1, N − s] if m(L) ∈ [ps, ps+1 − 1] for s ∈ [0, N − 1]
(Theorem 1.1 (i)); this improves the case of “stability” #HL = #HK (i.e.,
m(L) = 1, s = 0, e(L) = e(K) ≤ N) (Theorem 1.1 (ii)). A sufficient con-
dition of partial capitulation is also made explicit. Numerical examples
with directly usable PARI programs, showing most often capitulations,
are given over cubic fields with p = 2 and real quadratic fields with p = 3,
taking the simplest possible p-extensions L ⊂ Q(µℓ), ℓ ≡ 1 (mod 2pN ).
Conjectures on the existence of non-zero densities are proposed (Conjec-
tures 1.2, 2.4). Capitulations are also evoked for other invariants.
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2 GEORGES GRAS

1. Introduction

1.1. Statement of the main result. Let L/K be any cyclic p-extension of
number fields (p ≥ 2 prime), of degree pN , N ≥ 1, of Galois group G, and let
HK , HL be the p-class groups of K, L, respectively.

Let JL/K : HK → H G
L be the transfer map (or extension of classes) and

let NL/K : HL → HK be the arithmetic norm. Let Hnr
K be the p-Hilbert

class field of K and Lnr := L ∩Hnr
K . We know that H 0

K := NL/K(HL) is the
subgroup of HK which corresponds to Gal(Hnr

K /L
nr) by the Artin map of class

field theory; thus, if L/K is totally ramified, then Lnr = K and H 0
K = HK .

Denote by rankp(A) := dimFp(A/A
p) the p-rank of any finite abelian group A.

We can state:

Theorem 1.1. Let L/K be a cyclic p-extension of number fields, of degree
pN , N ≥ 1, of Galois group G =: 〈σ〉. One assumes H 0

K 6= 1:

(i) A sufficient condition for a partial capitulation of H 0
K in L, is that

there exists h ∈ HL such that NL/K(h) 6= 1, h of order pe and annihilated

by (σ − 1)m, for integers e,m with e ∈ [1, N − s] if m ∈ [ps, ps+1 − 1] for
s ∈ [0, N − 1].

Let pe(L) be the exponent of HL and let m(L) be the minimal integer such

that (σ−1)m(L) annihilates HL. Then, a sufficient condition for the complete
capitulation of H 0

K := NL/K(HL) in L, is that e(L) ∈ [1, N − s] if m(L) ∈
[ps, ps+1 − 1] for s ∈ [0, N − 1].

(ii) Let Kn, n ∈ [0, N ], be the subfield of L of degree pn over K and put
Gn := Gal(Kn/K). If L/K is totally ramified, then the condition #HK1 =
#HK implies HKn = H

Gn
Kn

≃ HK , for all n ∈ [0, N ], and the complete

capitulation of HK in Ke(K) if e(K) ≤ N . If rankp(HK1) = rankp(HK), then
the p-rank is constant along the tower.

Point (i) will be given by Corollary 2.10 to Theorem 2.7. Then (ii) comes
from [Gras2022a, Theorem 3.1 & Section 6, § (b)] generalizing [Fuku1994,
KrSch1995, Band2007, LOXZ2022, MiYa2021]; the stability of the class groups

corresponds, in point (i), to the case m(Kn) = 1 (from HKn = H
Gn
Kn

), whence

s = 0 and e(K) ≤ N (from e(L) = e(K) due to the isomorphisms HKn ≃
HK given by the arithmetic norms); this particular case is called the p-class
groups stability in the tower L/K. The case of the p-ranks for the case of
Zp-extensions was given by Fukuda [Fuku1994], then found again by Bandini
[Band2007]. It holds for any cyclic totally ramified p-extension.

If HK capitulates in Kn, necessarily n ≥ e(K) since NKn/K ◦JKn/K = pn.
Of course, the properties of stability may occur from a layer Kn0 .

Theorem 1.1 expresses that, if the “complexity” of HL is not too important,
then HK capitulates in L. Conversely, if one knows that capitulation is im-
possible (e.g., framework of abelian imaginary fields and minus p-class groups
H −), then the complexity of the H

−
Kn

’s is much more important compared

to that of H
−
K and strictly increases with n (see Theorem 3.2).

1.2. History and aims of the paper. The problem of capitulation 1 of
HK in L (measured by the capitulation kernel Ker(JL/K : HK → HL)) has
been studied in a very large number of publications, as precisely in the pur-
pose of the factorization problem, for Dedekind rings, exposed in [Mart2011];

1 I recently learned (from a Lemmermeyer text) that the word capitulation was coined by
Arnold Scholz. It is possible that this term may be considered as incongruous; a solution
is to consider that a non principal ideal a is a troublemaker with respect to elementary
arithmetic, in which case, the terminology is perfectly understandable. Conjectures about
ideal capitulations have perhaps a moral significance.
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it is impossible to give a complete bibliography, but one may cite, among
many other contributions subsequent to the historical works of Hilbet–Scholz–
Taussky: [Kisil1970, Tera1971, Bond1981, HeSc1982, Schm1985, GrJa1985,
Jaul1986, Jaul1988, Iwas1989, Suzu1991, Maire1996, Gras1997, Maire1998,
Kuri1999, GrWe2000, KoMo2000, GrWe2003, Gonz2006, Vali2008, Bosc2009,
Mayer2014, AZT2016, Bisw2016, Jaul2019b, Jaul2022], in which the reader
will find more history and references.

Most of these papers are related to Hilbert’s Theorem 94 on capitulation in
the Hilbert class field Hnr

K , which is not our purpose since, on the contrary, we
shall study totally ramified cyclic p-extensions L/K and more precisely the
simplest tamely ramified p-extensions L ⊂ K(µℓ), ℓ ≡ 1 (mod 2pN) prime,
[L : K] = pN , which, surprisingly, are often capitulation fields of HK when K
is totally real (even if K is not totally imaginary).

Many classical articles give cohomological expressions of the capitulation in
terms of global units as the fact that, in the non-ramified case, the capitulation
kernel Ker(JL/K) is isomorphic to a subgroup of H1(G,EL), where EL is the
group of units of L (see, e.g., [Jaul1986, Chap. III, § 1] and [Jaul1988] for more
comments and references).

In the same spirit, using sets of places S, T and tamely ramified Galois
extensions, the result of Maire [Maire1996, Théorème 4.1] gives, in our context
L ⊂ K(µℓ), injective maps HL,(ℓ)/JL/K(HK,(ℓ)) →֒ H2(G,EL,(ℓ)), where E :=
E⊗ Zp for groups of units and where HK,(ℓ), HL,(ℓ) are ray-class groups and
EL,(ℓ) the group of units congruent to 1 modulo (ℓ).

But the aspect “global units” is more difficult since the behavior of the unit
groups in L/K is less known compared to that of p-class groups, even if there
are some links; indeed, we have the following classical exact sequence:

1 → JL/K(HK) · H ram
L → H

G
L → EK ∩NL/K(L×)/NL/K(EL) → 1,

where H ram
L ⊆ H G

L is generated by means of classes of the ramified prime
ideals of L; in the right term, if EK ∩NL/K(L×) depends on easier local con-
siderations, NL/K(EL) is in general unknown. On the contrary, JL/K(HK),

H ram
L , are subgroups of H G

L and the order of this group is known from the
Chevalley–Herbrand formula [Chev1933, pp. 4002–405] (see [Gras1978] for
isotopic components, [Jaul1986, Chapitre III, p. 167] with ramification and de-
composition, [Lemm2013] in the spirit of Jaulent’s work); then general higher
fixed points formulas [Gras2017a, LiYu2020] allow the algorithmic computa-
tion of HL from a natural filtration.

In our previous paper [Gras2022a], giving extensive numerical computa-
tions with [PARI], we have proposed the following conjecture, whose main
consequence should be an obvious immediate proof, in the semi-simple case,
of the real abelian Main Conjecture “Hϕ = (Eϕ : Fϕ)” in terms of index of
Leopoldt’s cyclotomic units 2:

Conjecture 1.2. (i) Let K be any totally real number field and let HK be its

p-class group, of exponent pe(K).

• There exist infinitely many primes ℓ ≡ 1 (mod 2pN), N ≥ e(K), such
that HK capitulates in K(µℓ).

• There exist infinitely many primes ℓ ≡ 1 (mod 2pN), N large enough,
such that capitulation of HK in K(µℓ) is due to a stability from some layer.

2The complete statement being the following [Gras2022b , Section 1.4, then Theorem 4.6]:
Assume that K is a real cyclic extension of Q, of prime-to-p degree. Let ℓ ≡ 1 (mod 2pN )
be a prime number totally inert in K/Q and let L ⊂ K(µℓ) be the subfield of degree pN

over K. Then, if HK capitulates in L, the “Main Conjecture” on the p-adic components
HK,ϕ, of HK , holds (i.e., we have #HK,ϕ = (EK,ϕ : FK,ϕ) for all p-adic character ϕ of K).
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(ii) Let ℓ ≡ 1 (mod 2pN), N ≥ 1, be a fixed prime number and let Kd,N

be the family of totally real number fields K, of degree d ≥ 2, whose p-class
group HK is of exponent pe(K) with 1 ≤ e(K) ≤ N . There exist infinitely
many K ∈ Kd,N such that HK capitulates in K(µℓ).

This restriction to the family of p-extensions L/K, L ⊂ K(µℓ), is an-
other point of view compared to the case of abelian capitulations ([Gras1997],
[Kuri1999], [Bosc2009], [Jaul2022]). Indeed, all techniques in these papers
need to built a finite set of abelian p-extensions Lk of Q, ramified at various
primes, requiring many local arithmetic conditions existing from Chebotarev
theorem, whose compositum with K gives a capitulation field of HK ; the
method must apply to any abelian field K (of suitable signature), of arbitrary
increasing degree, obtained in an iterative process giving, for instance, that
the maximal real subfield of Q

(⋃
f>0 µf

)
is principal (see in [Bosc2009] the

most general statements).

2. Complexity of HL and capitulation of HK

Let L/K be a cyclic p-extension of degree pN , N ≥ 1, of Galois group
G =: 〈σ〉.

Recall that NL/K(HL) = H 0
K , subgroup of HK image of Gal(Hnr

K /L
nr),

where Hnr
K is the p-Hilbert class field of K and Lnr = L ∩Hnr

K . Let:

νL/K :=
pN−1∑
i=0

σi,

be the algebraic norm in L/K. From the law of decomposition in L/K of an
unramified prime ideal q of K, of residue degree f , we get, for Q | q in L,

νL/K(Q) =
∏pN−1

i=0 Qσi
= ((q)L)

f = (qf )L = (NL/K(Q))L; whence:

(2.1) νL/K(HL) = JL/K ◦NL/K(HL) = JL/K(H 0
K).

Thus, H 0
K (or HK if L/K is totally ramified) capitulates in L if and only if

νL/K(HL) = 1. A partial capitulation occurs as soon as #νL/K(HL) < #H 0
K .

So, the action of the algebraic norm characterizes the capitulation (com-
plete or incomplete) and it is clear that the result mainly depends on the
Zp[G] structure of HL which is expressed by means of the canonical associ-
ated filtration {H i

L}i≥0 defining a classical algorithm of computation of HL

that we shall recall.

2.1. Filtration of HL in the totally ramified case. Let L/K be a cyclic p-
extension of degree pN , N ≥ 1, and Galois group G = 〈σ〉. To avoid technical
writings, we assume that any prime ideal l of K, ramified in L/K, is totally
ramified, and that there are r ≥ 1 such ramified prime ideals. Let EK be the
group of units of K and put EK := EK ⊗ Zp.

2.1.1. The higher rank Chevalley–Herbrand formulas. The generalizations of
the Chevalley–Herbrand formula to the corresponding filtration, {H i

L}i≥0,
gives rise to the following expressions, where:

(2.2) H
0
L = 1, H

1
L := H

G
L , H

i+1
L /H i

L := (HL/H
i
L)

G, i ≥ 0,

up to i = m(L) = min{m ≥ 0, H
(σ−1)m

L = 1}, for which H
m(L)
L = HL.

Denote by I i
L a Zp[G]-module of ideals of L, of finite type, generating H i

L,

with I 0
L = 1, I

i+1
L ⊇ I i

L, for all i ≥ 0; the I i
L are defined up to the group
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of principal ideals of L, thus NL/K(I i
L) defined up to

(
NL/K(L×)

)
. This

filtration has the following properties [Gras2017a, Theorem 3.6]:

(2.3)





(i) #H
1
L = #HK × pN(r−1)

(EK : EK ∩NL/K(L×))
,

(ii) #(H i+1
L /H i

L) =
#HK

#NL/K(H i
L)

× pN(r−1)

(Λi
K : Λi

K ∩NL/K(L×))
,

Λi
K := {x ∈ K×, (x) ∈ NL/K(I i

L)},
(iii) H

i
L = {h ∈ HL, h

(σ−1)i = 1}, for all i ≥ 0,

(iv) #(H i+1
L /H i

L) ≤ #H
1
L , for all i ≥ 0,

(v) #HL =
∏m(L)−1

i=0
#(H i+1

L /H i
L) ≤ (#H

1
L )m(L).

The Λi
K ’s are subgroups of K× containing EK , with Λ0

K = EK . In particular,
any x ∈ Λi

K is local norm in L/K at all the non-ramified places. So, for any
(x) = NL/K(A), A ∈ I i

L, which is also local norm at the ramified places,

x = NL/K(y), y ∈ L× (Hasse’s norm theorem) and there exists an ideal B

of L such that A = (y)Bσ−1; this constitutes an algorithm by addition of
the B’s to I i

L to get I
i+1
L then H

i+1
L . 3 Since Λ0

K = EK is a Z-module of

finite type, this algorithm allows to construct Λi
K of finite type for all i, with

Λi
K ⊆ Λi+1

K (indeed, NL/K(I i
L) is of finite type, there is a finite number of

relations of principality between the generators and Λi
K/Λ

i
K ∩NL/K(L×) is

of exponent ≤ pN).

The i-sequence #(H i+1
L /H i

L), 0 ≤ i ≤ m(L), is decreasing, from #H 1
L up

to 1, because of the injective maps H
i+1
L /H i

L →֒ H i
L/H

i−1
L →֒ · · · →֒ H 1

L
due to the action of σ − 1, giving the inequality in (v).

The first (resp. second) factor in (ii) is called the class (resp. norm) factor.

2.1.2. Properties of the class and norm factors. Since the ramified places v
(= prime ideals) of K are assumed to be totally ramified in L/K, their inertia
groups Iv(L/K) in L/K are isomorphic toG. Let ωL/K be the map which asso-

ciates with x ∈ Λi
K the family of Hasse’s norm symbols

(x , L/K
v

)
∈ Iv(L/K).

Since x is local norm at the unramified places, ωL/K(Λi
K) is contained in:

ΩL/K :=
{
(τv)v ∈

⊕
vIv(L/K),

∏
vτv = 1

}
≃ Gr−1

(product formula); then Ker(ωL/K) = Λi
K ∩NL/K(L×).

It follows that #ωL/K(Λi
K) = (Λi

K : Λi
K ∩NL/K(L×)) divides pN(r−1).

Denote by Kn, 0 ≤ n ≤ N , the subfields of L of degree pn over K and
let Gn := Gal(Kn/K) =: 〈σn〉. All the previous definitions and formulas
apply to the Kn’s; we shall denote by Λi

K(n) the invariant corresponding to
Kn/K instead of L/K; we have Λi

K(n) = {x ∈ K×, (x) ∈ NKn/K(I i
Kn

)}.
So Λi

K = Λi
K(N) in the previous notations.

Lemma 2.1. For any i fixed, we may assume that Λi
K(n + 1) ⊆ Λi

K(n), for
all n ∈ [0, N − 1].

Proof. For all n ∈ [0, N − 1], we have the following diagram, where the norm

NKn+1/Kn
, on HKn+1 and (HKn+1)

(σn+1−1)i , is surjective (total ramification),

3For explicit class field theory, Hasse’s norm theorem, norm residue symbols, product
formula, see, e.g., [Gras2005, Theorem II.6.2, Definition II.3.1.2, Theorems II.3.1.3, 3.4.1].
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but its restriction to H i
Kn+1

may be non injective nor surjective:

1 −→ H i
Kn+1

−−−−−→ HKn+1

(σn+1−1)i−−−−−→ (HKn+1)
(σn+1−1)i −→ 1

y NKn+1/Kn

y NKn+1/Kn

y

1 −→ H i
Kn

−−−−−→ HKn

(σn−1)i−−−−−→ (HKn)
(σn−1)i −→ 1 .

We have NKn+1/Kn
(H i

Kn+1
) ⊆ H i

Kn
; so, for any ideal An+1 ∈ I i

Kn+1
, one

may write NKn+1/Kn
(An+1) = (αn)An, where αn ∈ K×n and An ∈ I i

Kn
,

in which case modifying the definition of I i
Kn

modulo principal ideals of

Kn, one may assume NKn+1/Kn
(I i

Kn+1
) ⊆ I i

Kn
whence NKn+1/K(I i

Kn+1
) ⊆

NKn/K(I i
Kn

); this modifies Λi
K(n) modulo NKn/K(K×n ) which does not mod-

ify #ωKn/K(Λi
K(n)) in the formula giving #

(
H

i+1
Kn

/H i
Kn

)
. Using the process

from the top, we obtain Λi
K(N) ⊆ Λi

K(N − 1) ⊆ · · · ⊆ Λi
K(1) ⊆ Λi

K(0). �

Lemma 2.2. For i fixed, the integers #
(
H

i+1
Kn

/H i
Kn

)
define an increasing

n-sequence from #
(
H

i+1
K /H i

K

)
= 1 up to #

(
H

i+1
L /H i

L

)
; the #H i

Kn
’s define

an increasing n-sequence from #H i
K = HK up to #H i

L (note that #H 0
Kn

= 1
for all n).

