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P. Gondret and M. Rabaud
Laboratoire Fluides, Automatique et Syste`mes Thermiques, Universite´s P. & M. Curie et Paris-Sud
et CNRS (URA 871), Baˆt. 502, Campus Universitaire, F-91405 Orsay Cedex, France

~Received 20 May 1997; accepted 24 July 1997!

We study experimentally the parallel flow in a Hele–Shaw cell of two immiscible fluids, a gas and
a viscous liquid, driven by a given pressure gradient. We observe that the interface is destabilized
above a critical value of the gas flow and that waves grow and propagate along the cell. The
experimental threshold corresponds to a velocity difference of the two fluids in good agreement with
the inviscid Kelvin–Helmholtz instability, while the wave velocity corresponds to a pure viscous
theory deriving from Darcy’s law. We report our experimental results and analyze this instability by
the study of a new equation where the viscous effects are added to the Euler equation through a
unique drag term. The predictions made from the linear stability analysis of this equation agree with
the experimental measurements. ©1997 American Institute of Physics.@S1070-6631~97!04211-6#
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I. INTRODUCTION

Among the long list of hydrodynamic instabilities, on
of the classical teaching examples is the Kelvin–Helmho
instability which affects an interface submitted to a shear
is the paradigm of a shear instability: When two layers
fluids move at different velocities, their interface could
unstable by the effect of inertia. A linear analysis of t
instability can be found in various text book, for example
Chandrasekhar’s.1 The appearance of waves at the sea s
face under the wind action is ascribed to this instabili
However, experimental results are not in agreement with
simplest theoretical predictions as they predict waves o
for very high winds.2 Usually the linear analysis is non
viscous and corresponds to a two-dimensional parallel b
flow which is homogeneous in space. This last condition
the most difficult to realize experimentally and the basic fl
corresponds usually to a ‘‘free mixing layer configuration
where two layers of fluids flow in the same direction but w
different velocities at the end of a splitting plate. Thus t
basic profile enlarges downward by the diffusion of t
boundary layers, and both spatial and temporal evolution
initial perturbations are then irremediably coupled. It is on
in particular set-ups that this difference between simple m
els and real profiles could be, partially, overtaken. For
ample the basic shear profile can be made homogeneo
space, either in linear geometry with contrary flowin
fluids3,4 or in circular geometry.5,6 In the first case the price
to pay is that the basic flow is not stationary but evolves
time; thus, no stable solutions of the instability can be o
served. In the second case the cells are periodic and clo
quantification effects can be important and the dynamic is
more then one of an open system. Stationary unstable s
could be achieved but temporal evolution of perturbation
difficult to study.

In the present paper we present a new experime
set-up where a spatially uniform and time independent sh
flow is forced in an open geometry. In our confined Hel
Shaw configuration, the diffusive layers have exactly
same extension on either side of the interface whatever
distance from the entrance and even though the viscositie
the two fluids are much different.7 This extension is equal to
Phys. Fluids 9 (11), November 1997 1070-6631/97/9(11)/326
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the gap of the cell and the basic velocity profile is thus co
stant in time and space. Here the price to pay is that visco
is no more negligible and a new linear analysis must
developed.

The rest of the paper is organized as follows. In Sec
we present the experimental set-up and experimental re
about the instability threshold. In Sec. III a new linear ana
sis, taking into account the viscous friction on the walls,
presented. Its predictions are favourably compared to exp
mental results.

II. EXPERIMENT

A. Experimental set-up

We have studied the parallel flow of two immiscib
fluids, a liquid and a gas, in a Hele–Shaw cell.8 A schematic
view of the experimental set-up is shown in Fig. 1. The c
is made of two glass plates~22 mm thick! separated by a thin
sheet of mylar~thicknesse50.35 mm! in which a cavity of
heighth510 cm and lengthL5120 cm is delimited for the
fluid flow. The mylar sheet ensures the tightness and a c
stant gap. The cell is located so that the gravityg is in the
plane of the cell and perpendicular to the lengthL of the cell.
The gas is nitrogen of viscositymN2

