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ABSTRACT

Multiple sclerosis (MS) patients often present hyper-intense
T2-w lesions in the spinal cord. The severe imbalance be-
tween background and lesion classes poses a major challenge
to Deep Learning segmentation approaches, requiring for ad
hoc strategies. Careful selection of the loss function and
adjustment of the conventional 0.5-thresholding may help
mitigating this issue. Our results show the performance ad-
vantages of loss functions based on the Tversky Index and
the benefits of threshold tuning over more standard settings
and the state-of-the-art model for MS lesion segmentation on
spinal cord MRI.

Index Terms— Multiple sclerosis, segmentation, spinal
cord, loss function, decision threshold, medical imaging

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory-demyeli-
nating disease of the central nervous system [1]. Magnetic
Resonance Imaging (MRI) is fundamental to characterizing
and quantifying MS lesions. The number and volume of
lesions are used for MS diagnosis, to track its progression,
and to evaluate treatments [2]. Accurate identification of MS
lesions in MR images is extremely difficult due to variability
in lesion location, size, and shape, in addition to anatomical
variability between subjects. Since manual segmentation re-
quires expert knowledge, it is time-consuming and prone to
intra- and inter-expert variability, methods to automatically
segment lesions are required.

Deep Learning approaches have shown remarkable perfor-
mances in medical imaging segmentation tasks. While auto-
matic MS lesion segmentation on brain MRI is a well-studied
and addressed problem [3], automatic MS lesion segmenta-
tion on spinal cord MRI has rarely been considered [2]. In
this work we focus on the latter. It is important to emphasize
that MS lesion segmentation in spinal cord MRI remains a
more complex task than in brain MRI due to lesion contrast,
image quality, a limited amount of annotated data, and image

variability arising from the diversity of MR scanners and ac-
quisition protocols.

A fundamental challenge in MS lesions segmentation in
spinal cord MRI is handling the high-class imbalance. Loss
functions used in the training of deep learning models differ
in their robustness to class imbalance. Careful selection of the
loss function is thus crucial. To inform loss function choice,
we perform a large-scale loss function comparison.

Loss functions based on the Cross-Entropy, Dice Similarity
Coefficient, and Tversky Index have been proposed in the
literature to mitigate the effect of imbalanced data. Ma et al.
[4] conducted one of the most exhaustive evaluation of seg-
mentation loss functions in medical imaging, comparing 20
losses over four organ segmentation tasks. None of the losses
could consistently achieve the best performance on the four
tasks, indicating the importance of conducting a loss function
comparison to identify the optimal loss for the dataset. On the
other hand, Jadon et al. [5] reported significantly improved
performance metrics for the segmentation of brain tissues
using Tversky and Focal Tversky losses, compared to Dice
score variants. In the work from Gros et al. [2] on spinal cord
MS lesions segmentation, a standard Dice Loss function was
used, without reporting the investigation of alternative losses.
Recent studies suggest that the decision threshold on the
output probability map (p-map) may play an important role
when dealing with highly imbalanced data [6]. In binary
segmentation, the decision threshold is conventionally set to
0.5. Optimizing this value may improve the detection of the
minority class, i.e. lesion class in our case. Compared to
other approaches, adjustment of the decision threshold has
the advantage of not altering the input data nor requiring re-
training of the model, as it can be applied as a postprocessing
step.

This work investigates state-of-the-art segmentation losses
and the relevance of adjusting the decision threshold in the
complex, highly imbalanced and underexplored task of MS
lesion segmentation on spinal cord MRI.



2. MATERIAL AND METHODS

The methods evaluated in the context of this work are inte-
grated into a pipeline developed in Python 3.8 and based on
TensorFlow 2.9 as well as the Spinal cord toolbox (SCT) [2].

2.1. Loss functions

Model convergence at training and performance scores de-
pend on the loss function. To handle class imbalance in image
segmentation, the Dice Loss was proposed as an alternative
to the widely used Binary Cross Entropy (BCE) [7], and in
combination with the BCE under the name of Combo Loss
[8]. The Log-Cosh Dice Loss is a recently proposed variant
that tackles the non-convex nature of the Dice Loss to facil-
itate model convergence [5]. The Generalized Dice Loss is
another variant introduced to handle highly imbalanced seg-
mentation tasks, relying on weighting factors applied to the
different classes based on their relative representation in the
training data [9]. The Tversky Loss [10], an extension of the
Dice Loss, incorporates weights to control the trade-off be-
tween false positive (FP) and false negative (FN) samples.
The Focal Tversky Loss extends the Tversky Loss by intro-
ducing a ~y parameter to make the loss more sensitive to diffi-
cult samples and well-adapted to highly imbalanced problems
[11]. In the context of this work, the default parameter values
proposed in the original associated publications have been se-
lected (i.e., for the Tversky Loss, a = 0.7, and for the Focal
Tversky Loss, v = 0.75).