Proof. Consider, for i ≥ 0 fixed, the two factors of the finite n-sequence (for
n = 0, the two factors are trivial):

#
(
H

i+1
Kn

/H i
Kn

)
=

#HK

#NKn/K(H i
Kn

)
× pn(r−1)

#ωKn/K(Λi
K(n))

.

As NKn+1/K(H i
Kn+1

) ⊆ NKn/K(H i
Kn

), pc
i
Kn :=

#HK

#NKn/K(H i
Kn

)
defines an

increasing n-sequence from 1 up to a value pc
i
L | #HK . The norm factor:

pρ
i
Kn :=

pn(r−1)

#ωKn/K(Λi
K(n))

defines an increasing n-sequence from 1 up to pρ
i
L since, from Lemma 2.1:

p
ρiKn+1

−ρiKn =pr−1
#ωKn/K(Λi

K(n))

#ωKn+1/K(Λi
K(n+ 1))

≥ pr−1
#ωKn/K(Λi

K(n))

#ωKn+1/K(Λi
K(n))

;

then, in the restriction ΩKn+1/K −→−→ ΩKn/K (whose kernel is of order pr−1

because of the total ramification of each place), the image of ωKn+1/K(Λi
K(n))

is ωKn/K(Λi
K(n)) because of the properties of Hasse’s symbols, whence:

p
ρiKn+1

−ρiKn ≥ 1

and the result for the n-sequence pρ
i
Kn , with maximal value pρ

i
L . The first

claim of the lemma holds for the n-sequence #
(
H

i+1
Kn

/H i
Kn

)
; for n = N , one

gets the formula #
(
H

i+1
L /H i

L

)
= pc

i
L · pρiL .

Assuming, by induction, that the n-sequence #H i
Kn

is increasing, the prop-

erty follows for the n-sequence #H
i+1
Kn

. �

Remarks 2.3. (i) The i-sequences pc
i
L, pρ

i
L , and #(H i+1

L /H i
L) = pc

i
L · pρiL

are decreasing up to a divisor of #HK , pN(r−1), #HK · pN(r−1), respectively.

(ii) The n-sequence m(Kn) is an increasing sequence from 0 up to m(L).
Then the #HKn ’s define an increasing n-sequence from #HK up to #HL since
we have:

#HKn+1 ≥ #
(
H

Gal(Kn+1/Kn)
Kn+1

)
= #HKn

pr−1

ωK
n+1/Kn

(EKn
)
≥ #HKn .
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The integers e(Kn) and dimFp
(HKn/H

p
Kn

) define increasing n-sequences.

The interest of this filtration is that standard probabilities may be applied,
at each layer n, to the algorithm computing H

i+1
Kn

from H i
Kn

by means of the

two factors pc
i
Kn and pρ

i
Kn , giving plausible heuristics in the spirit of works of

[KoPa2022, Smith2022]. So we propose the following conjecture:

Conjecture 2.4. Let L/K be a cyclic p-extension of degree pN , N ≥ 1, of
Galois group G; we assume that L/K is ramified at r ≥ 1 places of K, totally
ramified in L/K. Then, the orders of each of the two factors (class and norm)
in the i-sequence #(H i+1

L /H i
L), follow binomial laws as i increases (based, for

x ∈ Λi
K , on the relations (x) = NL/K(A), x = NL/K(y) and A = (y)Bσ−1

when they apply for x, depending on Hasse’s symbols), with the following
probabilities:

• Let γ ∈ Gr−1; the probability, for x ∈ Λi
K , that ωL/K(x) = γ, is

1

pN(r−1)
.

• Let c ∈ HK ; the probability, for an ideal A of L, that the p-class of

NL/K(A) equals c, is
1

#HK
.

Remarks 2.5. (i) If the ramified places are not totally ramified in L/K, the
previous formulas (2.3) must be modified according to [Gras2017a, Formula
29], but the definitions of the invariants m(L) and e(L) are unchanged; only
the group HK must be replaced by H 0

K , using Formula (2.1), νL/K(HL) =

JL/K(H 0
K), and the fact that JL/K(H 0

K) = 1 if and only if νL/K(HL) = 1.

(ii) Another way to work with totally ramified extensions is to replace the
base field K by Lnr = L ∩Hnr

K ; but in that case one try to principalize HLnr

and the algebraic norm becomes νL/Lnr instead of νL/K .

2.2. Program computing the filtrations {H i
Kn

}i≥1. The following pro-
gram may be used for the calculation of the Galois structure of the HKn ’s,
Kn ⊆ L ⊂ K(µℓ), whatever the base field K given, as usual, by means of a
monic polynomial of Z[x] (here, of prime-to-p degree to simplify the compu-
tation of a generator S of Gal(Kn/K)).

For this, one must indicate the prime p in p, the number Nn of layers
Kn considered, the polynomial PK defining K, a prime ell congruent to 1

modulo 2pN , N ≥ Nn, and a value mKn for computing the hij := h
(S−1)i

j for
1 ≤ i ≤ mKn, where the hj’s are the generators of the whole class group HKn

given by PARI (in CKn = Kn.clgp), and where the generator S of Gn is chosen
in G = nfgaloisconj(Kn) testing the orders.

So H i
Kn

= Ker(HKn → H
(σn−1)i

Kn
), 1 ≤ i ≤ m(Kn) (see (2.3) (iii)). The

invariantm(Kn) is obtained (assuming mKn large enough) for the first i giving
zero matrices in the test of principality of the hij’s.

Since PARI works with generators hi of HKn , of orders p
niti, p ∤ ti (given

in CKn[2]), we consider t =
∏
ti, the non p-part of HKn = Kn.no (the whole

class number) and put hi = hti giving generators of HKn ; thus, for any
data [e1, . . . , er] given by bnfisprincipal(Kn,Y)[1] for an ideal Y whose class
is he11 · · · herr , the program gives, instead, the list E := [e1, . . . , er] defining the

class of Yt (in HKn) as h
e1
1 · · · herr , where ei = lift(Mod(ei, p

ni)); this does not
modify the Galois structure of HKn and the outputs are more readable. So,
the ideal Y is p-principal if and only if E = [0, . . . , 0].

The corresponsing outputs are writen under the form h
(σ−1)j

i = [e1, . . . , er]

instead of h
(σ−1)j

i = h
e1
1 · · · herr .
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Below, we take as example a cyclic cubic field of conductor f = 703, for
which HK ≃ Z/2Z×Z/2Z, ell = 97, mKn = 3; the results are given for n = 1
and n = 2 and rho is the number of prime ideals of K dividing ℓ:

PROGRAM COMPUTING THE h_i^[(S-1)^j]:

{p=2;Nn=2;PK=x^3+x^2-234*x-729;ell=97;mKn=3;

K=bnfinit(PK,1);CK0=K.clgp;rho=matsize(idealfactor(K,ell))[1];

print("p=",p," Nn=",Nn," PK=",PK," ell=",ell,

" mKn=",mKn," CK0=",CK0[2]," rho=",rho);

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);CKn=Kn.clgp;dn=poldegree(Pn);

print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

\\Search of a generator S of Gal(Kn/K):

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the image of CKn by (S-1)^j:

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

\\computation in Ehij of the modified exponents of B:

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij));print()))}

p=2 Nn=2 PK=x^3+x^2-234*x-729 ell=97 mKn=3 CK0=[6,2] rho=1

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

CK2=[12,4,2,2]

h_1^[(S-1)^1]=[0,2,1,1] h_2^[(S-1)^1]=[0,2,1,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,2,0,0] h_2^[(S-1)^2]=[2,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

This gives m(K1) = 2, H
σ1−1
K1

= 〈h1h2, h3h4〉, H
G1
K1

= 〈h1h−12 , h3h
−1
4 〉 =

〈h1h2, h3h4〉 ≃ (Z/2Z)2. Then m(K2) = 3, H
σ2−1
K2

= 〈h22h3h4, h22h3, h21h22, h21〉
= 〈h3, h4, h21, h22〉 ≃ (Z/2Z)4, whence H

G2
K2

= (HK2)
2 ≃ (Z/2Z)2. We have

H
(σ2−1)2

K2
= 〈h21, h22〉 ≃ (HK2)

2 ≃ (Z/2Z)2, H 2
K2

= 〈h3, h4, h21, h22〉 ≃ (Z/2Z)4

and H 3
K2

= 1.

These computations will prove later a partial capitulation of HK in K1 and
a complete capitulation of HK in K2.

Remark 2.6. An astonishing fact, in a diophantine viewpoint, is that, when
the class of a capitulates in some Kn, the writing of the generator α ∈ K×n ,
of the extended ideal (a)Kn of K, on the Q-basis Kn.zk of the field Kn, needs
most often oversized coefficients (several thousand digits and, often, PARI
proves the principality without giving these coefficients). If the reader wishes
to verify this fact, it suffices to add the instruction print(bnfisprincipal(Kn,Y))
giving the whole data for the ideal Y considered.

2.3. Decomposition of the algebraic norm νL/K . Put x = σ − 1; then

νL/K =
pN−1∑
i=0

σi =
pN−1∑
i=0

(x+ 1)i =
(x+ 1)p

N
− 1

x
=

pN∑
i=1

(
pN
i

)
xi−1.

We have the following elementary property which is perhaps known in
Iwasawa’s theory, but we have not found suitable references; see however
[Jaul1986, IV.2 (b)], [Wash1997, § 13.3] or [BaCa2016, Cald2020]:
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Theorem 2.7. The prime number p ≥ 2 and the integer N ≥ 1 being given,

the algebraic norm νL/K =
pN−1∑
i=0

σi is of the form:

νL/K = (σ − 1)k ·Ak(σ − 1, p) + pf(k) ·Bk(σ − 1, p), for all k ∈ [1, pN − 1],

Ak, Bk ∈ Z[σ − 1, p], where f(k) = N − s if k ∈ [ps, ps+1 − 1], s ∈ [0, N − 1].

Proof. From:

νL/K =
(pN

1

)
+x

(pN
2

)
+ · · ·+ xk−1

(pN
k

)

+ xk
[( pN

k+1

)
+ x

( pN
k+2

)
+ · · ·+ xp

N−1−k
(pN
pN

)]
,

we deduce that:

Ak(σ − 1, p) =
( pN
k+1

)
+ (σ − 1)

( pN
k+2

)
+ · · ·+ (σ − 1)pN−1−k

(pN
pN

)
.

The computation of Bk(σ − 1, p) depends on the p-adic valuations of the(pN
j

)
, j ∈ [1, k]. To find the maximal factor pf(k) dividing all the coefficients

of the polynomial:
(
pN
1

)
+ (σ − 1)

(
pN
2

)
+ · · ·+ (σ − 1)k−1

(
pN
k

)
,

in other words, to find the p-part of gcd
((pN

1

)
,
(pN

2

)
, . . . ,

(pN
k

))
, we consider

s ∈ [0, N − 1]. Let v the p-adic valuation map.

Lemma 2.8. One has v
((pN

ps

))
= N − s, for all s ∈ [0, N − 1].

Proof. We have
(pN
ps

)
=

pN !

ps! · (pN − ps)!
; then, using the well-known formula:

v(m!) =
m− S(m)

p− 1
, m ≥ 1,

where S(m) is the sum of the digits in the writing of m in base p, we get

v(pN !) =
pN − 1

p− 1
, v(ps!) =

ps − 1

p− 1
and v((pN − ps)!) =

pN − ps − (p− 1)(N − s)

p− 1
since pN − ps may be written ps(pN−s − 1) with:

pN−s −1 = 1(p−1)+p(p−1)+p2(p−1)+ · · ·+pN−s−2(p−1)+pN−s−1(p−1),

giving N − s times the digit p− 1. Whence:

v
((pN

ps

))
=

1

p− 1

(
pN − 1− (ps − 1)− (pN − ps − (p − 1)(N − s))

)
= N − s,

for all s ∈ [0, N − 1]. �

Lemma 2.9. For all k ∈ [ps + 1, ps+1 − 1], s ∈ [0, N1], we have v
((pN

k

))
≥

N − s.

Proof. Consider
(pN

k

)(pN
ps

)−1
, k ∈ [ps + 1, ps+1 − 1] (the interval is empty for

p = 2, s = 0; so we drop this obvious case), to show that its valuation is
non-negative:

(pN
k

)
(pN
ps

) =
pN !

k! (pN − k)!
× ps! (pN − ps)!

pN !

=
ps!

k!
× (pN − ps)!

(pN − k)!

=
1

(ps + 1)(ps + 2) · · · (ps + (k − ps))
× (pN − ps)!

(pN − k)!

=
(pN − k + 1)(pN − k + 2) · · · (pN − k + (k − ps))

(ps + 1)(ps + 2) · · · (ps + (k − ps))
.
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Put k = ps + h, h ∈ [1, ps(p − 1)− 1]; then we can write:
(
pN
k

)
(pN
ps

)=[pN − (ps + h) + 1][pN − (ps + h) + 2] · · · [pN − (ps + h) + (h)]

[ps + 1][ps + 2] · · · [ps + h]

=
[pN − (ps + h) + 1][pN − (ps + h) + 2] · · · [pN − (ps + h) + (h)]

[ps + h][ps + h− 1] · · · [ps + h− (h− 1)]

=
[pN − (ps + h) + 1]

[(ps + h)− 1]

[pN − (ps + h) + 2]

[(ps + h)− 2]
· · · [p

N − (ps + h) + (h− 1)]

[(ps + h)− (h− 1)]

× pN − ps

ps + h
.

We remark that each factor of the form
[pN − (ps + h) + j]

[(ps + h)− j]
is a p-adic unit for

j ∈ [1, h − 1]. Now, consider the last factor
pN − ps

ps + h
=

ps

ps + h
, up to a p-adic

unit; since h ≤ ps(p− 1)− 1 one can put h = λpu, p ∤ λ, u ≤ s; the case u < s
is obvious and if u = s, the relation h ≤ ps(p− 1)− 1 implies λ ≤ p− 2, thus

ps + h = ps(1 + λ) with 1 + λ ≤ p− 1 and
ps

ps + h
is a p-adic unit, whence the

lemma. �

This leads to the expression of f(k) on
⋃N−1

s=0 [ps, ps+1 − 1] = [1, pN − 1], to
the proof of the theorem and then that of Theorem 1.1 (i). �

The following corollary, proving Theorem 1.1 (ii), is of easy use in practice:

Corollary 2.10. (i) A sufficient condition for a partial capitulation of H 0
K

in L, is that there exists h ∈ HL such that NL/K(h) 6= 1, h of order pe,
annihilated by (σ − 1)m, for integers e,m such that e ∈ [1, N − s] if m ∈
[ps, ps+1 − 1] for s ∈ [0, N − 1].

(ii) Let m(L) be the minimal integer such that H
m(L)
L = HL and let pe(L)

be the exponent of HL. A sufficient condition for the complete capitulation of
H 0

K in L, is that e(L) ∈ [1, N − s] if m(L) ∈ [ps, ps+1 − 1] for s ∈ [0, N − 1].

Proof. If h ∈ HL, νL/K(h) = JL/K(NL/K(h)) =
(
h(σ−1)

k)A×
(
hp

f(k))B
, for all

k ∈ [1, pN − 1]. Thus, JL/K is non-injective as soon as h fulfills the conditions

stated in (i) with k = m ∈ [ps, ps+1 − 1] and f(k) = N − s ≥ e. For the
triviality of νL/K , it suffices that m = m(L) and e = e(L) be solution. �

In other words, if the length m(L) of the filtration is not too large as
well as the exponent pe(L) of HL, then using suitable values of k, we obtain
νL/K(h) = 1 for all h ∈ HL (or only for some ones), whence complete (or

partial) capitulation of H 0
K in L (or capitulation complete or incomplete of

HK if L/K is totally ramified).

Another way to interpret this result is to say that if N is large enough and
if the Galois complexity of the p-class groups HKn , for the layers Kn, does not
increase too much, then HK capitulates in L (in the totally ramified case).

For this, we introduce the following definition:

Definition 2.11. Let L/K be any cyclic p-extension totally ramified of degree
pN , N ≥ 1, and let σ be a generator of Gal(L/K). Let HK and HL be the
p-class groups of K and L, respectively. We denote by pe(L) the exponent of
HL and by m(L) the length of the filtration

{
H i

L

}
i≥0

(i.e., the least integer

m such that (σ − 1)m annihilates HL, cf. § 2.1.1). Then we say that L/K is
of smooth complexity if the conditions e(L) ∈ [1, N − s if m(L) ∈ [ps, ps+1− 1]
for s ∈ [0, N − 1], are fulfilled.
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2.3.1. Program giving the decompositions of νL/K . The following program put

νL/K in the form P (x, p) = xkA(x, p) + pf(k)B(x, p), 1 ≤ k ≤ pN − 1, where
x = σ − 1 and p are considered as indeterminate variables. This is necessary
to have universal expressions for any HL as Zp[G]-module; in other words,
we do not reduce modulo p the coefficients of A and B. One must note that,
except the cases k = 1, B = 1 and k = pN − 1, A = 1, the polynomials A and
B are not invertible in the group algebra, which allows improvements of the
standard reasoning with (k, pf(k)).

