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Introduction

Heterogeneity is a fundamental part of real world problems, as opposed to simpler homogeneous modeling assumptions. In this paper, we investigate the effect of such inhomogeneity in spike models and community detection.

We focus on a mathematical formulation, common in statistics, inference and machine learning, where the aim is to reconstruct a rank κ vector x 0 in R κ×N from noisy measurements D of the inner product of the vector. A substantial amount of recent work focuses on this issue in high dimension, as N → ∞, and under separable priors on x 0 . Applications of this setting range from the Wigner and Wishart spiked models, to the stochastic block model, sparse PCA, or clustering mixtures of Gaussians (see, e.g. [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF][START_REF] Deshpande | Asymptotic mutual information for the balanced binary stochastic block model[END_REF][START_REF]Optimal shrinkage of eigenvalues in the spiked covariance model[END_REF][START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF][START_REF] Thibault Lesieur | Phase transitions and optimal algorithms in high-dimensional gaussian mixture clustering[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF][START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF]). Here, we study this problem in the case of inhomogeneous noise. In this situation, both the law and the strength of the noisy measurements D can be different for any pairs i, j, (1.1)

D ij ∼ P ij D ij x 0 i • x 0 j √ N .
One of the main motivation for this problem, on which we shall focus for the concrete application of our results, is a dense version of a well known model of community detection called the degree-corrected stochastic block model (DCSBM) [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF].

1.1. Highlights of our main contributions. We now summarize our main results that are then described precisely in Section 2.

(i) We prove a Gaussian universality theorem -that generalizes the "homogeneous" universality proven in [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF] -that shows that for a matrix factorization problem with inhomogeneous noise distributions, a large class of noise models (including for instance sign flips, or additive non-Gaussian noise, and the DCSBM), one may transform the model into an equivalent Gaussian one. This means that we need only to consider the case where the distribution P ij is Gaussian. This transformation amounts into working with the Fisher score matrix. This results is of crucial importance as it allows to study an entire, complex, and diverse family of statistical model just by focusing on an equivalent spike model problem [START_REF] David L Donoho | Optimal shrinkage of eigenvalues in the spiked covariance model[END_REF] with a Gaussian noise. The universality at the level of free energy is stated in Theorem 2.7 and the stronger form at the level of the spectrum is stated in Theorem 2.9. (ii) Proof of the free energy -Focusing on the spike model with Gaussian noise, we then study the value of the likelihood ratio with the corresponding null model, (or equivalently the free energy in statistical physics terminology, or the mutual information in information theory). We then prove a formula for the asymptotic value of the likelihood ratio in Theorem 2.10 and Theorem 2.13, generalizing the homogeneous results [START_REF] Deshpande | Asymptotic mutual information for the balanced binary stochastic block model[END_REF][START_REF] Dia | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF]. This is achieved by using methods from mathematical physics of spin glasses. (iii) We study the free energy and determine the phase boundary (see Lemma 2.15) in terms of the signal-to-noise ratio, focusing in particular to the dense DCSBM model. The phase transition marks a transition from a phase where it is information theoretically impossible to reconstruct the community better than a random guess, from a phase where it is possible to do so. This phase boundary is compared to the separation of the largest eigenvalue of the matrix after a naive transformation to transfer the noise profile to the signal. We show that the regime where such a transformation leads to a extremal eigenvalue is contained in the information theoretically to detect the signal in Proposition 2.18.

1.2. Relation with previous work. The universality property has been used extensively in the homogeneous cases, see e.g. [START_REF] Thibault Lesieur | Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Perry | Optimality and sub-optimality of pca for spiked random matrices and synchronization[END_REF]. It is in particular at the roots of the identification of the dense stochastic block model with an equivalent spike model [START_REF] Thibault Lesieur | Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Deshpande | Asymptotic mutual information for the balanced binary stochastic block model[END_REF]. Such spike models [START_REF] David L Donoho | Optimal shrinkage of eigenvalues in the spiked covariance model[END_REF] have been the subject of many studies over the last few years, in particular in random matrix theory [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF], in statistical inference (e.g. without pretension of exhaustivity [START_REF] Rangan | Iterative estimation of constrained rank-one matrices in noise[END_REF][START_REF] Deshpande | Information-theoretically optimal sparse pca[END_REF][START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF][START_REF] Perry | Optimality and sub-optimality of pca for spiked random matrices and synchronization[END_REF][START_REF] Barbier | Information-theoretic limits of a multiview low-rank symmetric spiked matrix model[END_REF][START_REF] Camilli | An inference problem in a mismatched setting: a spin-glass model with mattis interaction[END_REF]) with many different applications [START_REF]Sparse pca via covariance thresholding[END_REF][START_REF]Finding hidden cliques of size in nearly linear time[END_REF][START_REF] Thibault Lesieur | Phase transitions and optimal algorithms in high-dimensional gaussian mixture clustering[END_REF].

In particular, the last decade has witnessed spectacular progress in the rigorous approach to the computation of the asymptotic mutual information for such problems [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Dia | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF][START_REF] Krzakala | Estimation in the spiked wigner model: a short proof of the replica formula[END_REF][START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF][START_REF] Alaoui | Fundamental limits of detection in the spiked wigner model[END_REF]. We shall use these techniques, in particular the one of [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF], in our approach.

Community detection of one of the most fundamental problem of graph theory. The connection between the low rank factorization problem and the SBM was unveiled in [START_REF] Thibault Lesieur | Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Deshpande | Asymptotic mutual information for the balanced binary stochastic block model[END_REF]. Here we shall be instead focusing on the inhomogenous Degree-Corrected SBM [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF], a much more realistic model. On a side note, the inhomogenous setting that we shall be looking at has deep connection with the spatial coupling introduced in [START_REF] Javanmard | State evolution for general approximate message passing algorithms, with applications to spatial coupling, Information and Inference[END_REF][START_REF] Dia | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF].

To compute the limit of the free energy, we use a modification of the synchronization mechanisms for multispecies [START_REF]The free energy in a multi-species Sherrington-Kirkpatrick model[END_REF] and vector spin glasses [START_REF]Free energy in the Potts spin glass[END_REF][START_REF]Free energy in the mixed p-spin models with vector spins[END_REF]. By adding some extra terms to the perturbations, we can regularize our posterior probability by introducing the Ghirlanda-Guerra identities while preserving the Nishimori identities and the concentration of the overlaps. The synchronization of spin glasses was also recently adapted in other contexts [START_REF] Ko | Free energy of multiple systems of spherical spin glasses with constrained overlaps[END_REF][START_REF]Free energy in multi-species mixed p-spin spherical models[END_REF][START_REF] Bates | Crisanti-sommers formula and simultaneous symmetry breaking in multi-species spherical spin glasses[END_REF][START_REF] Adhikari | Free energy of the quantum sherrington-kirkpatrick spin-glass model with transverse field[END_REF][START_REF] Alberici | A statistical physics approach to a multichannel wigner spiked model[END_REF] to compute the free energy of various models. A different point of view to study multispecies models using the TAP approach was also applied recently in [START_REF] Subag | Tap approach for multi-species spherical spin glasses i: general theory[END_REF][START_REF]Tap approach for multi-species spherical spin glasses ii: the free energy of the pure models[END_REF].

Main results

2.1. Setting. We consider the following inference problem. Given a probability measure P 0 on R κ consider a signal consisting of N independent copies x 0 = (x 0 1 , . . . , x 0 N ) ∈ R κ×N generated from the product measure

x 0 ∼ 1≤i≤N P 0 (x 0 i ).
Given the inner products of the signal w 0 ij =

x 0 i •x 0 j √ N , we generate independently some observed data D ij conditionally on w 0 ij according to the probability measure (2.1)

P ij D ij x 0 i • x 0 j √ N .
A critical distinction in these inhomogeneous models is the fact that while the data D ij are generated independently, the conditional distributions change depending on the indices i, j. The problem we are interested in is the estimation of the signal given an observation of the observed data D = (D ij ) i,j≤N .

The posterior probability of the signal given D can be expressed in the form of a inhomogeneous vector spin model with respect to an arbitrary function g ij and probability measure

P X dP (X | D) = 1 Z g X (D) 1≤i<j≤N e gij (Dij , x i •x j √ N ) 1≤i≤N dP X (x i )
where

(2.2) Z g X (D) = 1≤i<j≤N e gij (Dij , x i •x j √ N ) 1≤i≤N
dP X (x i ) .

Our study will be restricted to the so-called Bayes optimal setting which amounts to make the following hypothesis:

Hypothesis 2.1 (Bayes-optimality). Suppose that P 0 = P X and if P ij is the distribution of D ij in (2.1), the function g ij (D, w) is the log-likelihood:

g ij (D, w) = ln P ij D x 0 i • x 0 j √ N = w .
where we use in short P ij to denote also the probability density function of P ij .

Our goal is to compute the normalized free energy

(2.3) F N (g) = 1 N E D ln Z g X (D) - i<j g(D ij , 0)
where E D is the expectation under ⊗P ij (D ij |

x 0 i •x 0 j √ N )P ⊗N 0 (x 0 i ) and the function Z g X was defined in (2.2). Notice that, with this definition, the free energy is nothing but the expected log-likelihood ratio (under data generated by the model) between the likelihood that data are generated by the present model with the likelihood that they are generated from the null model (where there is no signal at all):

(2.4)

F N (g) = 1 N E D log P D P D|x 0 =0
.

The limit of the free energy will depend on the following "Fisher Information" matrix, defined as the expectation of the Fisher score:

(2.5) 1 ∆ ij = E Pij (D|w=0) (∂ w g ij (D, 0)) 2 , 1 ≤ i < j ≤ N.
We first assume that this matrix of variances is piece-wise constant.

Hypothesis 2.2 (Block-constant Noise Profile). Given n ≥ 1, there exists a partition of [N ]

[N ] = n s=1 I s such that the ∆ i,j are constant in the groups I s × I t for s, t ∈ {1, . . . , n}

∆ ij = ∆ st , for i ∈ I s , j ∈ I t and (∆ st ) s,t≤n are independent of N . Furthermore, the proportions of configurations in each group converges in the limit (2.7) |I s | N → ρ s ∈ (0, 1) for all s ≤ n.

We will also assume that ∆ s,t belongs to (0, +∞) for each s, t and the n × n symmetric matrix 1 ∆ with entries ( 1 ∆s,t ) s,t≤n is positive semidefinite. We finally describe our technical hypotheses. We first need to assume that the signal is compactly supported.

Hypothesis 2.3 (Compact Support). P 0 and P X are compactly supported so that x and x 0 take values in [-C, C] κ for some finite C. We also assume that κ is independent of N .

This hypothesis implies that, uniformly, we have (2.8)

|w ij | = x i • x j √ N ≤ C 2 κ √ N .
This uniform bound will allow to expand the functions g ij in the variables w ij . To do so, we need to assume sufficient regularity of the g ij , namely that, if • denotes the supremum norm:

Hypothesis 2.4 (Regularity of Log Likelihood). ∂ w g ij (•, 0) , ∂ 2 w g ij (•, 0) , ∂ 3 w g ij are bounded, uniformly in 1 < i < j ≤ N and N ∈ N.

Remark 2.5. We can weaken the condition on the first derivative of ∂ w g ij . For the proof of universality in disorder in Lemma 3.3, we require the third moment E Pij (D | w 0 ) [∂ w g ij (D, w 0 )] 3 to be bounded for all D and all w 0 in the support.

There assumptions will be used to prove a universality result which states that a class of statistical inference problems are equivalent to a low rank matrix factorization problem where the noise matrix has a variance profile. In particular, we shall use as an application the degree-corrected stochastic block model.

Gaussian Estimation Problems with Covariance Profiles.

The key point in our approach is that the general inhomogeneous vector spin model can be reduced to a model spiked Gaussian matrix model with a variance profile.

2.2.1.

Effective data matrix. Our first observation says that the derivatives up to the second order derivatives of the function g encode asymptotically all its information. This holds even without the Bayes optimality Hypothesis 2.1. Lemma 2.6 (Free Energy Universality 1 ) Suppose that Hypothesis 2.4 and Hypothesis 2.3 are satisfied. Let B be a σ algebra such that the D ij are independent conditionally to B. Then

F N (g) = F N (ḡ) + O κ 2 √ N with ḡij (D, w) = g ij (D ij , 0) + ∂ w g ij (D, 0)w + 1 2 E D [∂ 2 w g ij (D, 0) | B]w 2 .
This is a first fundamental universality result that motivates our study. Informally, this means that in order to perform (in high-dimensions) estimation when we observed the data D given by the likelihood

g ij (D, w) = ln P ij D ij x 0 i • x 0 j √ N = w ,
we can simply create an effective data matrix Y based on the Fisher score and Fisher information as

(2.9) Y ij = ∆ ij ∂ w g ij (D, 0), with 1 ∆ ij = E Pij (D|w=0) (∂ w g ij (D, 0)) 2
then the free energy (or the likelihood ratio) depends only on this new matrix. 

