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Shear instability of two-fluid parallel flow in a Hele—Shaw cell

P. Gondret and M. Rabaud . )
Laboratoire Fluides, Automatique et Syskes Thermiques, Universitd®. & M. Curie et Paris-Sud
et CNRS (URA 871), Ba502, Campus Universitaire, F-91405 Orsay Cedex, France

(Received 20 May 1997; accepted 24 July 1997

We study experimentally the parallel flow in a Hele—Shaw cell of two immiscible fluids, a gas and

a viscous liquid, driven by a given pressure gradient. We observe that the interface is destabilized
above a critical value of the gas flow and that waves grow and propagate along the cell. The
experimental threshold corresponds to a velocity difference of the two fluids in good agreement with
the inviscid Kelvin—Helmholtz instability, while the wave velocity corresponds to a pure viscous
theory deriving from Darcy’s law. We report our experimental results and analyze this instability by
the study of a new equation where the viscous effects are added to the Euler equation through a
unique drag term. The predictions made from the linear stability analysis of this equation agree with
the experimental measurements. 1©97 American Institute of Physid$1070-663197)04211-9

I. INTRODUCTION the gap of the cell and the basic velocity profile is thus con-
Among the long list of hydrodynamic instabilities, one _stant in time and space. Here the price to pay Is that viscosity
X . . . is no more negligible and a new linear analysis must be
of the classical teaching examples is the Kelvin—Helmholtz
) - . . . developed.
instability which affects an interface submitted to a shear. It . .
: . . o The rest of the paper is organized as follows. In Sec. Il
is the paradigm of a shear instability: When two layers of . !
. : " - we present the experimental set-up and experimental results
fluids move at different velocities, their interface could be : o .
L ; ; about the instability threshold. In Sec. Il a new linear analy-
unstable by the effect of inertia. A linear analysis of the _. L : . .
sis, taking into account the viscous friction on the walls, is

instability can be found in various text book, for example in o .
ChandrasekharsThe appearance of waves at the sea Surpresented. Its predictions are favourably compared to experi-

face under the wind action is ascribed to this instability.mem&II results.
However, experimental results are not in agreement with the
simplest theoretical predictions as they predict waves onlyl. EXPERIMENT
fqr very high winds? Usually the Iipear a}nalysis is non- A. Experimental set-up
viscous and corresponds to a two-dimensional parallel basic
flow which is homogeneous in space. This last condition is ~We have studied the parallel flow of two immiscible
the most difficult to realize experimentally and the basic flowfluids, a liquid and a gas, in a Hele—Shaw &eN.schematic
corresponds usually to a “free mixing layer configuration” view of the experimental set-up is shown in Fig. 1. The cell
where two layers of fluids flow in the same direction but with is made of two glass platé2 mm thick separated by a thin
different velocities at the end of a splitting plate. Thus thesheet of mylar(thicknesse=0.35 mn) in which a cavity of
basic profile enlarges downward by the diffusion of theheighth=10cm and length. =120 cm is delimited for the
boundary layers, and both spatial and temporal evolutions dfuid flow. The mylar sheet ensures the tightness and a con-
initial perturbations are then irremediably coupled. It is onlystant gap. The cell is located so that the gragtis in the
in particular set-ups that this difference between simple modplane of the cell and perpendicular to the lengtof the cell.
els and real profiles could be, partially, overtaken. For exThe gas is nitrogen of viscosityy,=17.5<10"° Pas. The
ample the basic shear profile can be made homogeneous gas being contained in a high pressure bottle20° Pa),
space, either in linear geometry with contrary flowingwe use a relief valve to adjust the injection over pressure in
fluids>* or in circular geometry:® In the first case the price the range[0,10*] Pa. This pressure is controlled by a ma-
to pay is that the basic flow is not stationary but evolves innometer and the flow rate is measured by a ball debimeter.
time; thus, no stable solutions of the instability can be ob-Typical flow rate is of the order of I m¥s. The liquid we
served. In the second case the cells are periodic and closedsed is a silicon oil(Rhodorsil V100, Rhpe-Pouleng of
quantification effects can be important and the dynamic is nwiscosity u4;=0.1 Pa s, densitp,;=965 kg m ® and inter-
more then one of an open system. Stationary unstable statécial tensiony=20.6<10 > N/m. The silicon oil wets the
could be achieved but temporal evolution of perturbations igjlass plates very well; so is the interface regular, horizontal,
difficult to study. and well defined. When the cell is illuminated from behind,
In the present paper we present a new experimentdhe interface appears as a black line because of the transverse
set-up where a spatially uniform and time independent sheamurvature of the meniscus. This allows an easy visualization
flow is forced in an open geometry. In our confined Hele—and the interface position is recorded and analyzed by video
Shaw configuration, the diffusive layers have exactly themeans. The two fluids enter separately in the cell with the
same extension on either side of the interface whatever thgas above the liquid but at the same pres®Ryfe= P+ AP
distance from the entrance and even though the viscosities at each side of the interface and go out the cell also sepa-
the two fluids are much differefitThis extension is equal to rately and at the same pressiitg. The control parameter of
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FIG. 1. Experimental set-up. The two glass plates are separated by a myl. )
sheet(hatching of thicknesse=0.350 mm. The distance between the en-
trance and the exit ik =120 cm, the height i©i=10 cm. The two fluids
enter in the cell at the same pressBg~1.1x10° Pa and go out at the same
pressureP,,=10° Pa. The interface between the liquid and the gas is hori-
zontal at any time below the instability threshold.