One must precise the numerical prime number p in Prime and N in N:

PROGRAM OF DECOMPOSITION OF THE ALGEBRAIC NORM

{Prime=2;N=3;P=0;for(i=1,Prime^N,C=binomial(Prime^N,i);

v=valuation(C,Prime);c=C/Prime^v;P=P+c*p^v*x^(i-1));print("P=",P);

for(k=1,Prime^N-1,B=lift(Mod(P,x^k));w=valuation(B,p);print();

print("P=x^",k,".A+p^",w,".B");print("A=",(P-B)/x^k);print("B=",B/p^w))}

2.3.2. Case p = 2, N = 1: P = x+ p.

P=x+p

A=1

B=1

2.3.3. Case p = 3, N = 1: P = x2 + p ∗ x+ p.

P=x^1.A+p^1.B P=x^2.A+p^1.B

A=x+p A=1

B=1 B=x+1

2.3.4. Case p = 2, N = 2: P = x3 + p2 ∗ x2 + 3 ∗ p ∗ x+ p2.

P=x^1.A+p^2.B P=x^2.A+p^1.B P=x^3.A+p^1.B

A=x^2+p^2*x+3*p A=x+p^2 A=1

B=1 B=3*x+p B=p*x^2+3*x+p

For the next examples, we only write P.

2.3.5. Case p = 3, N = 2:

P=x^8+p^2*x^7+4*p^2*x^6+28*p*x^5+14*p^2*x^4+14*p^2*x^3+28*p*x^2+4*p^2*x+p^2

2.3.6. Case p = 2, N = 3:

P=x^7+p^3*x^6+7*p^2*x^5+7*p^3*x^4+35*p*x^3+7*p^3*x^2+7*p^2*x+p^3

2.3.7. Case p = 2, N = 4:

P=x^15+p^4*x^14+15*p^3*x^13+35*p^4*x^12+455*p^2*x^11+273*p^4*x^10

+1001*p^3*x^9+715*p^4*x^8+6435*p*x^7+715*p^4*x^6+1001*p^3*x^5+273*p^4*x^4

+455*p^2*x^3+35*p^4*x^2+15*p^3*x+p^4

2.3.8. Case p = 3, N = 3:

P= x^26+p^3*x^25+13*p^3*x^24+325*p^2*x^23+650*p^3*x^22+2990*p^3*x^21

+32890*p^2*x^20+32890*p^3*x^19+82225*p^3*x^18+1562275*p*x^17

+312455*p^3*x^16+482885*p^3*x^15+1931540*p^2*x^14+742900*p^3*x^13

+742900*p^3*x^12+1931540*p^2*x^11+482885*p^3*x^10+312455*p^3*x^9

+1562275*p*x^8+82225*p^3*x^7+32890*p^3*x^6+32890*p^2*x^5+2990*p^3*x^4

+650*p^3*x^3+325*p^2*x^2+13*p^3*x+p^3

Thus, as soon as νL/K = (σ− 1)k ×Ak(σ− 1, p)+ pf(k)×Bk(σ− 1, p), with
m(L) ≤ k and e(L) ≤ f(k), then HK capitulates in L. But the reciprocal does
not hold and capitulation (complete or incomplete) may occur whatever the
invariants m(L) and e(L). We shall give examples where the above property
applies, apart from the obvious case of stability. More generally, on may reduce
P modulo xm(L) and modulo pe(L), which may give interesting relations.
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2.4. Non-trivial uses of the decomposition of νL/K . In what follows,
the extensions L/K are always totally ramified.

Example 2.12. Let’s begin with an example where the structure of HKn

grows sufficiently with n, giving no capitulation up to n = 3; next, another
choice of ℓ leads to capitulation, but where Theorem 1.1 (i) does not apply.

(i) We consider the cyclic cubic field K of conductor 703, p = 2, mKn = 3

and ell = 17. Then HK ≃ (Z/2Z)2 and we get, from the Program 4.1 (with
several hours for the layer n = 3):

p=2 Nn=3 f=703 PK=x^3+x^2-234*x-729 mKn=3 CK0=[6,2] ell=17 rho=1

CK1=[12,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

h_1^[(S-1)^3]=[0,0] h_2^[(S-1)^3]=[0,0]

norm in K1/K of the component 1 of CK1:[2,2]

norm in K1/K of the component 2 of CK1:[2,0]

No capitulation in K1, m(K1)=2, e(K1)=2

CK2=[24,8]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[6,6]

h_1^[(S-1)^2]=[4,4] h_2^[(S-1)^2]=[4,0]

h_1^[(S-1)^3]=[0,0] h_2^[(S-1)^3]=[0,0]

norm in K2/K of the component 1 of CK2:[4,4]

norm in K2/K of the component 2 of CK2:[4,0]

No capitulation in K2, m(K2)=3, e(K2)=3

CK3=[48,16]

h_1^[(S-1)^1]=[8,10] h_2^[(S-1)^1]=[10,14]

h_1^[(S-1)^2]=[4,12] h_2^[(S-1)^2]=[12,8]

norm in K3/K of the component 1 of CK3:[8,8]

norm in K3/K of the component 2 of CK3:[8,0]

No capitulation in K3, m(K2)=4, e(K2)=4

For n = 1, the algebraic norm νK1/K is given by P = x+ 2. There is no
capitulation and no pair (k, f(k)) satisfying the conditions since m(K1) = 2
(s = 1) and e(K1) = 2 > n− s = 1− 1 = 0.

For n = 2, νK2/K is given by P = x3 + 22 ∗ x2 + 3 ∗ 2 ∗ x+ 22. There is no
capitulation and conditions are not satisfied since m(K2) = 3 (s = 1) and
e(K2) = 3 > n− s = 2− 1 = 1.

For n = 3, νK3/K is given by:

P = x7 + 23 ∗ x6 + 7 ∗ 22 ∗ x5 + 7 ∗ 23 ∗ x4 + 35 ∗ 2 ∗ x3 + 7 ∗ 23 ∗ x2 + 7 ∗ 22 ∗ x+ 23,
+ but there is no term of the form 24B for e(K3) = 4.

In this case the complexity increases due to successive exponents 1, 2, 3, 4.
We ignore what happens for n = 4.

(ii) Changing ℓ = 17 into ℓ = 97 gives complete capitulation in K2 because
of a smooth complexity, but higher than a stability:

p=2 Nn=2 f=703 PK=x^3+x^2-234*x-729 CK0=[6,2] ell=97 rho=1

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,0,0]

norm in K1/K of the component 2 of CK1:[1,1,0,0]

norm in K1/K of the component 3 of CK1:[0,0,1,1]

norm in K1/K of the component 4 of CK1:[0,0,1,1]

No capitulation in K1, m(K1)=2, e(K1)=1

CK2=[12,4,2,2]

h_1^[(S-1)^1]=[0,2,1,1] h_2^[(S-1)^1]=[0,2,1,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,2,0,0] h_2^[(S-1)^2]=[2,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]
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h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K2, m(K2)=3, e(K2)=2

For n = 2, P = x3 + 22 ∗ x2 + 3 ∗ 2 ∗ x+ 22, m(K2) = 3 and e(K2) = 2,
then, modulo (x3, 22), it follows that 3 ∗ 2 ∗ x annihilates HK2 , which is con-
firmed by the data. The conditions of application of Theorem 1.1 (i) are for
m(K2) = 3, s = 1 and e(K2) ≤ 2 − s, which are not fulfilled. So, Theorem
1.1 (i) gives a sufficient condition, not necessary.

Example 2.13. We consider the cyclic cubic field K of conductor 1777, p = 2
and ℓ = 17. Then HK ≃ (Z/22Z)2 of exponent 4.
p=2 Nn=3 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] ell=17 rho=3

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation in K1, m(K1)=1, e(K1)=3

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=3

CK3=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation in K3, m(K3)=1, e(K3)=3

In this case, the stability from K1 implies necessarily the capitulation in K3

(so the third computation is for checking). Moreover, for all n ≥ 1, HKn is

annihilated by σ− 1, whence m(Kn) = 1, s = 0, e(K3) = n− s, HKn = H
Gn
Kn

as expected from Theorem 1.1 (ii) and given by Program 2.2.

Example 2.14. (i) We consider the quadratic field Q(
√
142) with p = 3 and

various primes ℓ ≡ 1 (mod 3), ℓ 6≡ 1 (mod 9), so that N = 1, L = K1, and
the conditions of Theorem 1.1 (i) are e(K1) = 1 ≤ 1 − s, whence s = 0 and
m(K1) ∈ [1, 2]:

p=3 PK=x^2-142 N=1 CK0=[3] ell=13 rho=2

CK1=[3,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation in K1, m(K1)=1, e(K1)=1

p=3 PK=x^2-142 N=1 CK0=[3] ell=1123 rho=2

CK1=[21,3]

h_1^[(S-1)^1]=[1,2] h_2^[(S-1)^1]=[1,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation in K1, m(K1)=2, e(K1)=1

p=3 PK=x^2-142 N=1 CK0=[3] ell=208057 rho=2

CK1=[3,3,3,3]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,1,1,1] h_4^[(S-1)^1]=[2,1,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]
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norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation in K1, m(K1)=2, e(K1)=1

(ii) For p = 5 and N = 1 the conditions become e(K1) = 1 ≤ 1− s, whence
s = 0, with m(K1) ∈ [1, 4], which offers more possibilities:

p=5 PK=x^2-401 N=1 CK0=[5] ell=1231 rho=2

CK1=[5,5]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation in K1, m(K1)=1, e(K1)=1

p=5 PK=x^2-401 N=1 CK0=[5] ell=1741 rho=1

CK1=[5,5]

h_1^[(S-1)^1]=[3,3] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation in K1, m(K1)=2, e(K1)=1

p=5 PK=x^2-401 CK0=[5] ell=4871 rho=1

CK1=[10,10,10,2]

h_1^[(S-1)^1]=[4,0,4,0] h_2^[(S-1)^1]=[1,4,0,0]

h_3^[(S-1)^1]=[3,4,2,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[3,1,4,0] h_2^[(S-1)^2]=[3,1,4,0]

h_3^[(S-1)^2]=[2,4,1,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Complete capitulation in K1, m(K1)=3, e(K1)=1

Example 2.15. We consider the cubic field of conductor f = 20887 with
p = 2 and ℓ = 17:

p=2 Nn=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=17 rho=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

We note that NK1/K(hi) 6= 1 for i = 3, 4, otherwise NK1/K(HK1) would be
of 2-rank 2 instead of 4 (absurd). Since m(K1) = 1 (all classes are invariant),
Theorem 1.1 (i) applies non-trivially for the classes h3, h4 of order 2 (m = 1,
s = 0, e ∈ [1, 1], which is indeed the case).

Let’s give the complete data proving the capitulation of the two classes of
K of order 2; the instruction CK0 = K.clgp gives:

[64,[4,4,2,2],[[2897,2889,2081;0,1,0; 0,0,1],[2897,825,2889;0,1,0;0,0,1],

[17,16,13;0,1,0;0,0,1],[53,36,44;0,1,0; 0,0,1]]]

it describes HK with 4 representative ideals of generating classes; that of
order 2 are:

a3 = [17, 16, 13; 0, 1, 0; 0, 0, 1], a4 = [53, 36, 44; 0, 1, 0; 0, 0, 1];

the following 6 large coefficients (on the integral basis computed by PARI)
give integers αi of L with the relations (ai)L = (αi):
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[[0,0,0,0]~,[4482450896,-1173749328,81969609,69123722,7646555,39729395]~]

norm in K1/K of the component 3 of CK1:List([0,0,0,0])

[[0,0,0,0]~,[-4877380814,1968946273,-1411818,102996743,38571732,40207952]~]

norm in K1/K of the component 4 of CK1:List([0,0,0,0])

At the layer n = 2, the result is similar, but shows that the classes of order
4 of HK never capitulate:

CK2=[16,16,2,2]

h_1^[(S-1)^1]=[8,0,0,0] h_2^[(S-1)^1]=[0,8,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=4

2.5. Case where no capitulation can happen. For instance, if K is an
imaginary quadratic field and L/K a cyclic extension, totally ramified, of
degree pN , with L/Q abelian, we know that there is never capitulation (except
few cases for p = 2). This implies necessarily that, as soon as HK 6= 1, the
structure of HL does not allow the previous use of the algebraic norm and the
complexity is not smooth according to the Definition 2.11; in the following
example, for p = 3, n = 1, 2, we examine the structure of HKn :

Example 2.16. We consider K = Q(
√
−199), p = 3 and ℓ = 19 and use a

modified version on Program 6 given further:

{p=3;Nn=2;m=199;ell=19;mKn=2;PK=x^2+m;K=bnfinit(PK,1);

CK0=K.clgp;rho=(kronecker(-m,ell)+3)/2;print("rho=",rho);

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

dn=poldegree(Pn);Kn=bnfinit(Pn,1);if(n==1,print();

print("PK=",PK," CK0=",CK0[2]," ell=",ell," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu)))}

p=3 Nn=2 PK=x^2+199 CK0=[9] ell=19 rho=1

CK1=[513]=[27.19]

h_1^[(S-1)^1]=[9]

h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

m(K1)=2, e(K1)=3

CK2=[749493,19,19]=[81.19.487,19,19]

h_1^[(S-1)^1]=[45,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

m(K2)=2, e(K1)=4

(i) Case n = 1. We have HK ≃ Z/9Z and HK1 ≃ Z/33Z; so, #H
G1
K1

=
#HK = 9 since ℓ is inert in K (trivial norm factor); thus, necessarily m(K1) =
2 and e(K1) = 3 (i.e., x2 and 33 annihilate HK1).

But for n = 1, P = x2 + 3 ∗ x+ 3 ≡ 3 ∗ x+ 3 (mod x2) and H 3
K1

≃ Z/9Z is
not annihilated by x+ 1 (invertible). So, νK1/K(HK1) ≃ HK as expected.
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(ii) Case n = 2. Then HK2 ≃ Z/34Z]; we have #H
G2
K2

= #HK = 9, giving

H
σ2−1
K2

= H
G2
K2

, whence m(K2) = 2 and e(K2) = 4. Similarly, the data
confirm this. The decompositions of P being of the form:

x^8+3^2*x^7+4*3^2*x^6+28*3*x^5+14*3^2*x^4+14*3^2*x^3+28*3*x^2+4*3^2*x+3^2

the conditions are not fulfilled to apply Theorem 1.1 (i) (m(K2) = 2, s = 0,
e(K2) = 4). More precisely, P ≡ 4 ∗ 32 ∗ x+ 32 (mod x2) and H 9

K2
≃ Z/32Z

is not annihilated by 4 ∗ x+ 1 (invertible). So νK2/K(HK2) ≃ HK as for the
case n = 1.

Example 2.17. We consider K = Q(
√
−199), ℓ = 37.

p=3 Nn=2 PK=x^2+199 CK0=[9] ell=37 rho=1

CK1=[54,6,3]

h_1^[(S-1)^1]=[21,1,0] h_2^[(S-1)^1]=[18,0,1] h_3^[(S-1)^1]=[18,0,0]

h_1^[(S-1)^2]=[0,0,1] h_2^[(S-1)^2]=[18,0,0] h_3^[(S-1)^2]=[0,0,0]

h_1^[(S-1)^3]=[18,0,0] h_2^[(S-1)^3]=[0,0,0]

h_1^[(S-1)^4]=[0,0,0]

norm in K1/K of the component 1 of CK1:[12,0,1]

norm in K1/K of the component 2 of CK1:[18,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

m(K1)=4, e(K1)=3

CK2=[42442542,18,9]

m(K2)=?, e(K1)=4

(i) Case n = 1. In this case, HK1 ≃ Z/33Z×Z/3Z×Z/3Z; the above data
shows that m(K1) = 4 for e(K1) = 3, and a more complex structure, since
s = 1, but e(K1) = 3. We have νK1/K(HK1) ≃ HK .

(ii) Case n = 2. For K2, HK2 ≃ Z/34Z× Z/32Z × Z/32Z. So m(K2) = 4,
s = 1 with e(K2) = 4.

3. Other contexts for capitulation kernels

Questions of capitulation of other arithmetic invariants are at the origin
of many papers (e.g., [Maire1996, KoMo2000, Brig2007, Vali2008, Jaul2016,
GJN2016, Jaul2019a, Jaul2019b, KhPr2000, Jaul2022, Gras2022a] and their
references); they are related to generalized p-class groups with conditions of
ramification and decomposition, wild kernels of K-theory, torsion groups in
p-ramification theory, Tate–Chafarevich groups, Bertrandias–Payan modules
about the embedding problem, logarithmic class groups 4. The same tech-
niques, using the algebraic norm, may be applied; the results essentially de-
pend on the properties of NL/K and JL/K .

3.1. Arithmetic invariants that do not capitulate. We note that some
invariants never capitulate. For instance we will evoke the case of the tor-
sion group TK of the Galois group of the maximal abelian p-ramified pro-p-
extension of a number field K; then under Leopoldt’s conjecture, the transfer
map is always injective, whatever the extensions of number fields considered.
This has some consequences because of the formula:

#TK = #WK · #RK · #H̃K ,

where WK is a canonical invariant built on the groups of (local and global)

roots of unity of K, RK is the normalized p-adic regulator, and H̃K a sub-
group of HK (see, for instance [Gras2005, Theorem IV.2.1], [Gras2018, Dia-
gram § 3 and § 5], [Gras2021a]). Note that for Bertrandias–Payan modules the
transfers JL/K are injective, except few special cases discussed in [GJN2016].

4 Invariant defined in [Jaul1994] and being, in the class field theory viewpoint, isomorphic

to Gal(H lc
K/Kcyc), where H lc

K is the maximal abelian locally cyclotomic pro-p-extension of
K and Kcyc its cyclotomic Zp-extension
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Thus, as we have seen, in any cyclic p-extension L/K of Galois group G,
the complexity of the invariants TKn must be increasing with n, regarding
that of K; this may be checked by means the following general framework:

Definition 3.1. Assume given a family Xk of finite invariants of p-power
order, indexed by the set of number fields k (or a suitable subset), fulfilling
the following conditions:

(i) For any Galois extension k′/k, of Galois group G, Xk′ is a Zp[G]-module;

(ii) There exist arithmetic norms Nk′/k : Xk′ → X 0
k ⊆ Xk and transfer

maps Jk′/k : Xk → Xk′ , such that Jk′/k ◦Nk′/k = νk′/k.