Y = Y ∆ = ∆ 1 2 W + 1 N x 0 (x 0 ) T in other words, for 1 ≤ i < j ≤ N Y ij = ∆ ij W ij + 1 √ N x 0 i • x 0 j .
Note that the ∆ ij are non negative by (2.9). We also only care about the off-diagonal terms because the diagonals are negligible. The main difference in this setting, in contrast to the standard spiked matrix models, is that the coordinates i, j play an important role in the behavior of our model. Observe that

∆ -1 2 ij Y ij - 1 √ N x 0 i • x 0 j follows a standard Gaussian law. Then the random posterior distribution of X = (x 1 , . . . , x N ) is dP (X | Y ) = 1 Z exp - i<j 1 2∆ ij Y ij - 1 √ N x i • x j 2 dP ⊗N 0 (X).
After absorbing the terms that do not depend on X into the normalization, the density is encoded by the Hamiltonian given by

H N (x) = i<j 1 ∆ ij N Y ij (x i • x j ) - 1 2∆ ij N (x i • x j ) 2 = i<j 1 N ∆ ij g ij (x i • x j ) + 1 ∆ ij N (x 0 i • x 0 j )(x i • x j ) - 1 2∆ ij N (x i • x j ) 2 . (2.11)
We define (2.12)

F N (∆) = 1 N E Y log e H N (x) dP ⊗N 0 (x)
where H N (x) is the Hamiltonian defined in (2.11) and ∆ is the variance profile.

We will prove that solving the free energy of Gaussian estimation problems are equivalent to solving the free energy of general inhomogeneous vector spin models with a specific choice of parameters in the Bayes optimal setting: Theorem 2.7 (Free Energy Universality 2 ) Suppose we are in the Bayes optimal setting of Hypothesis 2.1, g satisfies Hypothesis 2.4 and the signal space is compact as in Hypothesis 2.3. If we define

1 ∆ ij = E Pij (Y |w=0) (∂ w g ij (Y, 0)) 2 = (∂ w g ij (Y, 0)
) 2 e gij (y,0) dy, then the free energy F N (g) of the inhomogeneous vector spin models (2.3) satisfies

F N (g) -F N (∆) = O(κ 3 N -1/2 ).
Remark 2.8. We will need that the matrix 1/∆ satisfy Hypothesis 2.2 or 2.11 to get the limit of the free energy. Similarly, κ could go to infinity with N provided κ 3 N -1/2 goes to zero but then one would need to understand the asymptotics of sup Q ϕ(Q): this will be the subject of a separate work.

We will also derive a stronger form of universality at the level of the spectrum of random matrices, instead of at the level of the free energy. Consider the transformed data matrix

Ỹij √ N = 1 √ N ∂ w g ij (D, w) D=Dij ,w=0 i, j ≤ N
where D ij is the random variable with law given by (1.1) and the spiked matrix with variance profile (2.10). Under some conditions on the smallest entries of the Fisher information matrix 1 ∆ (see Hypothesis 3.13), we have the following universality result for the spectrum. 

Y ∆ Y ∆ = ∆ 1 2 W + x 0 (x 0 ) T √ N defined in

2.3.

The Limit of the Free Energy and Consequences. Given a sequence Q = (Q s ) s≤n of symmetric κ × κ positive semidefinite matrices, the replica symmetric free energy is given by

ϕ(Q) = - n s,t=1 ρ s ρ t 4∆ st Tr(Q s Q t ) + n s=1 ρ s E z,x 0 ln e ( Qsx 0 + √ Qsz) T x-x T Qsx 2 dP 0 (x) (2.13) where Qs = n t=1 1 ∆ st ρ t Q t ,
and x 0 ∼ P 0 and z ∼ N (0, I r ) are independent. We have the following limit of the free energy. 

F N (g) = sup Q ϕ(Q).
We can generalize Theorem 2.10 to the case where ∆ is not piecewise constant, but we then need to approximate it by piecewise constant matrices. We then replace Hypothesis 2.2 by the following: Hypothesis 2.11. Assume that there exists a non-negative measurable function ∆(s, t) such that lim

N →∞ sup s,t∈[0,1] 1 ∆ sN , tN - 1 ∆(s, t) = 0.
We will also assume that there exists ε > 0 such that ∆(s, t) belongs to (ε, 1/ε) for each s, t ∈ [0, 1] and the symmetric operator

1 ∆ on L 2 ([0, 1]) given by 1 ∆ f (t) = 1 0 1 ∆(t, s) f (s)ds is non-negative.
Remark 2.12. This hypothesis is satisfied if, for instance, ∆ is C 0 and bounded below.

Under this hypothesis, Theorem 2.10 generalizes as follows. Let Q s : [0, 1] → Σ + κ be a measurable function with values in the set of κ × κ symmetric definite matrices, and define

φ(Q) := - 1 0 1 4∆(s, t) Tr(Q s Q t )dsdt + 1 0 dsE z,x 0 ln e ( Qsx 0 + √ Qsz) T x-x T Qsx 2 dP 0 (x)
where

Qs = 1 0 1 ∆(s, t) Q t dt.
Then, we have: 

Theorem 2.
F N (g) = sup Q φ(Q).
When the variance profile is discrete and if the probability measure P 0 is centered, the maximizers of ϕ defined in (2.13) satisfy the following fixed point equation

(2.14) Qs = n t=1 ρ t ∆ s,t E x Qt x T Qt where • Qt denotes the average f (x) Qt = f (x)e ( Qsx 0 + √ Qsz) T x-x T Qs x 2 dP 0 (x) e ( Qsx 0 + √ Qsz) T x-x T Qsx 2 dP 0 (x)
.

This fact allows us to compute the informationally theoretical optimal thresholds of the inhomogeneous estimation problems. We define the matrix minimal means square estimator of our signal x 0 (x 0 ) T by

MMSE(N ) = min θ 2 N (N -1) i<j E(x 0 i • x 0 j -θ i,j (Y )) 2
where the minimum is over all possible estimators θ that only depend on the data Y . We have the following result for the limit of the minimal mean squared error. 

MMSE(N ) = E P0 xx T 2 2 - n s,t=1 ρ s ρ t Tr(Q s Q t ).
It follows that the maximizers of (2.13) and the fact that they vanish or not are essential to quantify the information theoretic thresholds for these inhomogenous factorization problems. Notice that we do not prove the uniqueness of the maximizers but the uniqueness of the values of (Tr(Q s Q t )) s,t regardless of the choice of the maximizer, which is enough to guarantee the above statement. We now classify detectability phase transitions with respect to the size of the variance profiles. Consider the noise parameter matrices

ρ = diag(ρ 1 , . . . , ρ n ) ∈ R n×n 1 ∆ = 1 ∆ s,t ∈ R n×n .
The size of the noise of the inhomogeneous models can be encoded by the largest eigenvalue of the matrix √ ρ 1 ∆ √ ρ. Let • op denote the operator norm of the matrix, which is equivalent to the largest eigenvalue when the matrix is symmetric and positive semidefinite. We have the following thresholds on recovery.

Lemma 2.15 (Recovery Transitions)

Suppose that Hypotheses 2.1 and 2.2 are verified, as well as technical Hypotheses 2.3 and 2.4. Furthermore, suppose that P 0 is symmetric. We have that

(1) If √ ρ 1 ∆ √ ρ op < 1 9κ 4 C 6 then lim N →∞ F N (g) = 0 and lim N →∞ MMSE(N ) = E P0 xx T 2 2 . (2) If √ ρ 1 ∆ √ ρ op > 1 Cov(x) 2 op then lim N →∞ F N (g) > 0 and lim N →∞ MMSE(N ) < E P0 xx T 2 2 .
Remark 2.16. If P 0 is a standard Gaussian, then we can improve the first bound to conclude that if

√ ρ 1 ∆ √ ρ op < 1
then the signal is not recoverable, which gives us a sharp phase transition when the priors are Gaussian. Technically P 0 does not have compact support, so it will violate Hypothesis 2.3, so universality of models with Gaussian signals will require a bit more work to show. However, the computation of the free energy of the inhomogenous spiked matrix model (2.10) does not require the compact support Hypothesis, so we do have a rigorous proof of the sharp transition in this case.

There is a gap between the two thresholds in Lemma 2.15. To explore the phase transition, we can numerically solve for the maximizers of ϕ defined in (2.13) to test if the phase transition is tight.

We first check the behavior for κ = 1, n = 2, and a non-sparse symmetric prior

P 0 (±1) = 1 4 P 0 (0) = 1 2 .
Under these assumptions, it follows that Cov(x) ρ(t) where t ∈ R + . We consider the following noise profiles

1 ∆ 1 (t) = 1 2 0 0 t 1 ∆ 2 (t) = t t 2 t 2 t 1 ∆ 3 (t) = t 3 t 4 t 4
t with proportion ρ = diag(0.4, 0.6). Figure 1 shows the relationship between the free energy and the inhomogeneous noises at the 3 different choices of the matrices ∆ and ρ. We see in the figure that the transition derived in part 2 of Lemma 2.15 appears tight in this case when the prior is not sparse.

Another example, where the transition in part 2 of Lemma 2.15 does not appear to be tight is when estimating a sparse signal. We thus now examine the behavior for κ = 1, n = 2, and symmetric prior P 0 (±1) = 0.03 P 0 (0) = 0.94. √ ρ where t ∈ R + , In this scenario, there is a clear gap between the upper bound on the transition 1 Cov(x) 2 (denoted by the purple line) and the actual transition (denoted by the green line) when the free energy becomes positive. In this paper we do not focus on algorithms but in analogy with the homogeneous case [START_REF] Thibault Lesieur | Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Thibault Lesieur | Phase transitions and optimal algorithms in high-dimensional gaussian mixture clustering[END_REF] we anticipate that the transition at 1 Cov(x) 2 in fact has an algorithmic meaning of a threshold beyond which a corresponding message passing algorithm is able to find a vector correlated with the signal and below which it is not. The region in between these two threshold is then conjectured to be algorithmically hard.

Next, we examine the behavior of the limiting free energy as the proportions of the two blocks vary in the same setting of the sparse Rademacher prior. We consider the case when ρ = (p, 1 -p). We consider fixed 1 ∆(t) = t 0 0 2t . The free energy as a function of the noise. A case with a discontinuous phase transition (orange dashed line) separating the undetectable regime from one where detection of the signal is possible. We plots the free energy of two local maximizers (in blue and red), it is the larger one that provides the final result. The purple dashed line is a position of the threshold from part 2 of Lemma 2.15 that is not tight in this case.

For each choice of p ∈ {0.1, 0.2, 0.3, 0.4}, we again plot in Figure 3 the limit of the free energy of the matrix ∆(t) and proportion ρ versus the operator norm of √ ρ 1 ∆ √ ρ where t ∈ R + . In this case, the phase transition is independent of the proportions p.

If we now consider a non-diagonal inhomogeneity matrix

1 ∆ = t t t 4t
the phase transition is dependent on the proportions p as depicted in Figure 4. It remains to study the dependence of the limiting free energies on the structure of the noise more rigorously. In particular, it appears that phase transition at 1 Cov(x) 2 op can be improved for certain choices of sparse symmetric priors. However, this will likely be a difficult problem to solve, because it will depend on both the covariance structure ∆ and the proportions ρ.

2.4.

The BBP Transition of a Transformed Homogeneous Noise Model. Recovery transitions can also be studied from the point of view of the BBP transition [START_REF] Baik | Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices[END_REF] in random matrix theory. In the following, we compute the transition for a normalization of the spiked matrix that will move the noise profile onto the signal,

1 √ N 1 ∆ 1 2 Y ∆ = 1 √ N W + 1 N 1 ∆ 1 2
x 0 (x 0 ) T .

The normailzation by 1 √ N was to ensure the eigenvalue distribution is supported almost surely on a compact set, and the normalization by 1 ∆ 1 2 moved the noise profile onto the signal. Classical random matrix theory arguments can be used to compute when the largest eigenvalue separates from the bulk of the transformed matrix.