2.2. MRI Data Acquisition

The dataset included 161 T2-w cervical and thoracic MRI
scans from 108 subjects (35.84+10.42 years old, 86 women).
All patients were diagnosed with a form of MS. Acquisitions
were performed in 13 different sites (four brands). Image res-
olution is (0.58+0.12, 0.584-0.12, 2.81+0.20) mm?®. Trained
neurologists manually segmented lesions. Training, valida-
tion and test sets were generated by assigning a subject to a
single set while balancing for lesion loads, as shown in figure
1. One test set (thr-optimization set) was used for optimising
the decision threshold, the other test set (unseen set) was used
at the test time only. All scans without expert-detected lesions
were assigned to the unseen set.

2.3. Preprocessing

The preprocessing steps are similar to the ones proposed in
[2]. Input images were reoriented and resampled to 0.5 mm
isotropic images through linear interpolations. Images were
cropped by selecting 48x48 2D patches in each axial plane
around the SC centerline voxels [12]. 48x48x48 3D patches
were then selected along the inferior-to-superior axis. An
overlap of 75% between consecutive patches was introduced
as a data augmentation technique. Intensity normalization
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Fig. 1. Boxplots for lesion number and volume in the train-
ing (62 MRI scans), validation (13), thr-optimization (14) and
unseen set (26, 46 with no MS lesions are not included here).
Points are jittered to improve visualization.

was applied on stacked patches obtained from a given vol-
umetric image to homogenize the intensity distributions [13].
Finally, each patch was normalized to zero mean and unit
standard deviation.

2.4. Model Training

The models trained to segment spinal cord MS lesions were
based on a 3D-Unet architecture [14]. 16, 32, and 64 filters
were selected, associated with 3x3x3 convolutions, 2x2x2
max-pooling layers, and batch normalization applied after
each convolution layer. We used a batch size of 8, an Adam
optimizer, and an initial learning rate of 10~%, except when
using the Combo Loss, which suggested using an Adadelta
optimization with a learning rate of 1. The learning rate
was decreased by a factor of 2 after every 15 epochs if there
was no decrease in validation loss. The training process was
stopped after 300 epochs, the model providing the best vali-
dation loss being selected at the end of each experiment. Data
augmentation operations were applied, including randomly
mirroring and rotating patches by 90°.

2.5. Prediction and Postprocessing

Performing predictions on overlapping patches have been
shown to generate probability maps of increased reliability
[15]. As in-house experiments have confirmed this aspect,
predictions from 75% overlapping patches have been selected
in the context of this work. Therefore, for overlapping re-
gions, the average probability at a given voxel was computed
to generate the output p-maps.

The predicted binary map was obtained by applying a de-
cision threshold on the corresponding p-map. In our exper-
iments, both the conventional 0.5 and the optimal decision
threshold values were assessed. The median voxel-wise F1



score calculated on the first test set was used to select the op-
timal threshold associated with each loss function. Threshold
values were evaluated over the range of 0 to 1 with an interval
of 0.05. The unseen test set was used to assess the influence
of these optimal thresholds compared to the conventional
value of 0.5.

2.6. Evaluation metrics

Evaluation metrics were based on those presented in Gros et
al. [2] and brain MS segmentation challenges [3]. Sensitiv-
ity, precision, and voxel-wise F1-score (V-F1) were used to
measure the voxel-wise agreement between the ground truth
and the binarized predictions. Similar metrics were defined at
the lesion level, including lesion-wise sensitivity, lesion-wise
precision, and lesion-wise F1 score (L-F1). We considered a
candidate lesion as correctly detected if the lesion connected
voxels overlapped the ground truth connected voxels by at
least 25% and did not go outside by more than 70%. Subject-
level sensitivity and specificity were also calculated to assess
the capability of a model to classify subjects with and without
ground truth lesions correctly. The Wilcoxon signed-rank test
was used to determine whether the observed metrics differ-
ences between two methods were significant.