When G is a cyclic p-group, we define the associated filtration
{
X i

k′
}
i≥0

defined by X
i+1
k′ /X i

k′ := (Xk′/X
i
k′)

G, for all i ≥ 0.

Thus, in a cyclic p-extension L/K, the conditions e(L) ∈ [1, N − s] for
m(L) ∈ [ps, ps+1 − 1], s ∈ [0, N − 1], of Theorem 1.1 (i), apply in the same
way, independently of the fact of being able to calculate the orders of the X i

L’s

by means of a suitable algorithm moving from X i
L to X

i+1
L .

Theorem 3.2. Let L/K be a cyclic p-extension of degree pN , N ≥ 1, and let
Kn be the subfield of L of degree pn over K, n ∈ [0, N ]. We assume that, for
all n ∈ [0, N − 1], the arithmetic norms NKn+1/Kn

are surjective and that the
transfer maps JKn+1/Kn

are injective.

Then #Xn+h ≥ #Xn · #Xn[p
h], for all n ∈ [0, N ] and h ∈ [0, N − n].

Proof. Put Gn+h
n := Gal(kn+h/kn) and so on for the maps N,J. From the

exact sequence:

1 → Jn+h
n Xn → Xn+h → Xn+h/J

n+h
n Xn → 1,

we get:

1 → X
Gn+h

n
n+h /Jn+h

n Xn → (Xn+h/J
n+h
n Xn)

Gn+h
n

→ H1(Gn+h
n ,Jn+h

n Xn) → H1(Gn+h
n ,Xn+h),

where H1(Gn+h
n ,Jn+h

n Xn) = (Jn+h
n Xn)[p

h] ≃ Xn[p
h] (injectivity of Jn+h

n ),
and:

#H1(Gn+h
n ,Xn+h) = #H2(Gn+h

n ,Xn+h) = #(X Gn+h
n

n+h /Jn+h
n Xn),

since νn+h
n Xn+h = Jn+h

n ◦ Nn+h
n Xn+h = Jn+h

n Xn (surjectivity of Nn+h
n ),

giving an exact sequence of the form:

1 → A→ (Xn+h/J
n+h
n Xn)

Gn+h
n → Xn[p

h] → A′, with #A′ = #A.

We then obtain the inequality #Xn+h ≥ #Xn · #Xn[p
h]. �

Corollary 3.3. Let pen be the exponent of Xn, n ∈ [0, N ], and assume N
arbitrary large. Then, as soon as en ∈ [0, N −n], we have #Xn+en ≥ (#Xn)

2.
In any Iwasawa’s theory context, if µ = 0, then en ≤ λ for all n ≫ 0. In
particular, if λ = µ = 0, then Xn = 1 for all n ≥ 0.

Proof. The first claim is obvious; if µ = 0 in the formula #Xn = pλn+µpn+ν

for all n large enough, the relation #Xn+1 ≥ #Xn · pen implies the second
one. �

So we must notice, in the practice, that Theorem 1.1 (i) does not apply
since the complexity of the XKn crucially increases with n.

Example 3.4. We use the program [Gras2019a, Corollary 2.2, Program I,
§ 3.2] computing the group structure of the TKn ’s for quadratic fields K,
p = 2, Kn ⊂ K(µℓ) (so the number r2 + 1 of independent Zp-extensions is 1
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for m > 0 and 2n + 1 for m < 0). One must chose an arbitrary constant E,
assuming E > en + 1, to be controlled a posteriori:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (real quadratic fields):

{p=2;ell=257;Nn=4;E=16;for(m=2,150,if(core(m)!=m,next);PK=x^2-m;

print("p=",p," PK=",PK," ell=",ell);for(n=0,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-1,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))}

In a very simple context (K = Q(
√
m), L = K(µ257), p = 2), the complexity

of the torsion groups TKn is growing dramatically (for the pk-ranks as well as
the exponents) as shown by the following excerpts:

p=2 PK=x^2-2 ell=257

TK0=[]

TK1=[8,8]

TK2=[16,16,4,4,2,2]

TK3=[32,32,8,8,4,4,4,2,2,2,2]

TK4=[64,64,16,16,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2]

p=2 ell=257 PK=x^2-73

TK0=[2]

TK1=[64,8,2,2]

TK2=[128,16,8,4,4,2,2,2]

TK3=[256,32,16,16,8,8,8,4,2,2,2,2,2,2,2,2]

TK4=[512,64,32,32,16,16,16,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 ell=257 PK=x^2-105

TK0=[2,2]

TK1=[16,8,2,2]

TK2=[32,16,8,4,2,2,2,2]

TK3=[64,32,8,8,8,8,8,2,2,2,2,2,2,2,2,2]

TK4=[128,64,16,16,16,16,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 ell=257 PK=x^2-113

TK0=[4]

TK1=[128,16,4]

TK2=[256,32,8,4,4,4,2]

TK3=[512,64,16,8,8,8,2,2,2,2,2,2,2,2,2]

TK4=[1024,128,32,16,16,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

In that example, the analogue of the Chevalley–Herbrand formula gives, in
Kn/K, #T

Gn
Kn

= TK · pρn, where ρ = 1 or 2 is the number of primes l | ℓ
in K/Q [Gras2005, Theorem IV.3.3, Exercise 3.3.1]; unfortunately, we do not
know formulas, similar to that of (2.3), for the orders of the T i

Kn
for i > 1.

Consider, for instance, the above case of m = 113, L = K4, #TL = 259,
ρ = 2, νL/K(TL) ≃ Z/4Z, with the associated polynomial:

P=x^15+p^4*x^14+15*p^3*x^13+35*p^4*x^12+455*p^2*x^11+273*p^4*x^10

+1001*p^3*x^9+715*p^4*x^8+6435*p*x^7+715*p^4*x^6+1001*p^3*x^5

+273*p^4*x^4+455*p^2*x^3+35*p^4*x^2+15*p^3*x+p^4

Since #(T i+1
L /T i

L) ≤ #T G
L = 4 · 28 = 210, this gives m(L) ≥ 10 (s ≥ 3).

These computations show that m(L) and e(L) = 10 are large. Moreover, the
conditions of Theorem 1.1 (i), e(L) ≤ 4− s can not be satisfied.

Taking imaginary quadratic fields does not modify the behavior of the TKn

since, for all n, JKn/K is still injective and NKn/K surjective:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (imaginary quadratic fields):

{p=2;ell=257;Nn=3;E=16;for(m=2,150,if(core(m)!=m,next);PK=x^2+m;print("p=",p,

" ell=",ell," PK=",PK);for(n=0,Nn,r2=2^n+1;PKn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,PKn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-r2,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))}

p=2 PK=x^2+2 ell=257

TK0=[]
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TK1=[16,2]

TK2=[16,4,4,4,4]

TK3=[32,8,4,4,4,4,4,4,4]

TK4=[64,16,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4]

p=2 ell=257 PK=x^2+3

TK0=[]

TK1=[16]

TK2=[32,8,4]

TK3=[64,16,4,4,4,4,4]

TK4=[128,32,4,4,4,4,4,4,4,4,4,4,4,4,4]

p=2 ell=257 PK=x^2+7

TK0=[2]

TK1=[8,2,2]

TK2=[16,4,2,2,2,2,2]

TK3=[32,8,2,2,2,2,2,2,2,2,2,2,2,2,2]

TK4=[64,16,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

For cyclic cubic fields and p = 2, ℓ = 257, we obtain for instance:

MAIN PROGRAM COMPUTING THE STRUCTURE OF TKn (cyclic cubic fields):

{p=2;ell=257;Nn=3;E=16;bf=7;Bf=10^3;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);print("p=",p," f=",f,

" PK=",PK," ell=",ell);for(n=0,Nn,Qn=polsubcyclo(ell,p^n);

Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);Knmod=bnrinit(Kn,p^E);

CKnmod=Knmod.cyc;TKn=List;d=matsize(CKnmod)[2];for(j=1,d-1,c=CKnmod[d-j+1];

w=valuation(c,p);if(w>0,listinsert(TKn,p^w,1)));print("TK",n,"=",TKn)))))}

p=2 f=31 PK=x^3+x^2-10*x-8 ell=257

TK0=[2,2]

TK1=[8,2,2,2,2]

TK2=[16,4,2,2,2,2,2,2,2,2,2]

TK3=[32,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=43 PK=x^3+x^2-14*x+8 ell=257

TK0=[2,2]

TK1=[16,16,8,2,2]

TK2=[32,32,16,4,4,4,2,2,2,2,2]

TK3=[64,64,32,8,8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=171 PK=x^3-57*x-152 ell=257

TK0=[8,8]

TK1=[16,16,8,2,2]

TK2=[32,32,16,4,2,2,2,2,2,2,2]

TK3=[64,64,32,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

p=2 f=277 PK=x^3+x^2-92*x+236 ell=257

TK0=[4,4]

TK1=[8,4,4,4,4]

TK2=[16,8,8,4,4,4,4,4,2,2,2]

TK3=[32,16,16,8,8,8,8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

3.2. Capitulation in Zp-extensions. The problem of capitulations in a Zp-

extension K̃ =
⋃

n≥0Kn of K has a long history from Iwasawa pioneering

works showing, for instance, that the capitulation kernels Ker(JK̃/Kn
) have a

bounded order as n → ∞ [Iwas1973, Theorem 10, § 5]. The reader may refer
for instance to [GrJa1985, BaCa2016, Cald2020] for classical context of p-class
groups and to [KoMo2000, Vali2008] for wild kernels, [Jaul2016, Jaul2019a]
for logarithmic class groups.

3.2.1. Survey of known results under the assumption µ = 0. If µ = 0, in the
writing #HKn = pλn+µpn+ν for n ≫ 0, the following properties are proved in
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[GrJa1985, Théorème, p. 214]. Let HK̃ := lim
←−
n

HKn (for the arithmetic norms)

be the Galois group of the maximal unramified abelian pro-p-extension of K̃
and let HK̃ := lim

−→
n

HKn (for the transfer maps) be its p-class group; then

H
K̃

≃ T
⊕

Zλ
p , where T is a finite group. Moreover, for all n≫ 0:

• NK̃/Kn
: HK̃ → HKn induces an isomorphism of T onto Ker(JK̃/Kn

).

• HKn ≃ Ker(J
K̃/Kn

)⊕ J
K̃/Kn

(HKn) ≃ Ker(J
K̃/Kn

)
λ⊕

i=1
Z/pn+αiZ,

for some relative integers αi.

From now on, we take the base field “K = Kn0”, n0 large enough, in such

a way that K̃/K is totally ramified and such that all the above properties are
fulfilled from n = 0. Thus, #HKn = pλn+ν , λ, ν ≥ 0 with pν = #HK , and:

(3.1) HKn ≃ Ker(J
K̃/Kn

)⊕
λ⊕

i=1
Z/pn+αiZ, with Ker(J

K̃/Kn
) ≃ T , ∀n ≥ 0.

In particular, in this new context, αi ≥ 0 and:

(3.2) HK ≃ Ker(JK̃/K)⊕
λ⊕

i=1
Z/pαiZ, αi ≥ 0.

Proposition 3.5. Under the above choice of the base field K in the Zp-exten-

sion K̃ and assuming µ = 0, the capitulation of HK in K̃ is equivalent for all

n ≥ 0 to the isomorphism HKn ≃ HK ⊕ J
K̃/Kn

(HKn) ≃ HK ⊕
(
Z/pnZ

)λ
.

Proof. If HK capitulates in K̃, then Ker(JK̃/K) = HK and, from (3.2), αi = 0

for all i ∈ [1, λ]. So HKn ≃ HK ⊕
(
Z/pnZ

)λ
, for all n ≥ 0, since each

capitulation kernel Ker(JK̃/Kn
) is isomorphic to T , whence isomorphic to

Ker(J
K̃/K

) = HK (isomorphisms given by the arithmetic norms).

Reciprocally, assume that HKn ≃ HK ⊕
(
Z/pnZ

)λ
; then, from (3.1):

HKn = Ker(JK̃/Kn
)⊕

λ⊕
i=1

Z/pn+αiZ ≃ HK ⊕
(
Z/pnZ

)λ
.

Comparing the structures gives αi = 0 for all i ∈ [1, λ] and Ker(JK̃/Kn
) ≃ HK

for all n, whence the capitulation of HK in K̃. �

If the proposition applies, for all n ≥ 1, the capitulation in incomplete; for
instance HK1 ≃ Ker(J

K̃/K1
)⊕ (Z/pZ)λ with Ker(J

K̃/K1
) ≃ HK .

3.2.2. Case of the cyclotomic Zp-extension of K. Assume that K is totally
real and let K∞ =

⋃
n≥0Kn be the cyclotomic Zp-extension of K, assuming

the previous choice of K in K∞. Greenberg’s conjecture [Gree1976] for K∞
(λ = µ = 0) is equivalent to the stability of the #HKn ’s from K, giving
capitulations of all the class groups in K∞ from n = 0, then equalities HKn =

H
Gn
Kn

for all n ≥ 0, the isomorphisms HKm ≃ HKn ≃ HK , for all m ≥ n ≥ 0;
thus, for n ≥ 1, m(Kn) = 1 (s = 0) with e(Kn) = e(K), which is exactly the
limit case of application of Theorem 1.1 (i) for n ≥ e(K).

In [KrSch1995, Paga2022] such properties of stability are used to check the
conjecture by means of analytic formulas.

In [Jaul2016, Jaul2019a, Jaul2019b], it is proved that Greenberg’s conjecture

is equivalent to the capitulation of the logarithmic class group T̃K in K∞; this
may be effective if, by chance, a capitulation occurs in the firsts layers over
the base field K; indeed, this criterion is probably the only one giving an
algorithmic test (using [BeJa2016]) from the base field.
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In what follows, we will analyze the generalized Chevalley–Herbrand for-
mula in K∞/K.

Conventions 3.6. Taking in the sequel, as totally real base field K, a suitable
layer “Kn0” in K∞, we may assume, without restricting the generality, the
following properties of K∞/K:

(i) p is totally ramified in K∞/K;

(ii) Iwasawa’s formula #HKn = pλn+µpn+ν is valid for all n ≥ 0 (this gives
new invariants of the form (λ, µpn0, ν + λn0) that we still denote (λ, µ, ν)).

Then, as for the “tame casee”, formulas (2.3) hold with r = #{p, p |p in K}
and the filtration still depends on the class and norm factors. However, the
norm factors can be interpreted, from generalizations of Taya results, as divisor
of the normalized p-adic regulator of K, as follows from class field theory:

Definitions 3.7. (i) Let Hgen
Kn

be the genus field of Kn (i.e., the subfield of the
p-Hilbert class field Hnr

Kn
, abelian over K and maximal, whence the subfield of

Gal(Hnr
Kn
/K) fixed by the image of H

σn−1
Kn

), and let K∞H
gen
Kn

, which is abelian

p-ramified over K, whence K∞H
gen
Kn

⊆ Hpr
K , the maximal p-ramified abelian

pro-p-extension of K. So TK := Gal(Hpr
K /K∞) is finite under Leopoldt’s

conjecture.

We define Hgen
K∞

:=
⋃

nK∞H
gen
Kn

and put GK := Gal(Hgen
K∞

/K∞).

We denote by Kn1 , n1 ≥ 0, the minimal layer such that K∞H
gen
Kn1

= Hgen
K∞

(even with the above conventions, Kn1 may be distinct from K).

(ii) Let Hbp
K be the Bertrandias–Payan field fixed by WK ≃

(
⊕v|p µKv

)/
µK ,

where Kv is the v-completion of K and µk the group of pth-roots of unity of
the field k (local or global); if Uv is the group of principal units of Kv, then
µKv

= torZp
(Uv).

(iii) Let ιEK be the image of EK in UK :=
∏

v|p Uv and let Iv(H
pr
K /K∞) :=

torZp
(Uv/ιEK ∩Uv) be the inertia groups of v in Hpr

K /K∞; the subgroup of TK

generated by these inertia groups fixes Hgen
K∞

.

(iv) Let Rnr
K := Gal(Hgen

K∞
/K∞H

nr
K ) and let Rram

K := Gal(Hbp
K /Hgen

K∞
),

where RK := Gal(Hbp
K /K∞H

nr
K ) is the normalized p-adic regulator defined

in [Gras2018, Section 5].

These definitions may be summarized by the following diagram [Gras2021a,
Section 2]:

TK

RK

R
nr
K R

ram
K

HK
Hgen

K∞

Hbp
K WK

K∞Hnr
KK∞ Hpr

K

GK

Recall, under the above conventions about the choice of the base field K,
some results, given in [Gras2017b, Gras2019b] and generalizing some particular
results of Taya [Taya1996, Taya1999, Taya2000]:

Proposition 3.8. For all n ≥ 0, the norm factor
pn·(r−1)

ωKn/K(EK)
divides #Rnr

K

and #H
Gn
Kn

= #HK × pn·(r−1)

ωKn/K(EK)
divides #GK = #HK · #Rnr

K ; then, equality

holds for all n ≥ n1. If HK = Rnr
K = 1, then λ = µ = 0.