Lemma 2.17 (BBP Transition)

The largest eigenvalue of the matrix 1

√ N Y 1 ∆ 1 2
separates from the bulk when

√ ρ 1 ∆ 1 2 √ ρ op > 1 Cov(x) op .
When the noise profile ∆ is not identically equal to one, the region of noise described in Lemma (2.17) where the top eigenvalue separates from the bulk is contained in the recovery regime Lemma 2.15. This means that a naive reduction of the inhomogeneous problem to a homogeneous problem does not yield the sharpest transition for these inhomogeneous noise models. This behavior is different from the classical homogeneous noise models.

Proposition 2.18 (Gap in Thresholds)

We have

√ ρ 1 ∆ 1 2 √ ρ 2 op ≤ √ ρ 1 ∆ √ ρ op ,
with equality holding if and only if ∆ = c for some constant c. In particular, when

∆ = c √ ρ 1 ∆ 1 2 √ ρ op ≥ 1 Cov(x) op ⊂ √ ρ 1 ∆ √ ρ op ≥ 1 Cov(x) 2
op so the information theoretic detectability regime strictly contains the BBP transition.

2.5. Application to the Degree Corrected Stochastic Block Model. We now apply our results to the degree corrected stochastic block models (DCSBM) introduced in [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF].

We consider a dense community detection problem with κ ≥ 1 communities in a network of N nodes. If the vertex i belongs to the community t i ∈ {1, . . . , κ}, then its membership can be encoded by x i = e ti ∈ R κ where e ti is the t i th basis element in R κ . In particular, for any two nodes i and j, x i • x j = 1 if they belong to the same community and x i • x j = 0 otherwise. If we choose the prior P 0 to be uniform on all basis elements, then we are in the setting with equally sized groups.

We now build a site dependent adjacency matrix that encodes different probability of attaching an edge depending on if the vertices are in the same group or not. In contrast to the standard stochastic block model, we consider a vector of site specific parameters (θ 1 , . . . , θ N ) ∈ (0, 1) N which controls the global probability of any vertex being attached to node i. For each i, j we also define a κ × κ connectivity matrix

C ij =       θ i θ j θ i θ j . . . θ i θ j θ i θ j . . . . . . . . . . . . . . . . . . θ i θ j θ i θ j . . . θ i θ j θ i θ j       + λ √ N       1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 . . . 0 1       .
In particular, this implies that the probability to attach an edge between vertex i and vertex j is θ i θ j if they are in different communities and if they are in the same community, then the probability is different by an additive factor of λ √ N . The precise output channel for the adjacency matrix of the entire graph is given by (2.15)

P out (D ij = 1 | x 0 , θ) = θ i θ j + λ √ N x 0 i • x 0 j .
We will generalize the framework slightly and consider parameters (θ i ) i≤N with each θ i sampled independently from some distribution P θ on (0, 1) ⊂ R + (the precise interval doesn't matter because we can scale the p out > 0). As usual, we also generate a vector x 0 ∈ R κ according to P 0 . Finally, we generate the adjacency matrix D ij according to (2.15). The parameter λ is the signal to noise ratio in these models.

Remark 2.19. If P θ (θ = 1) = 1, then this model reduces to the classical stochastic block model. 2.5.1. The Limit of the Free Energy. We now state the limit of the free energies in these models. Suppose that P θ is supported on finitely many points (θ (1) , . . . , θ (n) ) ∈ (0, 1) with probabilities ρ 1 , . . . , ρ n . We define ∆ = (∆ s,t ) 1≤s,t≤n by

(2.16) 1 ∆ st = λ 2 θ (s) θ (t) + λ 2 (1 -θ (s) θ (t) ) Á
and consider the conditional probabilities (2.17)

dP (X|D, Θ) = 1 Z X (D, Θ) 1≤i<j≤N e ln Pout(Dij | x,θ) 1≤i≤N dP 0 (x i ) where (2.18) P out (D ij = 1 | x, θ) = θ i θ j + λ √ N x i • x j and P out (D ij = 0 | x 0 , θ) = 1 -θ i θ j - λ √ N x i • x j .
We define the collection Q = (Q 1 , . . . , Q n ) of symmetric positive semidefinite κ × κ matrices and the functional

ϕ(Q) = - n s,t=1 ρ s ρ t 4∆ s,t Tr(Q s Q t ) + n s=1 ρ s E z,x 0 ln e ( Qsx 0 + √ Qsz) T x-x T Qs x 2 dP 0 (x) (2.19)
where for s ∈ {1, . . . , n},

Qs = n t=1 1 ∆ s,t ρ t Q t
x 0 ∼ P 0 and z ∼ N (0, I κ ) are independent. The limit of the free energy is given by maximizing this functional.

Corollary 2.20 (Free Energy for Discrete Degree Corrected Stochastic Block Models) 1) , . . . , θ (n) ∈ (0, 1) then the free energy of the degree corrected stochastic block model is

If P 0 = n i=1 ρ i δ θ (i) with θ (
lim N →∞ 1 N E   ln Z X (D, Θ) - i<j ln P out (D ij | x = 0, θ)   = sup Q ϕ(Q).
where the parameters of the model are given in (2.16), (2.17), (2.18) and (2.19).

Proof. We essentially check that conditional probabilities in (2.18) satisfy the conditions for the inhomogeneous vector spin models required in Theorem 2.10. Hypotheses 2.1 and 2.3 are clearly verified. We next check the two other assumptions.

Hypothesis 2.4 (Bounds on the derivatives): The corresponding function g ij is the log likelihood expressed as a function of D ij and 1

√ N x 0 i • x 0 j , g ij (1, w) = ln P out (D ij = 1 | w, θ) = ln(θ i θ j + λw) and g ij (0, w) = ln P out (D ij = 0 | w, θ) = ln(1 -θ i θ j -λw).
Notice that our function g is smooth in w, and well defined for w such that 1 -θ i θ j -λw ∈ (0, 1). Furthermore,

∂ w g ij (D, w) = D λ θ i θ j + λw -(1 -D) λ 1 -θ i θ j -λw (2.20) ∂ 2 w g ij (D, w) = D -λ 2 (θ i θ j + λw) 2 -(1 -D) λ 2 (1 -θ i θ j -λw) 2 (2.21) ∂ 3 w g ij (D, w) = D 2λ 3 (θ i θ j + λw) 3 -(1 -D) 2λ 3 (1 -θ i θ j -λw) 3 (2.22)
which are all uniformly bounded provided that 0 < θ i θ j + λw < 1 for all i and j and w in the domain. Since w goes to zero, for N large enough, it is enough that the θ (i) belong to (0, 1) independently of N . 

∆ ij = E Pij (D|w=0) (∂ w g ij (D, 0)) 2 = P (D ij = 1 | w 0 ij = 0, θ) λ 2 θ 2 i θ 2 j + P (D ij = 0 | w 0 ij = 0, θ) λ 2 (1 -θ i θ j ) 2 = λ 2 θ i θ j + λ 2 (1 -θ i θ j ) (2.23) because P ij (D ij = 1 | 0, θ) = θ i θ j = 1 -P (D ij = 0 | 0, θ).
Observe that ∆ ij is piecewise constant since the θ i 's are piecewise constant. We denote as well ∆ the n × n symmetric defined in Hypothesis 2.2. We next show that the matrix 1 ∆ 2 is non-negative. To see this, notice that (2.24)

λ 2 θ ((s) θ (t) 1≤s,t≤n = λ 2 1 θ (s) • 1 θ (t) 1≤i,j≤n
is positive semidefinite because it is a Gram matrix. Furthermore, for |θ (s) θ (t) | < 1, we have

λ 2 (1 -θ (s) θ (t) ) = λ 2 ∞ k=0 (θ (s) ) k (θ (t) ) k ,
by its Taylor expansion, so

(2.25) λ 2 (1 -θ (s) θ (t) ) 1≤s,t≤n = λ 2 ∞ k=0 Θ k ,
where Θ = [θ (s) θ (t) ] 1≤s,t≤n . The matrix Θ is positive semidefinite because it is a Gram matrix, and the Schur product theorem implies that the Hadamard powers are also positive semidefinite, so is also (2.25) positive semidefinite. This concludes the proof.

We can also apply Theorem 2.13 to this setting. To this end we assume that Hypothesis 2.21. Assume that θ N s converges uniformly to a measurable function (θ

(s) ) s∈[0,1] with values in a compact subset [a, b] of (0, 1). Let Q(θ) : [a, b] → S +
κ be a measurable matrix valued function. Let θ and θ be independent samples from Pθ . We define

(2.26) 1 ∆(θ, θ ) = λ 2 θθ + λ 2 (1 -θθ ) We have (2.27) ϕ(Q) = - 1 0 Tr(Q(θ (s) ), Q(θ (t) )) 4∆(θ (s) , θ (t) ) dsdt + 1 0 ds ln e ( Q(θ (s) )x 0 + √ Q(θ (s) )z) T x- x T Q(θ (s) )x 2 dP 0 (x)
where the expected value is with respect to θ, θ , x 0 , z and

(2.28)

Q(θ) = 1 0 1 ∆(θ, θ (s) ) Q(θ (s) )ds .
It follows by approximation that Corollary 2.20 holds in the limit.

Corollary 2.22 (Free Energy for Degree Corrected Stochastic Block Models)

Under Hypothesis 2.21, the free energy of the degree corrected stochastic block model is given by

lim N →∞ 1 N E ln   Z X (Y, Θ) - i<j ln P out (Y ij | x = 0, θ)   = sup Q ϕ(Q).
where the parameters of the model are given in (2.17) (2.26) and (2.27) and (2.28).

2.5.2. Rademacher Prior. We now consider the case when P 0 takes values in {-1, 0, 1} such that for p ∈ [0, 1 2 ] (2.29)

P 0 (-1) = P 0 (1) = p P 0 (0) = 1 -2p. If x ∼ P 0 , then Var(x) = 2p. We define the n × n matrices 1 ∆ = 1 ∆ s,t s,t≤n ρ = diag(ρ 1 , . . . , ρ n ).
In the degree corrected stochastic block model, the parameters were encoded by P θ supported on finitely many points (θ (1) , . . . , θ (n) ) ∈ (0, 1) with probabilities ρ 1 , . . . , ρ n ,

(2.30) 1 ∆ st = λ 2 θ (s) θ (t) + λ 2 (1 -θ (s) θ (t) )
Figure 5. Free energy as the function of noise for the DCSBM with a small size of one of the groups. We see a discontinuous phase transition (purple line). and for i.i.d.

θ i ∼ P θ (2.31) P out (Y ij = 1 | x, θ) = θ i θ j + λ √ N x i • x j and P out (Y ij = 0 | x 0 , θ) = 1 -θ i θ j - λ √ N x i • x j .
Recall that the replica symmetric functional is

(2.32) ϕ(Q) = - n s,t=1 ρ s ρ t 4∆ s,t Tr(Q s Q t ) + n s=1 ρ s E z,x 0 ln exp Qs x 0 + Qs z T x - x T Qs x 2 dP κ 0 (x)
where

Qs = n t=1 1 ∆ s,t ρ t Q t .
The replica free energy functional is identical to the one computed by a spiked matrix with covariance profile given by (2.30). By Lemma 6.4 and Lemma 6.5, we can conclude that (1) ϕ has a unique maximum at a sequence of matrices with all entries equal to 0 when

√ ρ 1 ∆ √ ρ op < 1 9 
(2) ϕ has a maximum at a sequence of matrices where at least one matrix has a non-zero entry when

√ ρ 1 ∆ √ ρ op > 1 4p 2 .
Since p ≤ 1 2 , this transition is clearly not tight. We can numerically solve the free energies to see how the phase transitions depends on the inhomogeneity. In the n = 2 case, a perfectly homogeneous model is when all entries of 1 ∆ are identical the phase transitions agree with known results [START_REF] Thibault Lesieur | Mmse of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF]. We analyze the effects of changing the homogeneity on the locations of the maximizers.

To do this, we can fix θ 1 and θ 2 and vary the parameter λ. If we consider the sparse case when p = 0.025 in (2.29), we plot in Figure 5 the limit of the free energy versus the operator norm of

√ ρ 1 ∆ √ ρ op . In contrast,
we consider the dense case when p = 0.25 in (2.29) and plot again limit of the free energy versus the operator norm of √ ρ 1 ∆ √ ρ op in Figure 6. The second bound appears to be tight when the average degree encoded by p is high. 2.6. Outline of the Paper. We first start with a proof of the universality result explained in Lemma 2.7.