3. EXPERIMENTAL RESULTS
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Fig. 2. Boxplots at each decision threshold value for BCE,
SCT, Focal Tversky and Tversky losses. One point corre-
sponds to one subject.

The results presented in tablel indicate that loss functions
based on the standard DSC lead to high voxel-wise precision
and low voxel-wise sensitivity scores, the predictions being

Fig. 3. From the left: ground truth (yellow) overlaid a sagittal
T2-w image (from the unseen test set); segmentation with the
Tversky Loss, and with the Dice Loss. The binary output was
obtained by thresholding the p-map at the optimal value. FNs
and FPs voxels are white and red, respectively; TP voxels are
green.

biased towards the non-lesion class , i.e. many lesion voxels
are missed yielding a high number of FN voxels. The use of
the Generalised Dice Loss and loss functions based on the
Tversky Index results in a better trade-off between voxel-wise
precision and sensitivity. The highest V-F1 are achieved with
the Focal Tversky Loss (0.398 on the threshold-optimization
(thr-optimization) set (0.402 on the unseen set)) and Tversky
Loss (0.424 (0.398)). The parameters of these loss functions
were designed to weight sensitivity higher than precision,
which resulted in a consistent improvement in the perfor-
mance metrics on both datasets.

The detection and count of lesions is vital in monitoring MS
patients undergoing disease-modifying treatments. In this
context, lesion-wise metrics have more value for clinicians
than voxel-wise metrics. As both FP and FN lesions are
undesirable, the L-F1 is favored, i.e. the harmonic mean of
precision and sensitivity. Similarly to the voxel-wise analysis,
the highest L-F1 is observed for losses based on the Tversky
Index (TL: 0.523 on the thr-optimization set (0.336 on the
unseen set); FTL: 0.467 on the thr-optimization set (0.367 on
the unseen set)).

In this study, the decision threshold was adjusted to maximize
the V-F1. Figure 3 shows an example of the segmentation out-
puts obtained with the DSC Loss and the Tversky Loss on
an image of the unseen test set using the optimized threshold
values. The results presented in table2 suggest that optimiz-
ing the decision threshold can affect the overall performance
of a model with a significant boost in both the V-F1 and L-F1
metrics. Significant improvements were reported for BCE
(V-F1 +20% (+32%), L-F1 +37% (+27%)), the state-of-the-
art SCT model (V-F1 +14% (+16%), L-F1 +20% (+39%)),
and slight improvements for DSC (V-F1 +20% (+1.5%), L-F1
+37% (+1.5%)). For all these loss functions, the performance
metrics improved by lowering the decision threshold to a
value lower than 0.5.

In figure 2, we report the voxel-wise F1 score boxplots for
the BCE, SCT, Focal Tversky and Tversky losses. While
the Tversky Loss showed minor improvements (V-F1 +2%
(+2%), L-F1 +0% (+6%)), the stability of its performance
scores across the range of decision thresholds suggests that



Table 1. Metrics (median (mean =+ std)) obtained on the thr-optimization and the unseen subsets (first and second row associated
with each loss function respectively), using 0.5 as a decision threshold value.

