
HAL Id: hal-03865174
https://hal.science/hal-03865174

Preprint submitted on 22 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-rank Matrix Estimation with Inhomogeneous Noise
Alice Guionnet, Justin Ko, Florent Krzakala, Lenka Zdeborová

To cite this version:
Alice Guionnet, Justin Ko, Florent Krzakala, Lenka Zdeborová. Low-rank Matrix Estimation with
Inhomogeneous Noise. 2022. �hal-03865174�

https://hal.science/hal-03865174
https://hal.archives-ouvertes.fr


LOW-RANK MATRIX ESTIMATION WITH INHOMOGENEOUS NOISE

ALICE GUIONNET*, JUSTIN KO*, FLORENT KRZAKALA, LENKA ZDEBOROVÁ

Abstract. We study low-rank matrix estimation for a generic inhomogeneous output channel through which

the matrix is observed. This generalizes the commonly considered spiked matrix model with homogeneous noise
to include for instance the dense degree-corrected stochastic block model. We adapt techniques used to study

multispecies spin glasses to derive and rigorously prove an expression for the free energy of the problem in the

large size limit, providing a framework to study the signal detection thresholds. We discuss an application of
this framework to the degree corrected stochastic block models.

1. Introduction

Heterogeneity is a fundamental part of real world problems, as opposed to simpler homogeneous modeling
assumptions. In this paper, we investigate the effect of such inhomogeneity in spike models and community
detection.

We focus on a mathematical formulation, common in statistics, inference and machine learning, where the
aim is to reconstruct a rank κ vector x0 in Rκ×N from noisy measurements D of the inner product of the vector.
A substantial amount of recent work focuses on this issue in high dimension, as N → ∞, and under separable
priors on x0. Applications of this setting range from the Wigner and Wishart spiked models, to the stochastic
block model, sparse PCA, or clustering mixtures of Gaussians (see, e.g. [5, 14, 20, 32, 30, 29, 6]). Here, we
study this problem in the case of inhomogeneous noise. In this situation, both the law and the strength of the
noisy measurements D can be different for any pairs i, j,

(1.1) Dij ∼ Pij
(
Dij

∣∣∣ x0
i · x0

j√
N

)
.

One of the main motivation for this problem, on which we shall focus for the concrete application of our results,
is a dense version of a well known model of community detection called the degree-corrected stochastic block
model (DCSBM) [26].

1.1. Highlights of our main contributions. We now summarize our main results that are then described
precisely in Section 2.

(i) We prove a Gaussian universality theorem — that generalizes the “homogeneous” universality
proven in [28] — that shows that for a matrix factorization problem with inhomogeneous noise distri-
butions, a large class of noise models (including for instance sign flips, or additive non-Gaussian noise,
and the DCSBM), one may transform the model into an equivalent Gaussian one. This means that we
need only to consider the case where the distribution Pij is Gaussian. This transformation amounts
into working with the Fisher score matrix. This results is of crucial importance as it allows to study an
entire, complex, and diverse family of statistical model just by focusing on an equivalent spike model
problem [19] with a Gaussian noise. The universality at the level of free energy is stated in Theorem 2.7
and the stronger form at the level of the spectrum is stated in Theorem 2.9.

(ii) Proof of the free energy – Focusing on the spike model with Gaussian noise, we then study the
value of the likelihood ratio with the corresponding null model, (or equivalently the free energy in
statistical physics terminology, or the mutual information in information theory). We then prove a
formula for the asymptotic value of the likelihood ratio in Theorem 2.10 and Theorem 2.13, generalizing
the homogeneous results [14, 18, 29]. This is achieved by using methods from mathematical physics of
spin glasses.

(iii) We study the free energy and determine the phase boundary (see Lemma 2.15) in terms of the
signal-to-noise ratio, focusing in particular to the dense DCSBM model. The phase transition marks a
transition from a phase where it is information theoretically impossible to reconstruct the community
better than a random guess, from a phase where it is possible to do so. This phase boundary is compared
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to the separation of the largest eigenvalue of the matrix after a naive transformation to transfer the
noise profile to the signal. We show that the regime where such a transformation leads to a extremal
eigenvalue is contained in the information theoretically to detect the signal in Proposition 2.18.

1.2. Relation with previous work. The universality property has been used extensively in the homogeneous
cases, see e.g. [31, 28, 39]. It is in particular at the roots of the identification of the dense stochastic block model
with an equivalent spike model [31, 14]. Such spike models [19] have been the subject of many studies over
the last few years, in particular in random matrix theory [5], in statistical inference (e.g. without pretension of
exhaustivity [40, 15, 32, 39, 8, 12]) with many different applications [16, 17, 30].

In particular, the last decade has witnessed spectacular progress in the rigorous approach to the computation
of the asymptotic mutual information for such problems [28, 18, 29, 21, 6, 22]. We shall use these techniques,
in particular the one of [29], in our approach.

Community detection of one of the most fundamental problem of graph theory. The connection between the
low rank factorization problem and the SBM was unveiled in [31, 14]. Here we shall be instead focusing on the
inhomogenous Degree-Corrected SBM [26], a much more realistic model. On a side note, the inhomogenous
setting that we shall be looking at has deep connection with the spatial coupling introduced in [25, 18].

To compute the limit of the free energy, we use a modification of the synchronization mechanisms for multi-
species [35] and vector spin glasses [38, 37]. By adding some extra terms to the perturbations, we can regularize
our posterior probability by introducing the Ghirlanda–Guerra identities while preserving the Nishimori iden-
tities and the concentration of the overlaps. The synchronization of spin glasses was also recently adapted in
other contexts [27, 10, 9, 1, 3] to compute the free energy of various models. A different point of view to study
multispecies models using the TAP approach was also applied recently in [41, 42].

2. Main results

2.1. Setting. We consider the following inference problem. Given a probability measure P0 on Rκ consider a
signal consisting of N independent copies x0 = (x0

1, . . . , x
0
N ) ∈ Rκ×N generated from the product measure

x0 ∼
∏

1≤i≤N

P0(x0
i ).

Given the inner products of the signal w0
ij =

x0
i ·x

0
j√

N
, we generate independently some observed data Dij condi-

tionally on w0
ij according to the probability measure

(2.1) Pij

(
Dij

∣∣∣ x0
i · x0

j√
N

)
.

A critical distinction in these inhomogeneous models is the fact that while the data Dij are generated
independently, the conditional distributions change depending on the indices i, j. The problem we are interested
in is the estimation of the signal given an observation of the observed data D = (Dij)i,j≤N .

The posterior probability of the signal given D can be expressed in the form of a inhomogeneous vector spin
model with respect to an arbitrary function gij and probability measure PX

dP (X |D) =
1

ZgX(D)

∏
1≤i<j≤N

e
gij(Dij ,

xi·xj√
N

)
∏

1≤i≤N

dPX(xi)

where

(2.2) ZgX(D) =

∫ ∏
1≤i<j≤N

e
gij(Dij ,

xi·xj√
N

)
∏

1≤i≤N

dPX(xi) .

Our study will be restricted to the so-called Bayes optimal setting which amounts to make the following hy-
pothesis:

Hypothesis 2.1 (Bayes-optimality). Suppose that P0 = PX and if Pij is the distribution of Dij in (2.1), the
function gij(D,w) is the log-likelihood:

gij(D,w) = lnPij

(
D
∣∣∣ x0

i · x0
j√

N
= w

)
.

where we use in short Pij to denote also the probability density function of Pij .
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Our goal is to compute the normalized free energy

(2.3) FN (g) =
1

N

(
ED
(

lnZgX(D)−
∑
i<j

g(Dij , 0)
))

where ED is the expectation under ⊗Pij(Dij |
x0
i ·x

0
j√

N
)P⊗N0 (x0

i ) and the function ZgX was defined in (2.2). Notice

that, with this definition, the free energy is nothing but the expected log-likelihood ratio (under data generated
by the model) between the likelihood that data are generated by the present model with the likelihood that
they are generated from the null model (where there is no signal at all):

(2.4) FN (g) =
1

N

(
ED log

PD
PD|x0=0

)
.

The limit of the free energy will depend on the following “Fisher Information” matrix, defined as the expec-
tation of the Fisher score:

(2.5)
1

∆ij
= EPij(D|w=0)(∂wgij(D, 0))2, 1 ≤ i < j ≤ N.

We first assume that this matrix of variances is piece-wise constant.

Hypothesis 2.2 (Block-constant Noise Profile). Given n ≥ 1, there exists a partition of [N ]

[N ] =
n⊔
s=1

Is

such that the ∆i,j are constant in the groups Is × It for s, t ∈ {1, . . . , n}

(2.6) ∆ij = ∆st, for i ∈ Is, j ∈ It
and (∆st)s,t≤n are independent of N . Furthermore, the proportions of configurations in each group converges
in the limit

(2.7)
|Is|
N
→ ρs ∈ (0, 1) for all s ≤ n.

We will also assume that ∆s,t belongs to (0,+∞) for each s, t and the n× n symmetric matrix 1
∆ with entries

( 1
∆s,t

)s,t≤n is positive semidefinite.

We finally describe our technical hypotheses. We first need to assume that the signal is compactly supported.

Hypothesis 2.3 (Compact Support). P0 and PX are compactly supported so that x and x0 take values in
[−C,C]κ for some finite C. We also assume that κ is independent of N .

This hypothesis implies that, uniformly, we have

(2.8) |wij | =
∣∣∣xi · xj√

N

∣∣∣ ≤ C2κ√
N
.

This uniform bound will allow to expand the functions gij in the variables wij . To do so, we need to assume
sufficient regularity of the gij , namely that, if ‖ · ‖ denotes the supremum norm:

Hypothesis 2.4 (Regularity of Log Likelihood). ‖∂wgij(·, 0)‖, ‖∂2
wgij(·, 0)‖, ‖∂3

wgij‖ are bounded, uniformly in
1 < i < j ≤ N and N ∈ N.

Remark 2.5. We can weaken the condition on the first derivative of ∂wgij . For the proof of universality in
disorder in Lemma 3.3, we require the third moment EPij(D | w0)[∂wgij(D,w

0)]3 to be bounded for all D and all

w0 in the support.

There assumptions will be used to prove a universality result which states that a class of statistical inference
problems are equivalent to a low rank matrix factorization problem where the noise matrix has a variance profile.
In particular, we shall use as an application the degree-corrected stochastic block model.

2.2. Gaussian Estimation Problems with Covariance Profiles. The key point in our approach is that
the general inhomogeneous vector spin model can be reduced to a model spiked Gaussian matrix model with a
variance profile.
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2.2.1. Effective data matrix. Our first observation says that the derivatives up to the second order derivatives
of the function g encode asymptotically all its information. This holds even without the Bayes optimality
Hypothesis 2.1.

Lemma 2.6 (Free Energy Universality 1)

Suppose that Hypothesis 2.4 and Hypothesis 2.3 are satisfied. Let B be a σ algebra such that the Dij are
independent conditionally to B. Then

FN (g) = FN (ḡ) +O
( κ2

√
N

)
with

ḡij(D,w) = gij(Dij , 0) + ∂wgij(D, 0)w +
1

2
ED[∂2

wgij(D, 0) |B]w2 .

This is a first fundamental universality result that motivates our study. Informally, this means that in order to
perform (in high-dimensions) estimation when we observed the data D given by the likelihood

gij(D,w) = lnPij

(
Dij

∣∣∣ x0
i · x0

j√
N

= w

)
,

we can simply create an effective data matrix Y based on the Fisher score and Fisher information as

(2.9) Yij = ∆ij∂wgij(D, 0), with
1

∆ij
= EPij(D|w=0)(∂wgij(D, 0))2

then the free energy (or the likelihood ratio) depends only on this new matrix.

2.2.2. Equivalent spike model. Under the Bayes optimality assumption Hypothesis 2.1, we can further simplify
the free energy by connecting with a Gaussian spike model. i.e. a model where the effective matrix Y is indeed
sampled from a Gaussian spike model with inhomogeneous noise.

For a N×N Gaussian matrix W , a deterministic N×N standard deviation matrix ∆�
1
2 , and a N×κ matrix

x0 with column vectors x0
i ∈ Rκ we want to estimate

(2.10) Y = Y ∆ = ∆�
1
2 �W +

√
1

N
x0(x0)T

in other words, for 1 ≤ i < j ≤ N
Yij =

√
∆ijWij +

1√
N
x0
i · x0

j .

Note that the ∆ij are non negative by (2.9). We also only care about the off-diagonal terms because the
diagonals are negligible.

The main difference in this setting, in contrast to the standard spiked matrix models, is that the coordinates
i, j play an important role in the behavior of our model. Observe that

∆
− 1

2
ij

(
Yij −

1√
N
x0
i · x0

j

)
follows a standard Gaussian law. Then the random posterior distribution of X = (x1, . . . , xN ) is

dP (X | Y ) =
1

Z
exp

(
−
∑
i<j

1

2∆ij

(
Yij −

1√
N
xi · xj

)2)
dP⊗N0 (X).

After absorbing the terms that do not depend on X into the normalization, the density is encoded by the
Hamiltonian given by

HN (x) =
∑
i<j

1√
∆ijN

Yij(xi · xj)−
1

2∆ijN
(xi · xj)2

=
∑
i<j

1√
N∆ij

gij(xi · xj) +
1

∆ijN
(x0
i · x0

j )(xi · xj)−
1

2∆ijN
(xi · xj)2.(2.11)

We define

(2.12) FN (∆) =
1

N
EY log

∫
eHN (x) dP⊗N0 (x)

where HN (x) is the Hamiltonian defined in (2.11) and ∆ is the variance profile.



LOW-RANK MATRIX ESTIMATION WITH INHOMOGENEOUS NOISE 5

We will prove that solving the free energy of Gaussian estimation problems are equivalent to solving the free
energy of general inhomogeneous vector spin models with a specific choice of parameters in the Bayes optimal
setting:

Theorem 2.7 (Free Energy Universality 2)

Suppose we are in the Bayes optimal setting of Hypothesis 2.1, g satisfies Hypothesis 2.4 and the signal
space is compact as in Hypothesis 2.3. If we define

1

∆ij
= EPij(Y |w=0)(∂wgij(Y, 0))2 =

∫
(∂wgij(Y, 0))2egij(y,0) dy,

then the free energy FN (g) of the inhomogeneous vector spin models (2.3) satisfies∣∣FN (g)− FN (∆)
∣∣ = O(κ3N−1/2).

Remark 2.8. We will need that the matrix 1/∆ satisfy Hypothesis 2.2 or 2.11 to get the limit of the free
energy. Similarly, κ could go to infinity with N provided κ3N−1/2 goes to zero but then one would need to
understand the asymptotics of supQ ϕ(Q): this will be the subject of a separate work.

We will also derive a stronger form of universality at the level of the spectrum of random matrices, instead
of at the level of the free energy. Consider the transformed data matrix

Ỹij√
N

=
1√
N

(
∂wgij(D,w)

)∣∣∣∣
D=Dij ,w=0

i, j ≤ N

where Dij is the random variable with law given by (1.1) and the spiked matrix with variance profile Y ∆

Y ∆ = ∆�
1
2 �W +

x0(x0)T√
N

defined in (2.10). Under some conditions on the smallest entries of the Fisher information matrix 1
∆ (see

Hypothesis 3.13), we have the following universality result for the spectrum.

Theorem 2.9 (Universality of the Spectrum)

If g satisfies Hypothesis 2.2 and the corresponding Fisher information matrix (2.5) satisfies Hypothesis 3.13,
then

(1) Conditionally on x0, the empirical distribution µ1 of the eigenvalues of
Ỹij√
N

and the empirical distri-

bution µ2 of the eigenvalues of 1√
N∆
� Y ∆ satisfy

lim
N→∞

d(µ1, µ2)→ 0

in probability, where d is a distance compatible with the weak topology.
(2) Conditionally on x0, when the dimension goes to infinity, 1√

N∆
� Y ∆ has an extremal eigenvalue

away from the bulk if and only if
Ỹij√
N

does, for almost all ∆ and ρ.

2.3. The Limit of the Free Energy and Consequences. Given a sequence Q = (Qs)s≤n of symmetric
κ× κ positive semidefinite matrices, the replica symmetric free energy is given by

ϕ(Q) = −
n∑

s,t=1

ρsρt
4∆st

Tr(QsQt) +

n∑
s=1

ρsEz,x0 ln

[ ∫
e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)

]
(2.13)

where

Q̃s =

n∑
t=1

1

∆st
ρtQt,

and x0 ∼ P0 and z ∼ N(0, Ir) are independent. We have the following limit of the free energy.

Theorem 2.10 (Bayes Optimal Free Energy)

Suppose that Hypotheses 2.1 and 2.2 are verified, as well as technical Hypotheses 2.3 and 2.4. Then,

lim
N→∞

FN (g) = sup
Q
ϕ(Q).
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We can generalize Theorem 2.10 to the case where ∆ is not piecewise constant, but we then need to approx-
imate it by piecewise constant matrices. We then replace Hypothesis 2.2 by the following:

Hypothesis 2.11. Assume that there exists a non-negative measurable function ∆(s, t) such that

lim
N→∞

sup
s,t∈[0,1]

∣∣∣∣ 1

∆bsNc,btNc
− 1

∆(s, t)

∣∣∣∣ = 0.

We will also assume that there exists ε > 0 such that ∆(s, t) belongs to (ε, 1/ε) for each s, t ∈ [0, 1] and the
symmetric operator 1

∆ on L2([0, 1]) given by

1

∆
f(t) =

∫ 1

0

1

∆(t, s)
f(s)ds

is non-negative.

Remark 2.12. This hypothesis is satisfied if, for instance, ∆ is C0 and bounded below.

Under this hypothesis, Theorem 2.10 generalizes as follows. Let Qs : [0, 1] 7→ Σ+
κ be a measurable function

with values in the set of κ× κ symmetric definite matrices, and define

ϕ̃(Q) := −
∫ 1

0

1

4∆(s, t)
Tr(QsQt)dsdt+

∫ 1

0

dsEz,x0 ln

[ ∫
e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)

]
where

Q̃s =

∫ 1

0

1

∆(s, t)
Qtdt.

Then, we have:

Theorem 2.13 (Bayes Optimal Free Energy with General Kernel)

Suppose that Hypotheses 2.1 and 2.11 are verified, as well as the technical Hypotheses 2.3 and 2.4. Then,

lim
N→∞

FN (g) = sup
Q
ϕ̃(Q).

When the variance profile is discrete and if the probability measure P0 is centered, the maximizers of ϕ
defined in (2.13) satisfy the following fixed point equation

(2.14) Q̃s =

n∑
t=1

ρt
∆s,t

E〈x〉Q̃t〈x〉
T
Q̃t

where 〈·〉Q̃t denotes the average

〈f(x)〉Q̃t =

∫
f(x)e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)∫
e(Q̃sx0+

√
Q̃sz)Tx− x

TQ̃sx
2 dP0(x)

.

This fact allows us to compute the informationally theoretical optimal thresholds of the inhomogeneous estima-
tion problems.

We define the matrix minimal means square estimator of our signal x0(x0)T by

MMSE(N) = min
θ

2

N(N − 1)

∑
i<j

E(x0
i · x0

j − θi,j(Y ))2

where the minimum is over all possible estimators θ that only depend on the data Y . We have the following
result for the limit of the minimal mean squared error.

Corollary 2.14 (Limiting MMSE)

Suppose that Hypotheses 2.1 and 2.2 are verified, as well as technical Hypotheses 2.3 and 2.4. Then for
almost all ∆ and ρ, for any maximizer (Q1, . . . , Qn) of (2.13) and

lim
N→∞

MMSE(N) = EP0
‖xxT‖22 −

n∑
s,t=1

ρsρt Tr(QsQt).
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It follows that the maximizers of (2.13) and the fact that they vanish or not are essential to quantify the
information theoretic thresholds for these inhomogenous factorization problems. Notice that we do not prove
the uniqueness of the maximizers but the uniqueness of the values of (Tr(QsQt))s,t regardless of the choice of
the maximizer, which is enough to guarantee the above statement.

We now classify detectability phase transitions with respect to the size of the variance profiles. Consider the
noise parameter matrices

ρ = diag(ρ1, . . . , ρn) ∈ Rn×n
1

∆
=

(
1

∆s,t

)
∈ Rn×n.

The size of the noise of the inhomogeneous models can be encoded by the largest eigenvalue of the matrix√
ρ 1

∆

√
ρ. Let ‖ · ‖op denote the operator norm of the matrix, which is equivalent to the largest eigenvalue when

the matrix is symmetric and positive semidefinite. We have the following thresholds on recovery.

Lemma 2.15 (Recovery Transitions)

Suppose that Hypotheses 2.1 and 2.2 are verified, as well as technical Hypotheses 2.3 and 2.4. Furthermore,
suppose that P0 is symmetric. We have that

(1) If ∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

<
1

9κ4C6

then limN→∞ FN (g) = 0 and limN→∞MMSE(N) = EP0
‖xxT‖22.

(2) If ∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

>
1

‖Cov(x)‖2op
then limN→∞ FN (g) > 0 and limN→∞MMSE(N) < EP0‖xxT‖22.

