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Viscous parallel flows in finite aspect ratio Hele-Shaw cell:
Analytical and numerical results
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Laboratoire F.A.S.T. (Paris 6 et 11, et CNRSJtB&02, Campus Universitaire,
F-91405 Orsay Cedex, France

(Received 19 September 1996; accepted for publication 4 February 1997

The parallel flow of one or two fluids of contrasted viscosities through a rectangular channel of
large aspect ratio is studied. The usual result for an infinite aspect ratio is that the velocity profile
is parabolic throughout the gap and flat in the other direction. For a finite aspect ratio a deviation
from this usual profile is found in boundary layers along the edges of the channel or close to the
interface. The extension of these boundary layers is of the order of the small dimension of the
channel. In the two-fluid case we find, however, that the velocity profile at the interface is strictly
a parabola. The velocity profiles obtained by a 3-D lattice BGK simulation are successfully
compared to the analytical results in the one- and two-fluid casesl9%y American Institute of
Physics[S1070-663197)01106-9

Since the pioneering work of Hele-Shhand the deter- 2 2 @
Ge 2y N 32
mination of Darcy’s law? viscous flows between parallel U(y,Z)=a 1-1& +21 (-1 (2n=1)°7°
walls have been intensively studied in the last 20 ydaks. "
two-dimensional flow in a Hele-Shaw cell is known to be coshi2n—1)m(z/e) y
analogous to the flow in a three-dimensional porous medium. X cos(2n—1) w12 hie)° (2n=Dalr. (D

When two fluids of contrasted viscosities flow in the cell, the ] ) o
interface can be unstable, leading to the so-called SaffmanNOte that the length scale over which the velocity varies in
each direction is the thickness the heighth being only

Taylor instability, when the less viscous fluid forces the. :
. involved through the aspect ratige. The successive terms
more viscous one to recede. In the case of a parallel flow,

) '6f the sum decrease rapidly, roughly as®1/Figure 2 shows
has been shown that made up solitons can propagate alojgs \e|acity as a function of at different distances from the

the interfacé. We have found experimentally that for large end walls. The profile iry looks parabolic with a maximum
enough flow rates, regular waves propagate along th@elocity equal to the one in a cell of infinite aspect ratio,
interface? In this Brief Communication, we address the caseprovided that the distance from the end walls is larger than
of Laminar parallel flow taking into account the finite aspectthe thickness of the cell. The profile departs weakly from
ratio of the cell and a horizontal interface between the twoquadratic only close to the end walls, the maximum of the
fluids. profile going to zero as the distance from the end walls goes
Let us first consider one fluid of dynamic viscosity to zero. The numerical simulations, based on a lattice BGK
technique described hereafter, have been performed in a rect-
angular channel of aspect ratide= 10 with 20X 200 nodes
. o for the channel section. The simulation results are in very
aIIe_I flow, the velocnyu_(y,i) along the flow _dlrect|on_x good agreement with the analytical curves despite the rather
satisfies Poisson equatiol,"u(y,z)=—G/u, with no-slip  gma)| humber of node€0) in y direction. Figure 3 shows
boundary conditions at the wallai(+e/2,2)=0 and the velocity as a function of for different aspect ratios in
u(y,£h/2)=0. Whene<h, it is convenient to split the ve- they=0 plane. Provided that the aspect ratio is larger than
locity field into two terms:u(y,z)=u*(y)+u** (y,z). The two, the profile is clearly nonparabolic but flat except near
first one,u* (y), is the velocity in the infinite casho end the walls. The boundary layers diffusion from the end walls
walls in z direction); its expression is the well-known para- is hindered by the other two walls. Hence, their extension is
bolic Haagen—Poiseuille profileu* (y)=ug[1—(2y/e)?] given by the thickness of the cell. The agreement between
with uy=Ge?(8x). The second termy** (y,z), takes into the analytical curves and the simulation results is again very

account the two end walls located z&+h/2. It satisfies 9909 _ _
Laplace equatioV2u** (y,z)=0 with the boundary condi- Let us now consider the parallel flow of two fluids 1 and

. 2, of dynamic viscositiesx; and u, driven by the same
tions u*’; (£el2.2) :,0 and u_** (y,th/2):—.l.,|0[1 pressure gradier. We restrict ourselves to the case where
— (2yle)”]. Assuming a Fourier decomposition of e jnterfacgatz=0) between the two fluids is flat. In labo-
u** (y,z) where each term is the product ofgfunction by ratory experiments, this condition is achieved when the up-
az function, and taking into account the boundary conditionsper fluid is less dense than the oth#re interface is stabi-
and thatu** (y,z) is an even function oy andz, leads to lized by gravity and interfacial tension if ajyand when the
the velocity fieldu(y,2): flow rates of the two fluids are sufficiently low. At last this

flowing under the pressure gradie@ in a rectangular
duct of large aspect ratib/e (Fig. 1). For a stationary par-
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FIG. 1. Geometry of the celk-h/2<z=<h/2 and—e/2<y=<e/2.
-0.5 : —
0 0.5 1
assumes a contact angle®f2 at the wall which occurs with ufy=0,z)

miscible fluids only. Unlike previous studiésye focus on

the velocity profile near the interface in the case where thé&lG. 3. Normalized velocity profilei(0,2) in the xOz plane for different
latter is located at a distance from the end walls large com@askect ratio/e: analytical result{solid lines and simulation(symbols
pared to the thickness of the cell. According to the results " "¢=2(©). 1/e=5 (x), andh/e=10(+).