Loss L-sensitivity L-precision L-F1 V-sensitivity V-precision V-F1 P-sensitivity | P-specificity
BCE 0(0.13+0.27) 0(0.214£0.323) 0(0.15340.279) 0.113 (0.139£0.156) | 0.691 (0.542+0.434)  0.202 (0.207+0.208) 0.357 0413
(0.124+0.338) 0(0.27640.38) 0 (0.16+0.328) 0.007 (0.087-0.228) | 0.381 (0.472+0.417)  0.014 (0.14+0.242) 0.308 0913
Combo 0.427 (0.412+0.375) | 0.417 (0.39+0.308) 0.5 (0.34640.247) 0.314 (0.323+£0.25) | 0.484(0.48+0.328)  0.413 (0.345+0.219) 0.714 0913
0(0.233+0.38) 0(0.299+0.298) 0 (0.246+0.295) 0.124 (0.179+0.338) | 0.611 (0.461+0.284)  0.218 (0.23+0.248) 0.462 0.522
Dice 0.438 (0.4551+0.34) 0.5 (0.4314£0.345) | 0.411 (0.404+0.297) | 0.399 (0.417+0.263) | 0.517 (0.482+0.288)  0.443 (0.395+0.2) 0.786 0.283
0.333(0.352+0.398) | 0.278 (0.2824+0.341) | 0.297 (0.286+0.318) | 0.279 (0.311£0.294) | 0.477 (0.448+0.366)  0.351 (0.306+0.27) 0.615 0.304
Focal 0.5 (0.468+0.379) 0.375 (0.349+0.29) | 0.467 (0.379£0.292) | 0.468 (0.44440.275) | 0.395 (0.411+0.303)  0.398 (0.353+0.208) 0.714 0.37
Tversky 0.4 (0.458+0.355) | 0.292 (0.331+0.435) | 0.367 (0.341+0.362) | 0.373 (0.364+0.275) | 0.395 (0.382+0.446)  0.402 (0.332+0.275) 0.654 0.13
Generalized | 0.25(0.3274+0.327) | 0.171 (0.2620.313) | 0.222 (0.254£0.253) | 0.526 (0.5324+0.294) | 0.351 (0.325+0.228)  0.415 (0.354+0.212) 0.643 0.522
Dice 0.464 (0.439+0.364) | 0.333(0.295+0.3) | 0.382(0.326+0.296) | 0.523 (0.471+0.302) | 0.383 (0.409+0.346) 0.389 (0.361+0.229) 0.654 0.283
Log-Cosh 0.5 (0.535+0.366) | 0.472 (0.465+0.338) | 0.45 (0.449+0.276) | 0.348 (0.336+0.185) | 0.564 (0.517+0.308) 0.392 (0.368+0.183) 0.857 0.674
Dice 0.225 (0.352+0.235) | 0.156 (0.2924+0.434) | 0.188 (0.292+0.273) | 0.242 (0.267+0.118) | 0.446 (0.407+0.484) 0.346 (0.287+0.178) 0.538 0413
SCT 0.225 (0.265+0.304) | 0.25(0.314+0.32) | 0.243 (0.276+0.301) | 0.17 (0.204+0.181) 0.8 (0.598+0.401)  0.282 (0.288+0.232) 0.643 0.13
0(0.278+0.392) 0(0.362+0.352) 0(0.2974+0.323) 0.132(0.222+0.28) | 0.764 (0.525+0.353)  0.23 (0.265+0.248) 0.462 0.674
Tversky 0.5 (0.545+0.329) 0.5 (0.499+0.33) 0.523 (0.487+0.278) | 0.41 (0.379+0.218) | 0.47 (0.469+0.255)  0.424 (0.399+0.206) 0.857 0.304
0.367 (0.399+0.41) | 0.25(0.321+0.333) | 0.336 (0.31840.305) | 0.3 (0.317+0.303) 0.52 (0.4214+0.31)  0.398 (0.316+0.254) 0.615 0.37

Table 2. Metrics (median (mean =+ std)) obtained on the thr-optimization and the unseen subsets (first and second row asso-
ciated with each loss function respectively), using an optimized decision threshold value based on the DSC. Significant metric
differences (p-value <= 0.05) obtained by means of the 0.5 and optimal thresholds are highlighted in bold.