the experiment is the injection over pressire. Below the o

. . . . FIG. 2. Interface between the gas and the liquid in the Hele—Shaw cell at
'nStapllhty th.reShmd' the two _ﬂU|dS flow paraIIeI ?‘t dlﬁ.erem increasing flow rates(a): flat interface;(b): linear waves;(c): localized
velocities with an horizontal interface, the velocity ratio be-waves. wWaves propagate along the flow direction from left to right.

ing equal to the inverse of the viscosity ratio as shown in

Darcy’s law presented hereafter. Thus a strong shear exists at

the interface. Note that, as could be noticed in Fig. 1, the tW(_perfectIy Iine_ar but slightly curved. This deforms slightly the
fluids are not in contact immediately at their entrance in thdntérface which goes downward roughly linearly almost all
cell but after a slight tongue of 10 cm likewise the splitter 20Ng the cell with a maximum deviation of 2 mm near the
plate in classical mixing layers set-ups. The interface posi€nd Of the cell. We are not annoyed by this effect.

tion can be modulated localfiat the end of the tonglidy a The typical Reynolds number of the flow when evalu-
periodic modulation of the oil injection pressure. This is a€d with the thicknese of the cell is 16 for the gas and

done by a periodic opening and closing of an electrovalved X 103 for the liquid. In porous media, it is experimentally
located on a small tube in parallel with the main feed tube ofound that Darcy’s law does not hold at Reynolds numbers
liquid. The electrovalve is controlled by a signal generator atarger than a critical value ranging between 1 and 10, this
a low frequency {~0.1 Hz). This set-up allows us to study spread being due to th_e uncertainty of the typlcal_ pore'Size.
the response of the system at a well defined frequency. THgN€ Must then add higher order terms to take into account
square modulation of pressure is smoothed by the flexipighe inertia terms. These terms come into play because of the

tubes and we check that the modulation of the interface polon-parallel nature of the flow at the connections between
sition is rather sinusoidal at the entrance of the cell. Thores. In a Hele—Shaw cell, these problems arising from the

interface modulation in position is chosen to be typically 1Pore distribution and from the tridimensional nature of the
mm peak to peak which corresponds to a pressure moduld©W can be ignored. The inertia terms are strictly zero as
tion of 10 Pa, and thus to a perturbation of 1% of the injec-long as the flow remains unidirectional and Darcy’s law still
tion pressure. holds at much larger Reynolds numbers. Indeed, the critical
In the lubrication approximation, the flow of the two Reynolds number corresponding to the laminar-turbulent

fluids is governed in a Hele—Shaw cell by Darcy’s Yafar transition is known to be equal to 5772 in plane Poiseuille
the transverse averaged velocity: flow!! and is also known to increase monotonically in a

5 square duct of decreasing aspect ratio from infinity to one,
e” P the flow being considered to be stabilized by the presence of
12u ox endwallst?