In Section 3, we move onto proving the limit of the free energy in Theorem 2.10 by proving the lower bound using interpolation in Section 4. We prove the matching upper bound using concentration of the overlaps and cavity computations in Section 5. In Section 6, we study the maximizers of the free energy, and explore its consequences on the information theoretic thresholds.

Universality in Inhomogenous Vector Spin Models

In this section, we proceed to several approximations to arrive to Theorem 2.7. We start by showing only the second order Taylor expansion of g matters in the computation of the free energy (recall the definition of F N (g) in (2.3)).

Lemma 3.1 (Independence of Third Order Expansions)

If sup i,j ∂ 3 w g ij ∞ < ∞, then F N (g) = F N (g) + O κ 3 √ N where gij (D, w) = g ij (D ij , 0) + ∂ w g ij (D, 0)w + 1 2 ∂ 2 w g ij (D, 0)w 2 .
Proof. By Taylor's theorem, for all i, j,

g ij (D ij , w ij ) -g ij (D ij , 0) = ∂ w g ij (D ij , 0)w ij + 1 2 ∂ 2 w g ij (D ij , 0)w 2 ij + w 3 ij 3! ∂ 3 w g ij (D ij , θ ij w ij ) for some θ ij ∈ [0, 1]. Since our hypothesis implies that |w ij | ∞ ≤ C 2 κ/ √ N , our assumption that sup i,j ∂ 3 w g ij ∞ < ∞ implies 1 N i<j w 3 ij 3! g (3) w (Y ij , θ ij w ij ) = O κ 3 N 1/2
from which the result follows.

The next step in the reduction is to prove that the coefficient of the second derivative term can be replaced by its conditional average. We let B be a sub σ-algebra of R N 2 × (R κ ) N and denote by P B (resp. E Y [.|B]) its associated conditional probability under P Y (resp. its conditional expectation). Later on we will simply take B to be the σ-algebra generated by x 0 , and therefore P B will just be the distribution of Y knowing the x 0 .

Lemma 3.2 (Concentration of Second Order Terms)

Assume sup i,j ∂ 2 w g ij (•, 0) ∞ < ∞ and P 0 compactly supported. Let B be a σ algebra such that the Y ij are independent conditionally to B. Then

F N (g) = F N (ḡ) + O κ 2 √ N with ḡij (D, w) = g ij (D ij , 0) + ∂ w g ij (D, 0)w + 1 2 E D [∂ 2 w g ij (D, 0) | B]w 2 .
Proof. Notice that

F N (g) -F N (ḡ) = E D 1 N ln e 1 2 √ N i<j 1 √ N (∂ 2 w gij (Dij ,0)-E D [∂ 2 w gij (Dij ,0)|B])(x T i xj ) 2 )
where

f = f e i<j ḡij (Dij ,wij ) dP ⊗N 0 (x) e i<j ḡij (Dij ,wij ) dP ⊗N 0 (x) .
Let Z be the N × N symmetric matrix with entries so that Z ii = 0 and for i = j

Z ij = 1 4 √ N (∂ 2 w g ij (Σ -1 ij D ij , 0) -E D [∂ 2 w g ij (Σ -1 ij D ij , 0)|B]) . As a consequence i<j 1 2 √ N (g ww (D ij , 0) -E D [g ww (D ij , 0)|B])(x T i x j ) 2 = Tr Z(x T x) 2 .
Z is a random symmetric matrix under P B which has centered independent entries with covariance bounded by C/N and where (x T x) 2 is the matrix with entries (x T i x j ) 2 . Because √ N Z has bounded entries, we can use concentration inequalities due to Talagrand (see [START_REF] Anderson | An introduction to random matrices[END_REF]Theorem 2.3.5] and [START_REF] Guionnet | Large deviations for the largest eigenvalue of Rademacher matrices[END_REF]Lemma 5.6]) to see that there exists some finite L 0 such that, uniformly,

(3.1) P B ( Z ∞ ≥ L) ≤ e -N (L-L0) .
On { Z ∞ ≤ L}, we have the bound

Tr Z(x T x) 2 = κ k,k =1 i,j Z ij x i (k)x i (k )x j (k)x j (k ) ≤ L κ k,k =1 N i=1 (x i (k)x i (k )) 2 ≤ CLκ 2 N
for some finite constant C depending only on the bound on the support of P 0 . Hence, we deduce

F N (g) -F N (ḡ) = E D 1 Z |≥L 1 N ln e 1 √ N i≤j 1 2 √ N (∂ 2 w gij (Yij ,0)-E D [∂ 2 w gij (Dij ,0)|B])(x T i xj ) 2 ) + O κ 2 √ N .
Moreover as we assumed that ∂ 2 w g ij (D, 0) is uniformly bounded, the term in the above expectation is uniformly bounded and therefore the first term is going to zero exponentially fast by (3.1) for L large enough.

We finally compare our free energy to those of a spin glass model. It will depend on three matrices with entries:

(3.2) γ ij = E D [∂ 2 w g ij (D ij , 0) | x 0 ], µ ij = E D [∂ w g ij (D ij , 0) | x 0 ], σ 2 ij = E D [(∂ w g ij (D ij , 0) -µ ij ) 2 | x 0 ].
By universality, we will prove that we can replace

∂ w g ij (D ij , 0) by σ ij W ij + µ ij where W ij are i.i.d. standard
Gaussian variables (under the assumption that

√ N µ ij = O(1)). Let F N (σ, µ, γ) = E W,x 0 1 N ln E x [exp(H N (x))]
with

H N (x) = 1 N i<j σ ij W ij x T i x j + µ ij x T i x j + 1 2N i<j γ ij (x T i x j ) 2 = κ k=1 1 N i<j σ ij W ij x i (k)x j (k) + µ ij x i (k)x j (k) + 1 2N κ k, =1 i<j γ ij x i (k)x j (k)x i ( )x j ( ). (3.3)
Then we shall prove that :

Lemma 3.3 (Universality in Disorder ) Assume that sup i,j µ ij ∞ = O(N -1/2 ), sup ij σ 2 ij ∞ < ∞, sup i,j E D [|∂ w g ij (D ij , 0) -µ ij | 3 |x 0 ] σ 3 ij ∞ < ∞ then F N (ḡ) = F N (σ, µ, γ) + O κ 3 N 1/2
where F N (σ, µ, γ) is the free energy with respect to the Hamiltonian defined in (3.3).

The proof follows from the following approximate integration by parts lemma [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]Lemma 3,[START_REF] Barbier | Strong replica symmetry in high-dimensional optimal bayesian inference[END_REF].

Lemma 3.4 Suppose x is a random variable that satisfies Ex = 0, E|x| 3 < ∞. If f : R → R is twice continuously differentiable and f ∞ < ∞, then |Exf (x) -Ex 2 Ef (x)| ≤ 3 2 f ∞ E|x| 3 .
Proof. We follow the proof of Carmona-Hu [START_REF] Carmona | Universality in sherrington-kirkpatrick's spin glass model[END_REF] presented in [34, Theorem 3.9]. To compare the free energies F N (ḡ) and F N (σ, µ, κ) we use an interpolation argument. Conditionally on x 0 , consider the interpolating Hamiltonian defined for t ∈ [0, 1] by

H N (x, t) = 1 √ N i<j √ t(∂ ij g(D ij , 0) -µ ij ) + √ 1 -tσ ij W ij x T i x j + 1 √ N i<j µ ij x T i x j + 1 2N i<j γ ij (x T i x j ) 2 = 1 √ N i<j σ ij √ t Wij + √ 1 -tW ij x T i x j + 1 √ N i<j µ ij x T i x j + 1 2N i<j γ ij (x T i x j ) 2
where we defined

Wij = σ -1 ij (∂ w g ij (D ij , 0) -µ ij ) to simplify notation. Notice that E D [ W 2 ij | x 0 ] = σ -2 ij E D [(∂ w g ij (D ij , 0) -µ ij ) 2 |x 0 ] = 1 and E D [ Wij | x 0 ] = σ -1 ij E D [(∂ w g ij (D ij , 0) -µ ij ) | x 0 ] = 0 so both W and W have mean zero and variance 1. Also E D | W 3 ij | ≤ 1 σ 3 ij ( ∂ w g ∞ ) 3
is uniformly bounded. We define the interpolating free energy

ϕ(t) = 1 N E D [ln E X exp(H N (x, t))|x 0 ], f t = f (x) exp(H N (x, t))dP 0 (x) exp(H N (x, t))dP 0 (x) ,
and notice that

ϕ (t) = E Y   1 2 √ tN 3/2 i<j σ ij Wij x T i x j t - 1 2 √ 1 -tN 3/2 i<j σ ij W ij x T i x j t x 0   .
Let f ( Wij ) = x T i x j t (the dependence on W is in the numerator and denominator in the Gibbs measure). We find that

∂f ∂ Wij = √ tσ ij √ N (x 1 i • x 1 j ) 2 t -(x 1 i • x 1 j )(x 2 i • x 2 j ) t and ∂ 2 f ∂ W 2 ij = tσ 2 ij N (x 1 i • x 1 j ) 3 t -2 (x 1 i • x 1 j ) 2 (x 2 i • x 2 j ) t -(x 1 i • x 1 j )(x 2 i • x 2 j ) 2 t + 2 (x 1 i • x 1 j )(x 2 i • x 2 j )(x 3 i • x 3 j ) t .
Therefore the second derivative is bounded by

∂ 2 f ∂ W 2 ij ≤ sup ij E D [|∂ w g ij (D ij , 0) -µ ij | 2 |x 0 ] ∞ 6C 6 κ 3 N
where C is such that x ∈ [-C, C] κ almost surely. Applying the approximate integration by parts lemma to W stated in Lemma 3.4 applied conditionally on x 0 implies

E D [ 1 2 √ tN 3/2 σ ij Wij x T i x j t | x 0 ] - σ 2 ij 2N 2 E D [ (x 1 i • x 1 j ) 2 t | x 0 ] -E[ (x 1 i • x 1 j )(x 2 i • x 2 j ) t | x 0 ] ≤ sup ij E D [|∂ w g ij (D ij , 0) -µ ij | 2 |x 0 ] ∞ 6C 6 κ 3 N • 3 sup i,j E[| Wi,j | 3 | x 0 ] 4N 3/2 = O κ 3 N 5/2
by our assumption on the uniform bounds on the conditional expectation of W . The classical integration by parts lemma for Gaussian variables implies

E W 1 2 √ 1 -tN 3/2 σ ij W ij x T i x j t = σ 2 ij 2N 2 E W (x 1 i • x 1 j ) 2 t -(x 1 i • x 1 j )(x 2 i • x 2 j ) t .
Summing over i < j gives us the bound

|ϕ (t)| ≤ O κ 3 N 1/2 so that |ϕ(1) -ϕ(0)| = |F N (ḡ) -F N (σ, µ, κ)| ≤ O κ 3 N 1/2 .
Remark 3.5. We use the notation x 1 i , x 2 i , . . . to denote the replicas. They are independent copies of x under the corresponding Gibbs measures.

We can now further reduce our problem to a Gaussian estimation problem under the Bayes optimal assumption of Hypothesis 2.1. Indeed, recalling the definition of the Fisher score matrix (2.5), it results in special relation between σ, µ and γ which state as follows.

Lemma 3.6

Assume Hypotheses 2.1 and 2.3. Then for all i, j ∈ [N ] the terms defined in (3.2) satisfy

µ ij = x 0 i • x 0 j ∆ ij √ N + O(κ 2 N -1 ), σ 2 ij = -γ ij + O(κN -1/2 ), γ ij = - 1 ∆ ij + O(κN -1/2 )
Proof. The fact that g ij (D, w) is a log-likelihood is very important in this section, and the results in this final decomposition do not apply for general g. Firstly, using the fact that P ij (•|w) is a probability measure for all w and i < j, (3.4) P ij (y|w) dy = e gij (y,w) dy = 1.

