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A fine analysis of the statistics of dry granular avalanches in a rotating drum set-up reveals that,
beyond the fluctuations, the angle at which an avalanche ends is correlated experimentally to the
angle at which the avalanche starts. This correlation resulting from inertia defines an intermediate
“neutral” angle that characterizes the corresponding granular pile. In addition, an intensive study
of the dynamics of the avalanche shows that the time duration of the avalanche is correlated to its
amplitude, being smaller for higher amplitude. The time relaxation of the pile slope during any
avalanche, governed by the deviation of the starting angle from the neutral angle, follows a master
curve. A simple model recovers most of the results and contributes to a better understanding of the
physics of the avalanche flow.
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Granular matter has been extensively studied by physi-
cists for about two decades, especially the granular flows
in different geometries — chute flows, rotating drums,
inclined planes, confined piles, shear cells — searching
for the granular rheology [1] with the unknown inter-
nal stresses of collisional or frictional origin. A better
knowledge of granular flows is crucial in numerous natu-
ral or industrial situations (debris flows, snow avalanches,
powder handling . . . ). Despite important progress, the
mechanisms that make a pile relaxing by a sudden super-
ficial avalanche flow from the starting angle θm down to
the stopping angle θr are not yet well understood. It is
known that there is experimentally a typical finite value
of avalanche amplitude ∆θ = θm − θr [2], except if the
pile is too small which leads to a power law distribution
without any typical value [3]. The avalanche amplitude
is known to exhibit large fluctuations of order one degree
around a mean value of about few degrees, with a gaus-
sian like distribution [2, 4]. Both characteristic angles θm

and θr have also been found to fluctuate around a mean
value, with smaller fluctuations for θr than for θm. If the
starting angle θm has essentially a geometrical origin [5]
with a slight influence of solid friction or adhesion, ex-
cept for high humidity level [6], the origin of the stopping
angle θr is less clear. A third angle arised from theoret-
ical ideas: The concept of a dynamic or neutral angle
which can be different from the angle of repose θr indeed
emerged progressively [4, 7–10]. This angle is introduced
either as corresponding to the dynamic friction coefficient
µd = tan θd at low velocities [4, 8] or as the angle θn for
which the process of grain accretion compensates exactly
the process of grain erosion [9, 10]. This angle θn was
measured only in an inclined open box experiment [11].
Concerning the time duration of avalanches, if some the-
oretical studies [9, 10] lead to some predictions, the few
experimental studies [2, 12] do not mention any depen-

dence of the duration of avalanches with their amplitude.
Furthermore, no experimental work concerns the detailed
time relaxation of a pile slope except for situations very
far from equilibrium [13–16].

In this Letter, we focus on the relaxation dynamics
of natural granular avalanches. The experimental set-
up is a rotating cylinder of diameter 2R ranging from
8 to 50 cm and width b ranging from 2 to 10 cm. The
drum is half-filled with glass beads of diameter d ranging
from 0.2 to 8 mm. By a classical video camera (750
× 500 pixels, 50 images/s), the entire pile is recorded
and the interface is tracked by image analysis so as to
measure its instantaneous mean slope angle θ(t) with a
typical resolution of 0.01o. The drum is rotating slowly
enough to be in the regime of discrete avalanches: A
quick avalanche flow lasting typically 1 second arises after
typically 1 minute of solid rotation at the drum angular
velocity Ω ≃ 0.02o/s, so that the typical time evolution
of the pile slope is the one of Fig. 1. Note that in this
regime of natural avalanches, the interface remains flat
during the avalanche flow and that no up or down front
are observed. The measurement of the mean slope angle
θ(t) of the pile thus remains pertinent at any time. The
starting angle θm (resp. the stopping angle θr) appears
as the up (resp. down) tips in the “saw tooth” plot of
Fig. 1, fluctuating around the value 25o (resp. 23.5o)
with thus an avalanche amplitude ∆θ around 1.5o.

The fluctuations of θm, θr and ∆θ analyzed for a
set of 340 successive avalanches can be seen in Fig.
2. The corresponding histograms display bell shapes
with the corresponding mean values and standard de-
viation: θm = 25.1o ± 0.3o, θr = 23.4o ± 0.15o and
∆θ = 1.65o ± 0.35o. The θm and θr values are close
but their distributions do not overlap and no avalanches
of amplitude below 0.8o have been recorded. When the
stopping angle θr of any avalanche is plotted as a func-
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FIG. 1: Time evolution of the pile slope θ for glass beads of
diameter d = 1 mm in a drum of diameter 2R = 50 cm and
width b = 5 cm rotating at the angular velocity Ω ≃ 0.018o/s.
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FIG. 2: Histograms of θm and θr, and of ∆θ in inset, for 340
avalanches of glass beads (d = 1 mm) in a rotating drum (2R
= 50 cm, b = 5 cm). (—) Best gaussian fits.

tion of the corresponding starting angle θm, it appears a
weak but unambiguous correlation of negative slope coef-
ficient: Despite large fluctuations, avalanches that start
at a high angle tend to stop at a low angle (Fig. 3). By
this correlation, one can define a “neutral” angle that
would be the angle of zero avalanche amplitude. This
neutral angle θn = 23.7o ± 0.15o is significantly below
the average angle (θm + θr)/2 and above the mean stop-
ping angle θr. As the slope coefficient of the correlation
is −0.22, the mean neutral angle is θn = θr + 0.18∆θ.