In the incompressible casey (u=0) and for a flat interface
the velocity of each fluid is constant along the cell. Thus, th
local pressure gradiemtP/dx is also constant. The pressure 1. Interface visualization and qualitative description
decreases linearly along the flow directioR(x)=(P,, ©f the instability
—P;))/Lx+P;,. The pressure gradient being the same for  We will now describe the aspect of the interface when
the two fluids, their velocitiet) ;,sandU;, are linked by the  increasing the injection pressure. Without forcing set-up, the
relation wgadJ gas= tiigUig - interface is horizontal and stable at low shéag. 2(a)). At

As gas is a compressible fluid, we have estimated tha given injection pressure, it becomes unstable and one can
possible deviation induced by the compressibility. Indeedpbserve few sinusoidal propagating waves with a wavelength
the gas velocity increases typically of an amount of 10%of order 1 cm which grow somewhere in the ogllg. 2(b)).
from the entrance to the exit because of the expansion of th€hese linear waves evolve rapidly into localized watfeg.
gas. This result is observed close to the instability threshol@(c)). These solitary waves are roughly 3 mm height and 3
without the forcing set-up as waves appears first at the end ohm width and separated by a distance of few centimeters.
the cell. The second effect is that the pressure decrease is nbey propagate steadily, much more faster than the previous

eB. Experimental results
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sinusoidal waves. At larger flow rates, the solitary waves 5
begin to interact with a complex scenario. At even larger
velocity differences, the interface becomes more and mor
disordered with small crests on big crests and emission c 4
drops occurs. Finally, a diphasic flow is obtained. Without
local forcing, the transition is quite abrupt and the linear
waves are transient and hence difficult to study. Otherwise
the solitary waves are not regularly spaced.

Note that all these observations are not dependant on tf
precise height of the interface, as long as this height is nc
smaller than the thickness of the cell, i.e., typically one mil- 1
limeter. Hence, by contrast with the Poiseuille or Couette
parallel flow of two fluids in rectangular or circular dutts ‘ . , .
or with the gas flow over a thin liquid filf* the liquid 0 02 04 06 0.8 :
height is not a relevant parameter of this experiment. ' ' ) '

c gas (lTl/S)
w

U
N

glg,

2. Experimental measurements FIG. 3. Gas velocity at the onset of instability . e asa function of the

. . . normalized apparent gravity/g,. Experimental ?esult$®) and Kelvin—
As the interfacial pattern evolves rapidly above thresh-Heimholtz prediction(solid line.

old, we study the response of the interface to a periodically
imposed perturbation of the injection pressure for the liquid.
As we activate our local forcing set-up, we observe the same-g77 mi L. Below the valuek=375 m ! no measurements
threshold and the same general scenario. The local pressusge reported as it is the first harmonic of the forcing that is
perturbation induces a small harmonic deformation of thegmpiified.

interface (typically 1 mm peak to peakat the end of the The determination of the threshold can be more precise
separating tongue, and we observe if this interfacial deforhy measuring the damping length. Below the instability
mation is amplified or damped when propagating. Above thghreshold, the harmonic perturbation of the interface propa-
threshold, the linear waves are amplified and evolve intqyates but is damped. We measure the increase of the damp-
periodic localized waves. The injection pressure aboveng |ength A as the threshold is approachégig. 5). The
which the p(_arturbations is amplified_is recorded as thexxtrapolation of a linear fit of ¥ gives the valueU, .
threshold. This corresponds to a veI00|tyLd>ggaS=4.62 m/s =4.72 m/s in agreement with the previous visual detegrmina—
for the gas, which is very close to the one predictedion, The slope of this linear fit i&e=0.2+0.02 mi L. This

by the Kelvin—Helmholtz(KH) linear analysis 4Upin,,  leads to the growth rate= a(Ug.s U, )~0.06 5 for the
=4.67m/s). This result is in agreement with the knowngas velocityU 4,¢=5 m/s. This value is Toughly three order of
paradox that inviscid KH theory predicts much better themagnitude smaller than the one predicted by KH theory
threshold in the case of the wind flow over a high viscous(¢,,=50 s7%).