517.531026 Pa s. The
gas being contained in a high pressure bottle (203106 Pa),
we use a relief valve to adjust the injection over pressure
the range@0,104# Pa. This pressure is controlled by a m
nometer and the flow rate is measured by a ball debime
Typical flow rate is of the order of 1024 m3/s. The liquid we
used is a silicon oil~Rhodorsil V100, Rhoˆne-Poulenc! of
viscosity moil50.1 Pa s, densityroil5965 kg m23 and inter-
facial tensiong520.631023 N/m. The silicon oil wets the
glass plates very well; so is the interface regular, horizon
and well defined. When the cell is illuminated from behin
the interface appears as a black line because of the trans
curvature of the meniscus. This allows an easy visualiza
and the interface position is recorded and analyzed by vi
means. The two fluids enter separately in the cell with
gas above the liquid but at the same pressurePin5P01DP
at each side of the interface and go out the cell also se
rately and at the same pressureP0 . The control parameter o
32677/8/$10.00 © 1997 American Institute of Physics
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the experiment is the injection over pressureDP. Below the
instability threshold, the two fluids flow parallel at differe
velocities with an horizontal interface, the velocity ratio b
ing equal to the inverse of the viscosity ratio as shown
Darcy’s law presented hereafter. Thus a strong shear exis
the interface. Note that, as could be noticed in Fig. 1, the
fluids are not in contact immediately at their entrance in
cell but after a slight tongue of 10 cm likewise the splitt
plate in classical mixing layers set-ups. The interface po
tion can be modulated locally~at the end of the tongue! by a
periodic modulation of the oil injection pressure. This
done by a periodic opening and closing of an electrova
located on a small tube in parallel with the main feed tube
liquid. The electrovalve is controlled by a signal generato
a low frequency (f '0.1 Hz). This set-up allows us to stud
the response of the system at a well defined frequency.
square modulation of pressure is smoothed by the flex
tubes and we check that the modulation of the interface
sition is rather sinusoidal at the entrance of the cell. T
interface modulation in position is chosen to be typically
mm peak to peak which corresponds to a pressure mod
tion of 10 Pa, and thus to a perturbation of 1% of the inje
tion pressure.

In the lubrication approximation, the flow of the tw
fluids is governed in a Hele–Shaw cell by Darcy’s law9 for
the transverse averaged velocity:

u~x!52
e2

12m

]P

]x
.

In the incompressible case, (¹.u50) and for a flat interface
the velocity of each fluid is constant along the cell. Thus,
local pressure gradient]P/]x is also constant. The pressu
decreases linearly along the flow direction:P(x)5(Pout

2Pin)/Lx1Pin . The pressure gradient being the same
the two fluids, their velocitiesUgasandU liq are linked by the
relationmgasUgas5m liqU liq .

As gas is a compressible fluid, we have estimated
possible deviation induced by the compressibility. Inde
the gas velocity increases typically of an amount of 10
from the entrance to the exit because of the expansion o
gas. This result is observed close to the instability thresh
without the forcing set-up as waves appears first at the en
the cell. The second effect is that the pressure decrease i

FIG. 1. Experimental set-up. The two glass plates are separated by a m
sheet~hatching! of thicknesse50.350 mm. The distance between the e
trance and the exit isL5120 cm, the height ish510 cm. The two fluids
enter in the cell at the same pressurePin'1.13105 Pa and go out at the sam
pressurePout5105 Pa. The interface between the liquid and the gas is h
zontal at any time below the instability threshold.
3268 Phys. Fluids, Vol. 9, No. 11, November 1997
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perfectly linear but slightly curved. This deforms slightly the
interface which goes downward roughly linearly almost all
along the cell with a maximum deviation of 2 mm near the
end of the cell. We are not annoyed by this effect.