Let us now examine how precisely the slope interface
relaxes in time from θm to θr. Figure 4 shows two typ-
ical relaxation curves θ(t) for two different values of the
starting angle θm: We see that the avalanche which starts
at a larger angle θm stops at a smaller angle θr (as
already seen statistically in Fig. 3) in a shorter time
(the neutral angle θn is indeed crossed after ∼ 0.8 s in-
stead of ∼ 1.1 s for the smaller avalanche). By fitting
these relaxation curves by gaussians of the form θ(t) =
θr + ∆θ exp(−t2/τ2) we find a characteristic time τ for
each avalanche. The inset of Fig. 4 shows the same data
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FIG. 3: Stopping angle θr as a function of the starting angle
θm for each of the 340 avalanches of Fig. 2. (⋄) Experimental
results and (- - -) best linear fit of slope −0.22 and intercept
θn ≃ 23.7o with the bisector θr = θm.

in a normalized plot where the reduced deviation of the
slope angle from the neutral angle, θ̃ = (θ−θn)/(θm−θn),
is displayed as a function of the non dimensional time
t̃ = t/τ : The normalized curves corresponding to the two
avalanches collapse onto a single curve close to the gaus-
sian curve θ̃ = −0.22+1.22 exp(−t̃2). Note that we define
for each avalanche a neutral angle by θn = θr + 0.18∆θ
as we believe that θn also fluctuates with the slightly dif-
ferent configurations explored by the pile. By processing
the 340 avalanches in the same way, we obtain the nor-
malized plot of Fig. 5 where the solid line stands for the
mean value whereas the two dotted lines stand for the
corresponding standard deviation. One can see that the
dispersion is rather weak meaning that a unique curve
exists for the time relaxation of the slope angle when
expressed in the appropriate reduced parameters.

The precise determination of the time scale τ of each
avalanche shows that τ is correlated to the avalanche
amplitude ∆θ, τ being smaller for larger ∆θ (Fig. 6).
The detailed analysis of such a dependence τ vs ∆θ has
been achieved by doing experiments with different grain
diameters (0.2 < d < 8 mm), drum radii (4 < R < 25
cm, 30 < R/d < 350) and widths (2 < b < 10 cm,
10 < b/d < 100, 0.1 < b/R < 0.5). The results show
that τ does not vary with d nor with b (except via the
possible ∆θ variation) but scales as (R/g∆θ)1/2 (Fig. 6
and inset). This result will be discussed later.

Let us now present a simple model for the avalanche
dynamics which reproduces our main experimental find-
ings : (i) the stopping angle θr is correlated to the start-
ing angle θm via an intermediate “neutral” angle θn, (ii)
the time relaxation of the pile slope is asymmetric with
respect to θn, with a shape close to half a gaussian curve,
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FIG. 4: Experimental time evolution of θ for two avalanches
(•,◦) of different amplitudes ∆θ, together with the corre-
sponding gaussian fits (—) : (•) θm = 25.64o, θr = 23.25o ,
and τ = 0.64 s (θn = 23.68o); (◦) θm = 24.71o, θr = 23.59o ,
and τ = 0.83 s (θn = 23.79o). The dashed line corresponds
to the neutral angle θn ≃ 23.74o . Inset: same data in the
normalized plot (θ̃ = (θ − θn)/(θm − θn), t̃ = t/τ ).

and (iii) the time duration τ of each avalanche is corre-
lated to its amplitude ∆θ (thus to the initial deviation
θm − θn ≃ 0.82∆θ) with the scaling τ ∼ (R/g∆θ)1/2.

Considering a thin layer of grains of thickness λ in mo-
tion with the velocity v(t) at the pile surface of slope θ,
the slope variation θ̇(t) is related to v(t) by mass con-
servation as the grain flux q(t) per unit width at the
drum center is q(t) = λv(t) = −(R2/2)(dθ/dt). The
time dynamics of the pile slope can then be written by
momentum conservation as

dv/dt = −(R2/2λ)(d2θ/dt2) = g(sin θ − µ cos θ), (1)

where the acceleration of the layer is the result of its
tangential driving gravity force reduced by a resisting
friction force. In this model, the dynamic friction coef-
ficient µ(v) accounts for all the complex grain interac-
tions, i.e. trapping, solid friction and collisions [17], and
can be written as µ(v) = µ0 + f(v). The first term µ0 is
the friction coefficient at vanishing velocity which comes
essentially from trapping effect, and we will see that it
corresponds to the neutral angle θn: µ0 = tan θn. The
second term is a positive function f(v) that stands for
the increase of the effective friction with velocity mainly
due to collisional effects. Eq. (1) can then be written

dv/dt = g sin(θ − θn)/ cos θn − gf(v) cos θ. (2)