liquid that over water® The KH analysis which is recalled in The waves are propagating with a non-zero velocity
Sec. Il A. predicts a gravity dependence of the velocityeven at the threshold. We measured the wave velocity by
threshold with a power law o§** (Eq. (7)). This depen-
dence is difficult to test in classical wind-waves set-ups but
here we can easily study it by tilting the plane of the cell.
The apparent in plane gravity is thgs go Sin 6, wheref is

the angle between the cell plane and the horizontal plane 1
The transverse component gfinduces only a small asym- 6 F N
metry of the meniscus. Indeed, this asymmetry remains sma i
as long as the thickness is small compared to the capillar
length. The velocity threshold as a function of the normal- g
ized gravity g/gq is shown in Fig. 3. The experimental ~,
threshold decreases as the apparent gravity decreases. N s F .
that at very small angled<3°) any deformation of the in- 1
terface relaxes very slowly and it is very difficult to conclude

5.5

¢ gas

if initial perturbations are amplified or damped. However, 45 T
the agreement between the measurements and the KH prt [
dictions is very good. ] N SRS -
We can modify the forcing frequency and then force 0 500 1000 1500
different wave-numbers. The instability threshold as a func k (m?)

tion of the wave-number is shown in Fig. 4. The minimum
value is obtained fok~575m * (\~1.05cm) which is a FiG. 4. Velocity thresholdJ, __as a function of wave-numbér The solid
little bit smaller than the corresponding capillary lendgth line is a parabolic fit through the experimental défa.

Phys. Fluids, Vol. 9, No. 11, November 1997 P. Gondret and M. Rabaud 3269



that we do not consider the two walls up and down. This is
correct as long as the wavelength is much smaller than the
distance between the interface and the walls.

From the Navier—Stokes equation, one can usually de-
rive two equations in two limiting cases. In one limiting
case, one can neglect the viscosity terms, and the Navier—
Stokes equation reduces to the Euler equation. In another
limiting case, one can neglect the inertial and unstationary
terms, and the Navier—Stokes equation reduces to Stokes
equation or to Darcy’s equation if the flow is confined in a
7 Hele—Shaw cell. In the first section, we recall the classical
results of the stability analysis of this flow governed by the
Euler equation, known as the Kelvin—Helmholtz theory. In
the second section, we present the linear stability analysis
4.4 4.5 4.6 4.7 given by the Darcy equation following the work of Zeybek

U, msh and Yortso&>” but adding the effect of gravity. At last, in
the third section, we present a new equation taking into ac-
count some terms of the two previous equations and we per-
form the linear stability analysis of this new equation.

40

30 |

VA (mh)
)]
(@)
T

10

FIG. 5. Inverse of the damping lengthvs the gas velocity ..;. The solid
line is a linear fit through the experimental d&ta).

A. Pure inviscid case (Kelvin—Helmholtz theory)

measuring the wavelength and knowing the forcing fre- For inviscid fluids, the Navier—Stokes equation reduces
qguencyf. At the threshold, we found a wave velocity of to the Euler equation:
V,=1 mm/s. This value is several times smaller than the one 5 1
. n u
predicted by KH ¢fKH__7 mm/s). =4 (uV)u=--vp. 1)
Furthermore, amplitude and wave measurements above 9t p
threshold(to be reported elsewherbave convinced us that For our two-dimensional problem in thew§) plane of the

:Ez L;fé?nbri';y;?srirﬁsafndstao a Hoﬁf bifurcation. Hot\)/vever,ce", it is convenient to introduce the stream functigr(u
: g from the excellent agreement betweer dyl dy andv = —dyl 9x) and the equation reduces to:

experimental measurements and KH predictions for the

threshold and bad ones for the wave velocity and for the  pA

growth rate was a strong stimulation to revisit this analysis. ~—— *(u.V)A¢=0. 2

In the next section, we develop a new linear analysis more

suitable to our configuration. Small perturbations of the formp(y)exgik(x—ct)] superim-

posed to the basic stationary and unidirectional flow of ve-
lll. LINEAR STABILITY ANALYSIS locity profile Uy(y) alongx direction are governed by the