Thus, the norm factors
pn·(r−1)

ωKn/K(Λi
K(n))

, associated to the filtration, divide

#Rnr
K , which allows computations in the base field K without Hasse’s symbols.
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Recall that m(Kn) is the length of the filtration for Kn and that m(K) = 0;
so, formulas (2.3) apply in general for L = Kn, n ≥ 1:

Proposition 3.9. Let vp denotes the p-adic valuation; then, under the previ-
ous conventions about the base field K, we have for all n ≥ 1:

m(Kn) ≤ λ · n+ µ · pn + ν ≤ vp(#HK · #R
nr
K ) ·m(Kn).

Corollary 3.10. Greenberg’s conjecture is equivalent (under Leopoldt’s con-
jecture) to each of the following properties:

(i) m(Kn) is bounded over n.

(ii) HKn = H
Gn
Kn

(∀n ≥ 0) and Rnr
K = 1.

Proof. (i) is obvious.

(ii) If λ = µ = 0, then there is stability from K and HKn = H
Gn
Kn

≃ HK

for all n. There exists n1 ≫ 0 such that Gal(K∞H
gen
Kn1

) = GK by definition;

thus, since #H
Gn
Kn

= #GK , for all n ≥ n1, it follows that Rnr
K = 1.

Reciprocally, Rnr
K = 1 implies #H

Gn
Kn

= #HK for all n ≥ 0; so the second

element of the filtration is of order
#HK

NKn/K(H Gn

Kn

)
=

#HK

NKn/K(HKn
)
= 1, using

H
Gn
Kn

= HKn and NKn/K(HKn) = HK . Whence m(Kn) = 1 is bounded. �

We can wonder if Greenberg’s conjecture is equivalent, under Conventions
3.6 and µ = 0, to νKn/K(HKn) = 1, for all n ≥ e(K), obtained with the two
particular conditions m(Kn) = 1 (i.e., s = 0) and e(Kn) = e(K).

Indeed, under Greenberg’s conjecture, HKn ≃ HK (via the NKn/K ’s), for
all n ≥ 0, which characterizes the stability withm(Kn) = 1 and e(Kn) = e(K),
precisely the kind of annihilation of the HKn ’s by νKn/K with m(Kn) = 1
(i.e., s = 0) and e(Kn) = e(K).

Reciprocally, from Proposition 3.5, if HK capitulates, then νKn/K(HKn) =
JKn/K ◦NKn/K(HKn) = 1 and e(Kn) = e(K) implies λ = 0.

But, unfortunately, in the practice, these phenomenon (if any) holds from
an unknown layer.

This may be suggested by the following example of the cyclic cubic field
of conductor f = 2689, of 2-class group Z/2Z × Z/2Z and its cyclotomic Z2-
extension, giving HK1 ≃ Z/4Z × Z/4Z, HK2 ≃ Z/8Z × Z/8Z, and HK3 ≃
Z/8Z × Z/8Z (see details of the PARI programs and data in § 4.3):

p=2 f=2689 PK=x^3+x^2-896*x+5876 CK0=[2,2]

CK1=[28,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

No capitulation of CK0 in K1

CK2=[56,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation of CK0 in K2

CK3=[56,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation of CK0 in K3, m(K3)=1, e(K2)=3

At any layer, σn−1 annihilates HKn and capitulation in K∞ holds for all n.
Stability occurs from K2 giving a checking of Greenberg’s conjecture.
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Remark 3.11. It is interesting to check the numerical examples given by
Fukuda [Fuku1994] for real quadratic fields and p = 3 (stability from K) with
the simplified usual program and suitable polynomials defining the layers of
the cyclotomic Z3-extension; we limit the computations to the first layer and
use the fact that the HKn ’s are cyclic:

{p=3;Lm=List([3137,3719,4409,6809,7226,9998]);for(k=1,6,PK=x^2-Lm[k];

K=bnfinit(PK,1);CK0=K.clgp;Pn=polcompositum(PK,polsubcyclo(p^2,p))[1];

Kn=bnfinit(Pn,1);CKn=Kn.clgp;print();G=nfgaloisconj(Kn);Id=x;for(k=1,6,

Z=G[k];ks=1;while(Z!=Id,Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);

if(ks==p,S=G[k];break));A0=CKn[3][1];A=1;for(t=1,p,

As=nfgaloisapply(Kn,S,A);A=idealmul(Kn,A0,As));

C=bnfisprincipal(Kn,A)[1];print("PK=",PK," CK0=",CK0[2],

" CK",1,"=",CKn[2]," norm in K",1,"/K of CK",1,":",C))}

PK=x^2-3137 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-3719 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-4409 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-6809 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

PK=x^2-7226 CK0=[18] CK1=[18] norm in K1/K of CK1:[3]~

PK=x^2-9998 CK0=[9] CK1=[9] norm in K1/K of CK1:[3]~

The stability from K implies Greenberg’s conjecture and capitulation of
HK in K2, with an incomplete capitulation in K1.

4. Examples for cyclic cubic K and p = 2

We consider various totally ramified cyclic p-extensions L/K, where L =
KL0, L0/Q cyclic, especially L0 ⊂ Q(µℓ), ℓ ≡ 1 (mod 2pN).

4.1. Cyclic cubic fields K, L ⊂ K(µ17), L ⊂ K(µ97).

4.1.1. Case ℓ = 17. In that examples, L0 is the real subfield of degree 8 of
Q(µℓ). We eliminate the cases of stability #HK1 = #HK since complete
capitulation holds in a suitable layer if e(K) ≤ 3. The number vHK elimi-
nates fields such that #CKn < pvHK; it may be chosen at will. The images
JKn/K(HK) are computed for n = 1 and n = 2. The number ρ ∈ {1, 3} is the
number of prime ideals above ℓ in K.

We give an excerpt of the various cases obtained (all these examples show
the random framework of the structures and of the capitulation, complete or
incomplete); the deductions of m(Kn), e(Kn) from the outputs, are left to the
reader. We indicate if HK capitulates in K3 (no computed) which holds as
soon as #HK2 = #HK1 (stability from K1) and e(K) ≤ 2:
MAIN PROGRAM FOR CYCLIC CUBIC FIELDS

{p=2;Nn=2;bf=7;Bf=10^4;vHK=2;ell=17;mKn=2;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

K=bnfinit(PK,1);rho=matsize(idealfactor(K,ell))[1];

\\Test over the order of the p-class group of K:

HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print("f=",f," PK=",PK," CK0=",CK0[2]," ell=",ell," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

\\Search of a generator S of Gal(Kn/K):

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

\\Computation of the filtration:
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for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

\\Computation of the algebraic norms:

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))))}

p=2 f=607 PK=x^3+x^2-202*x-1169 CK0=[2,2] ell=17 rho=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[0,1,1,1]

h_3^[(S-1)^1]=[1,1,1,0] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[0,1,1,1]

norm in K1/K of the component 3 of CK1:[1,1,1,0]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

CK2=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,1,0] h_2^[(S-1)^1]=[0,1,0,1]

h_3^[(S-1)^1]=[1,0,1,0] h_4^[(S-1)^1]=[0,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=703 PK=x^3+x^2-234*x-729 CK0=[6,2] ell=17 rho=1

CK1=[12,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,2]

norm in K1/K of the component 2 of CK1:[2,0]

CK2=[24,8]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[6,6]

h_1^[(S-1)^2]=[4,4] h_2^[(S-1)^2]=[4,0]

norm in K2/K of the component 1 of CK2:[4,4]

norm in K2/K of the component 2 of CK2:[4,0]

No capitulation, m(K2)>2, e(K2)=3

p=2 f=1009 PK=x^3+x^2-336*x-1719 CK0=[2,2] ell=17 rho=1

CK1=[28,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,2]

norm in K1/K of the component 2 of CK1:[2,0]

CK2=[28,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=1197 PK=x^3-399*x+2926 CK0=[6,6] ell=17 rho=3

CK1=[12,12]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[12,12]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]
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norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] ell=17 rho=3

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Complete capitulation in K3, m(K2)=1, e(K2)=3

p=2 f=1789 PK=x^3+x^2-596*x-5632 CK0=[2,2] ell=17 rho=1

CK1=[24,8]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[4,0]

norm in K1/K of the component 2 of CK1:[0,4]

CK2=[312,8]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)>2, e(K2)=3

p=2 f=1951 PK=x^3+x^2-650*x-289 CK0=[2,2] ell=17 rho=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,2,0] h_4^[(S-1)^1]=[0,2,0,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K1, m(K2)=2, e(K2)=2

p=2 f=2077 PK=x^3+x^2-692*x-7231 CK0=[6,2] ell=17 rho=1

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[0,0,1,1]

h_3^[(S-1)^1]=[1,1,0,1] h_4^[(S-1)^1]=[1,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[1,1,0,1]

norm in K1/K of the component 4 of CK1:[1,1,0,1]

CK2=[6,2,2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,0,1,0] h_2^[(S-1)^1]=[0,1,0,0,0,1]

h_3^[(S-1)^1]=[1,1,0,1,0,1] h_4^[(S-1)^1]=[1,0,0,1,0,0]

h_5^[(S-1)^1]=[1,0,0,1,0,0] h_6^[(S-1)^1]=[0,0,1,1,0,1]

h_1^[(S-1)^2]=[0,0,0,1,1,0] h_2^[(S-1)^2]=[0,1,1,1,0,0]

h_3^[(S-1)^2]=[0,1,1,0,1,0] h_4^[(S-1)^2]=[0,0,0,1,1,0]

h_5^[(S-1)^2]=[0,0,0,1,1,0] h_6^[(S-1)^2]=[0,1,1,1,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]



26 GEORGES GRAS

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=1

p=2 f=2817 PK=x^3-939*x+6886 CK0=[12,4] ell=17 rho=1

CK1=[84,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[84,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=3357 PK=x^3-1119*x+9325 CK0=[6,2] ell=17 rho=3

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[12,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K1, m(K2)=2, e(K2)=2

p=2 f=3409 PK=x^3+x^2-1136*x-10732 CK0=[6,2] ell=17 rho=3

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[1,1,0,1]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[1,1,0,1]

norm in K1/K of the component 3 of CK1:[0,0,1,1]

norm in K1/K of the component 4 of CK1:[0,0,1,1]

CK2=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,0,1] h_2^[(S-1)^1]=[1,1,0,1]

h_3^[(S-1)^1]=[0,0,0,1] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=5479 PK=x^3+x^2-1826*x+13799 CK0=[2,2] ell=17 rho=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[1,1,1,0]

h_3^[(S-1)^1]=[0,1,1,1] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[1,1,1,0]
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norm in K1/K of the component 3 of CK1:[0,1,1,1]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[3,1,3,1] h_2^[(S-1)^1]=[3,3,0,3]

h_3^[(S-1)^1]=[0,2,2,2] h_4^[(S-1)^1]=[0,2,3,0]

h_1^[(S-1)^2]=[0,2,2,0] h_2^[(S-1)^2]=[2,2,2,0]

h_3^[(S-1)^2]=[2,2,2,2] h_4^[(S-1)^2]=[2,0,2,0]

norm in K2/K of the component 1 of CK2:[0,0,2,0]

norm in K2/K of the component 2 of CK2:[2,2,2,2]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[2,2,0,2]

No capitulation, m(K2)>2, e(K2)=2

p=2 f=6247 PK=x^3+x^2-2082*x-35631 CK0=[4,4] ell=17 rho=1

CK1=[24,8,2,2]

h_1^[(S-1)^1]=[0,2,0,1] h_2^[(S-1)^1]=[6,6,1,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[0,4,0,0] h_2^[(S-1)^2]=[4,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,2,0,1]

norm in K1/K of the component 2 of CK1:[6,0,1,0]

norm in K1/K of the component 3 of CK1:[0,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

CK2=[24,8,2,2]

h_1^[(S-1)^1]=[0,6,1,1] h_2^[(S-1)^1]=[2,6,0,1]

h_3^[(S-1)^1]=[4,4,0,0] h_4^[(S-1)^1]=[0,4,0,0]

h_1^[(S-1)^2]=[0,4,0,0] h_2^[(S-1)^2]=[4,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K3, m(K2)>2, e(K2)=3

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] ell=17 rho=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=8629 PK=x^3+x^2-2876*x-50176 CK0=[14,2] ell=17 rho=1

CK1=[56,8]

h_1^[(S-1)^1]=[2,4] h_2^[(S-1)^1]=[4,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[4,4]

norm in K1/K of the component 2 of CK1:[4,0]

CK2=[112,16]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[12,10]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,8]

norm in K2/K of the component 2 of CK2:[8,8]

No capitulation, m(K2)>2, e(K2)=4
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p=2 f=9247 PK=x^3+x^2-3082*x-27056 CK0=[12,4] ell=17 rho=3

CK1=[24,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[48,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation, m(K2)=1, e(K2)=4

p=2 f=9283 PK=x^3+x^2-3094*x-5501 CK0=[2,2] ell=17 rho=1

CK1=[48,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[0,8]

CK2=[48,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)>2, e(K2)=4

(...)

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=17 rho=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=1, e(K1)=3

CK2=[16,16,2,2]

h_1^[(S-1)^1]=[8,0,0,0] h_2^[(S-1)^1]=[0,8,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=4

p=2 f=25119 PK=x^3-8373*x+2791 CK0=[12,4] ell=17 rho=1

CK1=[12,4,2,2]

h_1^[(S-1)^1]=[2,2,0,1] h_2^[(S-1)^1]=[0,0,1,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,1]

norm in K1/K of the component 2 of CK1:[0,2,1,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[24,8,2,2,2,2]

h_1^[(S-1)^1]=[6,4,0,0,1,1] h_2^[(S-1)^1]=[4,6,1,0,0,1]

h_3^[(S-1)^1]=[0,4,0,0,0,0] h_4^[(S-1)^1]=[4,4,0,1,1,0]

h_5^[(S-1)^1]=[0,0,0,1,1,0] h_6^[(S-1)^1]=[0,4,1,0,0,0]

h_1^[(S-1)^2]=[4,4,1,1,1,0] h_2^[(S-1)^2]=[0,4,1,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[4,4,0,0,0,0]

h_5^[(S-1)^2]=[4,4,0,0,0,0] h_6^[(S-1)^2]=[0,4,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]
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norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=3

p=2 f=29467 PK=x^3+x^2-9822*x-20736 CK0=[84,4] ell=17 rho=3

CK1=[168,8,2,2]

h_1^[(S-1)^1]=[4,0,1,0] h_2^[(S-1)^1]=[4,4,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,0,1,0]

norm in K1/K of the component 2 of CK1:[4,6,1,1]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[336,16,2,2]

h_1^[(S-1)^1]=[0,8,1,0] h_2^[(S-1)^1]=[8,8,0,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

No capitulation, m(K2)=2, e(K2)=4

p=2 f=33061 PK=x^3+x^2-11020*x-262039 CK0=[6,2,2,2] ell=17 rho=1

CK1=[12,4,2,2,2,2]

h_1^[(S-1)^1]=[0,0,1,0,1,1] h_2^[(S-1)^1]=[0,2,1,1,0,1]

h_3^[(S-1)^1]=[2,0,0,0,0,0] h_4^[(S-1)^1]=[0,2,0,0,0,0]

h_5^[(S-1)^1]=[0,2,0,0,0,0] h_6^[(S-1)^1]=[2,2,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,1,0,1,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1,0,1]

norm in K1/K of the component 3 of CK1:[2,0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,2,0,0,0,0]

norm in K1/K of the component 6 of CK1:[2,2,0,0,0,0]

CK2=[24,8,4,4,2,2]

h_1^[(S-1)^1]=[6,4,2,2,0,1] h_2^[(S-1)^1]=[6,0,2,0,1,0]

h_3^[(S-1)^1]=[2,2,0,2,0,0] h_4^[(S-1)^1]=[2,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,2,2,0,0] h_6^[(S-1)^1]=[0,0,0,2,0,0]

h_1^[(S-1)^2]=[4,4,0,2,0,0] h_2^[(S-1)^2]=[0,4,2,2,0,0]

h_3^[(S-1)^2]=[4,0,0,0,0,0] h_4^[(S-1)^2]=[4,0,0,0,0,0]

h_5^[(S-1)^2]=[0,4,0,0,0,0] h_6^[(S-1)^2]=[4,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[4,4,0,0,0,0]

norm in K2/K of the component 4 of CK2:[4,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=3

p=2 f=37087 PK=x^3+x^2-12362*x-401089 CK0=[2,2,2,2] ell=17 rho=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]
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norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=3

p=2 f=44857 PK=x^3+x^2-14952*x-704421 CK0=[6,2,2,2] ell=17 rho=3

CK1=[12,12,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

CK2=[12,12,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=48769 PK=x^3+x^2-16256*x-7225 CK0=[24,8] ell=17 rho=3

CK1=[48,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[48,16]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Incomplete capitulation, m(K2)=1, e(K2)=4

p=2 f=55609 PK=x^3+x^2-18536*x-823837 CK0=[4,4,2,2] ell=17 rho=3

CK1=[56,8,2,2]

h_1^[(S-1)^1]=[4,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[4,0,0,0] h_4^[(S-1)^1]=[0,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[4,0,0,0]

norm in K1/K of the component 4 of CK1:[0,4,0,0]

CK2=[56,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K3, m(K2)=2, e(K2)=3

Let’s give some comments on interesting examples found above:

p=2 f=9283 PK=x^3+x^2-3094*x-5501 CK0=[2, 2] ell=17 rho=1

CK1=[48,16]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

h_1^[(S-1)^3]=[8,0] h_2^[(S-1)^3]=[0,8]

h_1^[(S-1)^4]=[0,0] h_2^[(S-1)^4]=[0,0]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[0,8]

No capitulation,m(K1)=4,e(K1)=4

CK2=[48,16]
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h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[0,6]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

h_1^[(S-1)^3]=[8,0] h_2^[(S-1)^3]=[0,8]

h_1^[(S-1)^4]=[0,0] h_2^[(S-1)^4]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation,m(K2)=4,e(K2)=4

There is complete capitulation, even if conditions of Theorem 1.1 (i) are not
fulfilled for the Kn/K’s. Moreover, the exponent of HK1 is 24 giving a larger
complexity in K1/K, but in Kn, n ≥ 2, the exponent is still 24 (no increasing
of the complexity). If K5 had existed, we would have get the following data
in K ′4 = K5 with the base field K ′ = K1 (i.e., N ′ = 4) and the relation
νK ′

4/K
′(HK ′

n
) = 1 (one has the canonical isomorphisms between the HK ′

n

and the identities HK ′
n
= H

G′
n

K ′
n

for all n > 1):

CK6=[16,16] (up to odd factors)

h’_1^[(S’-1)^1]=[0,0] h’_2^[(S’-1)^1]=[0,0]

h’_1^[(S’-1)^2]=[0,0] h’_2^[(S’-1)^2]=[0,0]

h’_1^[(S’-1)^3]=[0,0] h’_2^[(S’-1)^3]=[0,0]

h’_1^[(S’-1)^4]=[0,0] h’_2^[(S’-1)^4]=[0,0]

norm in K’5/K’ of the component 1 of CK’5:[0,0]

norm in K’5/K’ of the component 2 of CK’5:[0,0]

Complete capitulation, m(K’5)=1, e(K’5)=4

So, for this layer L′ = K ′4, Theorem 1.1 (i) applies with e(K ′5) = 4 ∈ [4− s′]
since m(L′) = 1 (s′ = 0), and HK ′

1
capitulates in K ′4.