Remark 2.16. If P0 is a standard Gaussian, then we can improve the first bound to conclude that if∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

< 1

then the signal is not recoverable, which gives us a sharp phase transition when the priors are Gaussian.
Technically P0 does not have compact support, so it will violate Hypothesis 2.3, so universality of models with
Gaussian signals will require a bit more work to show. However, the computation of the free energy of the
inhomogenous spiked matrix model (2.10) does not require the compact support Hypothesis, so we do have a
rigorous proof of the sharp transition in this case.

There is a gap between the two thresholds in Lemma 2.15. To explore the phase transition, we can numerically
solve for the maximizers of ϕ defined in (2.13) to test if the phase transition is tight.

We first check the behavior for κ = 1, n = 2, and a non-sparse symmetric prior

P0(±1) =
1

4
P0(0) =

1

2
.

Under these assumptions, it follows that ‖Cov(x)‖2op = 1
4 , so the phase transition in part 2 of Lemma 2.15

happens at

∥∥∥∥√ρ 1
∆

√
ρ

∥∥∥∥
op

= 4. For matrix paths ρ(t) and matrix ∆(t) we plot the free energy FN (g) corresponding

to the parameters ∆(t) and ρ(t) versus the operator norm of
√
ρ(t) 1

∆(t)

√
ρ(t) where t ∈ R+. We consider the

following noise profiles

1

∆1(t)
=

[
1
2 0
0 t

]
1

∆2(t)
=

[
t t

2
t
2 t

]
1

∆3(t)
=

[
t
3

t
4

t
4 t

]
with proportion ρ = diag(0.4, 0.6). Figure 1 shows the relationship between the free energy and the inhomoge-
neous noises at the 3 different choices of the matrices ∆ and ρ. We see in the figure that the transition derived
in part 2 of Lemma 2.15 appears tight in this case when the prior is not sparse.

Another example, where the transition in part 2 of Lemma 2.15 does not appear to be tight is when estimating
a sparse signal. We thus now examine the behavior for κ = 1, n = 2, and symmetric prior

P0(±1) = 0.03 P0(0) = 0.94.
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Figure 1. The free energy as a function of the noise. A case with a continuous phase transition
(dashed line) separating the undetectable regime from one where detection of the signal is
possible.

Under these assumptions, it follows that 1
‖Cov(x)‖2op

≈ 278. In Figure 2 we plot the limit of the free energy of

the matrix
1

∆(t)
=

[
t t

2
t
2 2t

]
and proportion ρ = diag(0.4, 0.6) versus the operator norm of

√
ρ 1

∆(t)

√
ρ where t ∈ R+, In this scenario, there

is a clear gap between the upper bound on the transition 1
‖Cov(x)‖2 (denoted by the purple line) and the actual

transition (denoted by the green line) when the free energy becomes positive. In this paper we do not focus on
algorithms but in analogy with the homogeneous case [31, 30] we anticipate that the transition at 1

‖Cov(x)‖2 in

fact has an algorithmic meaning of a threshold beyond which a corresponding message passing algorithm is able
to find a vector correlated with the signal and below which it is not. The region in between these two threshold
is then conjectured to be algorithmically hard.

Next, we examine the behavior of the limiting free energy as the proportions of the two blocks vary in the
same setting of the sparse Rademacher prior. We consider the case when ρ = (p, 1− p). We consider fixed

1

∆(t)
=

[
t 0
0 2t

]
.
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Figure 2. The free energy as a function of the noise. A case with a discontinuous phase
transition (orange dashed line) separating the undetectable regime from one where detection
of the signal is possible. We plots the free energy of two local maximizers (in blue and red),
it is the larger one that provides the final result. The purple dashed line is a position of the
threshold from part 2 of Lemma 2.15 that is not tight in this case.

For each choice of p ∈ {0.1, 0.2, 0.3, 0.4}, we again plot in Figure 3 the limit of the free energy of the matrix
∆(t) and proportion ρ versus the operator norm of

√
ρ 1

∆

√
ρ where t ∈ R+. In this case, the phase transition is

independent of the proportions p.
If we now consider a non-diagonal inhomogeneity matrix

1

∆
=

[
t t
t 4t

]
the phase transition is dependent on the proportions p as depicted in Figure 4. It remains to study the
dependence of the limiting free energies on the structure of the noise more rigorously. In particular, it appears
that phase transition at 1

‖Cov(x)‖2op
can be improved for certain choices of sparse symmetric priors. However,

this will likely be a difficult problem to solve, because it will depend on both the covariance structure ∆ and
the proportions ρ.

2.4. The BBP Transition of a Transformed Homogeneous Noise Model. Recovery transitions can also
be studied from the point of view of the BBP transition [5] in random matrix theory. In the following, we
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Figure 3. The free energy as a function of the noise parameter, for groups of different sizes
p, and diagonal inhomogeneity ∆.

Figure 4. The free energy as a function of the noise parameter, for groups of different sizes
p, and nondiagonal inhomogeneity ∆.

compute the transition for a normalization of the spiked matrix that will move the noise profile onto the signal,

1√
N

1

∆�
1
2

� Y ∆ =
1√
N
W +

1

N

1

∆�
1
2

� x0(x0)T.

The normailzation by 1√
N

was to ensure the eigenvalue distribution is supported almost surely on a compact

set, and the normalization by 1

∆�
1
2

moved the noise profile onto the signal. Classical random matrix theory

arguments can be used to compute when the largest eigenvalue separates from the bulk of the transformed
matrix.
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Lemma 2.17 (BBP Transition)

The largest eigenvalue of the matrix 1√
N
Y � 1

∆�
1
2

separates from the bulk when∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

>
1

‖Cov(x)‖op
.

When the noise profile ∆ is not identically equal to one, the region of noise described in Lemma (2.17) where
the top eigenvalue separates from the bulk is contained in the recovery regime Lemma 2.15. This means that a
naive reduction of the inhomogeneous problem to a homogeneous problem does not yield the sharpest transition
for these inhomogeneous noise models. This behavior is different from the classical homogeneous noise models.

Proposition 2.18 (Gap in Thresholds)

We have ∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥2

op

≤
∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

,

with equality holding if and only if ∆ = c for some constant c. In particular, when ∆ 6= c{∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

≥ 1

‖Cov(x)‖op

}
⊂
{∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

≥ 1

‖Cov(x)‖2op

}
so the information theoretic detectability regime strictly contains the BBP transition.

2.5. Application to the Degree Corrected Stochastic Block Model. We now apply our results to the
degree corrected stochastic block models (DCSBM) introduced in [26].

We consider a dense community detection problem with κ ≥ 1 communities in a network of N nodes. If the
vertex i belongs to the community ti ∈ {1, . . . , κ}, then its membership can be encoded by xi = eti ∈ Rκ where
eti is the tith basis element in Rκ. In particular, for any two nodes i and j, xi · xj = 1 if they belong to the
same community and xi · xj = 0 otherwise. If we choose the prior P0 to be uniform on all basis elements, then
we are in the setting with equally sized groups.

We now build a site dependent adjacency matrix that encodes different probability of attaching an edge
depending on if the vertices are in the same group or not. In contrast to the standard stochastic block model,
we consider a vector of site specific parameters (θ1, . . . , θN ) ∈ (0, 1)N which controls the global probability of
any vertex being attached to node i. For each i, j we also define a κ× κ connectivity matrix

Cij =


θiθj θiθj . . . θiθj

θiθj
. . .

. . .
...

...
. . .

. . . θiθj
θiθj . . . θiθj θiθj

+
λ√
N


1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1

 .
In particular, this implies that the probability to attach an edge between vertex i and vertex j is θiθj if they are
in different communities and if they are in the same community, then the probability is different by an additive
factor of λ√

N
. The precise output channel for the adjacency matrix of the entire graph is given by

(2.15) Pout(Dij = 1 | x0,θ) = θiθj +
λ√
N
x0
i · x0

j .

We will generalize the framework slightly and consider parameters (θi)i≤N with each θi sampled independently
from some distribution Pθ on (0, 1) ⊂ R+ (the precise interval doesn’t matter because we can scale the pout > 0).
As usual, we also generate a vector x0 ∈ Rκ according to P0. Finally, we generate the adjacency matrix Dij

according to (2.15). The parameter λ is the signal to noise ratio in these models.

Remark 2.19. If Pθ(θ = 1) = 1, then this model reduces to the classical stochastic block model.

2.5.1. The Limit of the Free Energy. We now state the limit of the free energies in these models. Suppose
that Pθ is supported on finitely many points (θ(1), . . . , θ(n)) ∈ (0, 1) with probabilities ρ1, . . . , ρn. We define
∆ = (∆s,t)1≤s,t≤n by

(2.16)
1

∆st
=

(
λ2

θ(s)θ(t)
+

λ2

(1− θ(s)θ(t))

)
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and consider the conditional probabilities

(2.17) dP (X|D,Θ) =
1

ZX(D,Θ)

∏
1≤i<j≤N

elnPout(Dij | x,θ)
∏

1≤i≤N

dP0(xi)

where

(2.18) Pout(Dij = 1 | x,θ) = θiθj +
λ√
N
xi · xj and Pout(Dij = 0 | x0,θ) = 1− θiθj −

λ√
N
xi · xj .

We define the collection Q = (Q1, . . . , Qn) of symmetric positive semidefinite κ× κ matrices and the functional

ϕ(Q) = −
n∑

s,t=1

ρsρt
4∆s,t

Tr(QsQt) +

n∑
s=1

ρsEz,x0 ln

[ ∫
e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)

]
(2.19)

where for s ∈ {1, . . . , n},

Q̃s =

n∑
t=1

1

∆s,t
ρtQt

x0 ∼ P0 and z ∼ N(0, Iκ) are independent. The limit of the free energy is given by maximizing this functional.

Corollary 2.20 (Free Energy for Discrete Degree Corrected Stochastic Block Models)

If P0 =
∑n
i=1 ρiδθ(i) with θ(1), . . . , θ(n) ∈ (0, 1) then the free energy of the degree corrected stochastic block

model is

lim
N→∞

1

N
E

lnZX(D,Θ)−
∑
i<j

lnPout(Dij | x = 0,θ)

 = sup
Q
ϕ(Q).

where the parameters of the model are given in (2.16), (2.17), (2.18) and (2.19).

Proof. We essentially check that conditional probabilities in (2.18) satisfy the conditions for the inhomogeneous
vector spin models required in Theorem 2.10. Hypotheses 2.1 and 2.3 are clearly verified. We next check the
two other assumptions.

Hypothesis 2.4 (Bounds on the derivatives): The corresponding function gij is the log likelihood expressed
as a function of Dij and 1√

N
x0
i · x0

j ,

gij(1, w) = lnPout(Dij = 1 | w,θ) = ln(θiθj + λw)

and

gij(0, w) = lnPout(Dij = 0 | w,θ) = ln(1− θiθj − λw).

Notice that our function g is smooth in w, and well defined for w such that 1− θiθj −λw ∈ (0, 1). Furthermore,

∂wgij(D,w) = D
λ

θiθj + λw
− (1−D)

λ

1− θiθj − λw
(2.20)

∂2
wgij(D,w) = D

−λ2

(θiθj + λw)2
− (1−D)

λ2

(1− θiθj − λw)2
(2.21)

∂3
wgij(D,w) = D

2λ3

(θiθj + λw)3
− (1−D)

2λ3

(1− θiθj − λw)3
(2.22)

which are all uniformly bounded provided that 0 < θiθj + λw < 1 for all i and j and w in the domain. Since w

goes to zero, for N large enough, it is enough that the θ(i) belong to (0, 1) independently of N .

Hypothesis 2.2 (Positive Definiteness of Noise Profile): By definition, we have

1

∆ij
= EPij(D|w=0)

[
(∂wgij(D, 0))2

]
=

(
P (Dij = 1 | w0

ij = 0, θ)
λ2

θ2
i θ

2
j

+ P (Dij = 0 | w0
ij = 0, θ)

λ2

(1− θiθj)2

)
=

(
λ2

θiθj
+

λ2

(1− θiθj)

)
(2.23)
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because Pij(Dij = 1 | 0, θ) = θiθj = 1− P (Dij = 0 | 0, θ). Observe that ∆ij is piecewise constant since the θi’s
are piecewise constant. We denote as well ∆ the n×n symmetric defined in Hypothesis 2.2. We next show that
the matrix 1

∆2 is non-negative. To see this, notice that

(2.24)

[
λ2

θ((s)θ(t)

]
1≤s,t≤n

= λ2

[
1

θ(s)
· 1

θ(t)

]
1≤i,j≤n

is positive semidefinite because it is a Gram matrix. Furthermore, for |θ(s)θ(t)| < 1, we have

λ2

(1− θ(s)θ(t))
= λ2

∞∑
k=0

(θ(s))k(θ(t))k,

by its Taylor expansion, so

(2.25)

[
λ2

(1− θ(s)θ(t))

]
1≤s,t≤n

= λ2
∞∑
k=0

Θ�k,

where Θ = [θ(s)θ(t)]1≤s,t≤n. The matrix Θ is positive semidefinite because it is a Gram matrix, and the Schur
product theorem implies that the Hadamard powers are also positive semidefinite, so is also (2.25) positive
semidefinite. This concludes the proof. �

We can also apply Theorem 2.13 to this setting. To this end we assume that

Hypothesis 2.21. Assume that θbNsc converges uniformly to a measurable function (θ(s))s∈[0,1] with values in
a compact subset [a, b] of (0, 1).

Let Q(θ) : [a, b] → S+
κ be a measurable matrix valued function. Let θ and θ′ be independent samples from

P̃θ. We define

(2.26)
1

∆(θ, θ′)
=

(
λ2

θθ′
+

λ2

(1− θθ′)

)
We have

(2.27) ϕ(Q) = −
∫ 1

0

Tr(Q(θ(s)), Q(θ(t)))

4∆(θ(s), θ(t))
dsdt+

∫ 1

0

ds ln

[ ∫
e(Q̃(θ(s))x0+

√
Q̃(θ(s))z)Tx− x

TQ̃(θ(s))x
2 dP0(x)

where the expected value is with respect to θ, θ′, x0, z and

(2.28) Q̃(θ) =

∫ 1

0

1

∆(θ, θ(s))
Q(θ(s))ds .

It follows by approximation that Corollary 2.20 holds in the limit.

Corollary 2.22 (Free Energy for Degree Corrected Stochastic Block Models)

Under Hypothesis 2.21, the free energy of the degree corrected stochastic block model is given by

lim
N→∞

1

N
E ln

ZX(Y, Θ̃)−
∑
i<j

lnPout(Yij | x = 0,θ)

 = sup
Q
ϕ(Q).

where the parameters of the model are given in (2.17) (2.26) and (2.27) and (2.28).

2.5.2. Rademacher Prior. We now consider the case when P0 takes values in {−1, 0, 1} such that for p ∈ [0, 1
2 ]

(2.29) P0(−1) = P0(1) = p P0(0) = 1− 2p.

If x ∼ P0, then Var(x) = 2p. We define the n× n matrices

1

∆
=
( 1

∆s,t

)
s,t≤n

ρ = diag(ρ1, . . . , ρn).

In the degree corrected stochastic block model, the parameters were encoded by Pθ supported on finitely many
points (θ(1), . . . , θ(n)) ∈ (0, 1) with probabilities ρ1, . . . , ρn,

(2.30)
1

∆st
=

(
λ2

θ(s)θ(t)
+

λ2

(1− θ(s)θ(t))

)
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Figure 5. Free energy as the function of noise for the DCSBM with a small size of one of the
groups. We see a discontinuous phase transition (purple line).

and for i.i.d. θi ∼ Pθ

(2.31) Pout(Yij = 1 | x,θ) = θiθj +
λ√
N
xi · xj and Pout(Yij = 0 | x0,θ) = 1− θiθj −

λ√
N
xi · xj .

Recall that the replica symmetric functional is

(2.32) ϕ(Q) = −
n∑

s,t=1

ρsρt
4∆s,t

Tr(QsQt) +

n∑
s=1

ρsEz,x0 ln

[ ∫
exp

((
Q̃sx0 +

√
Q̃sz

)T

x− xTQ̃sx

2

)
dPκ0 (x)

]
where

Q̃s =

n∑
t=1

1

∆s,t
ρtQt.

The replica free energy functional is identical to the one computed by a spiked matrix with covariance profile
given by (2.30). By Lemma 6.4 and Lemma 6.5, we can conclude that

(1) ϕ has a unique maximum at a sequence of matrices with all entries equal to 0 when∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

<
1

9

(2) ϕ has a maximum at a sequence of matrices where at least one matrix has a non-zero entry when∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

>
1

4p2
.

Since p ≤ 1
2 , this transition is clearly not tight.

We can numerically solve the free energies to see how the phase transitions depends on the inhomogeneity. In
the n = 2 case, a perfectly homogeneous model is when all entries of 1

∆ are identical the phase transitions agree
with known results [31]. We analyze the effects of changing the homogeneity on the locations of the maximizers.
To do this, we can fix θ1 and θ2 and vary the parameter λ. If we consider the sparse case when p = 0.025 in
(2.29), we plot in Figure 5 the limit of the free energy versus the operator norm of ‖√ρ 1

∆

√
ρ‖op. In contrast,

we consider the dense case when p = 0.25 in (2.29) and plot again limit of the free energy versus the operator
norm of ‖√ρ 1

∆

√
ρ‖op in Figure 6. The second bound appears to be tight when the average degree encoded by

p is high.
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Figure 6. Free energy as the function of noise for the DCSBM with comparable sizes of one
of the groups. We see a continuous phase transition (purple line).

2.6. Outline of the Paper. We first start with a proof of the universality result explained in Lemma 2.7.
In Section 3, we move onto proving the limit of the free energy in Theorem 2.10 by proving the lower bound
using interpolation in Section 4. We prove the matching upper bound using concentration of the overlaps and
cavity computations in Section 5. In Section 6, we study the maximizers of the free energy, and explore its
consequences on the information theoretic thresholds.

3. Universality in Inhomogenous Vector Spin Models

In this section, we proceed to several approximations to arrive to Theorem 2.7. We start by showing only
the second order Taylor expansion of g matters in the computation of the free energy (recall the definition of
FN (g) in (2.3)).

Lemma 3.1 (Independence of Third Order Expansions)

If supi,j ‖∂3
wgij‖∞ <∞, then

FN (g) = FN (g̃) +O
( κ3

√
N

)
where

g̃ij(D,w) = gij(Dij , 0) + ∂wgij(D, 0)w +
1

2
∂2
wgij(D, 0)w2.

Proof. By Taylor’s theorem, for all i, j,

gij(Dij , wij)− gij(Dij , 0) = ∂wgij(Dij , 0)wij +
1

2
∂2
wgij(Dij , 0)w2

ij +
w3
ij

3!
∂3
wgij(Dij , θijwij)

for some θij ∈ [0, 1]. Since our hypothesis implies that |wij |∞ ≤ C2κ/
√
N , our assumption that supi,j ‖∂3

wgij‖∞ <
∞ implies ∥∥∥∥ 1

N

∑
i<j

w3
ij

3!
g(3)
w (Yij , θijwij)

∥∥∥∥ = O
( κ3

N1/2

)
from which the result follows. �

The next step in the reduction is to prove that the coefficient of the second derivative term can be replaced

by its conditional average. We let B be a sub σ-algebra of RN2 × (Rκ)N and denote by PB (resp. EY [.|B]) its
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associated conditional probability under PY (resp. its conditional expectation). Later on we will simply take
B to be the σ-algebra generated by x0, and therefore PB will just be the distribution of Y knowing the x0.

Lemma 3.2 (Concentration of Second Order Terms)

Assume supi,j ‖∂2
wgij(·, 0)‖∞ <∞ and P0 compactly supported. Let B be a σ algebra such that the Yij are

independent conditionally to B. Then

FN (g̃) = FN (ḡ) +O
( κ2

√
N

)
with

ḡij(D,w) = gij(Dij , 0) + ∂wgij(D, 0)w +
1

2
ED[∂2

wgij(D, 0) |B]w2 .

Proof. Notice that

FN (g̃)− FN (ḡ) = ED
1

N
ln
〈
e

1
2
√
N

∑
i<j

1√
N

(∂2
wgij(Dij ,0)−ED[∂2

wgij(Dij ,0)|B])(xT
i xj)

2)
〉

where

〈f〉 =

∫
fe

∑
i<j ḡij(Dij ,wij)dP⊗N0 (x)∫

e
∑
i<j ḡij(Dij ,wij)dP⊗N0 (x)

.

Let Z be the N ×N symmetric matrix with entries so that Zii = 0 and for i 6= j

Zij =
1

4
√
N

(∂2
wgij(Σ

−1
ij Dij , 0)− ED[∂2

wgij(Σ
−1
ij Dij , 0)|B]) .

As a consequence ∑
i<j

1

2
√
N

(gww(Dij , 0)− ED[gww(Dij , 0)|B])(xTi xj)
2 = Tr

(
Z(xTx)2

)
.

Z is a random symmetric matrix under PB which has centered independent entries with covariance bounded
by C/N and where (xTx)2 is the matrix with entries (xTi xj)

2. Because
√
NZ has bounded entries, we can use

concentration inequalities due to Talagrand (see [4, Theorem 2.3.5] and [24, Lemma 5.6]) to see that there exists
some finite L0 such that, uniformly,

(3.1) PB (‖Z‖∞ ≥ L) ≤ e−N(L−L0) .