Let us consider the bidimensional parallel flow of two R@Yl€igh equation:
fluids of different velocitied),; andU, alongx direction, of 424 d2u
different densitiesp; and p,=p;+Ap(Ap>0) with the (Uo—c)(F—kzcﬁ) g 20 ¢=0, 3
lighter above, and of different viscositigg andu, (Fig. 6). y y

The interface is horizontal and flat w&=0. The gravitygis  \yherek is the real wave-number armdthe complex phase
perpendicular to the interface aloygdirection and the in- velocity.

terfacial surface tension between the two fluidsyisNote We now chooséJ,(y) to be discontinuous at the inter-
face between the two fluid$ig. 6). Note that in our geom-
etry, the profile is continuous on a scale equal to the thick-
y ness of the cell. However, as long as the wavelength is
lg much larger than the thicknegand this is the case in the
P i experiments the profile may be considered as
discontinuous. Solving the Rayleigh equation and imposing
0 ) the usual continuity of displacement at the interfaceO,
X the jump condition for the pressure at the interface due to
U, o 2 surface tension and the exponential decayg=at-~ leads
to the following classical dispersion relation:

U,

2_2P1U1+P2U2 +P1U5+P2U§ Apg+yk?

C - =0.
p1tp2 p1tp2 (p1t+p2)k
FIG. 6. Sketch of the parallel flow of two fluids flowing respectively with (4)
velocity U; andU,, of densitiesp; andp,(p,>p4), of viscositiesu; and
1, and of interfacial tensiory. The solutions are
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. p1Us+poU, posing the usual continuity of displacement at the interface
c=C+iICi=——— y=0, the jump condition for the pressure at the interface due

+
pithe to surface tension and the exponential decayy-att o
| _pies (U,-U,)? Apg+ yk?] 2 © leads to the following dispersion relation:
ri| ———((U;— -
(prtp2)® "t "% (pitpk o Ut U, e? )
wherec, is the phase velocity of the waves aad=kc; the C=GHiIG= w1+ o ! 12(q+ o) (Apgt 7K.
temporal growth rate of the waves. The wave velocity ap- (10

pears here as the mean, weighted by the densities, of the tWge \yave velocityc, appears as the mean, weighted this
fluid velocities. In the imaginary part of the velocity appearsijme by the viscosities, of the two fluid velocities. This wave
the balance between the destabilizing term of inertia and th@elocity is exactly the velocity of the interface obtained
stabilizing terms of gravity and surface tension for respecynaytically for the full 3D problem of the basic parallel
tively long and short waves. The condition for the velocity i,y 7 |f the viscosities are very different, the wave velocity

differenceAU=U, — U, at which waves grow is is twice the bulk velocity of the more viscous fluid
p1tpo g (m1<po=Cr~2U~2(u1/p2) Uy).
AUZ=—= (ApE-i- K. (6) Note that as the gravity and the surface tension are sta-
P1p2 bilizing, the temporal growth rate is always negative and
The minimum is for the critical wave-numb&r=1/1.,  waves are always damped. Indeed, there is no destabilizing

wherel.=(y/(Apg))Y? is the capillary length. The corre- term such as inertia in this problem.
sponding minimum velocity threshold is then

2(pl+p2) )1/2 V2

(Apgy @ C. Kelvin—Helmholtz—Darcy theory

AU pin=

In the two previous linear stability analysis, the viscous
For AU=AU,,, the unstable waves are those of wave-terms and the inertia terms have been successively neglected.
numbers in a range containikgy and of extrema The linearization of the full Navier—Stokes equation around
a basic two-dimensional velocity profile leads to the Orr—

kmax/min:% 2 Sommerfeld equation. Note that this equation cannot be di-
2(p1tp2)y rectly integrated and analytical solutions may be obtained
2 Apgli2 only in some limiting cases long waves k—0), short
pP1p2 2 P9
|| —— - . (8 waves k— ) and small Reynolds numbers (R&). How-
2(p1tp2)y 4

ever, such analysis only deals with the in plane dissipation
and not with the preeminent transverse dissipation existing in
the set-up. To take into account this dissipation, we built a
For pure viscous fluids, the Navier—Stokes equation renew phenomenological equation. Starting from ELj, we
duces to the Darcy equation in the case of a bidimensiondhke into account the viscous stresses on the two walts in