By differentiating (3.4), it follows that for all w,

(3.5) E Pij (D|w) ∂ w g ij (D, w) = ∂ w e gij (y,w) dy = 0 and (3.6) E Pij (D|w) (∂ w g ij (D, w)) 2 + ∂ 2 w g ij (D, w) = ∂ 2 w e gij (y,w) dy = 0.
The conditional laws of D ij given the signal x 0 are independent, so we have the following reductions of the parameters µ ij and σ ij . By (3.5) we get

µ ij = ∂ w g ij (y, 0)e gij (y,w 0 ij ) dy = (∂ w g ij (y, 0) -∂ w g ij (y, w 0 ij ))e gij (y,w 0 ij ) dy = -w 0 ij ∂ 2 w g ij (y, 0)e gij (y,0) dy + O((w 0 ij ) 2 ) = - x 0 i • x 0 j √ N E Pij (D|w=0) ∂ 2 w g ij (D, 0) + O(κ 2 N -1 )
where we applied Taylor's theorem in the fourth equality. Applying (3.6) one more time implies that

µ ij = x 0 i • x 0 j √ N E Pij (D|w=0) (∂ w g ij (D, 0)) 2 + O(κ 2 N -1 ) = x 0 i • x 0 j ∆ ij √ N + O(κ 2 N -1 )
where we recall that (2.5)

1 ∆ ij = E Pij (D|w=0) (∂ w g ij (D, 0)) 2 .
Similarly, (3.6) implies

σ 2 ij = (∂ w g ij (y, 0)) 2 e g(y,w 0 ij ) dy -µ 2 ij = (∂ w g ij (y, 0)) 2 -(∂ w g ij (y, w 0 ij )) 2 )e gij (y,w 0 ij ) dy -∂ 2 w g ij (y, w 0 ij )e gij (y,w 0 ij ) dy -µ 2 ij = -γ ij + O(w ij ) = -γ ij + O(κN -1/2 ).
We can do this trick one more time and apply (3.6) to see that

γ ij = ∂ 2 w g ij (y, 0)e gij(y,w 0 ij ) dy = -w ij ∂ 3 w g ij (y, 0)e gij (y,w 0 ij ) dy -((∂ w g w (y, w)) 2 -(∂ w g ij (y, 0)) 2 )e gij (y,0) dy - 1 ∆ ij + O(κN -1/2 ) = - 1 ∆ ij + O(κN -1/2 ).
With this in mind, an interpolation argument and Gaussian integration by parts will prove that the Hamiltonian associated with the free energy F (σ, µ, γ) in the Bayes optimal case

H N,σ,µ,γ (x) = i<j σ ij W ij √ N (x i • x j ) + µ ij √ N (x i • x j ) + 1 2N γ ij (x i • x j ) 2
can be replaced with the following Hamiltonian

H N,∆ (x) = i<j W ij ∆ ij N (x i • x j ) + (x 0 i • x 0 j ) ∆ ij N (x i • x j ) - 1 2∆ ij N (x i • x j ) 2
without changing the limit of the free energy. We let

(3.7) F N (∆) = 1 N E W,x 0 ln E X e H N,∆ (x) .
The form of this Hamiltonian is identical to the free energy in the low rank matrix estimation with Hadamard covariance profile, which we introduced in Subsection 2.2.1.

Lemma 3.7 (Reduction to Low Rank Hamiltonian)

If (3.4) holds, then F N (σ, µ, κ) = F N (∆) + O(κ 3 N -1/2 ) .
Proof. Consider the interpolating Hamiltonian,

H N (t, x) = i<j √ tσ ij W ij √ N (x i • x j ) + tµ ij √ N (x i • x j ) + t 2N κ ij (x i • x j ) 2 + i<j √ 1 -t Wij N ∆ ij (x i • x j ) + t(x 0 i • x 0 j ) ∆ ij N (x i • x j ) - t 2∆ ij N (x i • x j ) 2 .
where W and W are independent standard Gaussians. If we define

ϕ(t) = 1 N E W, W ,x 0 ln E x e H N (t,x)
then

ϕ (t) = 1 N E ∂ t H N (t, x) t = 1 N E i<j σ ij W ij 2 √ t √ N x i • x j t + µ ij √ N x i • x j t + 1 2N κ ij (x i • x j ) 2 t - 1 N E i<j Wij 2 √ 1 -t ∆ ij N x i • x j t + (x 0 i • x 0 j ) ∆ ij N x i • x j t - 1 2∆ ij N (x i • x j ) 2 t
where • t is the average with respect to the Gibbs measure G t ∝ e H N (t,x) . Recall that (3.5) and (3.6) imply

µ ij = x 0 i • x 0 j ∆ ij N + O(κ 2 N -1 ) and σ 2 ij = -γ ij + O(κN -1/2 ) = 1 ∆ ij + O(κN -1/2 )
This implies that the terms without the Gaussian W, W cancel each other. For the first terms of each expectation, we integrate by parts to find

1 N E i<j σ ij W ij 2 √ t √ N x i • x j t = 1 2N 2 i<j σ 2 ij (x 1 i • x 1 j ) 2 t -(x 1 i • x 1 j )(x 2 i • x 2 j ) t and 1 N E i<j Wij 2 √ 1 -t ∆ ij N x i • x j t = 1 2∆ ij N 2 i<j (x 1 i • x 1 j ) 2 t -(x 1 i • x 1 j )(x 2 i • x 2 j ) t
so the difference of the Gaussian terms are also of order O(κN -1/2 ). Therefore,

|ϕ (t)| = O(κN -1/2 ),
which completes the proof after integrating ϕ on [0, 1].

Remark 3.8. Notice that µ ij = O( 1 √ N )
, so one of the hypothesis in Lemma 3.3 is automatically satisfied. Remark 3.9. In the spin glass setting, e g(D,w) dy = e Dw dy does not equal to 1, so (3.4) is not satisfied and Lemma 3.7 doesn't apply.

The proof of the main universality theorem is now immediate.

Proof of Lemma 2.7. The result follows by combining Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.7.

Lastly, the computations will be much simpler if P 0 (x 0 ) was supported on finitely many points. We will now prove that general P 0 with bounded support can be approximated by P 0 with finite support. Suppose that P 0 is supported on [-C, C] κ . We can discretize the support in K blocks by defining the function f :

[-C, C] κ → [-C, C] κ by f (x 1 , . . . , x κ ) = C K x 1 K C , . . . , C K x κ K C .
Notice that each coordinate of f (x) is supported on 2K points. We define P d = P • f -1 , and set

F N (∆) = E W,x 0 ∼P0 1 N ln E x∼P0 [exp{H N,∆ (x)}] and F d N (∆) = E W,x 0 ∼P d 1 N ln E x∼P d [exp{H N,∆ (x)}] .
Lemma 3.10 (Approximations of References Measures with Finite Support)

For any N ≥ 1, we have

|F N (∆) -F d N (∆)| ≤ 2C 4 κ 2 ∆ ∞ K .
Proof. To simplify notation, we define xi = f (x i ) to be the discretization of x i and F N (∆) = F N (P 0 ). Consider the interpolating Hamiltonian

H N (x; t) = i<j √ tW ij ∆ ij N (x i • x j ) + t(x 0 i • x 0 j ) ∆ ij N (x i • x j ) - t 2∆ ij N (x i • x j ) 2 + i<j √ 1 -t Wij ∆ ij √ N (x i • xj ) + (1 -t)(x 0 i • x0 j ) ∆ ij N (x i • xj ) - (1 -t) 2∆ ij N (x i • xj ) 2
where Wij and W ij are independent standard Gaussians. We consider the usual interpolation Hamtiltonian

ϕ(t) = 1 N E log E x e H N (x;t) .
From integration by parts and the Nishimori property (see equation 4.4) to simplify the Gaussian terms, we see that

ϕ (t) = i<j 1 2∆ ij N 2 E (x 0 i • x 0 j )(x i • x j ) -E (x 0 i • x0 j )(x i • xj ) . Since the 1 ∆ 2 ij
are uniformly bounded, we have the upper bound

|ϕ (t)| = 1 4 ∆ ∞ E (x 0 i • x 0 j )(x i • x j ) -(x 0 i • x0 j )(x i • xj ) ≤ 1 4 ∆ ∞ E (x i • x j -xi • xj )(x 0 i • x 0 j ) + 1 4 ∆ ∞ E (x 0 i • x 0 j -x0 i • x0 j )(x i • xj ) ≤ 1 4 ∆ ∞ E (x i • x j -xi • xj ) 2 E (x 0 i • x 0 j ) 2 1/2 + E (x 0 i • x 0 j -x0 i • x0 j ) 2 E (x i • xj ) 2 1/2 ≤ C 2 κ ∆ ∞ E (x i • x j -xi • xj ) 2 1/2 ≤ C 2 κ ∆ ∞ E (x i • (x j -xj ) + xj • (x i -xi )) 2 1/2 . Since x i -xi ∞ ≤ C K and x j -xj ∞ ≤ C
K and P 0 has compact support, we get the rough bound

|ϕ (t)| ≤ 2C 4 κ 2 ∆ ∞ K =⇒ |ϕ(1) -ϕ(0)| ≤ 2C 4 κ 2 ∆ ∞ K ,
so the statement follows since ϕ(1) = F N (P 0 ) and ϕ(0) = F N (P d ).

Remark 3.11. We can also modify this proof so that it holds as long the probability is compactly supported if we assume that the tails do not grow too much. We just have to be more careful since instead of using the uniform bound on the measure, we can get a bound in terms of E x 2 2 like in the proof in [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF]. The same argument (interpolating among the ∆'s rather than the x) shows how to deduce Theorem 2.13 from Theorem 2.10.

Therefore, without loss of generality, we may assume that P 0 is supported on finitely many points, because we can always approximate general P 0 with compact support up to arbitrary accuracy with a probability measure supported on only finitely many points. Similarly we can assume that ∆ is stepwise constant.

3.1. Spectrum Universality. In this section, we state a stronger form of universality than Lemma 2.7. Consider the transformed data matrix

Ỹij √ N = 1 √ N ∂ w g ij (D ij , 0) i, j ≤ N
where (D ij ) i,j are independent and distributed according to P ij conditionally on x 0 as in (2.1), and the normalized spiked matrix with variance profile 1 √ N Y ∆ defined in (2.10)

Y ∆ = ∆ 1 2 W + (x 0 )(x 0 ) T √ N .
In the Bayes optimal setting the first two moments of the matrix Ỹ are equivalent to those of

1 ∆ Y ∆ up to a O( 1 √ N ) term. Define μij = E Y [ Ỹij | x 0 ], σ2 ij = E Y [( Ỹij -μij ) 2 | x 0 ]
. and

µ ij = E Y 1 ∆ Y ∆ x 0 , σ 2 ij = E Y ( 1 ∆ Y ∆ -µ ij ) 2 x 0
By Lemma 3.6, it follows that Corollary 3.12 Assume that P X ∈ P(R k ) has compact support. Then for all i, j ∈ [N ], we have

μij = x 0 i • x 0 j ∆ ij √ N + O(k 2 N -1 ), σ2 ij = 1 ∆ ij + O(kN -1/2 )
and

µ ij = x 0 i • x 0 j ∆ ij √ N , σ 2 ij = 1 ∆ ij .
Furthermore, we assume that the Fisher information matrix (2.5) satisfies the following assumption Hypothesis 3.13 (Quadratic Vector Equation Conditions). Assume that there exists parameters p, q, P > 0 and

L ∈ N such that (1) For all N , 1 ∆ ij ≤ q i, j ≤ N (2) For all N , 1 N ∆ L ij ≥ p N i, j ≤ N.
(3) The unique solution (m i (z)) i≤N of vector of analytic functions on C + = { z > 0} to the following quadratic vector equation,

- 1 m i (z) = z + N j=1 1 ∆ ij m j (z) (z) > 0.
going to zero when z goes to infinity, satisfies

|m i (z)| ≤ P, i, j ≤ N, (z) > 0.
We have Theorem 3.14 (Universality of the Spectrum) If g satisfies Hypothesis 2.2 and the corresponding Fisher information matrix (2.5) satisfies Hypothesis 3.13, then

(1) Conditionally on x 0 , the empirical distribution µ 1 of the eigenvalues of Ỹij Proof. We fix the realization of x 0 and assume that x 0 ∈ R n to simplify notation (see Remark 3.15 for the generalization to higher rank). We first show that the spectrum of 1 √ N Ỹ ∆ and the spectrum of

Z = 1 √ N Ỹ -μ + µ
differ by a matrix with operator norm bounded by O(1/ √ N ). Indeed, bounding the operator norm by the Hilbert-Schmidt norm, we get,

Z - 1 √ N Ỹ op ≤   1 N ij (µ ij -μij ) 2   1/2 ≤ O k 4 N 2 N 3 = O k 2 √ N .
Next, we check that the empirical distribution of the eigenvalues of Z and of 1

√ N ∆
Y ∆ are close, as well as the largest eigenvalue. We first consider the recentered matrices

W = 1 √ N Ỹ -μ , W ij = 1 √ N (∆ -1 ij Y ∆ ij -µ ij ) .
We use [START_REF] Ajanki | Universality for general wigner-type matrices[END_REF] and check that all the conditions of this paper are satisfied by these matrices W and W . We therefore can use [2, Theorem 1.7 and (1.22)], to conclude that the Stieltjes transform G W (z) of W and the Stilejes transform G W (z) of W are close to their deterministic limits. Namely, under these hypotheses, if X is a matrix with centered independent entries with variance s ij bounded by c/N then for any deterministic vector w so that w ∞ ≤ 1

(3.9) 1 N N i=1 w i ((z -X) -1 ii -m s i (z)) ≤ C 1 √ N z
where m s = {m s i } 1≤i≤N is the unique solution of the vector equation

- 1 m s i (z) = z + N i=1 s ij m s j (z).
We therefore only need to check that m σ/N and m σ/N are close and apply (3.9) with w i = 1 for all i to conclude that the Stieltjes transform of both matrices are close to each other, yielding the conclusion by (3.9). This follows from [2, Corollary 3.4] which asserts that if z > δ,

(3.10) m σ/N (z) -m σ/N (z) ∞ ≤ 1 δ max i 1 N j |σ 2 ij -σ2 ij | ≤ O k √ N δ .
Hence, combining with (3.9) (with w i = 1), we conclude that the empirical measures µ W and µ W converge vaguely to the same deterministic limit. Since moreover 1 N Tr(W 2 ) and 1 N Tr( W 2 ) are uniformly bounded with overwhelming probability, we deduce that d(µ 1 , µ 2 ) goes to zero in probability.