The typical Reynolds number of the flow when evalu-
ated with the thicknesse of the cell is 102 for the gas and
331023 for the liquid. In porous media, it is experimentally
found that Darcy’s law does not hold at Reynolds numbers
larger than a critical value ranging between 1 and 10, this
spread being due to the uncertainty of the typical pore size.10

One must then add higher order terms to take into account
the inertia terms. These terms come into play because of the
non-parallel nature of the flow at the connections between
pores. In a Hele–Shaw cell, these problems arising from the
pore distribution and from the tridimensional nature of the
flow can be ignored. The inertia terms are strictly zero as
long as the flow remains unidirectional and Darcy’s law still
holds at much larger Reynolds numbers. Indeed, the critical
Reynolds number corresponding to the laminar-turbulent
transition is known to be equal to 5772 in plane Poiseuille
flow11 and is also known to increase monotonically in a
square duct of decreasing aspect ratio from infinity to one,
the flow being considered to be stabilized by the presence of
endwalls.12

B. Experimental results

1. Interface visualization and qualitative description
of the instability

We will now describe the aspect of the interface when
increasing the injection pressure. Without forcing set-up, the
interface is horizontal and stable at low shear~Fig. 2~a!!. At
a given injection pressure, it becomes unstable and one can
observe few sinusoidal propagating waves with a wavelength
of order 1 cm which grow somewhere in the cell~Fig. 2~b!!.
These linear waves evolve rapidly into localized waves~Fig.
2~c!!. These solitary waves are roughly 3 mm height and 3
mm width and separated by a distance of few centimeters.
They propagate steadily, much more faster than the previous

lar

-

FIG. 2. Interface between the gas and the liquid in the Hele–Shaw cell at
increasing flow rates.~a!: flat interface;~b!: linear waves;~c!: localized
waves. Waves propagate along the flow direction from left to right.
P. Gondret and M. Rabaud
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sinusoidal waves. At larger flow rates, the solitary wav
begin to interact with a complex scenario. At even larg
velocity differences, the interface becomes more and m
disordered with small crests on big crests and emission
drops occurs. Finally, a diphasic flow is obtained. Witho
local forcing, the transition is quite abrupt and the line
waves are transient and hence difficult to study. Otherw
the solitary waves are not regularly spaced.

Note that all these observations are not dependant on
precise height of the interface, as long as this height is
smaller than the thickness of the cell, i.e., typically one m
limeter. Hence, by contrast with the Poiseuille or Coue
parallel flow of two fluids in rectangular or circular ducts6,13

or with the gas flow over a thin liquid film,14 the liquid
height is not a relevant parameter of this experiment.

2. Experimental measurements

As the interfacial pattern evolves rapidly above thre
old, we study the response of the interface to a periodic
imposed perturbation of the injection pressure for the liqu
As we activate our local forcing set-up, we observe the sa
threshold and the same general scenario. The local pres
perturbation induces a small harmonic deformation of
interface ~typically 1 mm peak to peak! at the end of the
separating tongue, and we observe if this interfacial de
mation is amplified or damped when propagating. Above
threshold, the linear waves are amplified and evolve i
periodic localized waves. The injection pressure abo
which the perturbations is amplified is recorded as
threshold. This corresponds to a velocity ofUcgas

54.62 m/s
for the gas, which is very close to the one predict
by the Kelvin–Helmholtz~KH! linear analysis (DUminKH

54.67 m/s). This result is in agreement with the know
paradox that inviscid KH theory predicts much better t
threshold in the case of the wind flow over a high visco
liquid that over water.15 The KH analysis which is recalled in
Sec. III A. predicts a gravity dependence of the veloc
threshold with a power law ofg1/4 ~Eq. ~7!!. This depen-
dence is difficult to test in classical wind-waves set-ups
here we can easily study it by tilting the plane of the ce
The apparent in plane gravity is theng5g0 sinu, whereu is
the angle between the cell plane and the horizontal pla
The transverse component ofg induces only a small asym
metry of the meniscus. Indeed, this asymmetry remains s
as long as the thickness is small compared to the capil
length. The velocity threshold as a function of the norm
ized gravity g/g0 is shown in Fig. 3. The experimenta
threshold decreases as the apparent gravity decreases.
that at very small angle (u,3°) any deformation of the in-
terface relaxes very slowly and it is very difficult to conclu
if initial perturbations are amplified or damped. Howev
the agreement between the measurements and the KH
dictions is very good.