On {‖Z‖∞ ≤ L}, we have the bound

∣∣Tr
(
Z(xTx)2

)∣∣ =

∣∣∣∣∣∣
κ∑

k,k′=1

∑
i,j

Zijxi(k)xi(k
′)xj(k)xj(k

′)

∣∣∣∣∣∣ ≤ L
κ∑

k,k′=1

N∑
i=1

(xi(k)xi(k
′))2 ≤ CLκ2N

for some finite constant C depending only on the bound on the support of P0. Hence, we deduce

FN (g̃)− FN (ḡ) = ED1‖Z‖|≥L
1

N
ln〈e

1√
N

∑
i≤j

1
2
√
N

(∂2
wgij(Yij ,0)−ED[∂2

wgij(Dij ,0)|B])(xT
i xj)

2)〉+O
( κ2

√
N

)
.

Moreover as we assumed that ∂2
wgij(D, 0) is uniformly bounded, the term in the above expectation is uniformly

bounded and therefore the first term is going to zero exponentially fast by (3.1) for L large enough. �

We finally compare our free energy to those of a spin glass model. It will depend on three matrices with
entries:

(3.2) γij = ED[∂2
wgij(Dij , 0) | x0], µij = ED[∂wgij(Dij , 0) | x0], σ2

ij = ED[(∂wgij(Dij , 0)− µij)2 | x0].

By universality, we will prove that we can replace ∂wgij(Dij , 0) by σijWij + µij where Wij are i.i.d. standard

Gaussian variables (under the assumption that
√
Nµij = O(1)). Let

FN (σ, µ, γ) = EW,x0

[
1

N
lnEx [exp(HN (x))]

]
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with

HN (x) =

(√
1

N

∑
i<j

σijWijx
T
i xj + µijx

T
i xj

)
+

1

2N

∑
i<j

γij(x
T
i xj)

2

=

κ∑
k=1

(√
1

N

∑
i<j

σijWijxi(k)xj(k) + µijxi(k)xj(k)

)
+

1

2N

κ∑
k,`=1

∑
i<j

γijxi(k)xj(k)xi(`)xj(`).(3.3)

Then we shall prove that :

Lemma 3.3 (Universality in Disorder)

Assume that

sup
i,j
‖µij‖∞ = O(N−1/2), sup

ij
‖σ2

ij‖∞ <∞, sup
i,j

∥∥∥∥ED[|∂wgij(Dij , 0)− µij |3|x0]

σ3
ij

∥∥∥∥
∞
<∞

then

FN (ḡ) = FN (σ, µ, γ) +O
( κ3

N1/2

)
where FN (σ, µ, γ) is the free energy with respect to the Hamiltonian defined in (3.3).

The proof follows from the following approximate integration by parts lemma [34, Lemma 3,7].

Lemma 3.4

Suppose x is a random variable that satisfies Ex = 0, E|x|3 < ∞. If f : R → R is twice continuously
differentiable and ‖f ′′‖∞ <∞, then

|Exf(x)− Ex2Ef ′(x)| ≤ 3

2
‖f ′′‖∞E|x|3.

Proof. We follow the proof of Carmona–Hu [13] presented in [34, Theorem 3.9]. To compare the free energies
FN (ḡ) and FN (σ, µ, κ) we use an interpolation argument. Conditionally on x0, consider the interpolating
Hamiltonian defined for t ∈ [0, 1] by

HN (x, t) =
1√
N

∑
i<j

(√
t(∂ijg(Dij , 0)− µij) +

√
1− tσijWij

)
xTi xj +

1√
N

∑
i<j

µijx
T
i xj +

1

2N

∑
i<j

γij(x
T
i xj)

2

=
1√
N

∑
i<j

σij

(√
tW̃ij +

√
1− tWij

)
xTi xj +

1√
N

∑
i<j

µijx
T
i xj +

1

2N

∑
i<j

γij(x
T
i xj)

2

where we defined W̃ij = σ−1
ij (∂wgij(Dij , 0)− µij) to simplify notation. Notice that

ED[W̃ 2
ij | x0] = σ−2

ij ED[(∂wgij(Dij , 0)− µij)2|x0] = 1

and

ED[W̃ij | x0] = σ−1
ij ED[(∂wgij(Dij , 0)− µij) | x0] = 0

so both W and W̃ have mean zero and variance 1. Also ED|W̃ 3
ij | ≤ 1

σ3
ij

(‖∂wg‖∞)3 is uniformly bounded.

We define the interpolating free energy

ϕ(t) =
1

N
ED[lnEX exp(HN (x, t))|x0], 〈f〉t =

∫
f(x) exp(HN (x, t))dP0(x)∫

exp(HN (x, t))dP0(x)
,

and notice that

ϕ′(t) = EY

 1

2
√
tN3/2

∑
i<j

σijW̃ij〈xTi xj〉t −
1

2
√

1− tN3/2

∑
i<j

σijWij〈xTi xj〉t
∣∣∣∣ x0

 .
Let f(W̃ij) = 〈xTi xj〉t (the dependence on W̃ is in the numerator and denominator in the Gibbs measure). We
find that

∂f

∂W̃ij

=

√
tσij√
N

(
〈(x1

i · x1
j )

2〉t − 〈(x1
i · x1

j )(x
2
i · x2

j )〉t
)
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and

∂2f

∂W̃ 2
ij

=
tσ2
ij

N

(
〈(x1

i · x1
j )

3〉t − 2〈(x1
i · x1

j )
2(x2

i · x2
j )〉t − 〈(x1

i · x1
j )(x

2
i · x2

j )
2〉t + 2〈(x1

i · x1
j )(x

2
i · x2

j )(x
3
i · x3

j )〉t
)
.

Therefore the second derivative is bounded by

‖ ∂
2f

∂W̃ 2
ij

‖ ≤
supij ‖ED[|∂wgij(Dij , 0)− µij |2|x0]‖∞6C6κ3

N

where C is such that x ∈ [−C,C]κ almost surely. Applying the approximate integration by parts lemma to W̃
stated in Lemma 3.4 applied conditionally on x0 implies∣∣∣∣ED[

1

2
√
tN3/2

σijW̃ij〈xTi xj〉t | x0]−
σ2
ij

2N2

(
ED[〈(x1

i · x1
j )

2〉t | x0]− E[〈(x1
i · x1

j )(x
2
i · x2

j )〉t | x0]

)∣∣∣∣
≤

supij ‖ED[|∂wgij(Dij , 0)− µij |2|x0]‖∞6C6κ3

N
·

3 supi,j E[|W̃i,j |3 | x0]

4N3/2
= O

( κ3

N5/2

)
by our assumption on the uniform bounds on the conditional expectation of W̃ . The classical integration by
parts lemma for Gaussian variables implies

EW
[

1

2
√

1− tN3/2
σijWij〈xTi xj〉t

]
=

σ2
ij

2N2
EW
[(
〈(x1

i · x1
j )

2〉t − 〈(x1
i · x1

j )(x
2
i · x2

j )〉t
)]
.

Summing over i < j gives us the bound

|ϕ′(t)| ≤ O
( κ3

N1/2

)
so that

|ϕ(1)− ϕ(0)| = |FN (ḡ)− FN (σ, µ, κ)| ≤ O
( κ3

N1/2

)
.

�

Remark 3.5. We use the notation x1
i , x

2
i , . . . to denote the replicas. They are independent copies of x under

the corresponding Gibbs measures.

We can now further reduce our problem to a Gaussian estimation problem under the Bayes optimal assump-
tion of Hypothesis 2.1. Indeed, recalling the definition of the Fisher score matrix (2.5), it results in special
relation between σ, µ and γ which state as follows.

Lemma 3.6

Assume Hypotheses 2.1 and 2.3. Then for all i, j ∈ [N ] the terms defined in (3.2) satisfy

µij =
x0
i · x0

j

∆ij

√
N

+O(κ2N−1), σ2
ij = −γij +O(κN−1/2), γij = − 1

∆ij
+O(κN−1/2)

Proof. The fact that gij(D,w) is a log-likelihood is very important in this section, and the results in this final
decomposition do not apply for general g. Firstly, using the fact that Pij(·|w) is a probability measure for all
w and i < j,

(3.4)

∫
Pij(y|w) dy =

∫
egij(y,w)dy = 1.

By differentiating (3.4), it follows that for all w,

(3.5) EPij(D|w)∂wgij(D,w) = ∂w

∫
egij(y,w) dy = 0

and

(3.6) EPij(D|w)

(
(∂wgij(D,w))2 + ∂2

wgij(D,w)
)

= ∂2
w

∫
egij(y,w) dy = 0.
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The conditional laws of Dij given the signal x0 are independent, so we have the following reductions of the
parameters µij and σij . By (3.5) we get

µij =

∫
∂wgij(y, 0)egij(y,w

0
ij)dy

=

∫
(∂wgij(y, 0)− ∂wgij(y, w0

ij))e
gij(y,w

0
ij)dy

= −w0
ij

∫
∂2
wgij(y, 0)egij(y,0)dy +O((w0

ij)
2)

= −
(x0

i · x0
j√

N

)
EPij(D|w=0)∂

2
wgij(D, 0) +O(κ2N−1)

where we applied Taylor’s theorem in the fourth equality. Applying (3.6) one more time implies that

µij =
x0
i · x0

j√
N

EPij(D|w=0)(∂wgij(D, 0))2 +O(κ2N−1) =
x0
i · x0

j

∆ij

√
N

+O(κ2N−1)

where we recall that (2.5)
1

∆ij
= EPij(D|w=0)(∂wgij(D, 0))2.

Similarly, (3.6) implies

σ2
ij =

∫
(∂wgij(y, 0))2eg(y,w

0
ij)dy − µ2

ij

=

∫
(∂wgij(y, 0))2 − (∂wgij(y, w

0
ij))

2)egij(y,w
0
ij)dy −

∫
∂2
wgij(y, w

0
ij)e

gij(y,w
0
ij)dy − µ2

ij

= −γij +O(wij) = −γij +O(κN−1/2).

We can do this trick one more time and apply (3.6) to see that

γij =

∫
∂2
wgij(y, 0)egij(y,w

0
ij)dy

= −wij
∫
∂3
wgij(y, 0)egij(y,w

0
ij)dy −

∫
((∂wgw(y, w))2 − (∂wgij(y, 0))2)egij(y,0)dy − 1

∆ij
+O(κN−1/2)

= − 1

∆ij
+O(κN−1/2).

�

With this in mind, an interpolation argument and Gaussian integration by parts will prove that the Hamil-
tonian associated with the free energy F (σ, µ, γ) in the Bayes optimal case

HN,σ,µ,γ(x) =
∑
i<j

σijWij√
N

(xi · xj) +
µij√
N

(xi · xj) +
1

2N
γij(xi · xj)2

can be replaced with the following Hamiltonian

HN,∆(x) =
∑
i<j

Wij√
∆ijN

(xi · xj) +
(x0
i · x0

j )

∆ijN
(xi · xj)−

1

2∆ijN
(xi · xj)2

without changing the limit of the free energy. We let

(3.7) FN (∆) =
1

N
EW,x0 lnEXeHN,∆(x) .

The form of this Hamiltonian is identical to the free energy in the low rank matrix estimation with Hadamard
covariance profile, which we introduced in Subsection 2.2.1.

Lemma 3.7 (Reduction to Low Rank Hamiltonian)

If (3.4) holds, then

FN (σ, µ, κ) = FN (∆) +O(κ3N−1/2) .
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Proof. Consider the interpolating Hamiltonian,

HN (t, x) =
∑
i<j

√
tσijWij√
N

(xi · xj) +
tµij√
N

(xi · xj) +
t

2N
κij(xi · xj)2

+
∑
i<j

√
1− tW̃ij√
N∆ij

(xi · xj) +
t(x0

i · x0
j )

∆ijN
(xi · xj)−

t

2∆ijN
(xi · xj)2.

where W and W̃ are independent standard Gaussians. If we define

ϕ(t) =
1

N
EW,W̃ ,x0 lnExeHN (t,x)

then

ϕ′(t) =
1

N
E
〈
∂tHN (t, x)

〉
t

=
1

N
E
(∑
i<j

σijWij

2
√
t
√
N
〈xi · xj〉t +

µij√
N
〈xi · xj〉t +

1

2N
κij〈(xi · xj)2〉t

)

− 1

N
E
(∑
i<j

W̃ij

2
√

1− t
√

∆ijN
〈xi · xj〉t +

(x0
i · x0

j )

∆ijN
〈xi · xj〉t −

1

2∆ijN
〈(xi · xj)2〉t

)
where 〈·〉t is the average with respect to the Gibbs measure Gt ∝ eHN (t,x). Recall that (3.5) and (3.6) imply

µij =
x0
i · x0

j√
∆ijN

+O(κ2N−1) and σ2
ij = −γij +O(κN−1/2) =

1

∆ij
+O(κN−1/2)

This implies that the terms without the GaussianW, W̃ cancel each other. For the first terms of each expectation,
we integrate by parts to find

1

N
E
∑
i<j

σijWij

2
√
t
√
N
〈xi · xj〉t =

1

2N2

∑
i<j

σ2
ij

(
〈(x1

i · x1
j )

2〉t − 〈(x1
i · x1

j )(x
2
i · x2

j )〉t
)

and
1

N
E
∑
i<j

W̃ij

2
√

1− t
√

∆ijN
〈xi · xj〉t =

1

2∆ijN2

∑
i<j

(
〈(x1

i · x1
j )

2〉t − 〈(x1
i · x1

j )(x
2
i · x2

j )〉t
)

so the difference of the Gaussian terms are also of order O(κN−1/2). Therefore,

|ϕ′(t)| = O(κN−1/2),

which completes the proof after integrating ϕ on [0, 1]. �

Remark 3.8. Notice that µij = O( 1√
N

), so one of the hypothesis in Lemma 3.3 is automatically satisfied.

Remark 3.9. In the spin glass setting, ∫
eg(D,w) dy =

∫
eDw dy

does not equal to 1, so (3.4) is not satisfied and Lemma 3.7 doesn’t apply.

The proof of the main universality theorem is now immediate.

Proof of Lemma 2.7. The result follows by combining Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.7. �

Lastly, the computations will be much simpler if P0(x0) was supported on finitely many points. We will now
prove that general P0 with bounded support can be approximated by P0 with finite support. Suppose that P0

is supported on [−C,C]κ. We can discretize the support in K blocks by defining the function f : [−C,C]κ →
[−C,C]κ by

f(x1, . . . , xκ) =

(
C

K

⌊x1K

C

⌋
, . . . ,

C

K

⌊xκK
C

⌋)
.

Notice that each coordinate of f(x) is supported on 2K points. We define Pd = P ◦ f−1, and set

FN (∆) = EW,x0∼P0

[ 1

N
lnEx∼P0

[exp{HN,∆(x)}]
]

and F dN (∆) = EW,x0∼Pd

[ 1

N
lnEx∼Pd [exp{HN,∆(x)}]

]
.
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Lemma 3.10 (Approximations of References Measures with Finite Support)

For any N ≥ 1, we have

|FN (∆)− F dN (∆)| ≤ 2C4κ2

‖∆‖∞K
.

Proof. To simplify notation, we define x̃i = f(xi) to be the discretization of xi and FN (∆) = FN (P0). Consider
the interpolating Hamiltonian

HN (x; t) =
∑
i<j

√
tWij√
∆ijN

(xi · xj) +
t(x0

i · x0
j )

∆ijN
(xi · xj)−

t

2∆ijN
(xi · xj)2

+
∑
i<j

√
1− tW̃ij

∆ij

√
N

(x̃i · x̃j) +
(1− t)(x̃0

i · x̃0
j )

∆ijN
(x̃i · x̃j)−

(1− t)
2∆ijN

(x̃i · x̃j)2

where W̃ij and Wij are independent standard Gaussians. We consider the usual interpolation Hamtiltonian

ϕ(t) =
1

N
E logExeHN (x;t).

From integration by parts and the Nishimori property (see equation 4.4) to simplify the Gaussian terms, we see
that

ϕ′(t) =
∑
i<j

1

2∆ijN2

(
E〈(x0

i · x0
j )(xi · xj)〉 − E〈(x̃0

i · x̃0
j )(x̃i · x̃j)〉

)
.

Since the 1
∆2
ij

are uniformly bounded, we have the upper bound

|ϕ′(t)| = 1

4‖∆‖∞

∣∣∣E〈(x0
i · x0

j )(xi · xj)− (x̃0
i · x̃0

j )(x̃i · x̃j)〉
∣∣∣

≤ 1

4‖∆‖∞

∣∣∣E〈(xi · xj − x̃i · x̃j)(x0
i · x0

j )〉
∣∣∣∣+

1

4‖∆‖∞

∣∣∣E〈(x0
i · x0

j − x̃0
i · x̃0

j )(x̃i · x̃j)〉
∣∣∣

≤ 1

4‖∆‖∞

((
E〈(xi · xj − x̃i · x̃j)2〉E〈(x0

i · x0
j )

2〉
)1/2

+
(
E〈(x0

i · x0
j − x̃0

i · x̃0
j )

2〉E〈(x̃i · x̃j)2〉
)1/2∣∣∣)

≤ C2κ

‖∆‖∞

(
E〈(xi · xj − x̃i · x̃j)2〉

)1/2

≤ C2κ

‖∆‖∞

(
E〈(xi · (xj − x̃j) + x̃j · (xi − x̃i))2〉

)1/2

.

Since ‖xi − x̃i‖∞ ≤ C
K and ‖xj − x̃j‖∞ ≤ C

K and P0 has compact support, we get the rough bound

|ϕ′(t)| ≤ 2C4κ2

‖∆‖∞K
=⇒ |ϕ(1)− ϕ(0)| ≤ 2C4κ2

‖∆‖∞K
,

so the statement follows since ϕ(1) = FN (P0) and ϕ(0) = FN (Pd). �

Remark 3.11. We can also modify this proof so that it holds as long the probability is compactly supported
if we assume that the tails do not grow too much. We just have to be more careful since instead of using the
uniform bound on the measure, we can get a bound in terms of E‖x‖22 like in the proof in [29]. The same
argument (interpolating among the ∆’s rather than the x) shows how to deduce Theorem 2.13 from Theorem
2.10.

Therefore, without loss of generality, we may assume that P0 is supported on finitely many points, because we
can always approximate general P0 with compact support up to arbitrary accuracy with a probability measure
supported on only finitely many points. Similarly we can assume that ∆ is stepwise constant.

3.1. Spectrum Universality. In this section, we state a stronger form of universality than Lemma 2.7. Con-
sider the transformed data matrix

Ỹij√
N

=
1√
N
∂wgij(Dij , 0) i, j ≤ N
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where (Dij)i,j are independent and distributed according to Pij conditionally on x0 as in (2.1), and the nor-
malized spiked matrix with variance profile 1√

N
Y ∆ defined in (2.10)

Y ∆ = ∆�
1
2 �W +

(x0)(x0)T√
N

.

In the Bayes optimal setting the first two moments of the matrix Ỹ are equivalent to those of 1
∆ � Y

∆ up to a

O( 1√
N

) term. Define

µ̃ij = EY [Ỹij | x0], σ̃2
ij = EY [(Ỹij − µ̃ij)2 | x0].

and

µij = EY
[

1

∆
� Y ∆

∣∣∣∣ x0

]
, σ2

ij = EY
[
(

1

∆
� Y ∆ − µij)2

∣∣∣∣ x0

]
By Lemma 3.6, it follows that

Corollary 3.12

Assume that PX ∈P(Rk) has compact support. Then for all i, j ∈ [N ], we have

µ̃ij =
x0
i · x0

j

∆ij

√
N

+O(k2N−1), σ̃2
ij =

1

∆ij
+O(kN−1/2)

and

µij =
x0
i · x0

j

∆ij

√
N
, σ2

ij =
1

∆ij
.

Furthermore, we assume that the Fisher information matrix (2.5) satisfies the following assumption

Hypothesis 3.13 (Quadratic Vector Equation Conditions). Assume that there exists parameters p, q, P > 0
and L ∈ N such that

(1) For all N ,
1

∆ij
≤ q i, j ≤ N

(2) For all N , (
1

N∆

)L
ij

≥ p

N
i, j ≤ N.

(3) The unique solution (mi(z))i≤N of vector of analytic functions on C+ = {=z > 0} to the following
quadratic vector equation,

− 1

mi(z)
= z +

N∑
j=1

1

∆ij
mj(z) =(z) > 0.

going to zero when =z goes to infinity, satisfies

|mi(z)| ≤ P, i, j ≤ N,=(z) > 0.