obtained above, the presence of the end walls can then be

neglected. The velocities of both fluids alomgdirection,

uy(y,z) for z=0 andu,(y,z) for z<0, satisfy Poisson equa- MUyt pols
tion, V2u(y,z2)=—G/u; (i=1,2), with no-slip boundary uy)=———-"—"]
conditions,u;(*e/2,z) =0, continuity of the velocity at the HaT i
interface,u;(y,0)=u,(y), whereu,(y) is the unknown ve- Where we use the relatiqn;uy = u,U, =Ge?/8. The inter-
locity profile at the interface, and continuity of the tangentialface velocity appears as the average, weighted by their vis-
stresses at the interfaceu,(du,/9z)(y,0)=u,(du,/  cosities, of the unperturbed velocities of the two fluids. Us-
0z)(y,0). We split again the velocity; into two terms: ing the expression af(y) in the equation of continuity for

. @

2y\?
e

ui(y,z)=u (y) +ui™* (v,2). The first termuf" (y) =u; (1—- the velocity at the interface, we finally get the velocity pro-
(2y/e)?) with u; =Ge?/(8u;) is the unperturbed velocity file in each fluid:

far_ayvay from the int_erfacs;c The second ong; (y,z), Ge? 2y 2 oty & )

satisfies Laplace equatif?uX* (y,z) =0 with the boundary  Ui(y,2)= rym kb T 21 (1)
conditionsu* (= e/2,0)=0, u** (y,0)=u,(y) —u; (1—(2y/ Hi paTHan=

e)?) and w1 (aut* 19z)(y,0)=puo(dus* 19z)(y,0). Writing 32 z

u** (y,2) as a sum of Fourier terms and taking the boundary X (2n—1)373 exp si(2n— 1)776

conditions into account, we find the velocity profile at the

interface: ><cos< (2n— 1)7%) ] , 3)

with g;=(—1)' andi=1, 2. The velocity profiles near the

interface are plotted in Fig. 4 for a viscosity ratio, / o

= 0.1. The extension of the velocity variation scales as the

] thicknesse of the cell in both fluids. Whernu,;<<u,, the

] interface velocity is approximately twice that of the more

viscous fluid[Eg. (2)]. Again, the simulations give very good

results despite the small number of nod&9) in y direction.

We also compare the analytical and the numerical velocity

profile at the interface. Note that for the simulation, as there

1 are no nodes on the interface, the interface velocity is ob-

tained by averagingand weighting by the viscositipghe

velocity of each fluid taken on the nodes just above and

; L L below the interface. The velocity profile inis a parabola in

0 0.5 1 each fluid far from the interface, deviates weakly from the
u(y,z) parabola near the interface but is again strictly a parabola at

the interface. The physical reason for this surprising result is
FIG. 2. Velocity profileu(y,z) in the xOy plane for different distances the relation satisfied by the velocity curvatureszidirection
d=h/2—|z| from the end walls in a cell of large aspect ratio. Analytical gt the interface,d(zui /azz)(y,O). These terms do not depend

results(solid lineg and corresponding lattice BGK simulati¢symbolg for . .
doe (1), d—e (), d=e/2 (), d—el4 (O), andd—e/10 (D). The veloc- O Y coordinaté and they are linked together by

ity is normalized by the plane Poiseuille flow maximum velocity p1(?u1192%)(y,0)= — up(9%u,/32°)(y,0). Hence, by add-
Ge?(8u). ing the two Poisson equations satisfied by the two fluids at

/e
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velocity U =0.005(Figs. 2 and 3 In Fig. 2, a lattice size of
Ny X N,=20x200 has been used leading to an aspect ratio
h/e=10. In Fig. 3,N,= 15 andN,=30, 75, and 150, leading
to aspect ratioh/e=2, 5, and 10, respectively. The Rey-
nolds number Re U N, /v is less than 10 when evaluated
with the thicknessN,=15. The stationary state flow is
achieved after typically 50 000 time steps, which corre-
sponds to the viscous diffusive time on the spatial seale
(t%Ni/va4O 000). The typical computing time is 5 CPU
minutes for a 32 node-partition of the CM5 computer.

For the two-fluid flow caséFig. 4) a lattice of size X15
X150 has been used. The fluids of different viscosities, but

1 L L L L 1

0 0.1 0.5 1 with the same densities, lie on top of each ottesch fluid
u(O,z) occupying half of the lattice nodes indirection). There is
no surface tension between the fluids but they are not al-
FIG. 4. Velocity profileu(02) near the interface between two fluids of lowed to mix** The kinematic viscosities are equal to 0.1
viscosity ratiou, /u,=0.1 flowing in a cell of large aspect ratio: analytical and 0.01, yielding to a viscosity ratio of;/u,=0.1, and

results(solid line) and simulation(O). The velocity is normalized by the the Reynolds number is equa| to 0.9 when evaluated with the
plane Poiseuille flow maximum velocity of the less viscous fluid )

GEl(8py). smaller viscosity and the thickness. The flow is thus clearly
in the laminar regime.
This description of the stable flow of two superimposed

the interface, the derivatives compensate each other and Weviscous fluids in a Hele-Shaw cell is a first step in the under-

easily obtain fu;+ u,)(d%u,/dy?)(y)=—2G which leads standing of the shear instability existing in such an experi-
to the parabola for the interface velocftyNote that this re- mental setup.
sult is no longer true if the interface is close to an end wallACKNOWLEDGMENTS
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