We can modify the forcing frequency and then for
different wave-numbers. The instability threshold as a fu
tion of the wave-number is shown in Fig. 4. The minimu
value is obtained fork'575 m21 (l'1.05 cm) which is a
little bit smaller than the corresponding capillary lengthkc
Phys. Fluids, Vol. 9, No. 11, November 1997
s
r
re
of
t
r
e,

he
ot
-
e

-
ly
.
e

ure
e

r-
e
o
e
e

d

s

t
.

e.

all
ry
-

ote

,
re-

-

5677 m21. Below the valuek5375 m21 no measurements
are reported as it is the first harmonic of the forcing that is
amplified.

The determination of the threshold can be more precise
by measuring the damping length. Below the instability
threshold, the harmonic perturbation of the interface propa-
gates but is damped. We measure the increase of the dam
ing length L as the threshold is approached~Fig. 5!. The
extrapolation of a linear fit of 1/L gives the valueUcgas

54.72 m/s in agreement with the previous visual determina-
tion. The slope of this linear fit isa50.260.02 m21. This
leads to the growth rates5a(Ugas2Ucgas

)'0.06 s21 for the
gas velocityUgas55 m/s. This value is roughly three order of
magnitude smaller than the one predicted by KH theory
(sKH550 s21).

The waves are propagating with a non-zero velocity
even at the threshold. We measured the wave velocity by

FIG. 3. Gas velocity at the onset of instability,Ucgas
, as a function of the

normalized apparent gravityg/g0 . Experimental results~s! and Kelvin–
Helmholtz prediction~solid line!.

FIG. 4. Velocity thresholdUcgas
as a function of wave-numberk. The solid

line is a parabolic fit through the experimental data~s!.
3269P. Gondret and M. Rabaud
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measuring the wavelengthl and knowing the forcing fre-
quency f . At the threshold, we found a wave velocity of
Vw51 mm/s. This value is several times smaller than the on
predicted by KH (cr KH

57 mm/s).
Furthermore, amplitude and wave measurements abo

threshold~to be reported elsewhere! have convinced us that
the instability corresponds to a Hopf bifurcation. However
the dilemma arising from the excellent agreement betwee
experimental measurements and KH predictions for th
threshold and bad ones for the wave velocity and for th
growth rate was a strong stimulation to revisit this analysis
In the next section, we develop a new linear analysis mo
suitable to our configuration.

III. LINEAR STABILITY ANALYSIS

Let us consider the bidimensional parallel flow of two
fluids of different velocitiesU1 andU2 alongx direction, of
different densitiesr1 and r25r11Dr(Dr.0) with the
lighter above, and of different viscositiesm1 andm2 ~Fig. 6!.
The interface is horizontal and flat aty50. The gravityg is
perpendicular to the interface alongy direction and the in-
terfacial surface tension between the two fluids isg. Note

FIG. 5. Inverse of the damping lengthL vs the gas velocityUgas. The solid
line is a linear fit through the experimental data~s!.

FIG. 6. Sketch of the parallel flow of two fluids flowing respectively with
velocity U1 andU2 , of densitiesr1 andr2(r2.r1), of viscositiesm1 and
m2 and of interfacial tensiong.
3270 Phys. Fluids, Vol. 9, No. 11, November 1997
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that we do not consider the two walls up and down. This
correct as long as the wavelength is much smaller than
distance between the interface and the walls.

From the Navier–Stokes equation, one can usually
rive two equations in two limiting cases. In one limitin
case, one can neglect the viscosity terms, and the Nav
Stokes equation reduces to the Euler equation. In ano
limiting case, one can neglect the inertial and unstation
terms, and the Navier–Stokes equation reduces to Sto
equation or to Darcy’s equation if the flow is confined in
Hele–Shaw cell. In the first section, we recall the classi
results of the stability analysis of this flow governed by t
Euler equation, known as the Kelvin–Helmholtz theory.
the second section, we present the linear stability anal
given by the Darcy equation following the work of Zeybe
and Yortsos16,17 but adding the effect of gravity. At last, in
the third section, we present a new equation taking into
count some terms of the two previous equations and we
form the linear stability analysis of this new equation.

A. Pure inviscid case (Kelvin–Helmholtz theory)

For inviscid fluids, the Navier–Stokes equation reduc
to the Euler equation:

]u

]t
1~u.¹!u52

1

r
¹p. ~1!