We have

Theorem 3.14 (Universality of the Spectrum)

If g satisfies Hypothesis 2.2 and the corresponding Fisher information matrix (2.5) satisfies Hypothesis 3.13,
then

(1) Conditionally on x0, the empirical distribution µ1 of the eigenvalues of
Ỹij√
N

and the empirical distri-

bution µ1 of the eigenvalues of 1√
N∆
� Y ∆ satisfy

(3.8) lim
N→∞

d(µ1, µ2)→ 0

in probability.
(2) Conditionally on x0, when the dimension goes to infinity, 1√

N∆
� Y ∆ has an extremal eigenvalue

away from the bulk iff
Ỹij√
N

does, for almost all ∆ and ρ.
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Proof. We fix the realization of x0 and assume that x0 ∈ Rn to simplify notation (see Remark 3.15 for the

generalization to higher rank). We first show that the spectrum of 1√
N
Ỹ ∆ and the spectrum of

Z =
1√
N

(
Ỹ − µ̃+ µ

)
differ by a matrix with operator norm bounded by O(1/

√
N). Indeed, bounding the operator norm by the

Hilbert-Schmidt norm, we get,

‖Z − 1√
N
Ỹ ‖op ≤

 1

N

∑
ij

(µij − µ̃ij)2

1/2

≤
√
O
(k4N2

N3

)
= O

( k2

√
N

)
.

Next, we check that the empirical distribution of the eigenvalues of Z and of 1√
N∆
� Y ∆ are close, as well as

the largest eigenvalue. We first consider the recentered matrices

W̃ =
1√
N

(
Ỹ − µ̃

)
, Wij =

1√
N

(∆−1
ij Y

∆
ij − µij) .

We use [2] and check that all the conditions of this paper are satisfied by these matrices W and W̃ . We

therefore can use [2, Theorem 1.7 and (1.22)], to conclude that the Stieltjes transform GW̃ (z) of W̃ and the
Stilejes transform GW (z) of W are close to their deterministic limits. Namely, under these hypotheses, if X is
a matrix with centered independent entries with variance sij bounded by c/N then for any deterministic vector
w so that ‖w‖∞ ≤ 1

(3.9)

∣∣∣∣∣ 1

N

N∑
i=1

wi((z −X)−1
ii −m

s
i (z))

∣∣∣∣∣ ≤ C 1√
N=z

where ms = {ms
i}1≤i≤N is the unique solution of the vector equation

− 1

ms
i (z)

= z +

N∑
i=1

sijm
s
j(z).

We therefore only need to check that mσ̃/N and mσ/N are close and apply (3.9) with wi = 1 for all i to conclude
that the Stieltjes transform of both matrices are close to each other, yielding the conclusion by (3.9). This
follows from [2, Corollary 3.4] which asserts that if =z > δ,

(3.10) ‖mσ/N (z)−mσ̃/N (z)‖∞ ≤
1

δ
max
i

1

N

∑
j

|σ2
ij − σ̃2

ij | ≤ O
( k√

Nδ

)
.

Hence, combining with (3.9) (with wi = 1), we conclude that the empirical measures µW and µW̃ converge

vaguely to the same deterministic limit. Since moreover 1
N Tr(W 2) and 1

N Tr(W̃ 2) are uniformly bounded with
overwhelming probability, we deduce that d(µ1, µ2) goes to zero in probability.

Observe that µ has finite rank because x0(x0)T has finite rank and ∆ is piecewise constant. Therefore, the

empirical measure of the eigenvalues of 1√
N
Ỹ and 1√

N∆
� Y ∆ are approximately the same as those of W and

W̃ by Weyl’s interlacing property. This shows (3.8).

Moreover, [2, Corollary 1.10] show that the eigenvalues of W and W̃ stick to the bulk, namely the extreme

eigenvalues converge towards the boundary of the support of the measure with Stieljes transform
∑
ρsm

σ/N
s (z)

and
∑
ρsm

σ̃/N
s (z). Because of (3.10), these boundaries are very close to each other.

We next study the BBP transition and show that the top eigenvalues of the matrices

Z = W̃ +
1√
N
µ and

1√
N∆

� Y ∆ = W +
1√
N
µ

have the same limits. Recall that in general, if X is a self-adjoint matrix and R =
∑r
i=1 θiviv

T
i ,θi 6= 0, is a finite

rank matrix then λ is an eigenvalue of X + R iff det(λ −X − R) vanishes, and therefore if λ does not belong
to the spectrum of X, this is also equivalent to:

(3.11) 0 = det(I − (λ−X)−1R) =
∏

θi det(diag(θ−1
j )−

(
〈vi, (λ−X)−1vj〉

)
1≤i,j≤r).

Therefore, to prove that an eigenvalue pops out of the bulk, it is necessary and sufficient to prove that
the above right hand side vanishes for some λ outside of the bulk of X. We will show that the matrix
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〈vi, (λ−X)−1vj〉

)
1≤i,j≤r converges for X = Z and 1√

N∆
� Y ∆ and that the limiting equation for the outliers

has a unique and stable solution. In our case,

R =
1√
N
µ =

1

N

1

∆
� xxT

and ∆ is piecewise constant. Let x(s) = (xi 1(i ∈ Is))i≤N . We have the following decomposition

(3.12) R =
1

N

n∑
s,t=1

‖x(s)‖‖x(t)‖
∆s,t

x(s)

‖x(s)‖

(
x(t)

‖x(t)‖

)T

.

For fixed x, s, t we denote Mst = ‖x(s)‖‖x(t)‖
∆st

. M is symmetric and if (γi, wi) are its eigenvectors and eigenvalues,
we find that

R =
1

N

n∑
i=1

γiviv
T
i

with vi =
∑n
s=1

x(s)
‖x(s)‖wi(s) an orthonormal family of eigenvectors of R. [2, Theorem 1.13] implies that for any

γ > 0 ∥∥∥∥∥∥(〈vi, (λ+ iN−1+γ − Z)−1vj〉
)

1≤i,j≤n −

(
N∑
k=1

mσ̃
k(λ+ iN−1+γ)vi(k)vj(k)

)
1≤i,j≤n

∥∥∥∥∥∥
and ∥∥∥∥∥∥

(
〈vi, (λ+ iN−1+γ − 1√

N∆2
� Y ∆)−1vj

)
1≤i,j≤n

−

(
N∑
k=1

mσ
k(λ+ iN−1+γ)vi(k)vj(k)〉

)
1≤i,j≤n

∥∥∥∥∥∥
go to zero with overwhelming probability. If λ is outside of the support of the limiting distribution then we can
remove the small complex number iN−1+γ , and since we have seen that the support of the eigenvalues of both
centered matrices converge to the same limit this is fine for any λ at a positive distance of this limiting support.
Moreover, by the stability property (3.10) we know that∥∥∥∥∥∥

(
N∑
k=1

m
σ̃/N
k (λ+ iN−1+γ)vi(k)vj(k)

)
1≤i,j≤n

−

(
N∑
k=1

m
σ/N
k (λ+ iN−1+γ)vi(k)vj(k)〉

)
1≤i,j≤n

∥∥∥∥∥∥
goes to zero if λ is away from the support of the limiting measure. Hence the only thing to verify is that the
largest solution λ to (3.11) does not change much under these small perturbations. To that end, first notice that

because ∆ is piecewise constant, so is σ and therefore mσ is piecewise constant, and mσ
i (z) equals to m

σ/N
s (z)

for i ∈ Is. We can therefore sum over the indices inside each Is and find(
N∑
k=1

m
σ/N
k (z)vi(k)vj(k)

)
1≤i,j≤n

=

(
n∑
s=1

mσ/N
s (z)wi(s)wj(s)

)
1≤i,j≤n

= wdiag(m(z))wT

Therefore the outliers of X = 1√
N∆
� Y ∆ and X = Z satisfy

det
(

diag(γ−1
j )− wdiag(mσ/N (λ))wT + ε(X)

)
= 0

with ε(X) a matrix with operator norm going to zero. The last thing to check is that the largest solution to this
equation are arbitrarily close to each others when ‖ε(X)‖op go to zero. But the above equations characterize
the outliers as zeroes of the analytic function (outside of the support of the limiting measure)

F (M,λ) = det
(
M − wdiag(mσ/N (λ))wT

)
= 0

where M belongs to a neighborhood of diag(γ−1
j ). As long as the derivative of F in λ does not vanish, its

solution is smooth. This is true for almost all γi’s, namely almost all ∆ and ρ.
Finally, observe that if two N × N matrices X and Y are such that their largest eigenvalues are close and

their empirical measures are close (with atomless limits) then X and Y are close in operator norms in the sense
that if the eigenvalues λi(X) and λi(Y ) are increasing in i,

lim sup
N→∞

max
i
|λi(X)− λi(Y )| = 0



LOW-RANK MATRIX ESTIMATION WITH INHOMOGENEOUS NOISE 25

in probability. This applies to X = Z and Y = 1√
N
Ỹ by the previous arguments. Indeed, for any self-adjoint

matrix Z

x̂i−1
Z ≤ λi(Z) ≤ x̂iZ

where x̂iZ = inf{x : µ̂Z([x, λmax(Z)]) ≥ (N − i)/N} and µ̂Z is the empirical measure of the eigenvalues of Z.
But, because the empirical measure of the eigenvalues converge towards the same limit and the limit correspond
to an atomless measure, together with the convergence towards the same limit of λmax(X) and λmax(Y ), we
find that for each δ > 0, for N large enough maxi |x̂iX − x̂iY | ≤ δ. �

Remark 3.15. If x0 ∈ RN×κ, then we can write decompose

(x0)(x0)T =

κ∑
j=1

θjuj(uj)T,

where θ1 ≥ θ2 ≥ · · · ≥ θκ. Then repeating the computation following (3.12) with uj(s) = (
√
θjuji 1(i ∈ Is))i≤N

and R of the form

R =
1

N

κ∑
j=1

n∑
s,t=1

‖vj(s)‖‖vj(t)‖
∆s,t

vj(s)

‖vj(s)‖

(
vj(t)

‖vj(t)‖

)T

.

The rest of the proof remains unchanged, since we only examine the behavior of v1 .

4. Lower Bound - Gaussian Interpolation

Given a sequence of symmetric matrix κ×κ matrix Qs for each s ≤ n, we want to derive the replica symmetric
formula. Let

Q̃s =
∑
t≤n

1

∆s,t
ρtQt.

and define

ϕ(Q) = −
n∑

s,t=1

ρsρt
4∆s,t

Tr((Qs)
TQt) +

n∑
s=1

ρsE ln

[ ∫
exp

((
Q̃sx

0 +

√
Q̃sz

)T

x− xTQ̃sx

2

)
dPX(x)

]
where x0 ∼ P0 and z ∼ N(0, Ir). Recall that, in the Bayes optimal case we defined in (2.5)

1

∆ij
= EPout(D|w=0)(∂wgij(D, 0))2

which takes n2 different values by Hypothesis 2.4 on ∆. The goal of this section is to prove that ϕ is a lower
bound for the free energy.

Theorem 4.1 (Bayes Optimal Lower Bound of the Free Energy)

Assume Hypotheses 2.3, 2.2, 2.1. Then, for any Q = (Q1, . . . , Qn) ∈ (S+
κ )n,

FN (∆) ≥ ϕ(Q)−O(κN−1/2).

Proof. We follow the standard interpolation proof. Fix a sequence (Qs)s≤n of positive semidefinite matrices

and for each i ∈ Is ⊂ N , we set Q̃i = Q̃s. Let zi be i.i.d. standard Gaussians independent of all other sources
of randomness, and consider the interpolating Hamiltonian

HN (t, x) =
∑
i<j

√
tWij√
∆ijN

(xi · xj) +
t

∆ijN
(xi · xj)(x0

i · x0
j )−

t

2∆ijN
(xi · xj)2

+
∑
i≤N

√
1− t

(
(Q̃

1/2
i zi) · xi

)
+ (1− t)

(
(Q̃ix

0
i ) · xi

)
− (1− t)

2
xTi Q̃ixi.

The corresponding interpolating free energy is given by

ϕ(t) =
1

N
E ln

∫
eHN (t,x) dP⊗N0 (x).
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It follows that

(4.1) ϕ(1) = FN (∆) and ϕ(0) =
∑
s≤n

ρsEz,x0 ln

[ ∫
exp

((
Q̃sx

0 +

√
Q̃sz

)T

x− xTQ̃sx

2

)
dPX(x)

]
.

We now control the derivative

ϕ′(t) =
1

N
E
(∑
i<j

Wij

2
√
t
√

∆ijN
〈xi · xj〉t +

1

∆ijN
x0
i · x0

j 〈xi · xj〉t −
1

2∆ijN
〈(xi · xj)2〉t

)

− 1

N
E
( N∑
i=1

1

2
√

1− t
〈
(Q̃

1/2
i zi) · xi

〉
t

+
〈
(Q̃ix

0
i ) · xi

〉
t
− 1

2
〈xTi Q̃ixi〉t

)
(4.2)

where the inner average is with respect to the Gibbs measure associated with HN (t, x),

〈f〉t =

∫
feHN (t,x) dP⊗N0 (x)∫
eHN (t,x) dP⊗N0 (x)

.

The Gaussian terms in (4.2) can be simplified by integrating by parts,

EW
∑
i<j

Wij

2
√
t
√
N∆ij

〈xi · xj〉t = EW
∑
i<j

1

2∆ijN
〈(x1

i · x1
j )

2〉t − EW
∑
i<j

1

2∆ijN
〈(x1

i · x1
j )(x

2
i · x2

j )〉t

and similarly,

Ez
N∑
i=1

1

2
√

1− t
〈
(Q̃

1/2
i zi) · xi

〉
t

= Ez
N∑
i=1

1

2

〈
(x1
i )

TQ̃i(x
1
i )
〉
t
− Ez

N∑
i=1

1

2

〈
(x1
i )

TQ̃ix
2
i

〉
t

where x2 is an independent copy (replica) of x1. All the second order terms cancel with the self overlap terms
in (4.2) leaving us with

ϕ′(t) =
1

N
E
(∑
i<j

− 1

2∆ijN
〈(x1

i · x1
j )(x

2
i · x2

j )〉t +
x0
i · x0

j

∆ijN
〈xi · xj〉t

)

− 1

N
E
( N∑
i=1

−1

2

〈
(x1
i )

TQ̃ix
2
i

〉
t

+
〈
(x0
i )

TQ̃ixi
〉
t

)
+O(κN−1/2)(4.3)

where the error comes from the diagonal terms of the overlap matrices, which are of order κ. We can now use
the Nishimori property (see for example [29, Proposition 16])

(4.4) E〈f(x1, x2, . . . , xn)〉t = E〈f(x0, x2, . . . , xn)〉t
to replace one replica under the average interpolating Gibbs measure with the signal. To prove (4.4), it is
enough to show that the average 〈·〉t can be interprated as a distribution of x conditionally on x0,W and z.
Indeed, if we let W, z to be Gaussian and set

Yij =
√
tx0
i · x0

j +
√

∆ijWij .

Then the law of Yij has density proportional to e
− 1

2∆ij
(Yij−

√
tx0
i ·x

0
j )

2

. Hence the law of x such that

Yij =
√
txi · xj +

√
∆ijWij

conditionally to x0 and W has density with respect to P (x) proportional to

exp

(
− 1

2∆ij

(√
txi · xj + ∆ijWij −

√
tx0
i · x0

j

)2
)

which is proportional to

exp

(∑
i<j

√
tWij√
∆ijN

(xi · xj) +
t

∆ijN
(xi · xj)(x0

i · x0
j )−

t

2∆ijN
(xi · xj)2

)
.

The same is true for the second term if we write

yi = zi +
√

1− tQ̃1/2
i x0

i
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with z a standard Gaussian vector, and condition by yi = zi +
√

1− tQ̃1/2
i xi. Hence eHN (t,x) dP⊗N0 (x) is the

distribution of x conditioned by W, z and x0. This implies (4.4). Plugging the Nishimori equation (4.4) into
(4.3) yields that

ϕ′(t) = E
(

1

2N2

〈∑
i<j

〈 1

∆ij
(x1
i · x1

j )(x
2
i · x2

j )
〉
t

)
− E

(
1

2N

〈 N∑
i=1

Tr(Qix
1
i (x

2
i )

T
〉
t

)
+O(κN−1/2)

= E
(

1

4

〈 n∑
s,t=1

ρsρt
∆s,t

Tr
(

(Rs1,2)TRt1,2

)〉
t

)
− E

(
1

2

〈 n∑
s=1

ρsρt
∆s,t

Tr
(

(Q̃s)
TRt1,2

))〉
t

)
+O(κN−1/2)

where we denoted by R ∈ Rκ×κ the overlap matrix defined for t ∈ {1, . . . , n} defined by:

Rtab =
1

|It|
∑
i∈It

xai (`)xbi (k), `, k ∈ [κ] .

Adding and subtracting
∑
s,t≤n

ρsρt
4∆2

s,t
Tr((Qs)

TQt), completes the square so the formula simplifies to

ϕ′(t) = E
(

1

4

〈 N∑
s,t=1

ρsρt
∆s,t

Tr
(

((Rs1,2)−Qs)T(Rt1,2 −Qt)
)〉

t

)
−

N∑
s,t=1

ρsρt
4∆s,t

Tr((Qs)
TQt) +O(κN−1/2)

Our assumption that 1
∆ is a non-negative matrix by Hypotheses 2.2 implies that the first term is non-negative,

so we arrive at the lower bound

ϕ′(t) ≥ −
n∑

s,t=1

ρsρt
4∆s,t

Tr((Qs)
TQt) +O(κN−1/2)

Integrating this bound implies that

ϕ(1) ≥ ϕ(0)−
n∑

s,t=1

ρsρt
4∆s,t

Tr((Qs)
TQt) +O(κN−1/2)

so the conclusion follows. �

5. The Upper Bound — Cavity Computations

5.1. Concentration of the Overlaps. We will introduce a perturbation of the Hamiltonian that will imply
concentration of the Hadamard powers of the overlaps and the generalized Ghirlanda–Guerra identities [36, 38,
37] in each block of the inhomogeneous vector spin models. Given a vector λ = (λ(1), . . . , λ(κ)) ∈ Rκ, consider
the p-spin Gaussian estimation problem

(5.1) Yi1,...,ip = gi1,...,ip +
s

N
p−1

2

∑
k≤κ

λ(k)x0
i1(k) · · ·x0

ip(k)

where 1 ≤ i1, . . . , ip ≤ N is some enumeration of the indices. Later on, we will restrict i1, . . . , ip ∈ Is, but the
pertubation Hamiltonian can be defined more generally. Since

Yi1,...,ip −
s

N
p−1

2

∑
k≤κ

λ(k)x0
i1(k) · · ·x0

ip(k)

is a standard Gaussian variable, the maximum likelihood estimator of this Gaussian channel is proportional to

dP (x0|Yi1,...,ip) =
1

Z
exp

(
− 1

2
(Yi1,...,ip −

s

N
p−1

2

∑
k≤κ

λ(k)xi1(k) · · ·xip(k))2

)
dP⊗N0 (x)

=
1

Z ′
exp

(
s

N
p−1

2

∑
k≤κ

Yi1,...,ipλ(k)xi1(k) · · ·xip(k)

− s2

2Np−1

∑
k,k′≤κ

λ(k)xi1(k) · · ·xip(k)λ(k′)xi1(k′) · · ·xip(k′)

)
dP⊗N0 (x)

where Z and Z ′ are the partition functions or normalizing constants. We denote for t ≤ n

(Rt`,`′)(k, k
′) =

1

Nt

∑
i∈It

x`i(k)x`
′

i (k′) and (Rt`,`′)
�p(k, k′) = (Rt`,`′(k, k

′))p, k, k′ ∈ [κ]
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where Nt are the proportions of indices in the group with index t as defined in (2.7). We denote also in short
(ρtR

t
`,`′)

�p = ρpt (R
t
`,`′)

�p.

If we consider an independent copy for each i1, . . . , ip conditionally on x0, then the perturbation Hamiltonian
(the log-likelihood) for t ≤ n is given by

Ht
N,p(x, g, λ, s) =

∑
i1,...,ip∈It

s

N
p−1

2

∑
k≤κ

gi1,...,ipλ(k)xi1(k) · · ·xip(k) + s2N
(
λT(ρtR

t
1,0)�pλ

)
− s2

2
N
(
λT(ρtR

t
1,1)�pλ

)(5.2)

Notice that the covariance of the Gaussian term is

1

N
E
( ∑
i1,...,ip∈It

gi1,...,ip
s

N
p−1

2

∑
k≤κ

λ(k)x1
i1(k) · · ·x1

ip(k)

)( ∑
i1,...,ip∈It

gi1,...,ip
s

N
p−1

2

∑
k≤κ

λ(k)x2
i1(k) · · ·x2

ip(k)

)

=
s2

Np

∑
i1,...,ip∈It

(∑
k≤κ

λ(k)x1
i1(k) · · ·x1

ip(k)

)(∑
k≤κ

λ(k)x2
i1(k) · · ·x2

ip(k)

)
= s2

(
λT(ρtR

t
1,2)�pλ

)
.

For s sufficiently large, adding this perturbation to the Gibbs measure will imply concentration of the quadratic
forms (λTR�p1,2λ). For applications, we will need concentration for all λ and all p ≥ 1. For any λ ∈ [−1, 1]κ and
p ≥ 1, the overlap is uniformly bounded

(5.3) (λTR�p1,2λ) ≤ κ2C2p,

since the vector spin coordinates x are uniformly bounded by some C ≥ 1. Let λm be a countable enumeration
of elements of the dense set ([−1, 1] ∩Q)κ and consider the perturbed Hamiltonian

Hpert
N (x, λ) = HN (x) +

n∑
t=1

∑
p≥1

∑
m≥1

Ht
N,p

(
x, gm,t, λm,

um,p,tεN
2m+pκCp

)
.