Observe that µ has finite rank because x 0 (x 0 ) T has finite rank and ∆ is piecewise constant. Therefore, the empirical measure of the eigenvalues of 1 

Z = W + 1 √ N µ and 1 √ N ∆ Y ∆ = W + 1 √ N µ
have the same limits. Recall that in general, if X is a self-adjoint matrix and R = r i=1 θ i v i v T i ,θ i = 0, is a finite rank matrix then λ is an eigenvalue of X + R iff det(λ -X -R) vanishes, and therefore if λ does not belong to the spectrum of X, this is also equivalent to:

(3.11) 0 = det(I -(λ -X) -1 R) = θ i det(diag(θ -1 j ) -v i , (λ -X) -1 v j 1≤i,j≤r
). Therefore, to prove that an eigenvalue pops out of the bulk, it is necessary and sufficient to prove that the above right hand side vanishes for some λ outside of the bulk of X. We will show that the matrix v i , (λ -X) -1 v j 1≤i,j≤r converges for X = Z and 1

√

N ∆ Y ∆ and that the limiting equation for the outliers has a unique and stable solution. In our case,

R = 1 √ N µ = 1 N 1 ∆ xx T
and ∆ is piecewise constant. Let x(s) = (x i 1(i ∈ I s )) i≤N . We have the following decomposition

(3.12) R = 1 N n s,t=1
x(s) x(t) ∆ s,t

x(s) x(s)

x(t) x(t) T .
For fixed x, s, t we denote M st = x(s) x(t)

∆st

. M is symmetric and if (γ i , w i ) are its eigenvectors and eigenvalues, we find that

R = 1 N n i=1 γ i v i v T i with v i = n s=1
x(s)

x(s) w i (s) an orthonormal family of eigenvectors of R. [2, Theorem 1.13] implies that for any γ > 0

v i , (λ + iN -1+γ -Z) -1 v j 1≤i,j≤n - N k=1 m σ k (λ + iN -1+γ )v i (k)v j (k) 1≤i,j≤n and 
v i , (λ + iN -1+γ - 1 √ N ∆ 2 Y ∆ ) -1 v j 1≤i,j≤n - N k=1 m σ k (λ + iN -1+γ )v i (k)v j (k) 1≤i,j≤n
go to zero with overwhelming probability. If λ is outside of the support of the limiting distribution then we can remove the small complex number iN -1+γ , and since we have seen that the support of the eigenvalues of both centered matrices converge to the same limit this is fine for any λ at a positive distance of this limiting support. Moreover, by the stability property (3.10) we know that

N k=1 m σ/N k (λ + iN -1+γ )v i (k)v j (k) 1≤i,j≤n - N k=1 m σ/N k (λ + iN -1+γ )v i (k)v j (k) 1≤i,j≤n
goes to zero if λ is away from the support of the limiting measure. Hence the only thing to verify is that the largest solution λ to (3.11) does not change much under these small perturbations. To that end, first notice that because ∆ is piecewise constant, so is σ and therefore m σ is piecewise constant, and m σ i (z) equals to m σ/N s (z) for i ∈ I s . We can therefore sum over the indices inside each I s and find

N k=1 m σ/N k (z)v i (k)v j (k) 1≤i,j≤n = n s=1 m σ/N s (z)w i (s)w j (s) 1≤i,j≤n = wdiag(m(z))w T Therefore the outliers of X = 1 √ N ∆ Y ∆ and X = Z satisfy det diag(γ -1 j ) -wdiag(m σ/N (λ))w T + ε(X) = 0
with ε(X) a matrix with operator norm going to zero. The last thing to check is that the largest solution to this equation are arbitrarily close to each others when ε(X) op go to zero. But the above equations characterize the outliers as zeroes of the analytic function (outside of the support of the limiting measure)

F (M, λ) = det M -wdiag(m σ/N (λ))w T = 0
where M belongs to a neighborhood of diag(γ -1 j ). As long as the derivative of F in λ does not vanish, its solution is smooth. This is true for almost all γ i 's, namely almost all ∆ and ρ.

Finally, observe that if two N × N matrices X and Y are such that their largest eigenvalues are close and their empirical measures are close (with atomless limits) then X and Y are close in operator norms in the sense that if the eigenvalues λ i (X) and λ i (Y ) are increasing in i,

lim sup N →∞ max i |λ i (X) -λ i (Y )| = 0
in probability. This applies to X = Z and Y = 1 √ N Ỹ by the previous arguments. Indeed, for any self-adjoint matrix

Z xi-1 Z ≤ λ i (Z) ≤ xi Z where xi Z = inf{x : μZ ([x, λ max (Z)]) ≥ (N -i)/N }
and μZ is the empirical measure of the eigenvalues of Z. But, because the empirical measure of the eigenvalues converge towards the same limit and the limit correspond to an atomless measure, together with the convergence towards the same limit of λ max (X) and λ max (Y ), we find that for each δ > 0, for N large enough max

i |x i X -xi Y | ≤ δ.
Remark 3.15. If x 0 ∈ R N ×κ , then we can write decompose

(x 0 )(x 0 ) T = κ j=1 θ j u j (u j ) T ,
where

θ 1 ≥ θ 2 ≥ • • • ≥ θ κ .
Then repeating the computation following (3.12) with u j (s) = (

√ θ j u j i 1(i ∈ I s )) i≤N
and R of the form

R = 1 N κ j=1 n s,t=1 v j (s) v j (t) ∆ s,t v j (s) v j (s) v j (t) v j (t) T .
The rest of the proof remains unchanged, since we only examine the behavior of v 1 .

Lower Bound -Gaussian Interpolation

Given a sequence of symmetric matrix κ×κ matrix Q s for each s ≤ n, we want to derive the replica symmetric formula. Let Qs =

t≤n 1 ∆ s,t ρ t Q t .
and define

ϕ(Q) = - n s,t=1 ρ s ρ t 4∆ s,t Tr((Q s ) T Q t ) + n s=1 ρ s E ln exp Qs x 0 + Qs z T x - x T Qs x 2 dP X (x)
where x 0 ∼ P 0 and z ∼ N (0, I r ). Recall that, in the Bayes optimal case we defined in (2.5)

1 ∆ ij = E Pout(D|w=0) (∂ w g ij (D, 0)) 2
which takes n 2 different values by Hypothesis 2.4 on ∆. The goal of this section is to prove that ϕ is a lower bound for the free energy. 

= (Q 1 , . . . , Q n ) ∈ (S + κ ) n , F N (∆) ≥ ϕ(Q) -O(κN -1/2 ).
Proof. We follow the standard interpolation proof. Fix a sequence (Q s ) s≤n of positive semidefinite matrices and for each i ∈ I s ⊂ N , we set Qi = Qs . Let z i be i.i.d. standard Gaussians independent of all other sources of randomness, and consider the interpolating Hamiltonian

H N (t, x) = i<j √ tW ij ∆ ij N (x i • x j ) + t ∆ ij N (x i • x j )(x 0 i • x 0 j ) - t 2∆ ij N (x i • x j ) 2 + i≤N √ 1 -t ( Q1/2 i z i ) • x i + (1 -t) ( Qi x 0 i ) • x i - (1 -t) 2 x T i Qi x i .
The corresponding interpolating free energy is given by

ϕ(t) = 1 N E ln e H N (t,x) dP ⊗N 0 (x).
It follows that

(4.1) ϕ(1) = F N (∆) and ϕ(0) = s≤n ρ s E z,x 0 ln exp Qs x 0 + Qs z T x - x T Qs x 2 dP X (x) .
We now control the derivative

ϕ (t) = 1 N E i<j W ij 2 √ t ∆ ij N x i • x j t + 1 ∆ ij N x 0 i • x 0 j x i • x j t - 1 2∆ ij N (x i • x j ) 2 t - 1 N E N i=1 1 2 √ 1 -t ( Q1/2 i z i ) • x i t + ( Qi x 0 i ) • x i t - 1 2 x T i Qi x i t (4.2)
where the inner average is with respect to the Gibbs measure associated with H N (t, x),

f t = f e H N (t,x) dP ⊗N 0 (x) e H N (t,x) dP ⊗N 0 (x)
.

The Gaussian terms in (4.2) can be simplified by integrating by parts,

E W i<j W ij 2 √ t N ∆ ij x i • x j t = E W i<j 1 2∆ ij N (x 1 i • x 1 j ) 2 t -E W i<j 1 2∆ ij N (x 1 i • x 1 j )(x 2 i • x 2 j ) t
and similarly,

E z N i=1 1 2 √ 1 -t ( Q1/2 i z i ) • x i t = E z N i=1 1 2 (x 1 i ) T Qi (x 1 i ) t -E z N i=1 1 2 (x 1 i ) T Qi x 2 i t
where x 2 is an independent copy (replica) of x 1 . All the second order terms cancel with the self overlap terms in (4.2) leaving us with

ϕ (t) = 1 N E i<j - 1 2∆ ij N (x 1 i • x 1 j )(x 2 i • x 2 j ) t + x 0 i • x 0 j ∆ ij N x i • x j t - 1 N E N i=1 - 1 2 (x 1 i ) T Qi x 2 i t + (x 0 i ) T Qi x i t + O(κN -1/2 ) (4.3)
where the error comes from the diagonal terms of the overlap matrices, which are of order κ. We can now use the Nishimori property (see for example [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF]Proposition 16]

) (4.4) E f (x 1 , x 2 , . . . , x n ) t = E f (x 0 , x 2 , . . . , x n ) t
to replace one replica under the average interpolating Gibbs measure with the signal. To prove (4.4), it is enough to show that the average • t can be interprated as a distribution of x conditionally on x 0 , W and z. Indeed, if we let W, z to be Gaussian and set

Y ij = √ tx 0 i • x 0 j + ∆ ij W ij .
Then the law of Y ij has density proportional to e

-1 2∆ ij (Yij - √ tx 0 i •x 0 j ) 2
. Hence the law of x such that

Y ij = √ tx i • x j + ∆ ij W ij
conditionally to x 0 and W has density with respect to P (x) proportional to exp -

1 2∆ ij √ tx i • x j + ∆ ij W ij - √ tx 0 i • x 0 j 2 which is proportional to exp i<j √ tW ij ∆ ij N (x i • x j ) + t ∆ ij N (x i • x j )(x 0 i • x 0 j ) - t 2∆ ij N (x i • x j ) 2 .
The same is true for the second term if we write

y i = z i + √ 1 -t Q1/2 i x 0 i
with z a standard Gaussian vector, and condition by

y i = z i + √ 1 -t Q1/2 i x i .
Hence e H N (t,x) dP ⊗N 0 (x) is the distribution of x conditioned by W, z and x 0 . This implies (4.4). Plugging the Nishimori equation (4.4) into (4.3) yields that

ϕ (t) = E 1 2N 2 i<j 1 ∆ ij (x 1 i • x 1 j )(x 2 i • x 2 j ) t -E 1 2N N i=1 Tr(Q i x 1 i (x 2 i ) T t + O(κN -1/2 ) = E 1 4 n s,t=1 ρ s ρ t ∆ s,t Tr (R s 1,2 ) T R t 1,2 t -E 1 2 n s=1 ρ s ρ t ∆ s,t Tr ( Qs ) T R t 1,2 t + O(κN -1/2 )
where we denoted by R ∈ R κ×κ the overlap matrix defined for t ∈ {1, . . . , n} defined by:

R t ab = 1 |I t | i∈It x a i ( )x b i (k), , k ∈ [κ] .
Adding and subtracting s,t≤n ρsρt 4∆ 2 s,t

Tr((Q s ) T Q t ), completes the square so the formula simplifies to

ϕ (t) = E 1 4 N s,t=1 ρ s ρ t ∆ s,t Tr ((R s 1,2 ) -Q s ) T (R t 1,2 -Q t ) t - N s,t=1 ρ s ρ t 4∆ s,t Tr((Q s ) T Q t ) + O(κN -1/2 )
Our assumption that 1 ∆ is a non-negative matrix by Hypotheses 2.2 implies that the first term is non-negative, so we arrive at the lower bound

ϕ (t) ≥ - n s,t=1 ρ s ρ t 4∆ s,t Tr((Q s ) T Q t ) + O(κN -1/2 )
Integrating this bound implies that

ϕ(1) ≥ ϕ(0) - n s,t=1 ρ s ρ t 4∆ s,t Tr((Q s ) T Q t ) + O(κN -1/2 )
so the conclusion follows.