Some other examples as:

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] ell=17 rho=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=44857 PK=x^3+x^2-14952*x-704421 CK0=[6,2,2,2] ell=17 rho=3

CK1=[12,12,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

CK2=[12,12,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]
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norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

suggest that the size of the p-rank is not an obstruction to a capitulation in
such cyclic sub-p-extensions ofK(µℓ); here, the 2-ranks are even because of the
structure of Z2[µ3]-module of the HKn ’s. In the above cases, the capitulation
is obtained by means of a stability in larger layers.

4.1.2. Case ℓ = 97. Similarly, we give a table for ℓ = 97 allowing capitula-
tions up to K4. One finds much more cases of capitulation (not in the table
below since they are very numerous); it seems clearly that a larger value of
N intervenes in the phenomenon of capitulation, even for the same values of
n = 1, 2:

p=2 f=349 PK=x^3+x^2-116*x-517 CK0=[2,2] ell=97 rho=1

CK1=[4,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,2]

norm in K1/K of the component 2 of CK1:[2,2]

CK2=[4,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=547 PK=x^3+x^2-182*x-81 CK0=[2,2] ell=97 rho=1

CK1=[2,2,2,2]

h_1^[(S-1)^1]=[1,1,1,0] h_2^[(S-1)^1]=[0,1,0,1]

h_3^[(S-1)^1]=[1,0,1,1] h_4^[(S-1)^1]=[0,1,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,1,0]

norm in K1/K of the component 2 of CK1:[0,1,0,1]

norm in K1/K of the component 3 of CK1:[1,0,1,1]

norm in K1/K of the component 4 of CK1:[0,1,0,1]

CK2=[2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,1,0,0] h_4^[(S-1)^1]=[1,1,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=1

p=2 f=607 PK=x^3+x^2-202*x-1169 CK0=[2,2] ell=97 rho=1

CK1=[8,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K1/K of the component 1 of CK1:[0,4]

norm in K1/K of the component 2 of CK1:[4,4]

CK2=[104,8]

h_1^[(S-1)^1]=[6,4] h_2^[(S-1)^1]=[4,2]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,4]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)>2, e(K2)=3

p=2 f=703 PK=x^3+x^2-234*x-729 CK0=[6,2] ell=97 rho=1

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,1,0,0] h_2^[(S-1)^1]=[1,1,0,0]

h_3^[(S-1)^1]=[0,0,1,1] h_4^[(S-1)^1]=[0,0,1,1]
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h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,1,0,0]

norm in K1/K of the component 2 of CK1:[1,1,0,0]

norm in K1/K of the component 3 of CK1:[0,0,1,1]

norm in K1/K of the component 4 of CK1:[0,0,1,1]

CK2=[12,4,2,2]

h_1^[(S-1)^1]=[2,0,1,0] h_2^[(S-1)^1]=[0,2,0,1]

h_3^[(S-1)^1]=[0,2,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,2,0,0] h_2^[(S-1)^2]=[2,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=2

p=2 f=1957 PK=x^3+x^2-652*x+6016 CK0=[6,2] ell=97 rho=3

CK1=[12,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[24,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

No capitulation, m(K2)=1, e(K2)=3

p=2 f=4207 PK=x^3+x^2-1402*x+14335 CK0=[6,2] ell=97 rho=3

CK1=[12,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[0,2,0,0] h_4^[(S-1)^1]=[2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[0,2,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

CK2=[12,4,4,4]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[0,0,0,2] h_4^[(S-1)^1]=[0,0,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=4639 PK=x^3+x^2-1546*x+6529 CK0=[2,2] ell=97 rho=1

CK1=[4,4]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

CK2=[4,4]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=9391 PK=x^3+x^2-3130*x-24347 CK0=[2,2] ell=97 rho=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[2,2,0,0]
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h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,2,0,0]

CK2=[4,4,4,4,2,2]

h_1^[(S-1)^1]=[0,0,0,2,0,1] h_2^[(S-1)^1]=[0,0,2,0,1,0]

h_3^[(S-1)^1]=[2,0,2,0,1,0] h_4^[(S-1)^1]=[0,0,2,0,0,1]

h_5^[(S-1)^1]=[0,2,2,0,0,0] h_6^[(S-1)^1]=[2,0,0,2,0,0]

h_1^[(S-1)^2]=[2,0,0,2,0,0] h_2^[(S-1)^2]=[0,2,2,0,0,0]

h_3^[(S-1)^2]=[0,2,2,0,0,0] h_4^[(S-1)^2]=[2,0,0,2,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=2

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8] ell=97 rho=3

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Complete capitulation in K3, m(K2)=1, e(K2)=3

p=2 f=11149 PK=x^3+x^2-3716*x+39228 CK0=[2,2] ell=97 rho=3

CK1=[12,4]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,2]

norm in K1/K of the component 2 of CK1:[2,2]

CK2=[12,4]

h_1^[(S-1)^1]=[0,2] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=15823 PK=x^3+x^2-5274*x+141821 CK0=[4,4] ell=97 rho=3

CK1=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=19177 PK=x^3+x^2-6392*x-79549 CK0=[6,2] ell=97 rho=3

CK1=[24,8,2,2]

h_1^[(S-1)^1]=[6,4,0,1] h_2^[(S-1)^1]=[0,6,1,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,4,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,4,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,0]
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norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[336,112,4,4]

h_1^[(S-1)^1]=[2,4,1,2] h_2^[(S-1)^1]=[12,6,1,1]

h_3^[(S-1)^1]=[0,8,0,2] h_4^[(S-1)^1]=[8,0,2,2]

h_1^[(S-1)^2]=[4,8,2,2] h_2^[(S-1)^2]=[8,12,0,2]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[8,8,2,0]

norm in K2/K of the component 2 of CK2:[8,0,2,2]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=2

p=2 f=20419 PK=x^3+x^2-6806*x-3025 CK0=[42,2] ell=97 rho=3

CK1=[84,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

CK2=[84,4,4,4,2,2]

h_1^[(S-1)^1]=[0,0,2,0,1,0] h_2^[(S-1)^1]=[0,2,0,2,1,0]

h_3^[(S-1)^1]=[2,2,2,2,0,0] h_4^[(S-1)^1]=[0,2,2,2,1,1]

h_5^[(S-1)^1]=[2,0,0,2,0,0] h_6^[(S-1)^1]=[0,0,2,2,0,0]

h_1^[(S-1)^2]=[2,0,0,2,0,0] h_2^[(S-1)^2]=[2,0,0,2,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0] h_4^[(S-1)^2]=[2,0,2,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=2

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] ell=97 rho=3

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[4,4,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[4,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[6,4,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[4,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,4,0,0] h_2^[(S-1)^1]=[4,4,0,0]

h_3^[(S-1)^1]=[4,0,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K3, m(K2)=2, e(K2)=3

p=2 f=21931 PK=x^3+x^2-7310*x-3249 CK0=[12,12] ell=97 rho=3

CK1=[24,24]

h_1^[(S-1)^1]=[4,4] h_2^[(S-1)^1]=[4,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[6,4]

norm in K1/K of the component 2 of CK1:[4,2]

CK2=[24,24]

h_1^[(S-1)^1]=[0,4] h_2^[(S-1)^1]=[4,4]
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h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Complete capitulation in K3, m(K2)=2, e(K2)=3

p=2 f=24589 PK=x^3+x^2-8196*x-33696 CK0=[6,2] ell=97 rho=3

CK1=[6,2,2,2]

h_1^[(S-1)^1]=[1,0,0,1] h_2^[(S-1)^1]=[0,1,1,0]

h_3^[(S-1)^1]=[0,1,1,0] h_4^[(S-1)^1]=[1,0,0,1]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[1,0,0,1]

norm in K1/K of the component 2 of CK1:[0,1,1,0]

norm in K1/K of the component 3 of CK1:[0,1,1,0]

norm in K1/K of the component 4 of CK1:[1,0,0,1]

CK2=[6,2,2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0,0]

h_3^[(S-1)^1]=[1,1,0,1,0,0] h_4^[(S-1)^1]=[1,1,0,0,0,0]

h_5^[(S-1)^1]=[0,1,0,1,1,1] h_6^[(S-1)^1]=[1,1,0,1,1,1]

h_1^[(S-1)^2]=[0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0]

h_3^[(S-1)^2]=[1,1,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,1,0,0,0,0] h_6^[(S-1)^2]=[0,1,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=1

p=2 f=25171 PK=x^3+x^2-8390*x+273152 CK0=[14,2] ell=97 rho=3

CK1=[84,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[84,4,4,4]

h_1^[(S-1)^1]=[0,0,2,0] h_2^[(S-1)^1]=[0,0,2,0]

h_3^[(S-1)^1]=[0,0,2,0] h_4^[(S-1)^1]=[2,0,2,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

4.2. Cyclic cubic fields K, L ⊂ K(µ17·97). We use the same program with
suitable defining polynomials, of degrees 2 and 4, respectively, so that L0/Q
be cyclic with total ramification of 17 and 97. Since two primes ℓ1 = 17 and
ℓ2 = 97 ramify in Kn/K, the factor norm is in general non trivial, which
gives larger 2-class groups but, a priori, this does not modify the notion of
complexity in the tower:

{p=2;Nn=2;bf=7;Bf=10^6;vHK=4;mKn=2;L4=List;

L4=[x^2-x-412,x^4-x^3-618*x^2+1752*x+8960];

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);
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K=bnfinit(PK,1);HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

rho=matsize(idealfactor(K,17))[1]+matsize(idealfactor(K,97))[1];

for(n=1,Nn,Qn=L4[n];Pn=polcompositum(PK,Qn)[1];Kn=bnfinit(Pn,1);

HKn=Kn.no;dn=poldegree(Pn);if(n==1 & valuation(HKn,p)==vHK,break);

if(n==1,print();print("f=",f," PK=",PK," CK0=",CK0[2],

" ell=",ell," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))))}

p=2 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4]

CK1=[8,8,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

CK2=[16,16,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

No capitulation, m(K2)=1, e(K2)=3

p=2 f=2817 PK=x^3-939*x+6886 CK0=[12,4]

CK1=[444,4,2,2,2]

h_1^[(S-1)^1]=[2,0,1,0,1] h_2^[(S-1)^1]=[0,2,1,1,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,1,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0]

CK2=[888,8,4,2,2]

h_1^[(S-1)^1]=[2,4,2,1,0] h_2^[(S-1)^1]=[0,2,2,0,1]

h_3^[(S-1)^1]=[0,4,0,0,0] h_4^[(S-1)^1]=[4,4,0,0,0]

h_5^[(S-1)^1]=[4,0,0,0,0]

h_1^[(S-1)^2]=[0,4,0,0,0] h_2^[(S-1)^2]=[4,4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Complete capitulation, m(K2)>2, e(K2)=3

p=2 f=4297 PK=x^3+x^2-1432*x+20371 CK0=[4,4]

CK1=[4,4,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

CK2=[4,4,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]
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norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation, m(K2)=1, e(K2)=2

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2]

CK1=[4,4,2,2,2]

h_1^[(S-1)^1]=[2,2,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[2,2,0,0,0] h_4^[(S-1)^1]=[2,0,0,0,0]

h_5^[(S-1)^1]=[2,2,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0,0]

norm in K1/K of the component 3 of CK1:[2,2,0,0,0]

norm in K1/K of the component 4 of CK1:[2,0,0,0,0]

norm in K1/K of the component 5 of CK1:[2,2,0,0,0]

CK2=[4,4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0,0] h_2^[(S-1)^1]=[2,0,0,0,0]

h_3^[(S-1)^1]=[2,0,2,0,0] h_4^[(S-1)^1]=[0,0,2,0,0]

h_5^[(S-1)^1]=[2,0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8]

CK1=[8,8,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

CK2=[8,8,4]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=3

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2]

CK1=[8,8,2,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0]

CK2=[16,16,4,2,2]

h_1^[(S-1)^1]=[0,0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Incomplete capitulation, m(K2)=1, e(K2)=4

p=2 f=21931 PK=x^3+x^2-7310*x-3249 CK0=[12,12]

CK1=[12,12,2,2,2,2,2]
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h_1^[(S-1)^1]=[2,0,0,1,0,0,0] h_2^[(S-1)^1]=[0,2,0,0,1,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0,0,0] h_6^[(S-1)^1]=[0,0,0,0,0,0,0]

h_7^[(S-1)^1]=[0,0,0,0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,1,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0,1,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 5 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 6 of CK1:[0,0,0,0,0,0,0]

norm in K1/K of the component 7 of CK1:[0,0,0,0,0,0,0]

CK2=[24,24,4,4,4,2,2]

h_1^[(S-1)^1]=[6,0,3,0,3,1,1] h_2^[(S-1)^1]=[2,0,2,3,1,1,0]

h_3^[(S-1)^1]=[4,0,0,2,2,0,0] h_4^[(S-1)^1]=[0,0,0,0,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0,0,0] h_6^[(S-1)^1]=[4,0,2,0,2,0,0]

h_7^[(S-1)^1]=[4,0,0,2,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0,0,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0,0,0] h_6^[(S-1)^2]=[0,0,0,0,0,0,0]

h_7^[(S-1)^2]=[0,0,0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,2,0,2,0,0]

norm in K2/K of the component 2 of CK2:[4,4,0,2,2,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0,0]

norm in K2/K of the component 7 of CK2:[0,0,0,0,0,0,0]

Incomplete capitulation, m(K2)=2, e(K2)=3

4.3. Cyclic cubic fields K, L = K(
√

2 +
√
2). In that case, L is a subfield of

the cyclotomic Z2-extension of K. The program is unchanged, except that the
cyclotomic polynomials Qn = polsubcyclo(ell, pn) are replaced by Q1 = x2 − 2

and Q2 = x4 − 4 ∗ x2 + 2; we find often cases of capitulation from stability,
noting that “N” is unlimited:

{p=2;Nn=2;bf=7;Bf=10^6;vHK=4;mKn=2;

for(f=bf,Bf,h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;

if(core(F)!=F,next);F=factor(F);Div=component(F,1);d=matsize(F)[1];

for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

K=bnfinit(PK,1);rho=matsize(idealfactor(K,p))[1];HK=K.no;

if(valuation(HK,p)<vHK,next);CK0=K.clgp;for(n=1,Nn,Qn=x;

for(i=1,n,Qn=Qn^2-2);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

if(n==1,print();print("f=",f," PK=",PK," CK0=",CK0[2]," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))))}

p=2 f=1777 PK=x^3+x^2-592*x+724 CK0=[4,4] rho=3

CK1=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]
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norm in K1/K of the component 2 of CK1:[0,2]

CK2=[4,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K3, m(K2)=1, e(K2)=2

p=2 f=7687 PK=x^3+x^2-2562*x-48969 CK0=[2,2,2,2] rho=1

CK1=[12,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[24,8,2,2]

h_1^[(S-1)^1]=[0,6,0,0] h_2^[(S-1)^1]=[6,2,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_1^[(S-1)^2]=[4,4,0,0] h_2^[(S-1)^2]=[4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=3

p=2 f=10513 PK=x^3+x^2-3504*x-80989 CK0=[8,8] rho=1

CK1=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0])

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[8,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

Complete capitulation in K4, m(K2)=1, e(K2)=3

p=2 f=16363 PK=x^3+x^2-5454*x-16969 CK0=[2,2,2,2] rho=1

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,2,0,0] h_2^[(S-1)^1]=[2,0,0,0]

h_3^[(S-1)^1]=[2,0,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,2,0,0]

norm in K1/K of the component 2 of CK1:[2,2,0,0]

norm in K1/K of the component 3 of CK1:[2,0,0,0]

norm in K1/K of the component 4 of CK1:[0,2,0,0]