For our two-dimensional problem in the (x,y) plane of the
cell, it is convenient to introduce the stream functionc ~u
5]c/]y andv52]c/]x! and the equation reduces to:

]Dc

]t
1~u.¹!Dc50. ~2!

Small perturbations of the formf(y)exp@ik(x2ct)# superim-
posed to the basic stationary and unidirectional flow of
locity profile U0(y) along x direction are governed by th
Rayleigh equation:

~U02c!S d2f

dy2 2k2f D2
d2U0

dy2 f50, ~3!

wherek is the real wave-number andc the complex phase
velocity.

We now chooseU0(y) to be discontinuous at the inter
face between the two fluids~Fig. 6!. Note that in our geom-
etry, the profile is continuous on a scale equal to the thi
ness of the cell.7 However, as long as the wavelength
much larger than the thickness~and this is the case in th
experiments!, the profile may be considered a
discontinuous.1 Solving the Rayleigh equation and imposin
the usual continuity of displacement at the interfacey50,
the jump condition for the pressure at the interface due
surface tension and the exponential decays aty56` leads
to the following classical dispersion relation:

c222
r1U11r2U2

r11r2
c1

r1U1
21r2U2

2

r11r2
2

Drg1gk2

~r11r2!k
50.

~4!

The solutions are
P. Gondret and M. Rabaud
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c5cr1 ic i5
r1U11r2U2

r11r2

6 i F r1r2

~r11r2!2 ~U12U2!22
Drg1gk2

~r11r2!k G1/2

, ~5!

wherecr is the phase velocity of the waves ands5kci the
temporal growth rate of the waves. The wave velocity a
pears here as the mean, weighted by the densities, of the
fluid velocities. In the imaginary part of the velocity appea
the balance between the destabilizing term of inertia and
stabilizing terms of gravity and surface tension for resp
tively long and short waves. The condition for the veloc
differenceDU5U12U2 at which waves grow is

DU2>
r11r2

r1r2
S Dr

g

k
1gkD . ~6!

The minimum is for the critical wave-numberkc51/l c ,
where l c5(g/(Drg))1/2 is the capillary length. The corre
sponding minimum velocity threshold is then

DUmin5F2~r11r2!

r1r2
~Drgg!1/2G1/2

. ~7!

For DU>DUmin , the unstable waves are those of wav
numbers in a range containingkc and of extrema

kmax/min5
r1r2

2~r11r2!g
DU2

6F S r1r2

2~r11r2!g
DU2D 2

2
Drg

g G1/2

. ~8!

B. Pure viscous case (Darcy’s law)

For pure viscous fluids, the Navier–Stokes equation
duces to the Darcy equation in the case of a bidimensio
flow in a Hele–Shaw cell of thicknesse:

u5~u,v !52
e2

12m
¹p, ~9!

whereu is the gap-averaged velocity. Indeed, a narrow-g
assumption leads to the conclusion that the pressure is i
pendent of the transverse directionz and that the velocity in
the fluids is everywhere in the direction of the pressure g
dient, varying in a parabolic manner between the plane18

This allows the velocity to be averaged over the gap to
move the dependence onz. The x andy component of this
averaged velocity,u andv, are given by Eq.~9!. Note that
this analysis can be expected to hold only up to distance
ordere from the interface and likewise the parabolic veloc
distribution across the gap. From Darcy equation~Eq. ~9!!, it
follows that, the pressure gradient being identical for the t
fluids, their velocities are related bym1U15m2U2 . Assum-
ing the incompressibility of the two fluids leads to Lapla
equation for the pressure:Dp50. We then followed the lin-
ear stability analysis performed by Zeybek and Yortsos16,17

in the case of parallel flow in Hele–Shaw cell but adding
effect of gravity. Assuming small perturbations of the for
p(y)exp@ik(x2ct)# for the pressure superimposed to the ba
stationary and unidirectional flow alongx direction and im-
Phys. Fluids, Vol. 9, No. 11, November 1997
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posing the usual continuity of displacement at the interfa
y50, the jump condition for the pressure at the interface d
to surface tension and the exponential decays aty56`
leads to the following dispersion relation:

c5cr1 ic i5
m1U11m2U2

m11m2
2 i

e2

12~m11m2!
~Drg1gk2!.