The Upper Bound -Cavity Computations

5.1. Concentration of the Overlaps. We will introduce a perturbation of the Hamiltonian that will imply concentration of the Hadamard powers of the overlaps and the generalized Ghirlanda-Guerra identities [START_REF]The free energy in a multi-species Sherrington-Kirkpatrick model[END_REF][START_REF]Free energy in the Potts spin glass[END_REF][START_REF]Free energy in the mixed p-spin models with vector spins[END_REF] in each block of the inhomogeneous vector spin models. Given a vector λ = (λ(1), . . . , λ(κ)) ∈ R κ , consider the p-spin Gaussian estimation problem

(5.1) Y i1,...,ip = g i1,...,ip + s N p-1 2 k≤κ λ(k)x 0 i1 (k) • • • x 0 ip (k)
where 1 ≤ i 1 , . . . , i p ≤ N is some enumeration of the indices. Later on, we will restrict i 1 , . . . , i p ∈ I s , but the pertubation Hamiltonian can be defined more generally. Since

Y i1,...,ip - s N p-1 2 k≤κ λ(k)x 0 i1 (k) • • • x 0 ip (k)
is a standard Gaussian variable, the maximum likelihood estimator of this Gaussian channel is proportional to

dP (x 0 |Y i1,...,ip ) = 1 Z exp - 1 2 (Y i1,...,ip - s N p-1 2 k≤κ λ(k)x i1 (k) • • • x ip (k)) 2 dP ⊗N 0 (x) = 1 Z exp s N p-1 2 k≤κ Y i1,...,ip λ(k)x i1 (k) • • • x ip (k) - s 2 2N p-1 k,k ≤κ λ(k)x i1 (k) • • • x ip (k)λ(k )x i1 (k ) • • • x ip (k ) dP ⊗N 0 (x)
where Z and Z are the partition functions or normalizing constants. We denote for t ≤ n

(R t , )(k, k ) = 1 N t i∈It x i (k)x i (k ) and (R t , ) p (k, k ) = (R t , (k, k )) p , k, k ∈ [κ]
where N t are the proportions of indices in the group with index t as defined in (2.7). We denote also in short (ρ t R t , ) p = ρ p t (R t , ) p . If we consider an independent copy for each i 1 , . . . , i p conditionally on x 0 , then the perturbation Hamiltonian (the log-likelihood) for t ≤ n is given by

H t N,p (x, g, λ, s) = i1,...,ip∈It s N p-1 2 k≤κ g i1,...,ip λ(k)x i1 (k) • • • x ip (k) + s 2 N λ T (ρ t R t 1,0 ) p λ - s 2 2 N λ T (ρ t R t 1,1 ) p λ (5.2)
Notice that the covariance of the Gaussian term is

1 N E i1,...,ip∈It g i1,...,ip s N p-1 2 k≤κ λ(k)x 1 i1 (k) • • • x 1 ip (k) i1,...,ip∈It g i1,...,ip s N p-1 2 k≤κ λ(k)x 2 i1 (k) • • • x 2 ip (k) = s 2 N p i1,...,ip∈It k≤κ λ(k)x 1 i1 (k) • • • x 1 ip (k) k≤κ λ(k)x 2 i1 (k) • • • x 2 ip (k) = s 2 λ T (ρ t R t 1,2 ) p λ .
For s sufficiently large, adding this perturbation to the Gibbs measure will imply concentration of the quadratic forms (λ T R p 1,2 λ). For applications, we will need concentration for all λ and all p ≥ 1. For any λ ∈ [-1, 1] κ and p ≥ 1, the overlap is uniformly bounded

(5.3) (λ T R p 1,2 λ) ≤ κ 2 C 2p ,
since the vector spin coordinates x are uniformly bounded by some C ≥ 1. Let λ m be a countable enumeration of elements of the dense set ([-1, 1] ∩ Q) κ and consider the perturbed Hamiltonian

H pert N (x, λ) = H N (x) + n t=1 p≥1 m≥1 H t N,p x, g m,t , λ m , u m,p,t ε N 2 m+p κC p .
The above sum is infinite but the constants will be chosen so that the covariance of the above Gaussian process is absolutely converging. The gaussian variables g m,t appearing in different H t N,p are independent. We choose the scaling coefficient C m,p := 2 m+p κC p so that the covariance is of order O(s 2 N )

1 N Cov n t=1 p≥1 m≥1 H p N x, g m,t , λ m , u m,p,t ε N C m,p , n t=1 p≥1 m≥1 H p N x, g m,t , λ m , u m,p,t ε N C m,p = ε 2 N n t=1 p≥1 m≥1 u 2 m,p,t (λ T m (ρ t R t 1,2 ) p λ m ) C 2 m,p ≤ ε 2 N max m,p,t (u 2 m,p,t ). (5.4)
If max m,p,t u m,p,t ε N → 0, then the covariance of the perturbation term will be of lower order than the Hamiltonian, so the limit of the free energy will not change because of the perturbation. To make this precise, consider the perturbed free energy as a function of the infinite sequence u = (u m,p ) (5.5)

F pert N (u) = 1 N log e H N (x)+ n t=1 p≥1 m≥1 H t N,p (x,gm,t,λm, u m,p,t ε N 2 m+p rC p ) dP ⊗N 0 (x)
and denote in short F N = F pert N (0). In this section, we also let • pert denote the Gibbs average with respect the perturbed Hamiltonian,

f (x) pert = f (x)e H pert N (x) dP ⊗N 0 (x) e H pert N (x) dP ⊗N 0 (x)
which corresponds to averages with respect to the probability P (x 0 |Y, (Y θ ) θ∈Θ ) where Y θ in an enumeration various p-spin Gaussian interference problems introduced in (5.1). In particular, the Nishimori property is valid for averages with respect to the random Gibbs measure because it corresponds to a conditional probability. 

|EF pert N (u) -EF N | ≤ ε 2 N . In particular, if ε 2
N → 0, then the perturbation will not change the limit of the free energy.

Observe that this estimate holds independently of the choice of the original Hamiltonian H N .

Proof. Consider the interpolating free energy,

ϕ(τ ) = E 1 N log e H N (x)+ p≥1 m≥1 H t N,p (x,gm,t,λm, u m,p,t τ 2 m+p rC p ) dP 0 (x) .
as a function of the ε N parameter. Notice that ϕ(0) = EF N and ϕ(ε N ) = EF pert N (u). A straightforward integration by parts computation and the Nishimori identity (4.4) implies that

ϕ (τ ) = E n t=1 p≥1 m≥1 i1,...,ip∈It u m,p,t C m,p N p-1 2 +1 k≤κ g i1,...,ip λ m,p (k)x i1 (k) • • • x ip (k) + 2 τ u 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,1 ) p λ n,p - τ u 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,1 ) p λ n,p pert = E n t=1 p≥1 m≥1 tu 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,1 ) p λ m,p - tu 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,2 ) p λ m,p + 2τ u 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,0 ) p λ m,p - τ u 2 m,p,t C 2 m,p λ T m,p (ρ t R t 1,1 ) p λ m,p pert ≤ τ max m,p (u 2 m,p,t ).
because the overlaps are bounded uniformly under Hypothesis 2.3. Therefore, for t ∈ [0, ε N ], we have ϕ (τ ) ≤ ε N since max m,p,t (u 2 m,p,t ) ≤ 1, so the result follows.

On the other hand, if we take ε N going to zero sufficiently slowly, then we will be able to regularize the Gibbs measure using this perturbation. We will fix a t ≤ n, and show that the overlaps within t ≤ n will concentrate in the limit.

We define

(5.6) v N = sup u E(N F pert N (u) -N EF pert N (u)) 2
where the supremum is taken over all u n,p,t ∈ [1/2, 1] and the expectation E is over the Gaussian variables g m,t,i1,...,ip and the x 0 . In our applications, v N is usually of order N as we will see by using concentration of measure.

We consider the case when the parameters u m,p,t are random. For each m, p ≥ 1, consider u m,p,t ε N where u m,p,t ∈ [1/2, 1] are uniform and independent and ε 2 N → 0, so that the limit of the free energy is unchanged by Lemma 5.1. We will prove that if ε N = N -γ for γ < 1 4 , then the perturbation can be large enough to regularize the Gibbs measure by implying concentration of the quadratic forms of overlaps and the uniform concentration of the log partition function (or the free energies not normalized by N ) with respect to the perturbed as a function of u m,p,t . Taking u m,p,t ∼ U [1/2, 1] independent for all m, p, t, we get the following bound for the concentration of the overlaps on average. N 2 ε N → 0, then for any m, p ≥ 1 there exists a constant L m,p that only depends on m and p such that

(5.7) max t E u E ((λ T m (R t 1,2 ) p λ m ) -E (λ T m (R t 1,2 ) p λ m ) pert ) 2 pert ≤ L m,p v N N 2 ε 4 N 1/3 + 1 ε 2 N N .
where • = • pert is the average with respect to the perturbed Gibbs measure. E denotes the average with respect to the Gaussian random variables that appear in the Hamiltonian and the signal variable x 0 . The outer average E u is with respect to the uniform random variables (u m ,p ,t ) m ,p ,t .

Proof. This proof is a generalization of the case when p = 1 and κ = 1 found in [START_REF] Barbier | Strong replica symmetry in high-dimensional optimal bayesian inference[END_REF]. To simplify notation, we will drop the subscript on the Gibbs average, • := • pert and the subscripts m, p, t because they are fixed throughout the proof. Furthermore, since the (u m,p,t ) m,p,t≥1 are independent, we can fix the u m ,p ,t for m = n, p = p, and t = t and average with respect to the Gaussian g and u m,p,t first. This restriction will not affect the validity of the Nishimori property (4.4) because the Gibbs measure is a conditional probability corresponding to a Gaussian estimation problem for all u m,p,t . To also simplify notation, we will abuse notation and define R p , = (ρR t , ) p in this proof because ρ, p, t are fixed, so it will not affect any computations.