CK2=[4,4,2,2]

h_1^[(S-1)^1]=[0,2,0,0] h_2^[(S-1)^1]=[2,2,0,0]

h_3^[(S-1)^1]=[2,2,0,0] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation, m(K2)=2, e(K2)=2

p=2 f=16627 PK=x^3+x^2-5542*x-159496 CK0=[12,4] rho=3

CK1=[24,24]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[24,24]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]
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Complete capitulation in K3, m(K2)=1, e(K2)=3

p=2 f=20599 PK=x^3+x^2-6866*x+216671 CK0=[28,4] rho=1

CK1=[28,4,2,2]

h_1^[(S-1)^1]=[0,0,0,1] h_2^[(S-1)^1]=[0,2,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[56,8,2,2]

h_1^[(S-1)^1]=[0,6,0,1] h_2^[(S-1)^1]=[2,6,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,4,0,0] h_2^[(S-1)^2]=[4,0,0,0]

norm in K2/K of the component 1 of CK2:[4,4,0,0]

norm in K2/K of the component 2 of CK2:[4,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=3

p=2 f=20887 PK=x^3+x^2-6962*x-225889 CK0=[4,4,2,2] rho=1

CK1=[8,8,2,2]

h_1^[(S-1)^1]=[0,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,0]

norm in K1/K of the component 2 of CK1:[0,2,0,0]

norm in K1/K of the component 3 of CK1:[0,4,0,0]

norm in K1/K of the component 4 of CK1:[4,0,0,0]

CK2=[8,8,2,2]

h_1^[(S-1)^1]=[0,4,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[0,4,0,0] h_4^[(S-1)^1]=[4,4,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,0,0,0]

norm in K2/K of the component 2 of CK2:[0,4,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K3, m(K2)=2, e(K2)=3

p=2 f=31513 PK=x^3+x^2-10504*x-417839 CK0=[28,4] rho=1

CK1=[84,4,2,2]

h_1^[(S-1)^1]=[0,0,0,1] h_2^[(S-1)^1]=[0,2,1,1]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[2,0,0,1]

norm in K1/K of the component 2 of CK1:[0,0,1,1]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[168,8,2,2,2,2]

h_1^[(S-1)^1]=[2,0,1,0,1,1] h_2^[(S-1)^1]=[0,6,0,0,0,1]

h_3^[(S-1)^1]=[0,0,1,0,0,1] h_4^[(S-1)^1]=[4,0,0,1,1,0]

h_5^[(S-1)^1]=[4,4,0,1,1,0] h_6^[(S-1)^1]=[4,4,1,0,0,1]

h_1^[(S-1)^2]=[4,0,0,1,1,0] h_2^[(S-1)^2]=[4,0,1,0,0,1]

h_3^[(S-1)^2]=[4,4,0,0,0,0] h_4^[(S-1)^2]=[0,4,0,0,0,0]

h_5^[(S-1)^2]=[0,4,0,0,0,0] h_6^[(S-1)^2]=[4,4,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,4,0,0,0,0]

norm in K2/K of the component 2 of CK2:[4,4,0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0,0]

norm in K2/K of the component 6 of CK2:[0,0,0,0,0,0]

Incomplete capitulation, m(K2)>2, e(K2)=3
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For some ambiguous cases, one must determine CK3, which takes several
hours (or more); for instance, we got the following result, suggesting that
everything regularizes if n is large enough, as Greenberg’s conjecture predicts:

p=2 f=2689 PK=x^3+x^2-896*x+5876 CK0=[2,2] rho=3

CK1=[28,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,2]

CK2=[56,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,4]

CK3=[56,8]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Complete capitulation, m(K3)=1, e(K2)=3

5. Examples for pure cubic K and p = 2

5.1. Pure cubic fields K, L ⊂ K(µ17). We consider the set of pure cubic

fields K = Q( 3
√
R); although these fields are not totally real, it is known

that capitulation may exist in compositum L = KL0, with suitable abelian
p-extensions L0/Q (conjectured in [Gras1997], proved in [Bosc2009]); so we
limit ourselves to the usual L ⊂ K(µℓ), ℓ ≡ 1 (mod pN). The extension L/Q
is not Galois, but, by chance, the instruction G = nfgaloisconj(Kn) of PARI
computes the group of automorphisms, whence Gal(L/K) in our case; this
simplifies the search of S of order pn. Taking p = 2, Nn = 3 and restricting to
fields K such that #HK ≥ p2, ℓ = 17, we obtain many capitulations:

MAIN PROGRAM FOR PURE CUBIC FIELDS:

{p=2;Nn=3;vHK=2;ell=17;mKn=2;for(R=2,10^4,PK=x^3-R;

if(polisirreducible(PK)==0,next);K=bnfinit(PK,1);

rho=matsize(idealfactor(K,ell))[1];

\\Test over the order of the p-class group of K:

HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print();print("PK=",PK," CK0=",CK0[2]," ell=",ell," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,p^n,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))}

p=2 PK=x^3-43 CK0=[12] ell=17 rho=2

CK1=[12,6]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,1]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation in K1, m(K1)=2, e(K1)=2
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CK2=[12,12]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,2]

norm in K2/K of the component 2 of CK2:[0,0]

Incomplete capitulation in K2, m(K2)=2, e(K2)=2

CK3=[12,12]

h_1^[(S-1)^1]=[0,3] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]

Stability from K2, complete capitulation in K3, m(K3)=2, e(K3)=2

p=2 PK=x^3-113 CK0=[2,2] ell=17 rho=2

CK1=[6,2,2]

h_1^[(S-1)^1]=[0,1,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,1,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation in K1, m(K1)=2, e(K1)=1

CK2=[6,2,2,2,2]

h_1^[(S-1)^1]=[0,0,0,1,0] h_2^[(S-1)^1]=[0,1,1,1,0]

h_3^[(S-1)^1]=[0,1,1,1,0] h_4^[(S-1)^1]=[1,1,0,0,0]

h_5^[(S-1)^1]=[0,0,0,0,0]

h_1^[(S-1)^2]=[1,1,0,0,0] h_2^[(S-1)^2]=[1,1,0,0,0]

h_3^[(S-1)^2]=[1,1,0,0,0] h_4^[(S-1)^2]=[0,1,1,0,0]

h_5^[(S-1)^2]=[0,0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,1,1,0,0]

norm in K2/K of the component 2 of CK2:[0,1,1,0,0]

norm in K2/K of the component 3 of CK2:[0,1,1,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0,0]

norm in K2/K of the component 5 of CK2:[0,0,0,0,0]

Incomplete capitulation in K2, m(K2)>2, e(K2)=1

CK3=[12,2,2,2,2]

h_1^[(S-1)^1]=[2,1,0,0,1] h_2^[(S-1)^1]=[0,0,1,1,0]

h_3^[(S-1)^1]=[0,1,0,0,0] h_4^[(S-1)^1]=[2,0,1,1,1]

h_5^[(S-1)^1]=[0,1,0,0,1]

h_1^[(S-1)^2]=[0,1,1,1,1] h_2^[(S-1)^2]=[2,1,1,1,1]

h_3^[(S-1)^2]=[0,0,1,1,0] h_4^[(S-1)^2]=[2,0,1,1,0]

h_5^[(S-1)^2]=[0,1,1,1,1]

norm in K3/K of the component 1 of CK3:[0,0,0,0,0]

norm in K3/K of the component 2 of CK3:[0,0,0,0,0]

norm in K3/K of the component 3 of CK3:[0,0,0,0,0]

norm in K3/K of the component 4 of CK3:[0,0,0,0,0]

norm in K3/K of the component 5 of CK3:[0,0,0,0,0]

Complete capitulation in K3, no stability, m(K3)>2, e(K3)=2

p=2 PK=x^3-122 CK0=[12] ell=17 rho=2

CK1=[12,4]

h_1^[(S-1)^1]=[0,1] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,2] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[2,1]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation in K1, m(K1)>2, e(K1)=2

CK2=[12,4]

h_1^[(S-1)^1]=[0,3] h_2^[(S-1)^1]=[0,2]

h_1^[(S-1)^2]=[0,2] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,2]

norm in K2/K of the component 2 of CK2:[0,0]

Stability from K1, incomplete capitulation in K2, m(K2)>2, e(K2)=2

CK3=[12,4]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[2,0]

norm in K3/K of the component 1 of CK3:[0,0]

norm in K3/K of the component 2 of CK3:[0,0]
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Stability from K1, complete capitulation in K3, m(K3)>2, e(K3)=2

p=2 PK=x^3-141 CK0=[4,2] ell=17 rho=2

CK1=[8,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K1/K of the component 1 of CK1:[2,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation in K1, m(K1)=1, e(K1)=3

CK2=[16,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K2/K of the component 1 of CK2:[4,0]

norm in K2/K of the component 2 of CK2:[0,0]

Incomplete capitulation in K2, m(K2)=1, e(K2)=4

CK3=[288,18]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

norm in K3/K of the component 1 of CK3:[8,0]

norm in K3/K of the component 2 of CK3:[0,0]

Incomplete capitulation in K3, m(K3)=1, e(K3)=5

p=2 PK=x^3-174 CK0=[6,2] ell=17 rho=2

CK1=[12,6,2]

h_1^[(S-1)^1]=[2,1,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,1,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation in K1, m(K1)=2, e(K1)=2

CK2=[2040,12,2,2]

h_1^[(S-1)^1]=[4,0,1,1] h_2^[(S-1)^1]=[0,0,0,1]

h_3^[(S-1)^1]=[0,2,0,1] h_4^[(S-1)^1]=[0,2,0,0]

h_1^[(S-1)^2]=[0,0,0,1] h_2^[(S-1)^2]=[0,2,0,0]

h_3^[(S-1)^2]=[0,2,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[4,2,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Incomplete capitulation in K2, m(K2)>2, e(K2)=3

CK3=[4080,12,2,2]

Unfortunately, the computations for n = 3 in this last example take too
much time; probably, the capitulation is still incomplete. We shall examine
separately this field:

5.2. Pure cubic field K = Q( 3
√
174), ℓ ≡ 1(mod 16). Varying ℓ, we find

many capitulations in the layer K2:

p=2 PK=x^3-174 CK0=[6,2] ell=193 rho=1

CK1=[12,6]

h_1^[(S-1)^1]=[2,0] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[2,0]

Incomplete capitulation in K1, m(K1)=2, e(K1)=2

CK2=[12,6]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[2,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

p=2 PK=x^3-174 CK0=[6,2] ell=353 rho=2

CK1=[48,6]

h_1^[(S-1)^1]=[6,0] h_2^[(S-1)^1]=[8,0]

h_1^[(S-1)^2]=[4,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[8,0]

norm in K1/K of the component 2 of CK1:[8,0]

Incomplete capitulation in K1, m(K1)>2, e(K1)=4

CK2=[48,6,3,3]
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h_1^[(S-1)^1]=[6,0,0,0] h_2^[(S-1)^1]=[8,0,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K2, m(K2)>2, e(K2)=4

p=2 PK=x^3-174 CK0=[6,2] ell=401 rho=2

CK1=[60,6,3]

h_1^[(S-1)^1]=[2,0,0] h_2^[(S-1)^1]=[2,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0]

norm in K1/K of the component 2 of CK1:[2,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation in K1, m(K1)=2, e(K1)=1

CK2=[60,6,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[2,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=1

p=2 PK=x^3-174 CK0=[6,2] ell=577 rho=1

CK1=[84,6,2]

h_1^[(S-1)^1]=[0,1,1] h_2^[(S-1)^1]=[2,1,1] h_3^[(S-1)^1]=[2,1,1]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[2,1,1]

norm in K1/K of the component 2 of CK1:[2,1,1]

norm in K1/K of the component 3 of CK1:[2,1,1]

Incomplete capitulation in K1, m(K1)=2, e(K1)=2

CK2=[168,6,6,3]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[4,0,0,0]

h_3^[(S-1)^1]=[4,1,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[4,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[4,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

h_1^[(S-1)^3]=[0,0,0,0] h_2^[(S-1)^3]=[0,0,0,0]

h_3^[(S-1)^3]=[0,0,0,0] h_4^[(S-1)^3]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Complete capitulation in K2, m(K2)=3, e(K2)=3

The last case ℓ = 577 clearly shows that complexity of the Galois structure
of the HKn ’s does not increase too much and that stability or conditions of
Theorem 1.1 (i) are not necessary for capitulation. We obtain the following

information on the structure of the HKn ’s for K = Q( 3
√
174) and ℓ = 577:

In K1, one find m(K1) = 2, e(K1) = 2 and H
G1
K1

≃ Z/2Z× Z/2Z. For K2,

m(K2) = 3, e(K2) = 3; thus νK2/K reduces to 4(σ − 1)2 + 6(σ − 1) + 4. The
conditions of Theorem 1.1 (i) are not fulfilled. The above data shows that this
reduces to the annihilation by A = 6(σ − 1) + 4; but hA1 = h121 h

4
1 = 1, hAi = 1

for the other generators.

6. Examples for real quadratic K and p = 3

We consider various (totally ramified) cyclic p-extensions L/K, where L =
KL0, L0/Q cyclic of p-power degree. As for the case of cubic base fields, we
favor the case L ⊂ K(µℓ), ℓ ≡ 1 (mod pN).

6.1. Quadratic fields K, L ⊂ K(µ109) and L ⊂ K(µ163). Thus, L0 is the
real subfield of maximal 3-power degree of Q(µℓ). We eliminate the cases of
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stability in K1/K (test valuation(HKn, p) == vHK, vHK = valuation(HK, p)).
The images JKn/K(HK) are computed for n = 1 and n = 2. The number
ρ ∈ {1, 2} is the number of prime ideals above ℓ in K:

MAIN PROGRAM FOR REAL QUADRATIC FIELDS

{p=3;Nn=2;bm=2;Bm=10^8;vHK=1;ell=109;mKn=2;

for(m=bm,Bm,if(core(m)!=m,next);PK=x^2-m;K=bnfinit(PK,1);

\\Test over the order of the p-class group of K:

HK=K.no;if(valuation(HK,p)<vHK,next);

CK0=K.clgp;rho=(kronecker(m,ell)+3)/2;

for(n=1,Nn,Qn=polsubcyclo(ell,p^n);Pn=polcompositum(PK,Qn)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

\\Test for elimination of the stability from K:

if(n==1 & valuation(HKn,p)==valuation(HK,p),break);

if(n==1,print();print("PK=",PK," CK0=",CK0[2]," ell=",ell," rho=",rho));

CKn=Kn.clgp;print("CK",n,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p^n,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p^n,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",n,"/K of the component ",i,

" of CK",n,":",Enu))))}

6.1.1. Case ℓ = 109.

p=3 PK=x^2-142 CK0=[3] ell=109 rho=1

CK1=[18,2]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation in K1, m(K1)=2, e(K1)=2

CK2=[54,2]

h_1^[(S-1)^1]=[24,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[9,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[9,0]

norm in K2/K of the component 2 of CK2:[0,0]

No capitulation in K2, m(K2)>2, e(K1)=3

p=3 PK=x^2-223 CK0=[3] ell=109 rho=2

CK1=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation in K1, m(K2)=2, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[3] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation in K2, m(K2)=2, e(K1)=2

p=3 PK=x^2-229 CK0=[3] ell=109 rho=1

CK1=[9]

h_1^[(S-1)^1]=[3] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation in K1, m(K1)=2, e(K1)=2

CK2=[9]

h_1^[(S-1)^1]=[6] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

p=3 PK=x^2-254 CK0=[3] ell=109 rho=2

CK1=[3,3]

h_1^[(S-1)^1]=[2,2] h_2^[(S-1)^1]=[1,1]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]
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norm in K1/K of the component 1 of CK1:[0,0]

norm in K1/K of the component 2 of CK1:[0,0]

Complete capitulation in K1, m(K1)=2, e(K1)=1

CK2=[3,3]

h_1^[(S-1)^1]=[1,1] h_2^[(S-1)^1]=[2,2]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=1

p=3 PK=x^2-427 CK0=[6] ell=109 rho=2

CK1=[18]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K1/K of the component 1 of CK1:[3]

No capitulation in K1, m(K1)=1, e(K1)=2

CK2=[18]

h_1^[(S-1)^1]=[0] h_1^[(S-1)^2]=[0]

norm in K2/K of the component 1 of CK2:[0]

Complete capitulation in K2, m(K2)=1, e(K2)=2

p=3 PK=x^2-574 CK0=[6] ell=109 rho=2

CK1=[18,2,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation in K1, m(K1)=1, e(K1)=2

CK2=[54,2,2]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K2/K of the component 1 of CK2:[9,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

No capitulation in K2, m(K2)=1, e(K1)=3

6.1.2. Case ℓ = 163.

p=3 PK=x^2-79 CK0=[3] ell=163 rho=1

CK1=[18,2]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation in K1, m(K1)=2, e(K1)=2

CK2=[18,2]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

p=3 PK=x^2-223 CK0=[3] ell=163 rho=2

CK1=[18,2]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation in K1, m(K1)=2, e(K1)=2

CK2=[18,2]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

PK=x^2-254 CK0=[3] ell=163 rho=2

CK1=[18,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]
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h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation in K1, m(K1)=1, e(K1)=2

CK2=[18,2]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=1, e(K2)=2

6.1.3. Examples with rank3(HK) = 2. Due to a very large calculation time
for the degrees [K2 : Q] = 18, we have only some results showing that, as for
the case of cubic fields and p = 2 (degrees [K2 : Q] = 12) capitulation does
occur at the layer n = 2:

PK=x^2-23659 CK0=[6,3] ell=19 rho=2

CK1=[18,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation in K1, m(K1)=2 ,e(K1)=2

CK2=[18,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

PK=x^2-23659 CK0=[6,3] ell=37 rho=2

CK1=[18,3,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[6,0,1] h_3^[(S-1)^1]=[6,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[6,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[6,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

CK2=[18,3,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[3,1,1] h_3^[(S-1)^1]=[0,2,2]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[3,0,0] h_3^[(S-1)^2]=[6,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0]

Complete capitulation in K2, m(K2)=3, e(K2)=2

PK=x^2-32009 CK0=[3,3] ell=19 rho=1

CK1=[9,3]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

CK2=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

PK=x^2-32009 CK0=[3,3] ell=37 rho=2

CK1=[9,3]

h_1^[(S-1)^1]=[3,0] h_2^[(S-1)^1]=[6,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

CK2=[9,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[3,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]
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norm in K2/K of the component 1 of CK2:[0,0]

norm in K2/K of the component 2 of CK2:[0,0]

Complete capitulation in K2, m(K2)=2, e(K2)=2

6.2. Quadratic fields K, L ⊂ K(µ109·163). As for the previous case of cubic
fields with p = 2, two primes ℓ1 = 109 and ℓ2 = 163 ramify in Kn/K, giving
larger 3-class groups. We limit ourselves to the layer K1 of degree 3. Most
often, we have #H

G1
K1

= #HK (m(K1) = 1); we give an excerpt of cases

where m(K1) ≥ 2, but we have only two examples of m(K1) ≥ 3 in the
interval selected (m = 116279 and m = 370878).