At the very beginning of the avalanche, θ(t) ∼ θm and
f(v) ∼ 0 so that the dynamics reduces to a free fall not
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FIG. 5: Normalized time evolution of the reduced pile angle
for the 340 avalanches: Experimental average time evolution
(—) and standard deviation (· · · ). Inset: Same data (—) with
the “free fall” parabolic approximation (— —), the cosine
“collisionless” approximation (−·−) and the adjusted solution
from complete model equation (4) (- - -).

with the usual acting gravity g sin θm but with the effec-
tive reduced gravity g∗ = g sin(θm − θn)/ cos θn ∼ g∆θ.
Similar dynamics would be obtained for a mass slid-
ing with constant friction on an inclined plane. Let us
note that the experimental law for the time duration
of avalanches τ ≃ 0.83(R/g∆θ)1/2 traduces exactly this
free fall dynamics on the characteristic distance ∼ R.
The experimental curves being fitted by the gaussian
law θ(t) = θr + ∆θ exp(−t2/τ2), the initial acceleration
is (d2θ/dt2)t=0 = −2∆θ/τ2. Matching this value with
the model value −g∗(2λ/R2) imposes λ = αR∆θ with
α ≃ 1.6 for the flowing thickness. Let us now describe
the entire dynamics. As θ(t) − θn remains always small,
Eqs. (1-2) can be written for the reduced angle θ̃ as

d2θ̃/dt2 + ω2θ̃ = βf(v), (3)

with ω2 = 2αg∆θ/R cos θn and β = 2αg cos θn/0.82R.
If the f(v) term is neglected, the pile slope dynamics re-
duces to a cosine relaxation of period 2π/ω depending
on the starting angle, and centered on θn as the dynam-
ics for θ is dissipative via the non zero friction term µ0

(θn 6= 0). An harmonic equation has been already de-
rived, e.g. from BCRE models [9, 10], considering a time
evolving thickness λ(t) and a constant downhill velocity
v. The opposite is observed experimentally [18]: v(t)
evolves in time with a constant λ that controls the ex-
ponential decrease of the velocity with the depth, which
justifies the present modeling approach. The cosine so-
lution, as the free fall parabolic approximation, deviates
clearly for t & τ from the experimental curve (see inset
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FIG. 6: (Color online) Avalanche time duration τ as a func-
tion of g∆θ/R for 1500 avalanches. Each data point corre-
sponds to one avalanche and the different colors correspond
to different drum radius R from 4 to 25 cm as indicated in the
gray (color online) range. Inset: Same data as a function of

(R/g∆θ)1/2. (—): Best fit by equation τ = 0.83(R/g∆θ)1/2.

of Fig. 5) meaning that the f(v) term cannot be then
neglected. Assuming for f(v) a general power law depen-
dence f(v) = γ|v|n and taking into account the existence
of an experimental master curve for the pile slope relax-
ation θ̃(t̃), Eq. (3) becomes

d2θ̃/dt̃2 + Aθ̃ = B(dθ̃/dt̃)2, (4)

with A = ω2τ2 ≃ 1.5α and B = R/L, where L ≃ 2.7α/γg
can be considered as a dissipative length for the kinetic
energy [19]. Note that the quadratic dependence we find
for f(v) (see Eq. 4) was already used in Ref. [8], and
is consistent with experimental results on the elementary
process of grain motion [17] and with the recent modeling
of the solid-liquid transition exhibited by granular matter
[20]. In Eq. (4), the larger B is, the larger is the curve
asymmetry with respect to θn (θ̃). The slope dynam-
ics given by the complete model equation (4) is found
close to the experimental slope relaxation for A ≃ 3.6
and B ≃ 2.2 (see inset of Fig. 5), which corresponds to
λ ≃ 2.4R∆θ and L ≃ 0.45R. This dissipative length L,
equal to a fraction of the pile length, is consistent with
the observed typical displacements of surface grains dur-
ing the avalanche. The fact that the flowing thickness
must be λ ∼ R∆θ to fit the experimental time duration
agrees with the scaling arguments of mass conservation
suggested by Ref. [21]. However, this prediction should
be tested experimentally in details by varying carefully
the different parameters as it is hard to conclude whether
the first direct measurements of λ in Ref. [18] support or
not such a scaling.

To conclude, we have shown that the fluctuating stop-
ping angle is correlated to the fluctuating starting angle,
via an intermediate neutral angle, characteristic of the
dry granular pile in its container. This neutral angle
corresponding to an exact erosion/accretion balance cor-
responds also to the effective dynamic friction coefficient
at vanishing velocity of the pile. The correlation with
smaller stopping angles for larger starting angles demon-
strates the role of inertia in a closed box, in contrast to
submarine avalanches which are totally dissipative and
relax in a quasi-static way [22]. For the dry granular
avalanches, the deviation of the starting angle from the
neutral angle governs the subsequent relaxation dynam-
ics beyond the large fluctuations inherent to granular
matter. Finally, the non trivial results that the avalanche
time duration is smaller for larger avalanche amplitude
arises from the existence of both inertia and solid friction.

We acknowledge D. Lhuillier, P.-Y. Lagrée, G.-M.
Homsy, and E. Trizac for their fruitful comments.
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