B. Pure viscous case (Darcy’s law)

flow in a Hele—Shaw cell of thickness direction in an equivalent viscous drag force. This forces
2 readsf= — Bu where is a constant and the gap averaged
u=(u,v)=— e_vp, (9)  Velocity. This modified Navier—Stokes equation, which ap-
12u pears now as a mixing of Euler and Darcy equation, reads as
whereu is the gap-averaged velocity. Indeed, a narrow-gap gy 1 12p
assumption leads to the conclusion that the pressure is inde- —- +(u.V)ju=— ;VD— el (1)

pendent of the transverse directibrand that the velocity in

the fluids is everywhere in the direction of the pressure graif we chooseg=—12v/e® in order to find the Darcy law in
dient, varying in a parabolic manner between the plafies. the limit of stationary pure viscous flow. Similar equation
This allows the velocity to be averaged over the gap to recan be obtained by averaging Navier—Stokes equation
move the dependence an Thex andy component of this through the gap with the assumption of a parabolic velocity
averaged velocityy andv, are given by Eq(9). Note that  profile (Appendix. The same factog is found but a numeri-
this analysis can be expected to hold only up to distances ¢fal prefactor (6/5) appears in front of the inertial term. This
ordere from the interface and likewise the parabolic velocity prefactor has only minor effects.

distribution across the gap. From Darcy equatigg. (9)), it Equation(11) being a two-dimensional one, it is conve-
follows that, the pressure gradient being identical for the twohient to introduce the stream functian and the equation
fluids, their velocities are related hy,U;=u,U,. Assum-  reduces to

ing the incompressibility of the two fluids leads to Laplace N
equation for the pressur&p=0. We then followed the lin-
ear stability analysis performed by Zeybek and Yort&ds
in the case of parallel flow in Hele—Shaw cell but adding theSmall perturbations of the forrd(y)exdik(x—ct)] superim-
effect of gravity. Assuming small perturbations of the form posed to the basic stationary and unidirectional flow of ve-
p(y)exdik(x—ct)] for the pressure superimposed to the basidocity profile Uy(y) alongx direction are governed by the
stationary and unidirectional flow alongdirection and im-  following modified Rayleigh equation:

B 12y
—r TUV)Ay=——Ay. (12)
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U . 12V d2¢ k2 d2U0 _0 13 0.01 T Y T [ T T T T T T ——
o CTlpz v d|— 0y ¢»=0. (13 ) I |
Solving this modified Rayleigh equation for the discontinu- 0.008 _ . | i

ous velocity profile(Fig. 6) and imposing the usual continu-
ity of displacement at the interfage= 0, the jump condition
for the pressure at the interface due to surface tension and tl
exponential decays at=+*« leads now to the following 0.004 - .
dispersion relation:

0.006 1

¢ (m/s)

T

2 2131U1+102U2_i 1201+ po) c p1UT+pU3 0.002 - .
p1tp2 (p1+pa)e’k p1tp2 |
O 2 " " n 1 1 1 L L ] L L 1 n
Apg+yk?  12uUq+uoUy) 0 14 0 500 1000 1500
—_ —I = . -
(p1tp2)k (p1+p2)e’k k
Note that, by contrast to the inviscid case, one canno 50 P
change the frame of reference in order to obtain a uniqu ) ya ) ]
velocity parameteAU=U;—U, instead of the two veloci- 40 /' \‘ .
ties U, and U,. Indeed, the dissipation on the walls Kkills ~ ) \ :
here the galilean invariance. Since the two velocities arc 30 / ‘\ .
linked by the relationu;U;= u,U,, we can choos¥; to be = / .
the control parameter and we introduce the rato ° 20 - /, | .
8:/.L1//.L2: UZ/U]_' i \ |
The onset of the instability correspondscie=0, so to a 10 / | 7
velocity U; which satisfies I '
0 b .
UZ 1+¢€)\? 1 A g+ K 15 3 el E
= _— = .
1 1—¢ p1+p282 pk Y ( ) 210 NPT SR ST I T A
0 500 1000 1500
The critical wave-number is the inverse of the capil- k (m)