Optimal

Loss threshold L-sensitivity L-precision L-F1 V-sensitivity V-precision V-F1 P-sensitivity | P-specificity
BCE 0.15 0.369 (0.408+0.366) | 0.417 (0.386+0.337) | 0.365 (0.354+0.289) | 0.438 (0.469+0.294) | 0.352 (0.39440.274) | 0.404 (0.36140.198) 0.714 0.239
0.15 0.267 (0.331+0.355) | 0.25(0.272+0.304) | 0.265 (0.277+0.289) | 0.286 (0.337+0.323) | 0.396 (0.36+0.321) | 0.333 (0.293+0.244) 0.577 0.239
Combo 0.05 0.25 (0.37£0.401) 0.225 (0.218+0.213) | 0.211 (0.26£0.257) | 0.475 (0.419+0.293) | 0.375(0.35+0.272) | 0.419 (0.337+0.226) 0.643 0.174
0.05 0.267 (0.312+0.354) | 0.131(0.2+0.257) | 0.184 (0.218+0.258) | 0.284 (0.275+0.285) | 0.42(0.39240.329) 0.3 (0.271+0.245) 0.538 0.174
Dice 0.3 0.5 (0.491+£0.358) 0.5 (0.377+0.277) 0.5 (0.387-£0.26) 0.441 (0.4461+0.265) | 0.461 (0.441+0.277) | 0.459 (0.392+0.201) 0.786 0.261
0.3 0.333 (0.391£0.391) | 0.292 (0.305+0.338) | 0.31 (0.308+0.318) | 0.324 (0.343+0.313) | 0.421 (0.411+0.326) | 0.364 (0.313+0.276) 0.615 0.261
Focal 0.15 0.5 (0.466+0.356) 0.31 (0.333+0.326) | 0.408 (0.35+0.263) | 0.546 (0.51740.279) | 0.336 (0.352+0.292) | 0.421 (0.35140.219) 0.714 0.217
Tversky 0.15 0.359 (0.4140.382) | 0.171 (0.244-:0.269) | 0.261 (0.281-0.278) | 0.429 (0.444--0.344) | 0.23 (0.294:-0.263) | 0.306 (0.311-0.249) 0.654 0.217
Generalized 0.75 0.382(0.379£0.332) | 0.196 (0.305+0.345) | 0.245 (0.295+0.273) | 0.486 (0.49+0.293) | 0.386 (0.37940.265) | 0.443 (0.36740.213) 0.714 0.196
Dice 0.75 0.45 (0.441+0.394) | 0.279 (0.351+0.372) | 0.341 (0.353+0.333) | 0.438 (0.414+0.331) | 0.45 (0.464+0.32) | 0.406 (0.359+0.257) 0.654 0.196
Log-Cosh 0.2 0.5 (0.578+0.347) 0.311 (0.424+0.339) 0.452 (0.419+0.25) | 0.409 (0.412+£0.232) | 0.456 (0.449+0.301) | 0.432 (0.375+£0.193) 0.857 0.196
Dice 0.2 0.208 (0.32640.37) | 0.121(0.197£0.234) | 0.168 (0.2360.27) | 0.344 (0.347+0.335) | 0.323 (0.333+0.323) | 0.368 (0.28940.252) 0.538 0.196
SCT 0.05 0.369 (0.459+0.399) | 0.438 (0.398+0.334) | 0.441 (0.414+0.348) 0.334 (0.3£0.233) 0.615 (0.494+0.342) 0.42 (0.361+0.26) 0.714 0.326
0.05 0.4 (0.418+0.404) 0.268 (0.339+0.351) | 0.382 (0.339+0.316) | 0.296 (0.342+0.304) | 0.628 (0.494+0.348) | 0.388 (0.347+0.253) 0.615 0.326
Tversky 0.3 0.55 (0.58140.35) | 0.444 (0.4574+0.299) | 0.523 (0.464+0.238) | 0.456 (0.419+0.235) | 0.424 (0.43+£0.25) | 0.443 (0.399+0.207) 0.857 0.261
0.3 0.45 (0.4394+0.389) 0.25 (0.3294+0.315) 0.4 (0.337+0.308) 0.358 (0.356+0.318) | 0.454 (0.42+0.333) 0.41 (0.332+0.242) 0.654 0.261

it is an apt solution for our task and dataset. A similar con-
clusion can be drawn for the Focal Tversky Loss, for which a
minor deterioration was observed across datasets while main-
taining a rather stable behavior over the threshold range. A
significant decrease in model performance with conventional
0.5-thresholding can be observed for BCE and SCT model.
Perturbations of as little as +0.05 can induce a median reduc-
tion in V-F1 score of 10%.

Such observations indicate that when dealing with hetero-
geneous data and prone to high-class imbalance, certain
schemes of the loss function and decision threshold are better
suited to cope with the bias-variance trade-off and, thus, to
accommodate the metrics of interest, i.e. V-F1 and L-FI.
Similarly to voxel-wise and lesion-wise metrics, Tversky
Loss tends to have a better trade-off when looking at the
P-sensitivity and P-specificity (see tablel and table2). While
Focal Tversky Loss and Generalized Dice Loss have a higher
patient detection rate, both losses struggle when presented
with non-lesion subjects.

To put the work in context, our results indicate that the
combination of the Tversky Loss with an adjusted decision
threshold performs very well compared to the latest results in
T2-w MS spinal cord lesion segmentation [2].

4. CONCLUSION

This study evaluates segmentation loss functions proposed in
the literature to mitigate the issue of imbalanced data, with
reference to the complex task of MS lesion segmentation in
spinal cord MRI. In addition, the adjustment of the decision
threshold on the output p-map is explored to further improve
the performance metrics of interest. Results indicate that loss
functions based on the Tversky Index and with minimal ad-
justment of the decision threshold can yield higher median
scores and less dispersed output scores than more standard
settings. Future work will aim to understand how the vari-
ability due to acquisition scanners and protocol, and patient
population, can affect the test metrics and can be eventually
addressed.
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