{p=3;bm=2;Bm=10^6;vHK=3;mKn=2;for(m=bm,Bm,if(core(m)!=m,next);

PK=x^2-m;K=bnfinit(PK,1);HK=K.no;if(valuation(HK,p)<vHK,next);CK0=K.clgp;

QK1=x^3-x^2-5922*x-17109;Pn=polcompositum(PK,QK1)[1];

Kn=bnfinit(Pn,1);HKn=Kn.no;dn=poldegree(Pn);

if(valuation(HKn,p)==valuation(HK,p),break);

print("p=3"," PK=",PK," CK0=",CK0[2]);

CKn=Kn.clgp;print("CK",1,"=",CKn[2]);rKn=matsize(CKn[2])[2];

G=nfgaloisconj(Kn);Id=x;for(k=1,dn,Z=G[k];ks=1;while(Z!=Id,

Z=nfgaloisapply(Kn,G[k],Z);ks=ks+1);if(ks==p,S=G[k];break));

for(i=1,rKn,X=CKn[3][i];Y=X;for(j=1,mKn,YS=nfgaloisapply(Kn,S,Y);

T=idealpow(Kn,Y,-1);Y=idealmul(Kn,YS,T);B=bnfisprincipal(Kn,Y)[1];

Ehij=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Ehij,c,ii));print("h_",i,"^[","(S-1)^",j,"]=",Ehij)));

for(i=1,rKn,A0=CKn[3][i];A=1;for(t=1,p,As=nfgaloisapply(Kn,S,A);

A=idealmul(Kn,A0,As));B=bnfisprincipal(Kn,A)[1];

Enu=List;for(ii=1,rKn,c=B[ii];w=valuation(CKn[2][ii],p);c=lift(Mod(c,p^w));

listput(Enu,c,ii));print("norm in K",1,"/K of the component ",i,

" of CK",1,":",Enu)))}

p=3 PK=x^2-8761 CK0=[27]

CK1=[27,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

Incomplete capitulation, m(K1)>1, e(K1)=3

p=3 PK=x^2-36073 CK0=[27]

CK1=[27,3,3]

h_1^[(S-1)^1]=[18,1,2] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=3

p=3 PK=x^2-65029 CK0=[27]

CK1=[81,3]

h_1^[(S-1)^1]=[0,0] h_2^[(S-1)^1]=[0,0]

h_1^[(S-1)^2]=[0,0] h_2^[(S-1)^2]=[0,0]

norm in K1/K of the component 1 of CK1:[3,0]

norm in K1/K of the component 2 of CK1:[0,0]

No capitulation, m(K1)=1, e(K1)=4

p=3 PK=x^2-116054 CK0=[27]

CK1=[81,3,3]

h_1^[(S-1)^1]=[54,0,2] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)=2, e(K1)=4

p=3 PK=x^2-116279 CK0=[27]

CK1=[81,3,3]

h_1^[(S-1)^1]=[27,0,1] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[27,0,0]

h_1^[(S-1)^2]=[27,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]
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norm in K1/K of the component 1 of CK1:[30,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

No capitulation, m(K1)>2, e(K1)=4

p=3 PK=x^2-156566 CK0=[9,3]

CK1=[27,3,3]

h_1^[(S-1)^1]=[18,0,0] h_2^[(S-1)^1]=[0,0,0] h_3^[(S-1)^1]=[18,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=*, e(K1)=3

p=3 PK=x^2-255973 CK0=[9,3]

CK1=[9,9,3]

h_1^[(S-1)^1]=[0,0,0] h_2^[(S-1)^1]=[0,6,0] h_3^[(S-1)^1]=[0,0,0]

h_1^[(S-1)^2]=[0,0,0] h_2^[(S-1)^2]=[0,0,0] h_3^[(S-1)^2]=[0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0]

norm in K1/K of the component 2 of CK1:[0,3,0]

norm in K1/K of the component 3 of CK1:[0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=2

p=3 PK=x^2-339887 CK0=[27]

CK1=[81,3,3,3]

h_1^[(S-1)^1]=[27,0,0,0] h_2^[(S-1)^1]=[0,0,0,0]

h_3^[(S-1)^1]=[27,1,0,2] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[3,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)=2, e(K1)=4

p=3 PK=x^2-370878 CK0=[54]

CK1=[1134,6,6,3]

h_1^[(S-1)^1]=[378,2,2,0] h_2^[(S-1)^1]=[0,0,2,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,4,0]

h_1^[(S-1)^2]=[0,0,2,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[168,0,2,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

Incomplete capitulation, m(K1)>2, e(K1)=4

7. Isotopic components and capitulation

Consider a real cyclic field K of prime-to-p degree d and L = L0K with
L0/Q real cyclic of degree pN , N ≥ 1. Then L/Q is cyclic of degree D = d ·pN
with Galois group Γ = g × G where g = Gal(K/Q) and G = Gal(L0/Q); L
is associated to an irreducible rational character χ, sum of irreducible p-adic
characters ϕ of Γ of “order” the order D of any ψ | ϕ of degree 1.

This non semi-simple context is problematic for the definition of isotopic p-
adic components of the form HL,ϕ; this is extensively developed in [Gras2021b].
So we just recall the definitions and explain how the phenomenon of capit-
ulation gives rise to difficulties about the classical algebraic definition of the
literature, compared to the arithmetic one that we have introduced to state
the Main Conjecture in the general case.

Indeed, classical works deal with an algebraic definition of the ϕ-components
of p-class groups, which presents an inconsistency regarding analytic formulas;
this definition is, for Γ cyclic of order D divisible by p and for all ϕ | χ:

H
alg
L,ϕ := HL ⊗Zp[Γ]

Zp[µD],



ALGEBRAIC NORM AND CAPITULATION 51

with the Zp[µD]-action τ ∈ Γ 7→ ψ(τ), with ψ | ϕ of order D (see [Solo1990,
Lemma II.2] or [Grei1992, Definition, p. 451]).

We then have proved, with this definition [Gras2021b, § 3.2.4, Theorem 3.7],
the following first reduction of the problem:

H
alg
L,ϕ = {x ∈ HL, νL/k(x) = 1, ∀ k & L} ⊗Zp[Γ]

Zp[µD],

giving rise to our corresponding arithmetic definitions:

H
ar
L,χ := {x ∈ HL, NL/k(x) = 1, ∀ k & L},

H
ar
L,ϕ := {x ∈ HL, NL/k(x) = 1, ∀ k & L} ⊗Zp[Γ]

Zp[µD].

We then have (since L/K is totally ramified):

(7.1) #H
ar
L =

∏
χ

#H
ar
Lχ
,

where χ runs trough the set of irreducible rational characters of L and Lχ is
the subfield of L fixed by Ker(χ).

This notion leads to an unexpected semi-simplicity, especially in accordance
with analytic formulas, which enforces the Main Conjecture in that case:

H
ar
L,χ =

⊕
ϕ|χ

H
ar
L,ϕ.

We have H ar
ϕ = H

alg
ϕ as soon as the JL/k’s are injective for all k & L,

but as we have seen, this does not hold in general when K ⊆ k & L since
there is often partial capitulation. One can even say that the classic admitted
definition is ineffective and fallacious in the real case.

Let’s give numerical examples showing the consequences of capitulation
for these non-arithmetic definitions; for all them, p-adic characters are also
rational:

Example 7.1. Consider K = Q(
√
4409), p = 3, ℓ = 19 and L = K2 ⊂ K(µℓ)

of degree 9 over K. The prime 2 splits in K, is inert in K2/K and such
that q | 2 in K generates HK (cyclic of order 9); considering the extension
Qi := (q)Ki of q in Ki, we test its order in HKi , i = 1, 2 (we are going to
see that HKi ≃ Z/9Z for all i (stability), which is supported by the fact that
NK2/K(Q2) = q9 is principal, but NK2/K(HK2) = HK); the general program
gives:

p=3 PK=x^2-4409 CK0=[9] ell=19 rho=2

CK1=[9]

h_1^[(S-1)^1]=[0]

norm in K1/K of the component 1 of CK1:[3]

CK2=[9]

h_1^[(S-1)^1]=[0]

norm in K2/K of the component 1 of CK2:[0]

The capitulation, incomplete in K1, is complete in K2 (stability from K).

We use obvious notations for the characters defining the fields Ki, i =
0, 1, 2. Since arithmetic norms are surjective (because of the stability, they

are isomorphisms and HKi = H
Gi
Ki

), the above computations prove that:




νK2/K1

(HK2) = (HK2)
1+σ3

2+σ6
2 = (HK2)

3 ≃ Z/3Z,

νK1/K(HK1) = (HK1)
1+σ1+σ2

1 = (HK1)
3 ≃ Z/3Z,
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whence: 



H
ar
χ2

= {x ∈ HK2 , NK2/K1
(x) = 1} = 1,

H
alg
χ2

= {x ∈ HK2 , νK2/K1
(x) = 1} = HK2 [3] ≃ Z/3Z.

H
ar
χ1

= {x ∈ HK1 , NK1/K(x) = 1} = 1,

H
alg
χ1

= {x ∈ HK1 , νK1/K(x) = 1} = HK1 [3] ≃ Z/3Z.

Formula (7.1) gives the product of orders of the χ-components:

#HK2 = #H
ar
χ0

· #H
ar
χ1

· #H
ar
χ2

& #HK1 = #H
ar
χ0

· #H
ar
χ1
,

of the form #HK2 = 9× 1× 1 and #HK1 = 9× 1 since #H ar
χ0

= #HK = 9.

These formulas are not fulfilled in the algebraic sense, because:

#H
alg
χ0

· #H
alg
χ1

· #H
alg
χ2

= 9× 3× 3 = 34 & #H
alg
χ0

· #H
alg
χ1

= 9× 3 = 33.

Our Main Conjecture requires that #H ar
χi

= (EKi : E 0
Ki

· FKi), where E 0
Ki

is the subgroup of EKi generated by the units of the strict subfields of Ki and
FKi the group of classical Leopoldt’s cyclotomic units; these equalities are
fulfilled in that numerical example (see [Gras2021b, Examples 3.12, 3.13]).

Example 7.2. This example is analogous for a cyclic cubic field and p = 2,
except that capitulation takes place from K:

p=2 f=1951 PK=x^3+x^2-650*x-289 CK0=[2,2] ell=17 rho=3

CK1=[4,4,2,2]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[0,0,0,0] h_4^[(S-1)^1]=[0,0,0,0]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K1/K of the component 1 of CK1:[0,0,0,0]

norm in K1/K of the component 2 of CK1:[0,0,0,0]

norm in K1/K of the component 3 of CK1:[0,0,0,0]

norm in K1/K of the component 4 of CK1:[0,0,0,0]

CK2=[4,4,4,4]

h_1^[(S-1)^1]=[2,0,0,0] h_2^[(S-1)^1]=[0,2,0,0]

h_3^[(S-1)^1]=[2,0,2,0] h_4^[(S-1)^1]=[0,2,0,2]

h_1^[(S-1)^2]=[0,0,0,0] h_2^[(S-1)^2]=[0,0,0,0]

h_3^[(S-1)^2]=[0,0,0,0] h_4^[(S-1)^2]=[0,0,0,0]

norm in K2/K of the component 1 of CK2:[0,0,0,0]

norm in K2/K of the component 2 of CK2:[0,0,0,0]

norm in K2/K of the component 3 of CK2:[0,0,0,0]

norm in K2/K of the component 4 of CK2:[0,0,0,0]

Numerical data give:
{
νK2/K1

(HK2) = H
2
K2

≃ (Z/2Z)4,

νK2/K(HK2) = νK1/K(HK1) = 1.

Whence:



H
ar
χ2

= {x ∈ HK2 , NK2/K1
(x) = 1} ≃ (Z/2Z)2,

H
alg
χ2

= {x ∈ HK2 , νK2/K1
(x) = 1} = HK2 [2] ≃ (Z/2Z)4.

H
ar
χ1

= {x ∈ HK1 , NK1/K(x) = 1} ≃ (Z/2Z)4,

H
alg
χ1

= {x ∈ HK1 , νK1/K(x) = 1} = HK1 ≃ (Z/4Z)2×(Z/2Z)2.

Which gives:

#HK2 = #H
ar
χ0

· #H
ar
χ1

· #H
ar
χ2

= 28 & #HK1 = #H
ar
χ0

· #H
ar
χ1

= 26,

contrary to #H
alg
χ0

·#H
alg
χ1

·#H
alg
χ2

= 26 & #H
alg
χ0

·#H
alg
χ1

= 22, of the form

22 · 26 · 24 = 212 and 22 · 26 = 28, respectively; which relativizes the interest of
algebraic definitions.
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8. Conclusions and remarks

a)We have conjectured in Conjecture 1.2 (i) that, varying ℓ ≡ 1 (mod 2pN),
N large enough, there are infinitely many cases with stability from a suit-
able layer in K(µℓ), yielding capitulation (Theorem 1.1 (ii)), which reinforces
the simple capitulation phenomenon; this would be coherent with Green-
berg’s conjecture, equivalent to the stability of the HKn in the cyclotomic
Zp-extension, for n ≫ 0. In other words, the conjecture may be seen as the
“tame version”, it being understood that our towers are finite, so that capitu-
lation needs large N ’s allowing a kind of “finite Iwasawa’s theory”. The more
general criterion of Theorem 1.1 (i), using the algebraic norm, shows the link
between capitulation and complexity of the filtration of the HKn ’s, likely to
be governed by natural density results (Conjecture 2.4).

b) Due to the computations given in various frameworks in this paper, it is
difficult to imagine that, for all ℓ ≡ 1 (mod 2pN), N large enough, HK does
not capitulate in K(µℓ), all the more that we were limited to testing with few
values of ℓ (among infinitely many !) and only for the layers n ≤ 3. It is
reasonable to think that, restricting to primes ℓ with N ≫ 0, N − s is larger
than e(KN ) taking into account that s is logarithmic regarding m(KN ) which
essentially depends on the magnitude of HK (exponent and p-rank).

Similarly, we were limited to small p’s because of the degrees [Kn : Q] =
[K : Q] pn for PARI calculations; but the nature of the theoretical results does
not seem to depend on it; this is strengthened by the algorithmic aspect of
formulas 2.3.

c) The remarkable circumstance of capitulations in these simplest ramified
cyclic p-extensions and certainly in most arbitrary cyclic p-extensions L/K,
is certainly a basic principle for many arithmetic properties, as the following
ones:

(i) The abelian Main Conjecture for real abelian fields, whose proof be-
comes trivial, in the semi-simple case, as soon as ℓ is taken inert in K/Q and
if HK capitulates in some Kn.

(ii) Capitulations prevent to get standard algebraic definitions of p-adic
isotopic components of arithmetic invariants in the non semi-simple case.

(iii) When capitulation is, on the contrary, structurally impossible (e.g.,
case of torsion groups of p-ramification theory), the complexity of the corre-
sponding invariants increases in the towers.
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locaux, Thèse no. 155, Jour. of the Faculty of Sciences Tokyo 2 (1933), 365–476.
http://archive.numdam.org/item/THESE 1934 155 365 0/ 3

[Fuku1994] T. Fukuda, Remarks on Zp-extensions of number fields, Proc. Japan Acad. Ser.
A 70(8) (1994), 264–266. https://doi.org/10.3792/pjaa.70.264 2, 23

[GrJa1985] M. Grandet, J-F. Jaulent, Sur la capitulation dans une Zℓ-extension, J. reine
angew. Math. 362 (1985), 213–217.
http://eudml.org/doc/152777 3, 19, 20

[GJN2016] G. Gras, J-F. Jaulent, T. Nguyen Quang Do, Sur le module de Bertrandias–
Payan dans une p-extension – Noyau de capitulation, pp. 25–44. Sur la capit-
ulation pour le module de Bertrandias–Payan, pp. 45–58. Descente galoisienne
et capitulation entre modules de Bertrandias–Payan, pp. 59–79. Publications
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Number Theory 62(2) (1997), 403–421.
https://doi.org/10.1006/jnth.1997.2068 3, 4, 42

[Gras2005] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed. Springer
Monographs in Mathematics, Springer, xiii+507 pages (2005). 5, 16, 18

[Gras2017a ] G. Gras, Invariant generalized ideal classes – Structure theorems for p-class
groups in p-extensions, Proc. Indian Acad. Sci. (Math. Sci.) 127(1) (2017),
1–34. https://doi.org/10.1007/s12044-016-0324-1 3, 5, 7

[Gras2017b ] G. Gras, Approche p-adique de la conjecture de Greenberg pour les corps
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