lary length as in the Kelvin—Helmholtz theory:
Zan — 112 ; e ;
ke=1N.=(Apg/y)~“. The corresponding minimum velocCity g 7. Theoretical phase wave velocity () and temporal growth rate

threshold is then: (b) as a function of wave-numbérfor the three different theories: Kelvin—
2 U212 Helmholtz (— - —), Darcy (---), and Kelvin—Helmholtz—Darcy—) with

1+e\“2(Apgy) values of parameters corresponding to the experimental setyp:
Ulmin: 1—¢ p1+p282 (16) =5mls; p;=1.28kg.m3 p,=965kg.m3 wu,;=1.75<10° Pa.s; u,

=100x 102 Pa.s;y=20.6x 10" N/m; e=0.350 mm;g=9.81 m/$.
For U;=U,; _, the unstable waves are those of wave-

numbers in the bandwidifK i, ;Kmax Of €xtrema

pitpas? (1-6\2 ¢ ~222u,. (21)
I(max/minzz—,y 1+e 1 K2
The expressions of the velocity threshdleg. (19)) and of
. p1tpre? [1-e\2 |2 Apg]'? the critical wave-number$Eq. 20 are the same as those
T2y l14e) Yy 17 given by the KH theory when considering;<p, and
_ ) . . U,<<U; as for the liquid-gas flowcf. Egs.(7) and(8)). By
foun-[jhteo "t‘)’zve velocity at the marginal stabilitgi0) i contrast, the wave velocifEq. (21)) is the one given by the

pure Darcy’s theory: It is proportional to the gas velocity and

wiUq+ moU, inversely proportional to the viscosity of the liquid. Then the
= (18)  derived “Kelvin—Helmholtz—Darcy” (KHD) theory splits

the effects of viscosity and inertia: On the one hand, the
which is exactly the wave velocity in the pure viscous theorywave velocity is governed by the viscosity and, on the other
(cf. Eq. (10)). hand, the velocity threshold and growing wave-numbers are
In the case where the two fluids have very different vis-governed by inertia.

cosities as in liquid—gas flowe1), Egs.(16), (17), and

r

M1t o

(18) reduce to: D. Comparison between the theories and the
2(Apgry)li2\ 12 experimental results
Lnin p1 ' (19) The wave velocityc, and the temporal growth rate as

5 2 a function of the wave-numbdrgiven by the three different
K _PLgag [ Pre| Apg (20) theories presented above are shown in Fig. 7 for parameter
max/min 5., =171 | 24 71 vy ' values corresponding to the experiments. The KHD theory
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0.002 ——T—r—t—F—v "7 parison between the experimental results and the predictions
(@) ] of the KHD theory is quite satisfying. A much more com-

[ ] plete comparison dealing with the influence of the thickness
0.0015 - . and of the liquid viscosity will be reported in a next paper.

0.001 [ IV. CONCLUSION

c (m/s)

We have reported results concerning a shear flow insta-
I ] bility at the interface between a gas and a liquid in a Hele—
0.0005 I ] Shaw cell. In this high dissipative configuration, the thresh-
old of the instability is surprisingly governed by inertia only,
when the wave velocity and the growth rate are both gov-
erned by the strong viscous effects. All these experimental

0 500 1000 1500

K () results are compatible with a Hopf bifurcation and are well
predicted by the linear stability analysis of an equation mix-
P — ing Euler and Darcy equations. This is the reason why we
) o ; call the present instability the “Kelvin—Helmholtz—Darcy”
R 02 | P - N _ instability.
R — -
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k (m™)
APPENDIX: GAP AVERAGING OF THE