~10!

The wave velocitycr appears as the mean, weighted th
time by the viscosities, of the two fluid velocities. This wa
velocity is exactly the velocity of the interface obtaine
analytically for the full 3D problem of the basic paralle
flow.7 If the viscosities are very different, the wave veloci
is twice the bulk velocity of the more viscous flui
(m1!m2⇒cr'2U2'2(m1/m2) U1).

Note that as the gravity and the surface tension are
bilizing, the temporal growth rate is always negative a
waves are always damped. Indeed, there is no destabili
term such as inertia in this problem.

C. Kelvin–Helmholtz–Darcy theory

In the two previous linear stability analysis, the visco
terms and the inertia terms have been successively negle
The linearization of the full Navier–Stokes equation arou
a basic two-dimensional velocity profile leads to the Or
Sommerfeld equation. Note that this equation cannot be
rectly integrated and analytical solutions may be obtain
only in some limiting cases:13 long waves (k→0), short
waves (k→`) and small Reynolds numbers (Re!1). How-
ever, such analysis only deals with the in plane dissipat
and not with the preeminent transverse dissipation existin
the set-up. To take into account this dissipation, we bui
new phenomenological equation. Starting from Eq.~1!, we
take into account the viscous stresses on the two wallsz
direction in an equivalent viscous drag force. This forc
readsf52bu whereb is a constant andu the gap averaged
velocity. This modified Navier–Stokes equation, which a
pears now as a mixing of Euler and Darcy equation, read

]u

]t
1~u.¹!u52

1

r
¹p2

12n

e2 u, ~11!

if we chooseb5212n/e2 in order to find the Darcy law in
the limit of stationary pure viscous flow. Similar equatio
can be obtained by averaging Navier–Stokes equa
through the gap with the assumption of a parabolic veloc
profile ~Appendix!. The same factorb is found but a numeri-
cal prefactor (6/5) appears in front of the inertial term. Th
prefactor has only minor effects.

Equation~11! being a two-dimensional one, it is conve
nient to introduce the stream functionc and the equation
reduces to

]Dc

]t
1~u.¹!Dc52

12n

e2 Dc. ~12!

Small perturbations of the formf(y)exp@ik(x2ct)# superim-
posed to the basic stationary and unidirectional flow of
locity profile U0(y) along x direction are governed by th
following modified Rayleigh equation:
3271P. Gondret and M. Rabaud
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12n

ke2 D S d2f

dy2 2k2f D2
d2U0

dy2 f50. ~13!

Solving this modified Rayleigh equation for the discontin
ous velocity profile~Fig. 6! and imposing the usual continu
ity of displacement at the interfacey50, the jump condition
for the pressure at the interface due to surface tension an
exponential decays aty56` leads now to the following
dispersion relation:

c22S 2
r1U11r2U2

r11r2
2 i

12~m11m2!

~r11r2!e2kD c1
r1U1

21r2U2
2

r11r2

2
Drg1gk2

~r11r2!k
2 i

12~m1U11m2U2!

~r11r2!e2k
50. ~14!

Note that, by contrast to the inviscid case, one can
change the frame of reference in order to obtain a uni
velocity parameterDU5U12U2 instead of the two veloci-
ties U1 and U2 . Indeed, the dissipation on the walls kil
here the galilean invariance. Since the two velocities
linked by the relationm1U15m2U2 , we can chooseU1 to be
the control parameter and we introduce the ra
«5 m1 /m25 U2 /U1 .

The onset of the instability corresponds toci50, so to a
velocity U1 which satisfies

U1
2>S 11«

12« D 2 1

r11r2«2 S Dr
g

k
1gkD . ~15!

The critical wave-number is the inverse of the cap
lary length as in the Kelvin–Helmholtz theory
kc51/l c5(Drg/g)1/2. The corresponding minimum velocit
threshold is then:

U1min
5F S 11«

12« D 2 2~Drgg!1/2

r11r2«2 G1/2

. ~16!