The above sum is infinite but the constants will be chosen so that the covariance of the above Gaussian process
is absolutely converging. The gaussian variables gm,t appearing in different Ht

N,p are independent. We choose

the scaling coefficient Cm,p := 2m+pκCp so that the covariance is of order O(s2N)

1

N
Cov

( n∑
t=1

∑
p≥1

∑
m≥1

Hp
N

(
x, gm,t, λm,

um,p,tεN
Cm,p

)
,

n∑
t=1

∑
p≥1

∑
m≥1

Hp
N

(
x, gm,t, λm,

um,p,tεN
Cm,p

))

= ε2
N

n∑
t=1

∑
p≥1

∑
m≥1

u2
m,p,t

(λTm(ρtR
t
1,2)�pλm)

C2
m,p

≤ ε2
N max
m,p,t

(u2
m,p,t).(5.4)

If maxm,p,t um,p,tεN → 0, then the covariance of the perturbation term will be of lower order than the Hamilton-
ian, so the limit of the free energy will not change because of the perturbation. To make this precise, consider
the perturbed free energy as a function of the infinite sequence u = (um,p)

(5.5) F pert
N (u) =

1

N
log

∫
eHN (x)+

∑n
t=1

∑
p≥1

∑
m≥1 H

t
N,p(x,gm,t,λm,

um,p,tεN

2m+prCp
) dP⊗N0 (x)

and denote in short FN = F pert
N (0). In this section, we also let 〈·〉pert denote the Gibbs average with respect

the perturbed Hamiltonian,

〈f(x)〉pert =

∫
f(x)eH

pert
N (x) dP⊗N0 (x)∫

eH
pert
N (x) dP⊗N0 (x)

which corresponds to averages with respect to the probability P (x0|Y, (Yθ)θ∈Θ) where Yθ in an enumeration
various p-spin Gaussian interference problems introduced in (5.1). In particular, the Nishimori property is valid
for averages with respect to the random Gibbs measure because it corresponds to a conditional probability.
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Lemma 5.1 (Equivalence of the Perturbed Free Energy)

Assume Hypothesis 2.3. Uniformly over all um,p,t ∈ [1/2, 1]

|EF pert
N (u)− EFN | ≤ ε2

N .

In particular, if ε2
N → 0, then the perturbation will not change the limit of the free energy.

Observe that this estimate holds independently of the choice of the original Hamiltonian HN .

Proof. Consider the interpolating free energy,

ϕ(τ) = E
[

1

N
log

∫
eHN (x)+

∑
p≥1

∑
m≥1 H

t
N,p(x,gm,t,λm,

um,p,tτ

2m+prCp
) dP0(x)

]
.

as a function of the εN parameter. Notice that ϕ(0) = EFN and ϕ(εN ) = EF pert
N (u). A straightforward

integration by parts computation and the Nishimori identity (4.4) implies that

ϕ′(τ) = E
〈 n∑
t=1

∑
p≥1

∑
m≥1

∑
i1,...,ip∈It

um,p,t

Cm,pN
p−1

2 +1

∑
k≤κ

gi1,...,ipλm,p(k)xi1(k) · · ·xip(k)

+ 2
τu2

m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,1)�pλn,p

)
−
τu2

m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,1)�pλn,p

)〉
pert

= E
〈 n∑
t=1

∑
p≥1

∑
m≥1

tu2
m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,1)�pλm,p

)
−
tu2
m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,2)�pλm,p

)
+

2τu2
m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,0)�pλm,p

)
−
τu2

m,p,t

C2
m,p

(
λTm,p(ρtR

t
1,1)�pλm,p

)〉
pert

≤ τ max
m,p

(u2
m,p,t).

because the overlaps are bounded uniformly under Hypothesis 2.3. Therefore, for t ∈ [0, εN ], we have ϕ′(τ) ≤ εN
since maxm,p,t(u

2
m,p,t) ≤ 1, so the result follows. �

On the other hand, if we take εN going to zero sufficiently slowly, then we will be able to regularize the Gibbs
measure using this perturbation. We will fix a t ≤ n, and show that the overlaps within t ≤ n will concentrate
in the limit.

We define

(5.6) vN = sup
u

E(NF pert
N (u)−NEF pert

N (u))2

where the supremum is taken over all un,p,t ∈ [1/2, 1] and the expectation E is over the Gaussian variables
gm,t,i1,...,ip and the x0. In our applications, vN is usually of order N as we will see by using concentration of
measure.

We consider the case when the parameters um,p,t are random. For each m, p ≥ 1, consider um,p,tεN where
um,p,t ∈ [1/2, 1] are uniform and independent and ε2

N → 0, so that the limit of the free energy is unchanged by
Lemma 5.1. We will prove that if εN = N−γ for γ < 1

4 , then the perturbation can be large enough to regularize
the Gibbs measure by implying concentration of the quadratic forms of overlaps and the uniform concentration
of the log partition function (or the free energies not normalized by N) with respect to the perturbed as a
function of um,p,t. Taking um,p,t ∼ U [1/2, 1] independent for all m, p, t, we get the following bound for the
concentration of the overlaps on average.

Theorem 5.2 (Concentration Bound of the Overlap)

Assume Hypotheses 2.3 and 2.1. If vN
N2εN

→ 0, then for any m, p ≥ 1 there exists a constant Lm,p that only
depends on m and p such that

(5.7) max
t

EuE〈((λTm(Rt1,2)�pλm)− E〈(λTm(Rt1,2)�pλm)〉pert)
2〉pert ≤ Lm,p

((
vN

N2ε4
N

)1/3

+
1

ε2
NN

)
.

where 〈·〉 = 〈·〉pert is the average with respect to the perturbed Gibbs measure. E denotes the average with
respect to the Gaussian random variables that appear in the Hamiltonian and the signal variable x0. The
outer average Eu is with respect to the uniform random variables (um′,p′,t′)m′,p′,t′ .
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Proof. This proof is a generalization of the case when p = 1 and κ = 1 found in [7]. To simplify notation,
we will drop the subscript on the Gibbs average, 〈·〉 := 〈·〉pert and the subscripts m, p, t because they are fixed
throughout the proof. Furthermore, since the (um,p,t)m,p,t≥1 are independent, we can fix the um′,p′,t′ for m′ 6= n,
p′ 6= p, and t 6= t′ and average with respect to the Gaussian g and um,p,t first. This restriction will not affect the
validity of the Nishimori property (4.4) because the Gibbs measure is a conditional probability corresponding
to a Gaussian estimation problem for all um,p,t. To also simplify notation, we will abuse notation and define

R�p`,`′ = (ρRt`,`′)
�p

in this proof because ρ, p, t are fixed, so it will not affect any computations.

Step 1: We first bound the moments and show that

(5.8) E〈((λTmR
�p
1,0λm)− E〈(λTmR

�p
1,0λm)〉)2〉 ≤

4C2
m,p

ε2
NN

2
E
〈
(H ′ − E〈H ′〉)2

〉
where H ′ = ∂sH denotes the derivative with respect to the last coordinate of the Hamiltonian defined in (5.2)
which we denote by

(5.9) s := sm,p,t =
um,p,tεN
2m+pκCp

∈
[ εN

2 · 2m+pκCp
,

εN
2m+pκCp

]
.

We also recall that Cm,p = 2m+pκCp. During the proof we write in short u for um,p,t. This inequality comes
from an integration by parts argument and the Nishimori property. A crucial observation is that we can integrate
by parts with respect to the Gaussian random variables conditionally on all other sources of randomness by
independence. By independence, we first do the computation conditionally on s and denote in short λ for λm,p.
We first prove that

(5.10)
1

N
E〈(λTR�p1,2λ)(H ′ − E〈H ′〉)〉 ≤ sE〈((λTR�p1,2λ)− E〈(λTR�p1,2λ)〉)2〉+ sE〈((λTR�p1,2λ)− 〈(λTR�p1,2λ)〉)2〉.

Notice that the left hand side simplifies to

1

N
E〈(λTR�p1,0λ)(H ′ − E〈H ′〉)〉

=
1

N
p+1

2

∑
i1,...,ip

E
[
〈(λTR�p1,0λ)gi1,...,ip

∑
k

λ(k)xi1(k) · · ·xip(k)〉+ 2s〈(λTR�p1,0λ)(λTR�p1,0λ)〉 − s〈(λTR�p1,0λ)(λTR�p1,1λ)〉
]

− E
[
〈(λTR�p1,0λ)〉

]( 1

N
p+1

2

∑
i1,...,ip

E
[
〈gi1,...,ip

∑
k

λ(k)xi1(k) · · ·xip(k)〉+ 2sE〈(λTR�p1,0λ)〉 − sE〈(λTR�p1,1λ)〉
)]
.

Since x0 is independent from the Gaussian terms, we can integrate the Gaussian terms using integration by
parts conditionally on the x0 (and recalling the extra s factor in the exponent) to conclude that the above right
hand side equals

sE
[
〈(λTR�p1,0λ)(λTR�p1,1λ)〉 − 〈(λTR�p1,0λ)(λTR�p1,2λ)〉+ 2〈(λTR�p1,0λ)(λTR�p1,0λ)〉 − 〈(λTR�p1,0λ)(λTR�p1,1λ)〉

]
− E

[
〈(λTR�p1,0λ)〉

](
sE
[
〈(λTR�p1,1λ)〉 − sE〈(λTR�p1,2λ)〉+ 2sE〈(λTR�p1,0λ)〉 − sE〈(λTR�p1,1λ)〉

)]
.(5.11)

Next, we integrate with respect to x1 and x2 independently since they are independent conditionally on x0 and
apply the Nishimori property to conclude that

E〈(λTR�p1,0λ)(λTR�p1,2λ)〉 = E〈(λTR�p1,0λ)(λTR�p2,0λ)〉 = E〈(λTR�p1,0λ)〉2.

which implies that (5.11) can be further simplified to

− sE〈(λTR�p1,0λ)〉2 + 2sE〈(λTR�p1,0λ)2〉 − s(E〈(λTR�p1,0λ)〉)2

= s
(
E〈(λTR�p1,0λ)2〉 − (E〈(λTR�p1,0λ)〉)2

)
+ s
(
E〈(λTR�p1,0λ)2〉 − E〈(λTR�p1,0λ)〉2

)
= sE〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)2〉+ sE〈((λTR�p1,0λ)− 〈(λTR�p1,0λ)〉)2〉 .

We can now conclude that

1

N
E〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)(H ′ − E〈H ′〉)〉 ≥ sE〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)2〉
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so the Cauchy–Schwarz inequality implies

sE〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)2〉 ≤ 1

N
|E〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)(H ′ − E〈H ′〉)〉|

≤ 1

N

(
E〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)2〉E〈(H ′ − E〈H ′〉)2〉

)1/2

,

which simplifies to

s2E〈((λTR�p1,0λ)− E〈(λTR�p1,0λ)〉)2〉 ≤ 1

N2
E
〈
(H ′ − E〈H ′〉)2

〉
.

Using the fact that s ≥ εN
2Cm,p

by (5.9) implies (5.8).

Step 2: We now have to control the variance of the derivative of the Hamiltonian. Again, this part of the
proof is identical to the one dimensional case, because the variances of H can be expressed in terms of the
derivatives of the free energy, which can be bounded using elementary facts about convex functions [7]. We
recreate the details for completeness.

We begin by bounding the difference of derivatives in (5.8) with its thermal and quenched variances

(5.12)
4C2

m,p

ε2
NN

2
E
〈
(H ′ − E〈H ′〉)2

〉
≤

4C2
m,p

ε2
NN

2
E
〈
(H ′ − 〈H ′〉)2

〉
+

4C2
m,p

ε2
NN

2
E
〈
(〈H ′〉 − E〈H ′〉)2

〉
Our goal is to use the convexity and boundedness of the perturbed free energy functions to bound the right
hand side of (5.12) from above.

We first fix the rest of the uniform random variables in the Hamiltonian except for um,p. We begin by
bounding the first term in the RHS of (5.12) using a bound on the first derivative of the free energy. We prove
that

(5.13)
4C2

m,p

ε2
NN

2
EuE

〈
(H ′ − 〈H ′〉)2

〉
≤

12C4
n,p4

n+p

ε2
NN

.

To this end, first notice that

d2

ds2
E logZpert

N (s) = E〈(H ′ − 〈H ′〉)2〉+ 2NE〈λR�p1,0λ〉 −NE〈λR�p1,1λ〉(5.14)

where the last term comes from ∂2
sH. If we rearrange terms, then∫ εN

Cm,p

εN
2Cn,p

E
〈
(H ′ − 〈H ′〉)2

〉
ds

=

∫ εN
Cm,p

− εN
2Cm,p

d2

ds2
E logZpert

N (s) ds−N
∫ εN

Cm,p

εN
2Cm,p

E
〈

2λTR�p1,0λ− λTR
�p
1,1λ

〉
ds

≤ d

ds
E logZpert

N (s)

∣∣∣∣
εN
Cm,p

εN
2Cm,p

+ 3N

∫ εN
Cm,p

εN
2Cm,p

κ2C2p ds.

where we used (5.3). Next, to control the first term, notice that

d

ds
E logZpert

N (s) = E〈H ′〉 = 2sNE〈λTR�p1,0λ〉 − sNE〈λTR�p1,2λ〉 ≤ 3Nsκ2C2p

so we can conclude that ∫ εN/Cm,p

εN/2Cm,p

E
〈
(H ′ − 〈H ′〉)2

〉
ds ≤ 3Nκ2C2p εN

Cm,p

Since s = uεN
Cn,p

where u ∼ U [1/2, 1], the above reads

(5.15) EuE
〈
(H ′ − 〈H ′〉)2

〉
≤ 6Nκ2C2p

Eventhough this bound is not great, remember that we will multiply it by
4C2

n,p

ε2NN
2 which is very small, see (5.8).

Step 3: We now bound the second term in the RHS of (5.12) and show that

(5.16)
4C2

m,p

ε2
NN

2
EuE

〈
(〈H ′〉 − E〈H ′〉)2

〉
≤ 1000C

16
3
m,p4

m+p
( vN
N2ε4

N

)1/3

.



32 ALICE GUIONNET*, JUSTIN KO*, FLORENT KRZAKALA, LENKA ZDEBOROVÁ

The proof uses the expectation over un,p and the convexity of the modified free energy

F̃N (s) =
1

N
logZpert

N (s) + 3s24m+pC2
m,p .

F̃N is a convex function because the computation in (5.14) implies that the second derivative

d2

ds2
F̃N =

1

N
〈(H ′ − 〈H ′〉)2〉+ 2〈λR�p1,0λ〉 − 〈λR

�p
1,1λ〉+ 6 · 4m+pC2

m,p

is non-negative because Cm,p = 2m+pκCp and 〈λR�p1,2λ〉 is uniformly bounded by κ2C2p. Our goal is to control
the difference of the derivatives of this convex function with its expected value

(5.17) F̃ ′N − EF̃ ′N =
1

N
(〈H ′〉 − E〈H ′〉).

We can now use the bounds on the derivatives of convex functions given by the following lemma from [34,
Lemma 3.2].

Lemma 5.3 (A Bound for Convex Functions)

Let G and g be convex differentiable functions. For δ > 0 and nonnegative functions C−δ (x) = g′(x)−g′(x−δ)
and C+

δ (x) = g′(x+ δ)− g′(x) then for all real numbers x

|G′(x)− g′(x)| = 1

δ

∑
u∈{x−δ,x,x+δ}

|G(u)− g(u)|+ C+
δ (x) + C−δ (x)

To control (5.17), we apply this lemma to G(s) = F̃N (s) and g(s) = EF̃N (s) to conclude that for any s ∈
(εN/2Cm,p, εN/Cm,p) and δ > 0 sufficiently small so that s− δ > 0,

1

N
|〈H ′〉 − E〈H ′〉| ≤ δ−1

∑
u∈{x−δ,x,x+δ}

|FN (u)− EFN (u)|+ |EF̃ ′N (x)− EF̃ ′N (x− δ)|+ |EF̃ ′N (x+ δ)− EF̃ ′N (x)|

We square both sides and apply Jensen’s inequality (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i to arrive at the bound

1

5N2
EuE(〈H ′〉 − E〈H ′〉)2 ≤ δ−2

∑
u∈{x−δ,x,x+δ}

EuE|FN (u)− EFN (u)|2

+ Eu|EF̃ ′N (s)− EF̃ ′N (s− δ)|2 + Eu|EF̃ ′N (s+ δ)− EF̃ ′N (s)|2(5.18)

It now remains to control the two terms in the above upper bound.

(1) From the definition of vN ,

sup
u

E(FN (u)− EFN (u))2 ≤ vN
N2

,

we get

(5.19) δ−2
∑

u∈{x−δ,x,x+δ}

EuE|FN (u)− EFN (u)|2 ≤ 3vN
N2δ2

.

(2) For the two last terms, we begin by controlling

2

∫ 1

1
2

((
EF̃ ′N

( uεN
Cm,p

)
− EF̃ ′N

( uεN
Cm,p

− δ
))2

+
(
EF̃ ′N

( uεN
Cm,p

)
− EF̃ ′N

( uεN
Cm,p

+ δ
))2

)
du

=
2Cm,p
εN

∫ εN
Cm,p

εN
2Cm,p

(
|EF̃ ′N (s)− EF̃ ′N (s− δ)|2 + |EF̃ ′N (s+ δ)− EF̃ ′N (s)|2

)
ds(5.20)

By the Nishimori property, we get the uniform bound

(5.21) EF̃ ′N (s) =
1

N
E〈H ′〉 = 2sE〈λTR�p1,0λ〉 − sE〈λTR

�p
1,2λ〉 ≤ 3εNC

2
m,p4

m+p

so

max(|EF̃ ′N (s)− EF̃ ′N (s− δ)|, |EF̃ ′N (s+ δ)− EF̃ ′N (s)|) ≤ 6εNC
2
m,p4

m+p
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Since F ′N is increasing, EF̃ ′N (s)− EF ′N (s− δ) is nonnegative so we conclude that (5.20) is bounded by

12C3
m,p4

m+p

∫ εN
Cm,p

εN
2Cm,p

EF̃ ′N (s)− EF̃ ′N (s− δ) + EF̃ ′N (s+ δ)− EF̃ ′N (s) ds

= 12C3
m,p4

m+p

(
EF̃N

( εN
Cm,p

+ δ
)
− EF̃N

( εN
Cm,p

− δ
)

+ EF̃N
( εN

2Cm,p
− δ
)
− EF̃N

( εN
2Cm,p

+ δ
))

≤ 72δεNC
5
m,p8

m+p

by the mean value theorem and the bound on the derivatives (5.21).

We deduce from (5.18) and (5.19) that

1

5N2
EuE(〈H ′〉 − E〈H ′〉)2 ≤ 3vN

N2δ2
+ 72δεNC

5
n,p8

n+p.

We finally choose δ to be given by

δ3 =
vN

24N2εNC5
n,p8

n+p

so

1

N2
EuE(〈H ′〉 − E〈H ′〉)2 ≤ 2

(
3vN
N2

(
24N2εNC

5
m,p8

m+p

vN

)2/3

+ 72

(
vN

24N2εNC5
m,p8

m+p

)1/3

εNC
5
m,p8

m+p

)
which gives (5.16) .

Step 4: From steps 1 and 3, we conclude that conditionally on um′,p′ for (m′, p′) 6= (m, p) that

Eum,pE〈((λTm,pR
�p
1,2λm,p)− E〈(λTn,pR

�p
1,2λm,p)〉)2〉 ≤

(
1000C

16
3
n,p4

n+p
( vN
N2ε4

N

)1/3

+
12C4

n,p4
m+p

ε2
NN

)
.

Since this bound is uniform in um′,p′ , Theorem 5.2 follows.
�

Remark 5.4. In the proof above, we assumed that Cm,p ≥ 1 and εN ≤ 1. This is not a problem, because
εN = N−γ for 0 < γ < 1/4 in our applications, and we can assume Cm,p ≥ 1 at the cost of a less sharp upper

bound. The constant Lm,p is also of order C
16/3
m,p .

Using Gaussian concentration to explicitly estimate vN , we can conclude concentration of all quadratic forms
associated to the Hadamard powers of the overlap at rational vectors.

Corollary 5.5 (Overlap Quadratic Form Concentration)

If εN = N−γ for 0 < γ < 1/4, then for any p ≥ 1 rational valued λ ∈ [−1, 1]κ, and t ≤ n
(5.22) EuE〈((λT(Rt1,2)�pλ)− E〈(λT(Rt1,2)�pλ)〉pert)

2〉pert → 0.

Proof. We explicitly compute the rate vN defined in (5.6) for this model. We fix our parameter u, and let

ϕ = NF pert
N (u). By independence, we can split the expected values into a statement about the concentration

of x0 and the Gaussian terms,

(5.23) E|ϕ− Eϕ| ≤ E|ϕ− EW,gϕ|+ Ex0 |EW,gϕ− Eϕ|
The average EW is with respect to the ‘W ’ Gaussian terms in HN , the average Ex0 is with respect to ‘x0’ terms
in the approximate indicator and Eg is with respect to the ‘g’ Gaussian terms gN (x), and E is the average with
respect to all sources of randomness.