FIG. 8. Phase velocitg, (a) and temporal growth rate (b) as a function of NAVIER-STOKES EQUATION

the wavenumbek given by the Kelvin—Helmholtz—Darcy theory for differ-

ent gas velocit]), - Uy—4 (), 4.67(—), and 5 mis— - —), The KHD analysis was based on E@.1) where we

modelize the viscous dissipation by adding a viscous drag
force to the Euler equation. It is possible to justify this term
as presented below.

leads to values of wave velocity very near to the ones pre-  Starting from Navier—Stokes equation, we assume that
dicted by Darcy theory so that the two corresponding curveshere is no transverse velocity and that the two second de-
cannot be separated. The KH theory gives much higher vakvatives inx andy are negligible compared to thederiva-

ues since the friction with the walls is not taken into accounttive. The equation for the velocity(x,y,z) is then

in this inviscid theory. The bandwidth of unstable wave-

2
numbers is the same in the KH and KHD theoriEry. 7(b)) o +(u.V)u=— EVpJF V'y_l;. (A1)
but the temporal growth rate is much smaller in the KHD at P 9z

theory than in the KH theory. This can be explained by thaj\/e assume now that the Ve|ocity is parabo”(zin
dissipation on the walls. For the stable wave-numbers, )

=0 in the KH theory since the system is non dissipative, but u(x,y,z)= § ux.y)| 1- (%) (A2)
<0 for the Darcy and KHD theories since the correspond- 27 e/ ]

ing systems are dissipative. where u(x,y) is the gap-averaged velocity as in the usual

The functionsc, (k) ando(k) given by the KHD theory Darcy’s approach. Averaging E¢AL) through the gap, we
are shown in Figs. @ and 8b), respectively, for different obtain

values of the air velocityU,. The threshold is for _

~ ich i i u 6 __ _ 1 120
Utpio 4.67 m/s. WhICh. is very close to the experimental A 2 UV)u=--Vp- 2T (A3)
threshold of the instability); _=4.72 m/s. The phase wave gt S p e
velocity increases linearly with the gas velocifyig. 8@a)) This equation differs from our model E¢L1) only by
and the value at the thresholdds ~=1.6 mm/s whichis of  the numerical factor 6/5 in front of the inertial term. Similar
the order of the experimental valig,=1 mm/s. The tem- averaging method has been used in granular layer flow by
poral growth rate isryp=—0.35s'atU;=4 m/s and the Savage and Huttéf. Solving Eq.(A3) with the discontinu-
slope of the growth rate is themcp=0.5 m * which is of  ous profile of Fig. 5 leads now to the following dispersion
the order of the experimental valug,,=0.2 m L. The com- relation:
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2 1_1 pUstpUp 12( gy + o) 6 p1UZ+p,U3 The threshold of the instability is then only modified by the

I C+¢ factor 5/6 when compared to the previous KHD analysis
5 + +py)e’k/” 5 + o
P17 P2 (p1tp2) P1T P2 (Eq. (19)). The wave velocity is not changed at all. The band
Apg+yk?  12uUq+uoUy) of unstable wave-numbers and so the growth rate are also
— —j =0. (A4) S . .
(p1tp2)k (p1+pa)e’k unchanged when the velocity, is made dimensionless by

) N the critical velocityU,; . Equationg11) and(A3) thus lead
The onset of the instability corresponds to a velotity imil min h . |
which satisfies 'to very similar dyngmlcs. Note, that by a Copvenlgnt rescal-
ing of t andp (« being kept constajitEq. (A3) is equivalent
,. 5 (1+¢)? 1 g to Eq.(11) and thus the similarity of the stability analysis of
=271, 3p1—2p1e+2pre’—3p,e’ Apie K] the two equations is not surprisingVe thank Professor G.
(A5) M. Homsy for pointing out this scalinp.

The corresponding critical wave-number is again the in-
verse of the capillary lengtk,=1/1,=(Apg/y)Y? and the
corresponding minimum velocity threshold is then

[ (1+e)? (Apgy)*?
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