For U1>U1min
, the unstable waves are those of wav

numbers in the bandwidth@kmin ;kmax# of extrema

kmax/min5
r11r2«2

2g S 12«

11« D 2

U1
2

6F S r11r2«2

2g S 12«

11« D 2

U1
2D 2

2
Drg

g G1/2

. ~17!

The wave velocity at the marginal stability (ci50) is
found to be

cr5
m1U11m2U2

m11m2
, ~18!

which is exactly the wave velocity in the pure viscous theo
~cf. Eq. ~10!!.

In the case where the two fluids have very different v
cosities as in liquid–gas flow («!1), Eqs.~16!, ~17!, and
~18! reduce to:

U1min
'S 2~Drgg!1/2

r1
D 1/2

, ~19!

kmax/min'
r1

2g
U1

26F S r1

2g
U1

2D 2

2
Drg

g G1/2

, ~20!
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cr'2
m1

m2
U1 . ~21!

The expressions of the velocity threshold~Eq. ~19!! and of
the critical wave-numbers~Eq. 20! are the same as those
given by the KH theory when consideringr1!r2 and
U2!U1 as for the liquid-gas flow~cf. Eqs.~7! and ~8!!. By
contrast, the wave velocity~Eq. ~21!! is the one given by the
pure Darcy’s theory: It is proportional to the gas velocity and
inversely proportional to the viscosity of the liquid. Then the
derived ‘‘Kelvin–Helmholtz–Darcy’’ ~KHD! theory splits
the effects of viscosity and inertia: On the one hand, th
wave velocity is governed by the viscosity and, on the othe
hand, the velocity threshold and growing wave-numbers a
governed by inertia.

D. Comparison between the theories and the
experimental results

The wave velocitycr and the temporal growth rates as
a function of the wave-numberk given by the three different
theories presented above are shown in Fig. 7 for parame
values corresponding to the experiments. The KHD theor

FIG. 7. Theoretical phase wave velocitycr ~a! and temporal growth rates
~b! as a function of wave-numberk for the three different theories: Kelvin–
Helmholtz ~— - —!, Darcy ~---!, and Kelvin–Helmholtz–Darcy~—! with
values of parameters corresponding to the experimental set-up:U1

55 m/s; r151.28 kg.m23; r25965 kg.m23; m151.7531025 Pa.s; m2

510031023 Pa.s;g520.631023 N/m; e50.350 mm;g59.81 m/s2.
P. Gondret and M. Rabaud
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leads to values of wave velocity very near to the ones pr
dicted by Darcy theory so that the two corresponding curv
cannot be separated. The KH theory gives much higher v
ues since the friction with the walls is not taken into accoun
in this inviscid theory. The bandwidth of unstable wave
numbers is the same in the KH and KHD theories~Fig. 7~b!!
but the temporal growth rates is much smaller in the KHD
theory than in the KH theory. This can be explained by th
dissipation on the walls. For the stable wave-numbers,s
50 in the KH theory since the system is non dissipative, b
s,0 for the Darcy and KHD theories since the correspond
ing systems are dissipative.

The functionscr(k) ands(k) given by the KHD theory
are shown in Figs. 8~a! and 8~b!, respectively, for different
values of the air velocityU1 . The threshold is for
U1KHD

'4.67 m/s which is very close to the experimenta
threshold of the instabilityUcgas

54.72 m/s. The phase wave
velocity increases linearly with the gas velocity~Fig. 8~a!!
and the value at the threshold iscr KHD

51.6 mm/s which is of
the order of the experimental valueVw51 mm/s. The tem-
poral growth rate issKHD520.35 s21 at U154 m/s and the
slope of the growth rate is thenaKHD50.5 m21 which is of
the order of the experimental valueaexp50.2 m21. The com-

FIG. 8. Phase velocitycr ~a! and temporal growth rates ~b! as a function of
the wavenumberk given by the Kelvin–Helmholtz–Darcy theory for differ-
ent gas velocityU1 : U154 ~---!, 4.67 ~—!, and 5 m/s~— - —!.
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parison between the experimental results and the predict
of the KHD theory is quite satisfying. A much more com
plete comparison dealing with the influence of the thickn
and of the liquid viscosity will be reported in a next pape