We start by proving the first term satisfies

(5.24) E|ϕ− EW,gϕ| ≤ O(
√
N +Nε2

N ).

By independence, we can compute this upper bound conditionally on x0. Since the Gaussian Hamiltonian has
variance of order N , the classical Gaussian concentration inequality for Lipschitz functions [34, Theorem 1.2]
implies that

E|ϕ− EW,gϕ|2 ≤ 8γ2C2pN +Nε2
N .

We now focus on the second term and prove it satisfies

(5.25) Ex0 |EW,gϕ− Eϕ| ≤ O(N
1
2 ).
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We use the bounded difference property and a consequence of the Efron–Stein inequality. For N sufficiently
large

|EW,g∂x0
i (k)ϕ| ≤

1

‖∆∞‖

∣∣∣EW,g〈x0
j (k)(xi · xj) +

∑
p≥1

p

Cm,p
Rp−1

1,0 xi(k)
〉

pert

∣∣∣ ≤ L
for some universal constant L that only depends on C and ‖∆‖∞. Since the EW,gϕ has a bounded derivative for
each coordinate x0

i (k) and x0
i (k) is almost surely bounded by C, it satisfies the bounded difference inequality,

|EW,gϕ(x0
1(1), . . . , x0

i (k), . . . , x0
N (κ))− EW,gϕ(x0

1(1), . . . , x̃0
i (k), . . . , x0

N (κ))| ≤ CL

so ϕ satisfies the bounded difference property for some universal constant L that only depends on the maximal
value of the support. From the concentration inequality for functions of independent random variables satisfying
the bounded differences property [11, Corollary 3.2] if follows that

Ex0(EW,gϕ− Eϕ)2 ≤ C2L2κN.

Combining the estimates in (5.24) and (5.25) proves (5.25) after applying Jensen’s inequality.
From the overlap concentration estimate Lemma 5.2, we deduce

(5.26) EuE〈((λTm,p(Rt1,2)�pλm,p)− E〈(λTm,p(Rt1,2)�pλm,p)〉pert)
2〉pert ≤ Lm,p

((
N +Nε2

N

N2ε4
N

)1/3

+
1

ε2
NN

)
.

In particular, if εN = N−γ for 0 < γ < 1/4, then Nε4
N →∞ so (5.22) holds for any m, p and t. Since the λm,p

are dense in the sphere, the result follows. �

Remark 5.6. The condition that γ > 0 implies that the limit of the free energy is unchanged by Lemma 5.1.
The condition that γ < 1/4 is required to ensure that the perturbation is large enough to regularize the Gibbs
measure. The exponent 1/4 is not expected to be optimal.

The concentration of the quadratic forms in Corollary 5.5 is insufficient to determine concentration of the
overlaps (see Corollary 5.8) because the limiting arrays may not be a priori symmetric. Indeed, even though
the convergence in Corollary 5.5 can be turned into an almost sure uniform convergence in λ

(λTRt1,2λ)− E〈(λTERt1,2λ)〉pert → 0 a.s.

this allows to conclude only that

((Rt1,2)�p − E〈(Rt1,2)�p〉pert + ((Rt1,2)�p − E〈(Rt1,2)�p〉pert)
T

goes to zero. It is not hard to see that E〈(Rt1,2)�p〉pert is symmetric, but at this point nothing guarantees that

(Rt1,2)�p is as well symmetric. To prove asymptotic symmetry of the overlaps, we invoke the synchronization
property first observed for overlap matrix arrays in the vector spin glass models.

The entries of the overlap matrix are bounded, the matrix of overlaps is tight and there exists a subsequence
such that RtN = (Rt(x`, x`

′
))`,`′≥1 converges in distribution to some matrix R̄t = (R̄(x`, x`

′
))`,`′≥1. The

concentration of the quadratic forms (5.22) proves that (λTk (Rt`,`′)
�pλk) is close to E〈(λTk (Rt`,`′)

�pλk)〉pert for

` 6= `′ with probability going to one in the limit. This means that the off diagonal entries of the array of
quadratic forms are constant

(5.27) ((λTk (Rt`,`′)
�pλk))` 6=`′ = Lt,pk

for some function L that only depends on t, p and λk. The fact that the off diagonals of the quadratic forms
are constant is sufficient to proving that the limiting array R̄ must have symmetric entries. In particular, R̄
satisfies the synchronization property proved for vector spin models in [37, Theorem 4].

Theorem 5.7 (Synchronization)

Any infinite array (R̄t`,`′)`,`′≥1 of κ × κ matrices that satisfy (5.22) implies that R̄t`,`′ is almost surely

symmetric for all `, `′ ≥ 1.

Proof. We adapt the general proof of synchronization to this simpler setting where we have concentation of
the quadratic forms of the powers of the overlaps. The proof is essentially identical to the general case [38,
Section 6], but avoids relying on the Ghirlanda–Guerra identities because they are trivially satisfied by the
replica symmetric array.
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Step 1: We first recover the values of the overlaps. By (5.27), we observe that there exists some constants
Ltk, L

t
k,k′ etc that depend only on t ≤ n and entries k, k′ such that :

(1) First Order Diagonal Elements: For all 1 ≤ k ≤ κ, if we take p = 1 and λ = ek then

R̄t`,`′(k, k) = Ltk,k

for some constant Ltk = ER̄t1,2(k, k).
(2) First Order Off-Diagonal Elements: For all 1 ≤ k 6= k′ ≤ κ, if we take p = 1 and λ1 = ek + ek′ and

λ2 = ek − ek′ then (5.27) implies

R̄t`,`′(k, k) + R̄t`,`′(k
′, k′) + R̄t`,`′(k, k

′) + R̄t`,`′(k
′, k) = Ltek+ek′

R̄t`,`′(k, k) + R̄t`,`′(k
′, k′)− R̄t`,`′(k, k′)− R̄t`,`′(k′, k) = Ltek−ek′

so

(5.28) R̄t`,`′(k, k
′) + R̄t`,`′(k

′, k) = Ltk,k′ =
1

2
(Ltek+ek′

− Ltek−ek′ ).

(3) Second Order Off-Diagonal Elements: For 1 ≤ k 6= k′ ≤ k, if we take p = 2 and λ1 = ek + ek′ and

λ2 = ek − ek′ then (5.27) gives a L̃tk,k′ such that for all ` 6= `′

(5.29) (R̄t`,`′(k, k
′))2 + (R̄t`,`′(k

′, k))2 = L̃tk,k′ .

From the formulas (5.28) and (5.29) we can explicitly solve the system to conclude that R̄`,`′(k, k
′) and R̄`,`′(k, k

′)
can take one of two possible values

R̄t`,`′(k, k
′), R̄t`,`′(k

′, k) =
Ltk,k′ ±

√
2L̃tk,k′ − (Ltk,k′)

2

2
.

Note that all the concentration results above only apply for the offdiagonal elements of the overlap array, because
Theorem 5.2 only holds when ` 6= `′. Obviously Lt and L̃t are symmetric matrices. Moreover, by Corollary 5.5,
the indices does not depend on the choice of `, `′ as the distribution of any limit point should be symmetric in
the replicas.

Step 2: It remains to show that

R̄t`,`′(k, k
′) = R̄t`,`′(k

′, k) =
Ltk,k′

2
.

We proceed by contradiction by showing that if R̄t`,`′(k, k
′) 6= R̄t`,`′(k

′, k) with positive probability, then we can
always examine a large enough subarray such that the diagonals are identical. We consider a 2n× 2n array of
2× 2 blocks of the form [

R̄`,`′(k, k) R̄`,`′(k, k
′)

R̄`,`′(k
′, k) R̄`,`′(k

′, k′)

]
`,`′

By the computations in step 1, for ` 6= `′ the offdiagonal blocks must be of the form[
a b
c d

]
or

[
a c
b d

]
where

a = Ltk,k d = Ltk′,k′ b =
Ltk,k′ +

√
2L̃tk,k′ − (Ltk,k′)

2

2
c =

Ltk,k′ −
√

2L̃tk,k′ − (Ltk,k′)
2

2
.

We will show that b 6= c is impossible, by examining the barycenters of the infinite arrays, namely using the
fact that we have n, the number of replicas, as large as we wish. For large enough n, we can find arbitrary large
disjoint set of indices ` ∈ V1 and `′ ∈ V2 each of cardinality m [23, Theorem 3] such that the corresponding
matrix array is only of the first form [

a b
c d

]
.

We now restrict ourselves to indices from V = V1 t V2. Because the arrays of each of the entries restricted to
V is positive semidefinite, we can find vectors u` and w` in a Hilbert space such that

(5.30)

[
〈u`, u`′〉 〈u`, w`′〉
〈w`, u`′〉 〈w`, w`′〉

]
`,`′∈V

=

[
R̄`,`′(k, k) R̄`,`′(k, k

′)
R̄`,`′(k

′, k) R̄`,`′(k
′, k′)

]
`,`′∈V

.
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Notice that for ` 6= `′ ∈ V we have 〈u`, u`′〉 = a and 〈w`, w`′〉 = d. Furthermore, by construction if ` ∈ V1 and
`′ ∈ V2, we see that [

〈u`, u`′〉 〈u`, w`′〉
〈w`, u`′〉 〈w`, w`′〉

]
`∈V1,`′∈V2

=

[
a b
c d

]
.

For i = 1, 2, if we examine the barycenters

Ui =
1

m

∑
`∈Vi

u` and Wi =
1

m

∑
`∈Vi

w`,

then (5.30) readily gives [
〈U1, U2〉 〈U1,W2〉
〈W1, U2〉 〈W1,W2〉

]
=

[
a b
c d

]
.

However, if we look at the differences between the barycenters, (5.30) implies that

‖U1 − U2‖2 =
1

m2

∥∥∥∥ ∑
`∈V1

u` −
∑
`∈V2

u`

∥∥∥∥2

≤ 2C2 + 2a

m

and

‖W1 −W2‖2 =
1

m2

∥∥∥∥ ∑
`∈V1

w` −
∑
`∈V2

w`

∥∥∥∥2

≤ 2C2 + 2d

m
.

Indeed, the diagonal entries of the overlap arrays are bounded by some universal constant C2 and the offdiagonals
are fixed for ` ∈ V1 and `′ ∈ V2 by (5.30). We used the fact that 〈u`, u`′〉 = a and 〈w`, w`′〉 = d for any ` 6= `′

to cancel off all the offdiagonal terms. If we take m→∞, then U1 ≈ U2 and W1 ≈W2, so 〈U1,W2〉 = 〈W1, U2〉
which implies that b = c, so the overlap array must be symmetric. �

In particular, the limiting matrix overlaps R̄t are almost surely symmetric. This allows us to conclude the
concentration of the overlap entries instead of its quadratic forms as previously found in Theorem 5.2, see (5.7).

Theorem 5.8 (Concentration of the Overlaps)

If εN = N−γ for some 0 < γ < 1/4, then for all t ≤ n
(1)

E〈‖Rt1,2 − E〈Rt1,2〉pert‖22〉pert → 0.

(2)
E〈‖Rt1,0 − E〈Rt1,0〉pert‖22〉pert → 0.

Furthermore,
Qt := E〈Rt1,2〉pert = E〈Rt1,0〉pert,

so the limit points are the same.

Proof. The first point is a direct consequence of Corollary 5.5 and Theorem 5.7. For the second point we use
the Nishimori property to get concentration of the overlap with respect to the planted signal from the first case

E〈‖R1,0 − E〈R1,0〉pert‖22〉pert → 0.

and

E〈Rt1,2〉pert = E〈Rt1,0〉pert.

�

5.2. Cavity Computations via the Aizenman–Sims–Starr Scheme. We will now apply the concentration
of the overlaps to prove the matching upper bound of the free energy using the Aizenman–Sims–Starr scheme.
We have for any M ≥ 1

F (∆) := lim sup
N→∞

FN (∆) = lim sup
N→∞

1

M
((N +M)FN+M (∆)−NFN (∆)).

We can partition the cavity coordinates into groups such that

I+ = {N + 1, . . . , N +M} =
⋃
s≤n

I+
s ,
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and the proportions in each of these groups converge as M →∞ for every fixed N (at least on average)

lim
M→∞

ρMs =
|I+
s |
M

= ρs

We decompose the Hamiltonians into its common part and its cavity fields,

HN+M (x, y) = H ′N (x) +

M∑
i=1

(yTi zi(x) + yTi mi(x) + yTi si(x)yi) + o(N)

and

HN (x)
d
= H ′N (x) + y(x)

Here, the common Hamiltonian is given by

H ′N (x) =
∑

1≤i<j≤N

1√
∆ij

√
N +M

gijxi·xj+
∑

1≤i<j≤N

1

∆ij(N +M)
(x0
i ·x0

j )(xi·xj)−
∑

1≤i<j≤N

1

2∆ij(N +M)
(xi·xj)2

The cavity fields in this model are of the form :

zi(x) =

N∑
j=1

gj,N+1
1√

∆ij

√
N +M

xj

mi(x) =

N∑
j=1

1

∆ij(N +M)
x0
j · x0

N+ixj =
∑
s≤n

ρMt
∆st

Rt1,0x
0
N+i +O(N−1) = R̃i1,0x

0
i +O(N−1) i ∈ I+

s

si(x) = −
N∑
j=1

1

2∆ij(N +M)
xjx

T
j = −1

2

∑
s≤n

ρMt
∆st

Rt1,1 +O(N−1) = −1

2
R̃i1,1 +O(N−1) i ∈ I+

s

where we used the notation

R̃i1,1 =
∑
s≤n

ρMt
∆st

Rt1,1 =
∑
s≤n

ρMt
∆st

Rt(x,x) R̃i1,0 =
∑
s≤n

ρMt
∆st

Rt1,0 =
∑
s≤n

ρMt
∆st

Rt(x,x0).

Noting that we can write that the Gaussian variables with variance 1/N decompose as gij/
√

(N +M) +

g′ij
√
M/N(N +M) with independent Gaussian variables gij and g′ij

y(x) =
∑

1≤i<j≤N

√
M√

∆ij

√
N(N +M)

g′ijxi · xj +
∑
i<j

M

∆ijN(N +M)
(x0
i · x0

j )(xi · xj)−
∑
i<j

M

2∆ijN(N +M)
(xi · xj)2

=
∑
i<j

√
M

∆ijN
g′ijxi · xj +

M

2

∑
st

ρMs ρ
M
t

∆st
〈Rs1,0Rt1,0〉 −

M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs1,1Rt1,1〉+O(N−1)

where g′ij is independent of gij . Notice that the covariance of the Gaussian fields are given by

(5.31) Ezi(x1)zi(x
2)T =

∑
t

ρMt
∆2
s,t

Rt1,2 := R̃i1,2 i ∈ I+
s

and

E
((∑

i<j

1√
∆ij

√
(N +M)

gijx
1
i · x1

j

)(∑
i<j

1√
∆ij

√
(N +M)

gijx
2
i · x2

j

))
=
M

2

∑
s,t

ρMs ρ
M
t

∆st
〈Rs1,2, Rt1,2〉.

By adding and subtracting the normalization terms H ′N , we need to compute

∆FN,M :=
1

M

(
E log

〈∫
exp

( M∑
i=1

yTi zi(x) + yTi mi(x) + yTi si(x)yi

)
dP0(y)

〉′
− E log〈exp(y(x))〉′

)
where 〈·〉′ denotes the average with respect to the Gibbs measure H ′N . Of course, this procedure works as well
if we added the perturbation terms in Theorem 5.2, resulting in
(5.32)

∆F pert
N,M =

1

M

(
E log

〈∫
exp

( M∑
i=1

yTi zi(x) + yTi mi(x) + yTi si(x)yi

)
dP0(y)

〉
pert

− E log〈exp(y(x))〉pert

)
+ o(1)



38 ALICE GUIONNET*, JUSTIN KO*, FLORENT KRZAKALA, LENKA ZDEBOROVÁ

after a straightforward interpolation argument (see for example [34, Chapter 3.5]). It suffices to compute this
quantity in the limit.

We now recall a modification of a general result [34, Theorem 1.4] that implies that the functional ∆FN,M is
continuous with respect to the distribution of the off-diagonal elements of the array (R`,`′)` 6=`′ . We now state
precisely what we mean.

Lemma 5.9 (Continuity with Respect to Overlap Distribution)

For every ε > 0, there exists a function Fε(R
n
6=) of finitely many elements of Rn6= = (R`,`′)1≤` 6=`′≤n such that

|∆F pert
N,M − Fε(R

n
6=)| < ε.

Proof. Recall that without loss of generality, we can assume that P0 is supported on finitely many points. The
proof is essentially identical to the proof of in [34, Theorem 1.4]. The key difference is that the covariance
structures of the cavity fields in these models imply that the diagonal self overlap terms cancel, leaving us with
a functional of the off diagonal terms of the overlaps.

By Gaussian concentration, we will be able to restrict the logarithms in ∆FN,M to a compact set without
introducing a large error. We first define the truncation

fa(x) =


−a x < −a
x −a ≤ x ≤ a
a x > a

and the corresponding truncated Hamiltonians

Ha
Z(x, y) = fa

( M∑
i=1

yTi zi(x) + yTi R̃
i
1,0x

0
i −

1

2
yTi R̃

i
1,1yi

)

Ha
Y (x) = fa(

√
My(x`) +

M

2

∑
st

ρMs ρ
M
t

∆st
〈Rs1,0Rt1,0〉 −

M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs1,1Rt1,1〉).

Notice that H∞Z and H∞Y are the corresponding untruncated cavity field Hamiltonians appearing in ∆FN,M .
To simplify notation, we use 〈·〉 = 〈·〉pert. By a standard Gaussian concentration argument, we will prove that
there is a constant c such that

(5.33)

∣∣∣∣ 1

M
E log

〈∫
eH
∞
Z (x,y) dP0(y)

〉
− 1

M
E log

〈∫
eH

a
Z(x,y) dP0(y)

〉∣∣∣∣ ≤ e−ca2

and

(5.34)

∣∣∣∣ 1

M

(
E log

〈∫
exp

( M∑
i=1

yTi zi(x) + yTi mi(x) + yTi si(x)yi

)
dP0(y)

〉
− 1

M
E log〈eH

a
Y (x)〉

∣∣∣∣ ≤ e−ca2

for all a sufficiently large. We will defer the proof of this fact to the end of the proof, and first explain the rest
of the logic.

The key observation is that by Weierstrass Theorem, we can approximate the logarithm by a polynomial
uniformly on a compact set, so we can approximate ∆FN,M as a linear combination of the moments of the
overlaps. Since HZ(x) and HY (x) is bounded, we can restrict the logarithm to the set [e−a, ea] and approximate
it by polynomials. The expectations of these polynomials are of sums of terms of the form

E
〈∫

eHZ(x,y) dP0(y)

〉r
and E〈eHY (x)〉r =

〈
E
∏
`≤r

eHY (x)

〉

We start by computing the first of these terms. These moments can be computed explicitly. Because of (5.33)
and (5.33) it suffices to compute the moments with respect to the untruncated Hamiltonians. In particular, for
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any r > 0, the moments simplify to

E
〈∫

exp

( M∑
i=1

yTi zi(x) + yTi R̃
i
1,0x

0
i −

1

2
yTi R̃

i
1,1yi

)
dP0(y)

〉r

= E
〈∏
`≤r

∫
exp

( M∑
i=1

(y`i )
Tzi(x

`) + (y`i )
TR̃`,0x

0
i −

1

2
(y`i )

TR̃`,`y
`
i

)
dP0(y`)

〉

=

〈
E
∏
`≤r

∫
exp

( M∑
i=1

(y`i )
Tzi(x

`) + (y`i )
TR̃`,0x

0
i −

1

2
(y`i )

TR̃`,`y
`
i

)
dP0(y`)

〉
where 〈·〉 = 〈·〉pert is the average on with respect to the perturbed Gibbs measure. Taking expectations with
respect to zi

E exp

(∑
`≤r

M∑
i=1

(
(y`i )

Tzi(x
`) + (y`i )

TR̃`,0x
0
i −

1

2
(y`i )

TR̃`,`y
`
i

))

= E exp

(∑
` 6=`′

M∑
i=1

(
1

2
(y`i )

TR̃i`,`′y
`′

i + (y`i )
TR̃`,0x

0
i

))
since

E
(∑
`≤r

M∑
i=1

(y`i )
Tzi(x

`)

)(∑
`≤r

M∑
i=1

(y`
′

i )Tzi(x
`′)

)
=

1

2

r∑
`,`′=1

M∑
i,j=1

(y`i )
TR̃i`,`′y

`′

j .