IV. CONCLUSION

We have reported results concerning a shear flow in
bility at the interface between a gas and a liquid in a Hel
Shaw cell. In this high dissipative configuration, the thres
old of the instability is surprisingly governed by inertia onl
when the wave velocity and the growth rate are both g
erned by the strong viscous effects. All these experime
results are compatible with a Hopf bifurcation and are w
predicted by the linear stability analysis of an equation m
ing Euler and Darcy equations. This is the reason why
call the present instability the ‘‘Kelvin–Helmholtz–Darcy
instability.
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APPENDIX: GAP AVERAGING OF THE
NAVIER–STOKES EQUATION

The KHD analysis was based on Eq.~11! where we
modelize the viscous dissipation by adding a viscous d
force to the Euler equation. It is possible to justify this ter
as presented below.

Starting from Navier–Stokes equation, we assume t
there is no transverse velocity and that the two second
rivatives inx andy are negligible compared to thez deriva-
tive. The equation for the velocityu(x,y,z) is then

]u

]t
1~u.¹!u52

1

r
¹p1n

]2u

]z2 . ~A1!

We assume now that the velocity is parabolic inz:

u~x,y,z!5
3

2
ū~x,y!F12S 2z

e D 2G , ~A2!

where ū(x,y) is the gap-averaged velocity as in the usu
Darcy’s approach. Averaging Eq.~A1! through the gap, we
obtain

]ū

]t
1

6

5
~ ū.¹!ū52

1

r
¹p2

12n

e2 ū. ~A3!

This equation differs from our model Eq.~11! only by
the numerical factor 6/5 in front of the inertial term. Simila
averaging method has been used in granular layer flow
Savage and Hutter.19 Solving Eq.~A3! with the discontinu-
ous profile of Fig. 5 leads now to the following dispersio
relation:
3273P. Gondret and M. Rabaud
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5

r1U11r2U2

r11r2
2 i

12~m11m2!

~r11r2!e2kD c1
6

5

r1U1
21r2U2

2

r11r2

2
Drg1gk2

~r11r2!k
2 i

12~m1U11m2U2!

~r11r2!e2k
50 . ~A4!

The onset of the instability corresponds to a velocityU1

which satisfies

U1
2>

5

2

~11«!2

12«

1

3r122r1«12r2«223r2«3 S Dr
g

k
1gkD .

~A5!

The corresponding critical wave-number is again the
verse of the capillary lengthkc51/l c5(Drg/g)1/2 and the
corresponding minimum velocity threshold is then

U1min
5F5

~11«!2

12«

~Drgg!1/2

3r122r1«12r2«223r2«3G1/2

.

~A6!

For U1>U1min
, the unstable waves are those of wav

numbers in the bandwidth@kmin ;kmax# of extrema

kmax/min5
~12«!~3r122r1«12r2«223r2«3!

5~11«!2g
U1

2

6F F ~12«!~3r122r1«12r2«223r2«3!

5~11«!2g
U1

2G2

2
Drg

g G1/2

. ~A7!

The wave velocity at the marginal stability (ci50) is
again found to be

cr5
m1U11m2U2

m11m2
. ~A8!

In the case where the two fluids have very different v
cosities as in liquid–gas flow («!1), Eqs.~A6!, ~A7!, and
~A8! reduce to:

U1min
5F5

6

2~Drgg!1/2

r1
G1/2

, ~A9!

kmax/min5
3r1

5g
U1

26F S 3r1

5g
U1

2D 2

2
Drg

g G1/2

, ~A10!

cr'2
m1

m2
U1 . ~A11!
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The threshold of the instability is then only modified by th
factor A5/6 when compared to the previous KHD analys
~Eq. ~19!!. The wave velocity is not changed at all. The ba
of unstable wave-numbers and so the growth rate are
unchanged when the velocityU1 is made dimensionless b
the critical velocityU1min

. Equations~11! and~A3! thus lead
to very similar dynamics. Note, that by a convenient resc
ing of t andr ~m being kept constant!, Eq. ~A3! is equivalent
to Eq. ~11! and thus the similarity of the stability analysis o
the two equations is not surprising.~We thank Professor G
M. Homsy for pointing out this scaling.!
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