In particular, these terms only depend on the offdiagonal elements of R`,`′ and R0,`, because the diagonal terms
canceled off. A similar computation works for the second term in ∆FN,M since again

E exp

(∑
`≤r

√
My(x`) +

M

2

∑
st

ρMs ρ
M
t

∆st
〈Rs1,0Rt1,0〉 −

M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs1,1Rt1,1〉

)

= E exp

(∑
` 6=`′
−M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs`,`′Rt`,`′〉+

M

2

∑
st

ρMs ρ
M
t

∆st
Tr(Rs`,0R

t
`,0))

)
is a function of the off diagonal elements of the array (R`,`′)`,`′≥0. Therefore, we can approximate ∆FN,M with
a continuous function of finitely many off diagonal elements of the array.

All that remains is to prove that the logarithm can be approximated by polynomials by proving the bounds
(5.33) and (5.34). The proofs of both inequalities follow from the same argument, so we only show the first one.
We prove this by showing that

(5.35)

∣∣∣∣ 1

M
E log

〈∫
eH
∞
Z (x,y) dP (y)

〉
− 1

M
E loga

〈∫
eH
∞
Z (x,y) PX(y)

〉∣∣∣∣ ≤ e−ca2

and

(5.36)

∣∣∣∣ 1

M
E loga

〈∫
eH
∞
Z (x,y) dP (y)

〉
− 1

M
E loga

〈∫
eH

a
Z(x,y) PX(y)

〉∣∣∣∣ ≤ e−ca2

where loga(x) = fa(log(x)) is the truncated logarithm. We begin by proving the first inequality. Because the
support of PX is bounded, the covariance

Ezi(x1)zi(x
2)T = R̃i1,2

defined in (5.31) is almost surely bounded by some universal constant. Let

FZ =
1

M
log

〈∫
eH
∞
Z (x,y) dP (y)

〉
=

1

M
log

〈∫
exp

( M∑
i=1

yTi zi(x) + yTi mi(x) + yTi si(x)yi

)
dP0(y)

〉
.

By Gaussian concentration [34, Theorem 1.2],

(5.37) P (|FZ − EFZ | ≥ a) ≤ 2e−ca
2
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where c only depends on supt≤n supx∈suppPX ‖R̃
t
1,2‖. By Jensen’s inequality, and the concavity of the logarithm

0 ≤ EFZ ≤
1

M
log

〈
E
∫

exp

( M∑
i=1

yTi zi(x) + yTi mi(x) + yTi si(x)yi

)
dP0(y)

〉
≤ C

for some constant that only depends on the upper bound of the covariance supt≤n supx∈suppPX ‖R̃
t
1,2‖. This

implies that {|FZ | ≥ a} ⊂ {|FZ −EFZ | ≥ a/2} for a ≥ C. The Gaussian concentration inequality (5.37) implies
that there exists a constant c such that for all a sufficiently large

P (|FZ | ≥ a) ≤ e−ca
2

and the bounds on the tails of a sub-Gaussian random variable [34, Equation 1.80] implies that

E(|FZ |1(|FZ | ≥ a)) ≤ e−ca
2

for some universal constant c. This proves (5.35).
To prove (5.36), notice that | loga(x)− loga(y)| ≤ ea|x− y| so (5.36) is bounded by

ea
∣∣∣∣〈 ∫ eH

∞
Z (x,y) P (y)−

∫
eH

a
Z(x,y) P (y)

〉∣∣∣∣ ≤ eaE〈|H∞Z (x, y)|1(|H∞Z (x, y)| ≥ a)〉.

Since the HZ is a Gaussian process, the exponential decay of the tails implies that we can also bound this by

e−ca
2

for a sufficiently large. �

Remark 5.10. The fact that the functionals do not depend on the diagonal terms is essential to understanding
the limiting behavior, because concentration Corollary 5.8 only applies to the offdiagonal terms of the array.

In the limit, we use synchronization of vector spins and multispecies models to study the limiting behavior
of the overlaps under the asymptotic Gibbs measure. In our case, Theorem 5.8 implies that

Rs`,`′ = Qs`,`′ = Qs1,0 = Qs for all s ≤ n, ` 6= `′

where Q`,`′ is the values of the limiting overlap matrix. One can check that the free energy functional (5.32) in
the limit is equivalent to

1

M

(
E log

∫
exp

( M∑
i=1

yTi Q̃
1/2
i zi + yTi Q̃ix

0
i −

1

2
yTi Q̃iyi

)
dP0(y)

− E log exp

(
y +

M

4

∑
st

ρMs ρ
M
t

∆st
〈Qs, Qt〉

)
.(5.38)

where

Q̃i = Q̃s =
∑
t≤n

1

∆s,t
ρMt Qt i ∈ Is.

a
¯
nd the Gaussians z and y have covariance

Cov(zi, zj) = δj=iQi Var(y) =
M

2

∑
st

ρMs ρ
M
t

∆st
〈Qs, Qt〉

Lemma 5.11 (Equivalence of the Functionals of the Overlaps)

If the overlaps concentrate, then (5.32) and (5.38) can be approximated by the same functionals Fε(R
n
6=) of

finitely many off diagonal entries of the overlap array.

Proof. In our setting, we can replace the off diagonal entries of the array (R` 6=`′) and Q, since the elements of
the off diagonal array take only one value by concentration. The original cavity fields appear to have some terms
that depend on the diagonal terms R`,`, but we will show that the moments of the cavity field are independent
of this term by cancellation.

Since P0 can be assumed to have finite support by Lemma 3.10, the computation in the proof of Lemma 5.9
implies that for fixed y and x0 the moments of the first cavity field can be written as a weighted sum of terms
of the form

E exp

( M∑
i=1

(y`)Ti zi(x) + (y`)Ti mi(x) + (y`)Ti si(x)(y`)i

))
= exp

( r∑
` 6=`′

M∑
i=1

1

2
yTi R̃

i
`,`′yj + yTi R̃

i
0,`x

0
i

)



LOW-RANK MATRIX ESTIMATION WITH INHOMOGENEOUS NOISE 41

where

R̃i`,`′ =
∑
t

ρMt
∆s,t

Rt1,2 for i ∈ Is.

When compared to

E exp

( r∑
`=1

M∑
i=1

(y`)Ti zi + (y`)Ti Q̃ix
0
i −

1

2
(y`)Ti Q̃i(y

`)i

)

= exp

( r∑
`,`′=1

M∑
i=1

1

2
(y`)Ti Q̃i(y

`)i + yTi Q̃ix
0
i −

1

2
(y`)Ti Q̃i(y

`)i

)

= exp

( ∑
1≤` 6=`′≤r

M∑
i=1

1

2
(y`)Ti Q̃i(y

`)i + yTi Q̃ix
0
i −

1

2
(y`)Ti Q̃i(y

`)i

)
where

Q̃i =
∑
t≤n

ρMt
∆s,t

Qt i ∈ Is

we can conclude that the moments are functionals of the same values of the overlap.
For the second cavity field, it is easy to see that all moments are the same of the overlaps. A direct

computation of the moments using the moment generating function of a Gaussian gives

E
(

exp(y(x))
)r

= exp

( r∑
`=1

y(x`) +
M

2

∑
st

ρMs ρ
M
t

∆st
〈Rs`,0, Rt`,0〉 −

M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs`,`, Rt`,`〉

)
= exp

( ∑
1≤` 6=`′≤r

M

4

∑
st

ρMs ρ
M
t

∆st
〈Rs`,`′ , Rt`,`′〉+

M

2

∑
st

ρMs ρ
M
t

∆st
〈Rs`,0, Rt`,0〉

)
.

and when compared to

E exp

( r∑
`=1

y +
M

4

∑
st

ρMs ρ
M
t

∆st
〈Qs, Qt〉

)
= exp

( ∑
1≤` 6=`′≤r

M

8

∑
st

ρMs ρ
M
t

∆st
〈Qs, Qt〉+

M

4

∑
st

ρMs ρ
M
t

∆st
〈Qs, Qt〉

)
so both functionals are the same functions of the overlaps (R`,`′)` 6=`′≥0 and Q.

�

By overlap concentration Theorem 5.8, we know (Rt`,`′) 6̀=`′ → (Qt)` 6=`′ for some constant matrix Qt in
the limit. Lemma 5.9 implies that the convergence of the offidagonal elements of the array is sufficient and
Lemma 5.11 implies that the functional (5.38) characterizes the limiting behavior of ∆FN,M defined in (5.32).
That is,

lim
N→∞

∆F pert
N,M = Fε(R

n
6=) +O(ε)

=
1

M

(
E log

∫
exp

( M∑
i=1

yTi Q̃
1/2
i zi + yTi Q̃ix

0
i −

1

2
yTi Q̃iyi

)
dP0(y)− E log exp

(
y +

M

4

∑
st

ρMs ρ
M
t

∆2
st

〈Qs, Qt〉
)

+O(ε)

=
1

M

( ∑
i∈I+

s

E log

∫
exp

(
yTi Q̃

1/2
s zs + yTi Q̃sx

0
i −

1

2
yTi Q̃syi

)
dP0(y)− M

4

∑
st

ρMs ρ
M
t

∆2
st

〈Qs, Qt〉
)

+O(ε)

(5.39)

The parameters Qs = QMs appearing above depend on our choice of M .
The lower bound (5.39) holds for all M . By compactness, there exists a subsequence such that QMs converges

to a limiting object Q. We may take M →∞ along a subsequence such that the proportions converge
|I+
s |
M → ρs

and QMs converges, then ε→ 0 and use the continuity of our functional in Q to conclude that

lim
M→∞

lim
N→∞

∆FN,M = ϕ(Q)

for some sequence Q = (Qs)s≤n. This gives the matching upper bound.
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Theorem 5.12 (Bayes Optimal Upper Bound of the Free Energy)

We have

lim sup
N→∞

1

N
EY lnZX(Y ) = lim sup

N→∞

1

N
EY lnZpert

X (Y ) ≤ sup
Q
ϕ(Q).

6. Solving the Variational Problem

In this section, we examine the stability of the critical points of the functional describing the limit of the free
energy

(6.1) ϕ(Q) = −
∑
s,t≤n

ρsρt
4∆s,t

Tr(QsQt) +
∑
s≤n

ρsEz,x0 ln

[ ∫
exp

((
Q̃sx

0 +

√
Q̃sz

)T

x− xTQ̃sx

2

)
dP0(x)

]
where

Q̃s =
∑
t≤n

1

∆s,t
ρtQt.

We begin with the case when the prior distribution is Gaussian, which will allow us to explicitly compute a
closed form of the solution. Later, we will generalize this analysis to general bounded priors.

6.1. Standard Gaussian Prior. Suppose that the prior is a standard Gaussian on Rκ,

dP0(x) =
1

(2π)
κ
2
e−

x·x
2 .

In this case, the second term in the functional (6.1) can be computed explicitly,
n∑
s=1

ρsEz,x0 ln

[ ∫
exp

((
Q̃sx

0 +

√
Q̃sz

)T

x− xTQ̃sx

2

)
dP0(x)

]

=

n∑
s=1

ρsEz,x0 ln

[
1

(2π)κ/2

∫
exp

((
Q̃sx

0 +

√
Q̃sz

)T

x− xTQ̃sx

2
− xTIx

2

)
dx

]

=

n∑
s=1

ρsEz,x0 ln

[
1

(2π)κ/2

∫
exp

(
− 1

2

(
x− (Q̃s + I)−1(Q̃sx

0 +

√
Q̃sz)

)T
(Q̃s + I)

(
x− (Q̃s + I)−1(Q̃sx

0 +

√
Q̃sz)

)
+

1

2

(
Q̃sx

0 +

√
Q̃sz

)T
(Q̃s + I)−1

(
Q̃sx

0 +

√
Q̃sz

))
dx

]
=

n∑
s=1

ρs

(
− 1

2
ln det(Q̃s + I) +

1

2
Ez,x0

(
Q̃sx

0 +

√
Q̃sz

)T
(Q̃s + I)−1

(
Q̃sx

0 +

√
Q̃sz

))

=

n∑
s=1

ρs

(
− 1

2
ln det(Q̃s + I) +

1

2
Tr
(
Q̃s(Q̃s + I)−1Q̃s

)
+

1

2
Tr
(√

Q̃s(Q̃s + I)−1

√
Q̃s

))
.

In the last computation, we used the fact that x0, z are independent centered standard Gaussians in Rκ.
By adding and subtracting the identity matrix and using the fact that the trace is invariant under cyclic
permutations,

1

2
Tr
(
Q̃s(Q̃s + I)−1Q̃s

)
+

1

2
Tr
(√

Q̃s(Q̃s + I)−1

√
Q̃s

)
=

1

2
Tr
(
Q̃s(Q̃s + I)−1(Q̃s + I − I)

)
+

1

2
Tr
(
Q̃s(Q̃s + I)−1

)
=

1

2
Tr(Q̃s).

Therefore, the general replica symmetric functional ϕg in the standard Gaussian case is

ϕg(Q) = −
n∑

s,t=1

ρsρt
4∆s,t

Tr(QsQt) +

n∑
s=1

ρs
2

(
Tr(Q̃s)− ln det(Q̃s + I)

)
.(6.2)

where

Q̃s =

n∑
t=1

1

∆s,t
ρtQt
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We next investigate the maximizers of ϕg on the set of symmetric positive semidefinite matrices. Observe
that ϕg is a C∞ function that goes to −∞ when sups ‖Qs‖op → ∞ hence the supremum is attained. We are
interested in finding conditions on ∆s,t and ρs to determine when ϕ(Q) has a maximizer at the origin Q = 0.
We define the following block matrices indexed by s ≤ n,

(6.3) Q̃ = (Q̃s)s≤n
1

∆
=
( 1

∆s,t

)
s,t≤n

ρ = diag(ρ1, . . . , ρn).

Lemma 6.1 (Phase Transition with Gaussian Prior)

(1) The functional ϕ has a unique maximizer at Q = 0 if∥∥∥√ρ 1

∆

√
ρ
∥∥∥
op
< 1

(2) The functional ϕ achieves its maximum value away from Q = 0 if∥∥∥√ρ 1

∆

√
ρ
∥∥∥
op
> 1

Remark 6.2. In the case when n = 1, we have that the phase transition happens when 1
∆ = 1, which is

precisely the phase transition in that model [29].

Proof.

First and Second Variations: Consider an arbitrary perturbation of M = (M1, . . . ,Mn) of Q. The first and
second variation is denoted by

(6.4) ∇Mϕg(Q) = ∂εϕg(Q+ εM)
∣∣∣
ε=0

and ∇2
Mϕg(Q) = ∂2

εϕg(Q+ εM)
∣∣∣
ε=0

.

We can compute these directly to see that

∇Mϕg(Q) =

(
−
∑
s,u

ρsρu
2∆s,u

Tr(QuMs) +
∑
s,u

ρsρu
2∆s,u

Tr((I − (Q̃u + I)−1)Ms)

)
and

∇2
Mϕg(Q) = −

∑
s,t

ρsρt
2∆s,t

Tr(MsMt) +
∑
s,t

∑
u

ρsρtρu
2∆s,u∆u,t

Tr((Q̃u + I)−1Ms(Q̃u + I)−1Mt).

Small Operator Norm: We first find a sufficient condition for ϕg to have a unique maximizer at the origin. At
the critical point, the derivative is equal to 0 for all symmetric M , so we can conclude that

(6.5) Q̃s =
∑
u

ρu
∆s,u

Qu =
∑
u

ρu
∆s,u

(
I − (Q̃u + I)−1

)
∀s.

Consider the following vectors of κ× κ matrices

Q̃ = (Q̃s)s≤n f(Q̃) = (I − (Q̃s + I)−1)s≤n = (Q̃s(Q̃s + I)−1)s≤n.

The critical point condition can be simplified to

(6.6) Q̃ =
1

∆
ρf(Q̃) =⇒ √

ρQ̃ =
(√

ρ
1

∆

√
ρ
)

(
√
ρf(Q̃)) = A(

√
ρf(Q̃)).

where A =
√
ρ 1

∆

√
ρ. We therefore can compute the L2 norm

(6.7) ‖√ρQ̃‖22 = Tr
(

(
√
ρQ̃)T(

√
ρQ̃)

)
= Tr

(
(A(
√
ρf(Q̃))T(A(

√
ρf(Q̃))

)
≤ ‖A‖op‖

√
ρf(Q̃)‖22.

Because ‖√ρf(Q̃)‖2 ≤ ‖
√
ρQ̃‖2‖(Q̃+ I)−1‖2 ≤ ‖

√
ρQ̃‖2, we arrive at

‖√ρQ̃‖22 ≤ ‖A‖op‖
√
ρQ̃‖22.

In particular, when ‖A‖op < 1 there exists a unique solution to the critical point equation at Q̃ = 0.

Large Operator Norm: We examine the Taylor expansion of ϕ around the origin. The first and second variation
simplify greatly at the origin Q = 0 to give

(6.8) ∇Mϕg(0) = 0 ∇2
Mϕg(0) =

∑
s,t

(
− ρsρt

2∆s,t
Tr(MsMt) +

∑
u

ρsρtρu
2∆s,u∆u,t

Tr(MsMt)

)
.
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The second variation will always be negative for any choice of M if and only if

ρ
1

∆
ρ

1

∆
ρ− ρ 1

∆
ρ = ρ

√
1

∆

(√
1

∆
ρ

√
1

∆
− I
)√

1

∆
ρ

has only negative eigenvalues. By Sylvester’s law of inertia, it suffices to study the eigenvalues of the matrix√
1

∆
ρ

√
1

∆
− I

and by the invariance of the operator norm of cyclic permutations of the matrices, we get the condition that
the Hessian is negative semidefinite when

‖A‖op =
∥∥∥√ρ 1

∆

√
ρ
∥∥∥
op
< 1

which is precisely the condition for a unique maximizer at 0. We now claim that when the Hessian has a strictly
positive eigenvalue, then there exists a maximizer away from the origin.

Suppose now that ‖A‖op > 1. Then there exists a unit eigenvector v ∈ Rn such that Av = ‖A‖opv.
Furthermore, the entries of A are non-negative so the entries of the eigenvector v are also non-negative by the
Perron–Frobenius Theorem. Therefore, if we define M = (u1I, . . . , unI) where ui = 1√

ρi
vi ≥ 0 then the Hessian

at 0 defined in (6.8) is given by

∇2
Mϕg(0) = n

(
uTρ

1

∆s,t
ρ

1

∆s,t
ρu− uTρ 1

∆s,t
ρu

)
= n(vTA2v − vTAv) ≥ n(‖A‖2op − ‖A‖op)

which is strictly non-negative if ‖A‖op > 1.
Therefore, the function g(ε) = ϕg(εM) satisfies g′′(0) > 0, so it is convex on [0, δ] for some δ > 0. Further-

more, g′(0) = 0, so we can conclude that for δ small enough

ϕg(δM) = g(δ) > g(0) = ϕg(0)

by convexity. Lastly, notice that M ≥ 0 since the entries of u are non-negative, so M is in the domain of the
optimization problem. Observe also that 0 is no longer a maximizer. �

6.2. General Centered Prior. Now suppose that we are in the scenario that PX is a centered prior measure
on Rκ with compact support. We want to study the maximizers of the functional (6.1). Let 〈·〉Q denote the

average with respect the Gibbs measure associated with the Hamiltonian (Qx0 +
√
Qz)Tx− xTQx

2 . The partial
derivatives of ϕ in the direction Ms can be computed using Gaussian integration by parts and the Nishimori
property (4.4)

∂εϕ(Q+ εMs)|ε=0 =

(
−

n∑
t=1

ρsρt
2∆s,t

Tr(QtMs) +

n∑
t=1

ρsρt
∆s,t

E
〈
xTMsx

0 − xTMsx

2

〉
Q̃t

)
(6.9)

+

n∑
t=1

ρtE
〈
zT(∂ε

√
Q̃t + εM̃t|ε=0)x

〉

=
ρs
2

(
−

n∑
t=1

ρt
∆s,t

Tr(QtMs) + 2

n∑
t=1

ρt
∆s,t

E
〈
xTMsx

0 − xTMsx
2

2

〉
Q̃t

)

=
ρs
2

(
−

n∑
t=1

ρt
∆s,t

Tr(QtMs) +

n∑
t=1

ρt
∆s,t

E〈xTMsx
0〉Q̃t

)
.(6.10)

We dealt with the square root that appeared in the first equality using the identity

(6.11) Tr
(
A

√
Q̃t∂ε

√
Q̃t + εM̃t|ε=0

)
= Tr

(
A

√
Q̃t∂ε

√
Q̃t +

ερs
∆st

Ms|ε=0

)
=

ρs
2∆st

Tr(AMs),

for any symmetric matrix A, which implies that for standard Gaussian vectors z,

E
(
xT
√
Q̃tz

)(
zT(∂ε

√
Q̃t +

ερs
∆st

Ms|ε=0)x2
)

= Tr
(
x2xT

√
Q̃t∂ε

√
Q̃t +

ερs
∆st

Ms|ε=0

)
=

ρs
2∆st

Tr
(
x2xTMs

)
.
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Therefore, Gaussian integration by parts implies that

E
〈
zT(∂ε

√
Q̃t + εM̃s|ε=0)x

〉
Q̃t

= E
〈
Ez(xT

√
Q̃tz)(z

T(∂ε

√
Q̃t +

ερs
∆st

Ms|ε=0)x)
〉
Q̃t

− E
〈
Ez((x2)T

√
Q̃tz)(z

T(∂ε

√
Q̃t +

ερs
∆st

Ms|ε=0)x)
〉
Q̃t

=
ρs

∆st
E
〈xTMsx

2
− xTMsx

2

2

〉
Q̃t

where we used the same convention for the partial derivatives given in (6.4). At the critical point, the first
derivative must vanish for all Ms, so the critical point equation simplifies to

(6.12) Q̃s =

n∑
t=1

ρt
∆s,t

E〈x0xT〉Q̃t =

n∑
t=1

ρt
∆s,t

E〈x〉Q̃t〈x〉
T
Q̃t
.

by the Nishimori property. We first prove that the average f(Q) = E〈x0xT〉Q is Lipschitz.

Lemma 6.3 (Lipschitz Continuity)

The functional f : S+
κ → S+

κ is Lipschitz in the space S+
κ of non-negative κ× κ symmetric matrices: for any

Q,Q′ ∈ S+
κ ,

‖f(Q)− f(Q′)‖2 ≤ 3κ2C3‖Q−Q′‖2
where C is the bound on the support of PX and κ is the dimension.

Proof. The function f : Sκ → Rκ×κ is also given by

f(Q) = E

∫
x0xT exp

((
Qx0 +

√
Qz

)T

x− xTQx
2

)
dPX(x)

∫
exp

((
Qx0 +

√
Qz

)T

x− xTQx
2

)
dPX(x)

= E〈x0xT〉Q.

Given arbitrary Q1, Q2 ≥ 0 we define Qα = αQ1 +(1−α)Q2 = Q2 +α(Q1−Q2) to be the interpolation between
the matrices. We will show that the function

gk,k′(α) := fk,k′(αQ1 + (1− α)Q2) = fk,k′(Q2 + α(Q1 −Q2)) = E〈x0(k)x(k′)〉Qα
has uniformly bounded derivative for t ∈ [0, 1]. Let M = Q1 −Q2. A similar computation as the derivation of
the first variation in (6.10) via the Gaussian integration by parts computation on (??) implies that

|g′k,k′(α)| =
∣∣∣∣E〈x0(k)x(k′)

(
xTMx0 + zT(∂α

√
Q+ αM)|α=0x−

xTMx

2

)〉
Q

− E
〈
x0(k)x(k′)

(
(x2)TMx0 + zT(∂α

√
Q+ αM)|α=0x

2 − (x2)TM(x2)

2

)〉
Q

∣∣∣∣
≤
∣∣∣∣E〈x0(k)x(k′)

(
xTMx0 − xTMx2

2

)〉
Q

∣∣∣∣+

∣∣∣∣E〈x0(k)x(k′)

(
(x2)TMx0 − (x2)TMx3

2

)〉
Q

∣∣∣∣
≤ 2C2E

〈(
‖M‖2‖x0xT‖2 +

1

2
‖M‖2‖x2xT‖2

)〉
Q

≤ 3κC3‖M‖2.
In the last second line, we used the Cauchy–Schwarz inequality on the Frobenius inner product and in the last
line we used the fact that E〈·〉Q is the average with respect to a probability measure.

By the mean value theorem, we can conclude that

|fk,k′(Q1)− fk,k′(Q2)| = |gk,k′(1)− gk,k′(0)| ≤ 3κC3‖Q1 −Q2‖2.
Lastly, we get our required estimate

‖f(Q1)− f(Q2)‖2 =

( κ∑
k,k′=1

(fk,k′(Q1)− fk,k′(Q2))2

)1/2

≤ 3κ2C3‖Q1 −Q2‖2.

Taking Q1 = Q̃t and Q2 = Q̃′t gives our estimate. �
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Using this Lipschitz continuity, we can do a fixed point argument to show that there exists a unique maximizer
at 0 if the covariances 1

∆2
s,t

are sufficiently small.

Lemma 6.4 (Uniqueness of a Maximizer at 0)

Consider the model parameters defined in (6.3). The functional ϕ(Q) has a unique maximizer at 0 if∥∥∥√ρ 1

∆

√
ρ
∥∥∥
op
<

1

9κ4C6
.

Proof. Following the computations leading to (6.7) applied to the general critical point equation (6.12), we see
that

(6.13) ‖√ρQ̃‖22 = Tr
(

(
√
ρQ̃)T(

√
ρQ̃)

)
= Tr

(
(A(
√
ρf(Q̃))T(A(

√
ρf(Q̃))

)
≤ ‖A‖op‖

√
ρf(Q̃)‖22

where

f(Q̃) = (E〈x0xT〉Q̃1
, . . . ,E〈x0xT〉Q̃n) A =

√
ρ

1

∆

√
ρ

We proved in Lemma 6.3 that f(Q̃t) = E〈x0xT〉Q̃t is Lipschitz in Q̃t with a Lipschitz constant that does not
depend on t

‖f(Q̃t)− f(Q̃′t)‖2 ≤ 3κ2C3‖Q̃t − Q̃′t‖2.
Recall that the prior is centered f(0) = 0, so

‖√ρf(Q̃)‖22 =
∑
t

ρt‖f(Q̃t)− f(0)‖22 ≤ 9κ4C6
∑
t

ρt‖Q̃t‖22. ≤ 9κ4C6‖√ρQ̃‖22.

Applying this bound to (6.13) yields the result. �

This bound is clearly not tight, because it does not depend on the measure P0 except through the support
contained in [−C,C]κ. We will show below that if the operator norm is sufficiently large, then a maximizer
away from 0 will appear.

Lemma 6.5 (Phase Transition with Centered Prior)

Let x ∼ PX . The functional ϕ has a maximizer away from Q = 0 if∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

>
1

‖ExxT‖2op
=

1

‖Cov(x)‖2op
.

Remark 6.6. If we have a Gaussian prior, then x ∼ N(0, I), so ‖ExxT‖op = ‖I‖op = 1. Furthermore, it also
agrees with condition (194) in [32] in the case when κ = 1.

Proof. We adapt the proof of the Gaussian prior to the general scenario. Consider an arbitrary perturbation
M = (M1, . . . ,Mn) of Q such that Q+ εM ≥ 0 for all ε sufficiently small. The first and second variations are
denoted by

∇Mϕ(Q) = ∂εϕ(Q+ εM)
∣∣∣
ε=0

and ∇2
Mϕ(Q) = ∂2

εϕ(Q+ εM)
∣∣∣
ε=0

.

This can be computed explicitly using integration by parts and the Nishimori property,

∇Mϕ(Q) =
∑
s,u

ρsρu
2∆s,u

E
〈

Tr(xTMsx0)
〉
Q̃u
−
∑
s,u

ρsρu
2∆s,u

Tr(QuMs)

and

∇2
Mϕ(Q) =

∑
s,t,u

ρsρtρu
4∆s,u∆u,t

(
E
〈
(xTMsx0)(xTMtx0)

〉
Q̃u
− E

〈
(xT1Msx0)(xT2Mtx0)

〉
Q̃u

)
−
∑
s,t

ρsρt
2∆s,t

Tr(MsMt).

When Q = 0 the Hessian simplifies because 〈·〉0 is simply the average with respect to PX which is centered,

∇2
Mϕ(0) =

∑
s,t,u

ρsρtρu
4∆2

s,u∆2
u,t

E
〈

Tr(Msx0x
T)2
〉

0
−
∑
s,t

ρsρt
2∆2

s,t

Tr(MsMt).(6.14)
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For x ∼ PX , let C = ExxT = Cov(x). Let b denote the unit eigenvector corresponding to the largest eigenvalue
of C. In particular, we have bTCb = ‖C‖op. Suppose that

(6.15) ‖A‖op =

∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

>
1

E‖x1xT2 ‖22
=

1

‖C‖2op
.

The matrix A =
√
ρ 1

∆2

√
ρ has non-negative entries, the eigenvector v associated with the largest eigenvalue

has non-negative entries by the Perron–Frobenius Theorem. Therefore, we can take

M = (u1B, . . . , unB) where B = bbT and ui =
1
√
ρi
vi

Notice that

E
〈

Tr(Bx0x
T)2
〉

0
= E

〈 ∑
i,j,k,l

bibjbkb`xix
0
jxkx

0
`

〉
0

= (bTCb)2 = ‖Cov(x)‖2op.

since x and x0 have the same distribution in the Bayes optimal case. The Hessian at 0 defined in (6.14) simplifies
greatly for this choice of M ,

∇2
Mϕ(0) =

(
‖C‖2opuTρ

1

∆s,t
ρ

1

∆s,t
ρu− uTρ 1

∆s,t
ρu

)
= ‖C‖2opvTA2v − vTAv ≥ ‖C‖2op‖A‖2op − ‖A‖op.

By our assumption (6.15), ∇2
Mϕ(0) > 0. Therefore, the function g(ε) = ϕ(εM) satisfies g′′(0) > 0, so it is

convex on [0, δ] for some δ > 0. Furthermore, g′(0) = 0, so we can conclude that

ϕ(δM) = g(δ) ≥ g(0) = ϕ(0)

by convexity. Lastly, notice that M ≥ 0 since the entries of ~u are non-negative, so M is in the domain of the
optimization problem. �

Remark 6.7. Our choice of M in the proof is the choice of directional derivative that maximizes the Hessian
at 0. This gives us the sharp condition when the Hessian of ϕ is no longer negative semidefinite.

6.3. Comparison with the Naive BBP Transition. In this section, we show that the threshold Lemma 6.5
is stronger than the transition computed by examining the BBP transition of a spiked matrix with homoge-
neous noise and inhomogenous spike. We will see that the transitions are equal if and only if the models are
homogeneous.

We first consider the model with homogeneous noise, but inhomogeneous signal. We want to find the BBP
transition of the matrix

1√
N
Y ∆ � 1

∆�
1
2

=
x0(x0)T

N
� 1

∆�
1
2

+
1√
N
G.

where G is a Gaussian Wigner matrix.

Lemma 6.8 (BBP Transition)

The matrix 1√
N
Y ∆ � 1

∆�
1
2

has an outlier iff∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

>
1

‖ExxT‖op
.

Proof. It is well known that since G follows the GOE the largest eigenvalue of 1√
N
Y ∆ � 1

∆�
1
2

is given by

λ∗ = maxi:γi>1{γi + γ−1
i } if (γi)1≤i≤n are the eigenvalues of

R =
x0(x0)T

N
� 1

∆�
1
2

But exactly as in the proof of Theorem 3.14 and Remark 3.15, we can see that the eigenvalues of R are the
same as those of

MN
st =

1

N

κ∑
j=1

‖vjs‖‖v
j
t ‖

1

∆
� 1

2
st

a finite matrix whose top eigenvalue converges entrywise when N goes to infinity, by the law of large numbers,
towards the top eigenvalue of the matrix

M∞st = ‖ExxT‖op
√
ρsρt

1

∆
� 1

2
st
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by the definition v1 in Remark 3.15. We conclude that 1√
N
Y ∆ � 1

∆�
1
2

has an outlier iff∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

>
1

‖ExxT‖op

�

We now prove that the BBP transition is strictly weaker than the spin glass transition except in the homo-
geneous models. That is, if ∆ is such that the BBP transition happens∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

≥ 1

‖ExxT‖op

then we are also in the information theoretically feasible detectable region∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

≥ 1

‖ExxT‖2op
.

In particular, if it is possible to detect the signal using the spectral method, then it is also possible to detect
is using any other method. The converse is false, so there exists some algorithms that beat the naive spectral
ones.

This statement is true, and in fact a stronger statement holds, which clearly implies Proposition 2.18.

Lemma 6.9 (Gap in Thresholds)

We have ∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥2

op

≤
∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

,

with equality holding if and only if there exists a constant c such that for all s, t, ∆s,t = c. In particular, if
∆ satisfies ∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

≥ 1

‖ExxT‖op
then ∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥
op

≥
∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥2

op

≥ 1

‖ExxT‖2op
.

Proof. First of all, observe that
√
ρ 1

∆�
1
2

√
ρ and

√
ρ 1

∆

√
ρ have non-negative entries, so the Perron–Frobenius

theorem implies that the largest eigenvector has non-negative entries. Therefore, we can restrict ourselves
to eigenvectors with non-negative entries to compute the maximum eigenvalues. But for any vector u with
non-negative entries, by Cauchy-Schwartz’s inequality

〈u,√ρ 1

∆�
1
2

√
ρu〉 =

∑
s,t

ρ
1
4
s u

1
2
s ρ

1
4
t u

1
2
t

∆
1/2
s,t

ρ
1
4
s u

1
2
s ρ

1
4
t u

1
2
t

≤
(
〈u,√ρ 1

∆

√
ρu〉
) 1

2 (∑
ρ

1
2
s us

) 1
2

≤
(
〈u,√ρ 1

∆

√
ρu〉
) 1

2

‖u‖
1
2
2

where we used again Cauchy–Schwartz’s inequality and the fact that
∑
ρs = 1 to see that

∑
ρ

1
2
s us ≤ ‖u‖2. We

deduce by taking the supremum over u so that ‖u‖2 = 1 that

∥∥∥∥√ρ 1

∆�
1
2

√
ρ

∥∥∥∥
op

≤
∥∥∥∥√ρ 1

∆

√
ρ

∥∥∥∥1/2

op

.

Furthermore, equality holds only if there is equality in the above Cauchy-Schwartz inequality which happens
when we take u to be the largest eigenvector of the matrix

√
ρ 1

∆�
1
2

√
ρ. For this to happen, the largest eigenvector
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must be u =
√
ρ so there exists c such that

ρ
1
2
s ρ

1
2
t

∆
1
2
s,t

= cρ
1
2
s ρ

1
2
t , ∀ s, t

implying that ∆s,t must be constant.
�

6.4. Proof of Corollary 2.14 and Lemma 2.15. We now explain how one can use the phase transition to
recover the recovery transitions. Recall that the minimal matrix mean squared error is given by

MMSE(N) =
2

N(N − 1)

∑
i<j

E(x0
i · x0

j − E[x0
i · x0

j | Y ])2

The limit of the MMSE will follow from the following property of the maximizers of the replica symmetric
functional ϕ defined in (2.13).

Lemma 6.10 (Limit of the Overlaps)

If 1
∆ is positive definite, the maximizers of (2.13) satisfy

lim
N→∞

n∑
s,t=1

ρsρt〈Tr(Rs10, R
t
10)〉 =

n∑
s,t=1

ρsρt Tr(QsQt).

Furthermore, for any maximizer, the values of Tr(Qs, Qt) ≥ 0 are unique for fixed s, t.

Proof. Using the change of variables ηs,t = 1
∆s,t

we consider our Gaussian free energy

FN (η) =
1

N
EY log

∫
e
∑
s,t

∑
i∈Is,j∈It

√
ηs,t
√
N

gij(xi·xj)+ ηst
N (x0

i ·x
0
j )(xi·xj)−

ηst
2N (xi·xj)2.

dP⊗N0 (x)

where ηi,j = ηs,t for i ∈ Is and j ∈ It, which is equivalent to (2.12). Notice that differentiating the free energy
with respect to ηu,v := 1

∆u,v
and an application of the Nishimori property recovers the Gibbs averages,

∂ηu,vFN (η) = E
〈

1

2N

∑
i∈Iu,j∈Iv

gij(xi · xj)√
Nηs,t

+
ρuρv

2
Tr(Ru1,0R

v
1,0)− ρuρv

4
Tr(Ru1,1R

v
1,1)

〉

= E
〈
ρuρv

4
Tr(Ru1,1R

v
1,1)− ρuρv

4
Tr(Ru1,2R

v
1,2) +

ρuρv
2

Tr(Ru1,0R
v
1,0)− ρuρv

4
Tr(Ru1,1R

v
1,1)

〉
+ o(1)

= E
〈
ρuρv

4
Tr(Ru1,0R

v
1,0)

〉
+ o(1)

where 〈·〉 is the Gibbs average with respect to the Hamiltonian (2.11). On the other hand, for fixed 1 ≤ u, v ≤ n,
consider the functional

ψ(∆) = sup
Q

[
−

n∑
s,t=1

ρsρt
4∆st

Tr(QsQt) +

n∑
s=1

ρsEz,x0 ln

[ ∫
e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)

]
.

]
When 1

∆ is invertible, Q̃ = 1
∆ρQ implies that Q = ρ−1( 1

∆ )−1Q̃. In this notation, it is understood that for

Q, Q̃ ∈ (Rκ×κ)n and the entries fo the vector

Q̃s =
∑
t

1

∆st
ρtQt ∈ Rκ×κ

are non-negative because Q1, . . . , Qn are. Under this change of variables, we have

(6.16) ψ(η) = sup
Q̃

[
− 1

4
Tr(Q̃T

(
1

∆

)−1

Q̃) +

n∑
s=1

ρsEz,x0 ln

[ ∫
e(Q̃sx

0+
√
Q̃sz)

Tx− x
TQ̃sx

2 dP0(x)

]
.

]
where the supremum is taken over non-negative matrices. Observe that the function we are optimizing is

continuous. Moreover, the second term goes to infinity at most like
(∑

s Tr(Q̃2
s)
)1/2

, whereas the first term

goes to −∞ like
∑
s Tr(Q̃2

s) since we assumed that the smallest eigenvalue of 1
∆ is positive. Hence, we can

restrict the supremum to non-negative matrices such that
∑
s Tr(Q̃2

s) is bounded by some finite M , which is a
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compact space. Using the change of variables ηs,t = 1
∆s,t

, the envelope theorem [33, Corollary 4] implies that

at any point where ψ is differentiable,

∂ηu,vψ(η) :=
d

dε
ψ(ηu,v + ε)

∣∣∣∣
ε=0

=
ρuρv

4
Tr(Q∗uQ

∗
v)

where Q∗ is any maximizer of the right hand side of (6.16). Furthermore, if Q† is another maximizer, then

ρuρv
4

Tr(Q∗uQ
∗
v) =

ρuρv
4

Tr(Q†uQ
†
v)

so the value of Tr(Q∗uQ
∗
v) is unique even though the maximizers Q∗ and Q† may not be.

But ψ is convex in η so that (∂ηu,vψ(η))u,v exists for almost every η, so does the limit of the derivative of
the free energy Theorem 2.10 implies

lim
N→∞

FN (η) = ψ(η) and lim
N→∞

∂ηu,vFN (η) = ∂ηu,vψ(η)

for almost every η so

lim
N→∞

n∑
u,v=1

E
〈
ρuρv

4
Tr(Ru1,0R

v
1,0)

〉
=

n∑
u,v=1

ρuρv Tr(Q∗uQ
∗
v),

finishing the proof. �

We now prove the statements about the MMSE.

Proof of Corollary 2.14. Recall that 〈·〉 is the average with respect to P (x | Y ). The mean squared error can
be simplified to

2

N(N − 1)

∑
i<j

E(x0
i · x0

j − E[x0
i · x0

j | Y ])2

=
2

N(N − 1)

∑
i<j

E
(

(x0
i · x0

j )
2 − 2(x0

i · x0
j )E[x0

i · x0
j | Y ] + E[x0

i · x0
j | Y ]2

)
=

2

N(N − 1)

∑
i<j

E
〈

(x0
i · x0

j )
2 − 2(x0

i · x0
j )(x

1
i · x1

j ) + (x1
i · x1

j )(x
2
i · x2

j )
〉

= E
〈

Tr(R00, R00)− 2 Tr(R10, R10) + Tr(R12, R12)
〉

= ETr(R00, R00)− E〈Tr(R10, R10)〉

= E‖xxT‖22 −
n∑

s,t=1

ρsρtE〈Tr(Rs10, R
t
10)〉.

By Lemma 6.10 it follows that

MMSE(∆) = E‖xxT‖22 −
n∑

s,t=1

ρsρt Tr(Qs, Qt).

�

Lemma 2.15 is now immediate.

Proof of Lemma 2.15. By Lemma 6.4 and Corollary 2.14, if ‖√ρ 1
∆

√
ρ‖op < 1

9κ4C6 then Qs = 0 for all s, so

limN→∞MMSE(N) = EP0
‖xxT‖22. On the other hand, if ‖√ρ 1

∆

√
ρ‖op > 1

‖ExxT‖2op
= 1
‖Cov(x)‖2op

then there exists

a s such that Qs > 0, so limN→∞MMSE(N) < EP0‖xxT‖22. �

References

[1] Arka Adhikari and Christian Brennecke, Free energy of the quantum sherrington-kirkpatrick spin-glass model with transverse
field, 2019.
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rank-one matrix estimation: A proof of the replica formula, Advances in Neural Information Processing Systems 29 (2016).
[19] David L Donoho, Matan Gavish, and Iain M Johnstone, Optimal shrinkage of eigenvalues in the spiked covariance model,

arXiv preprint arXiv:1311.0851 (2013).

[20] , Optimal shrinkage of eigenvalues in the spiked covariance model, Annals of statistics 46 (2018), no. 4, 1742.
[21] Ahmed El Alaoui and Florent Krzakala, Estimation in the spiked wigner model: a short proof of the replica formula, 2018

IEEE International Symposium on Information Theory (ISIT), IEEE, 2018, pp. 1874–1878.
[22] Ahmed El Alaoui, Florent Krzakala, and Michael Jordan, Fundamental limits of detection in the spiked wigner model, The

Annals of Statistics 48 (2020), no. 2, 863–885.
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