Step 1: We first bound the moments and show that (5.8)

E ((λ T m R p 1,0 λ m ) -E (λ T m R p 1,0 λ m ) ) 2 ≤ 4C 2 m,p ε 2 N N 2 E (H -E H ) 2
where H = ∂ s H denotes the derivative with respect to the last coordinate of the Hamiltonian defined in (5.2) which we denote by (5.9)

s := s m,p,t = u m,p,t ε N 2 m+p κC p ∈ ε N 2 • 2 m+p κC p , ε N 2 m+p κC p .
We also recall that C m,p = 2 m+p κC p . During the proof we write in short u for u m,p,t . This inequality comes from an integration by parts argument and the Nishimori property. A crucial observation is that we can integrate by parts with respect to the Gaussian random variables conditionally on all other sources of randomness by independence. By independence, we first do the computation conditionally on s and denote in short λ for λ m,p . We first prove that (5.10)

1 N E (λ T R p 1,2 λ)(H -E H ) ≤ sE ((λ T R p 1,2 λ) -E (λ T R p 1,2 λ) ) 2 + sE ((λ T R p 1,2 λ) -(λ T R p 1,2 λ) ) 2 .
Notice that the left hand side simplifies to

1 N E (λ T R p 1,0 λ)(H -E H ) = 1 N p+1 2 i1,...,ip E (λ T R p 1,0 λ)g i1,...,ip k λ(k)x i1 (k) • • • x ip (k) + 2s (λ T R p 1,0 λ)(λ T R p 1,0 λ) -s (λ T R p 1,0 λ)(λ T R p 1,1 λ) -E (λ T R p 1,0 λ) 1 N p+1 2 i1,...,ip E g i1,...,ip k λ(k)x i1 (k) • • • x ip (k) + 2sE (λ T R p 1,0 λ) -sE (λ T R p 1,1 λ) .
Since x 0 is independent from the Gaussian terms, we can integrate the Gaussian terms using integration by parts conditionally on the x 0 (and recalling the extra s factor in the exponent) to conclude that the above right hand side equals

sE (λ T R p 1,0 λ)(λ T R p 1,1 λ) -(λ T R p 1,0 λ)(λ T R p 1,2 λ) + 2 (λ T R p 1,0 λ)(λ T R p 1,0 λ) -(λ T R p 1,0 λ)(λ T R p 1,1 λ) -E (λ T R p 1,0 λ) sE (λ T R p 1,1 λ) -sE (λ T R p 1,2 λ) + 2sE (λ T R p 1,0 λ) -sE (λ T R p 1,1 λ) . (5.11)
Next, we integrate with respect to x 1 and x 2 independently since they are independent conditionally on x 0 and apply the Nishimori property to conclude that 2 . which implies that (5.11) can be further simplified to

E (λ T R p 1,0 λ)(λ T R p 1,2 λ) = E (λ T R p 1,0 λ)(λ T R p 2,0 λ) = E (λ T R p 1,0 λ)
-sE (λ T R p 1,0 λ) 2 + 2sE (λ T R p 1,0 λ) 2 -s(E (λ T R p 1,0 λ) ) 2 = s E (λ T R p 1,0 λ) 2 -(E (λ T R p 1,0 λ) ) 2 + s E (λ T R p 1,0 λ) 2 -E (λ T R p 1,0 λ) 2 = sE ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) ) 2 + sE ((λ T R p 1,0 λ) -(λ T R p 1,0 λ) ) 2 . We can now conclude that 1 N E ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) )(H -E H ) ≥ sE ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) ) 2
so the Cauchy-Schwarz inequality implies

sE ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) ) 2 ≤ 1 N |E ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) )(H -E H ) | ≤ 1 N E ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) ) 2 E (H -E H ) 2 1/2 ,
which simplifies to

s 2 E ((λ T R p 1,0 λ) -E (λ T R p 1,0 λ) ) 2 ≤ 1 N 2 E (H -E H ) 2 .
Using the fact that s ≥ ε N 2Cm,p by (5.9) implies (5.8).

Step 2: We now have to control the variance of the derivative of the Hamiltonian. Again, this part of the proof is identical to the one dimensional case, because the variances of H can be expressed in terms of the derivatives of the free energy, which can be bounded using elementary facts about convex functions [START_REF] Barbier | Strong replica symmetry in high-dimensional optimal bayesian inference[END_REF]. We recreate the details for completeness. We begin by bounding the difference of derivatives in (5.8) with its thermal and quenched variances

(5.12) 4C 2 m,p ε 2 N N 2 E (H -E H ) 2 ≤ 4C 2 m,p ε 2 N N 2 E (H -H ) 2 + 4C 2 m,p ε 2 N N 2 E ( H -E H ) 2
Our goal is to use the convexity and boundedness of the perturbed free energy functions to bound the right hand side of (5.12) from above.

We first fix the rest of the uniform random variables in the Hamiltonian except for u m,p . We begin by bounding the first term in the RHS of (5.12) using a bound on the first derivative of the free energy. We prove that

(5.13) 4C 2 m,p ε 2 N N 2 E u E (H -H ) 2 ≤ 12C 4 n,p 4 n+p ε 2 N N .
To this end, first notice that

d 2 ds 2 E log Z pert N (s) = E (H -H ) 2 + 2N E λR p 1,0 λ -N E λR p 1,1 λ (5.14)
where the last term comes from ∂ 2 s H. If we rearrange terms, then

ε N Cm,p ε N 2Cn,p E (H -H ) 2 ds = ε N Cm,p - ε N 2Cm,p d 2 ds 2 E log Z pert N (s) ds -N ε N Cm,p ε N 2Cm,p E 2λ T R p 1,0 λ -λ T R p 1,1 λ ds ≤ d ds E log Z pert N (s) ε N Cm,p ε N 2Cm,p + 3N ε N Cm,p ε N 2Cm,p κ 2 C 2p ds.
where we used (5.3). Next, to control the first term, notice that

d ds E log Z pert N (s) = E H = 2sN E λ T R p 1,0 λ -sN E λ T R p 1,2 λ ≤ 3N sκ 2 C 2p
so we can conclude that

ε N /Cm,p ε N /2Cm,p E (H -H ) 2 ds ≤ 3N κ 2 C 2p ε N C m,p
Since s = uε N Cn,p where u ∼ U [1/2, 1], the above reads (5.15)

E u E (H -H ) 2 ≤ 6N κ 2 C 2p
Eventhough this bound is not great, remember that we will multiply it by

4C 2 n,p ε 2
N N 2 which is very small, see (5.8).

Step 3: We now bound the second term in the RHS of (5.12) and show that

(5.16) 4C 2 m,p ε 2 N N 2 E u E ( H -E H ) 2 ≤ 1000C 16 3 m,p 4 m+p v N N 2 ε 4 N 1/3
.

The proof uses the expectation over u n,p and the convexity of the modified free energy

FN (s) = 1 N log Z pert N (s) + 3s 2 4 m+p C 2 m,p .
FN is a convex function because the computation in (5.14) implies that the second derivative

d 2 ds 2 FN = 1 N (H -H ) 2 + 2 λR p 1,0 λ -λR p 1,1 λ + 6 • 4 m+p C 2 m,p
is non-negative because C m,p = 2 m+p κC p and λR p 1,2 λ is uniformly bounded by κ 2 C 2p . Our goal is to control the difference of the derivatives of this convex function with its expected value (5.17)

F N -E F N = 1 N ( H -E H ).
We can now use the bounds on the derivatives of convex functions given by the following lemma from [34, Lemma 3.2].

Lemma 5.3 (A Bound for Convex Functions)

Let G and g be convex differentiable functions. For δ > 0 and nonnegative functions C - δ (x) = g (x)-g (x-δ) and C + δ (x) = g (x + δ) -g (x) then for all real numbers x

|G (x) -g (x)| = 1 δ u∈{x-δ,x,x+δ} |G(u) -g(u)| + C + δ (x) + C - δ (x)
To control (5.17), we apply this lemma to G(s) = FN (s) and g(s) = E FN (s) to conclude that for any s ∈ (ε N /2C m,p , ε N /C m,p ) and δ > 0 sufficiently small so that s -δ > 0,

1 N | H -E H | ≤ δ -1 u∈{x-δ,x,x+δ} |F N (u) -EF N (u)| + |E F N (x) -E F N (x -δ)| + |E F N (x + δ) -E F N (x)|
We square both sides and apply Jensen's inequality (

m i=1 a i ) 2 ≤ m m i=1 a 2 i to arrive at the bound 1 5N 2 E u E( H -E H ) 2 ≤ δ -2 u∈{x-δ,x,x+δ} E u E|F N (u) -EF N (u)| 2 + E u |E F N (s) -E F N (s -δ)| 2 + E u |E F N (s + δ) -E F N (s)| 2 (5.18)
It now remains to control the two terms in the above upper bound.

(1) From the definition of v N ,

sup u E(F N (u) -EF N (u)) 2 ≤ v N N 2 , we get (5.19) δ -2 u∈{x-δ,x,x+δ} E u E|F N (u) -EF N (u)| 2 ≤ 3v N N 2 δ 2 .
(2) For the two last terms, we begin by controlling 2

1 1 2 E F N uε N C m,p -E F N uε N C m,p -δ 2 + E F N uε N C m,p -E F N uε N C m,p + δ 2 du = 2C m,p ε N ε N Cm,p ε N 2Cm,p |E F N (s) -E F N (s -δ)| 2 + |E F N (s + δ) -E F N (s)| 2 ds (5.20)
By the Nishimori property, we get the uniform bound

(5.21) E F N (s) = 1 N E H = 2sE λ T R p 1,0 λ -sE λ T R p 1,2 λ ≤ 3ε N C 2 m,p 4 m+p so max(|E F N (s) -E F N (s -δ)|, |E F N (s + δ) -E F N (s)|) ≤ 6ε N C 2 m,p 4 m+p Since F N is increasing, E F N (s) -EF N (s -δ)
is nonnegative so we conclude that (5.20) is bounded by

12C 3 m,p 4 m+p ε N Cm,p ε N 2Cm,p E F N (s) -E F N (s -δ) + E F N (s + δ) -E F N (s) ds = 12C 3 m,p 4 m+p E FN ε N C m,p + δ -E FN ε N C m,p -δ + E FN ε N 2C m,p -δ -E FN ε N 2C m,p + δ ≤ 72δε N C 5
m,p 8 m+p by the mean value theorem and the bound on the derivatives (5.21). We deduce from (5.18) and ( 5

.19) that 1 5N 2 E u E( H -E H ) 2 ≤ 3v N N 2 δ 2 + 72δε N C 5 n,p 8 n+p .
We finally choose δ to be given by

δ 3 = v N 24N 2 ε N C 5 n,p 8 n+p so 1 N 2 E u E( H -E H ) 2 ≤ 2 3v N N 2 24N 2 ε N C 5 m,p 8 m+p v N 2/3 + 72 v N 24N 2 ε N C 5 m,p 8 m+p 1/3 ε N C 5 m,p 8 m+p
which gives (5.16) .

Step 4: From steps 1 and 3, we conclude that conditionally on u m ,p for (m , p ) = (m, p) that

E um,p E ((λ T m,p R p 1,2 λ m,p ) -E (λ T n,p R p 1,2 λ m,p ) ) 2 ≤ 1000C 16 3 n,p 4 n+p v N N 2 ε 4 N 1/3 + 12C 4 n,p 4 m+p ε 2 N N .
Since this bound is uniform in u m ,p , Theorem 5.2 follows.

Remark 5.4. In the proof above, we assumed that C m,p ≥ 1 and ε N ≤ 1. This is not a problem, because ε N = N -γ for 0 < γ < 1/4 in our applications, and we can assume C m,p ≥ 1 at the cost of a less sharp upper bound. The constant L m,p is also of order C 16/3 m,p .

Using Gaussian concentration to explicitly estimate v N , we can conclude concentration of all quadratic forms associated to the Hadamard powers of the overlap at rational vectors.

Corollary 5.5 (Overlap Quadratic Form Concentration)

If ε N = N -γ for 0 < γ < 1/4, then for any p ≥ 1 rational valued λ ∈ [-1, 1] κ , and t ≤ n

(5.22) E u E ((λ T (R t 1,2 ) p λ) -E (λ T (R t 1,2 ) p λ) pert ) 2 pert → 0.
Proof. We explicitly compute the rate v N defined in (5.6) for this model. We fix our parameter u, and let ϕ = N F pert N (u). By independence, we can split the expected values into a statement about the concentration of x 0 and the Gaussian terms, (5.23)

E|ϕ -Eϕ| ≤ E|ϕ -E W,g ϕ| + E x 0 |E W,g ϕ -Eϕ|
The average E W is with respect to the 'W ' Gaussian terms in H N , the average E x 0 is with respect to 'x 0 ' terms in the approximate indicator and E g is with respect to the 'g' Gaussian terms g N (x), and E is the average with respect to all sources of randomness.

We start by proving the first term satisfies

(5.24) E|ϕ -E W,g ϕ| ≤ O( N + N ε 2 N )
. By independence, we can compute this upper bound conditionally on x 0 . Since the Gaussian Hamiltonian has variance of order N , the classical Gaussian concentration inequality for Lipschitz functions [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]Theorem 1.2] implies that

E|ϕ -E W,g ϕ| 2 ≤ 8γ 2 C 2p N + N ε 2 N . We now focus on the second term and prove it satisfies (5.25)

E x 0 |E W,g ϕ -Eϕ| ≤ O(N 1 
2 ).

We use the bounded difference property and a consequence of the Efron-Stein inequality. For N sufficiently large

|E W,g ∂ x 0 i (k) ϕ| ≤ 1 ∆ ∞ E W,g x 0 j (k)(x i • x j ) + p≥1 p C m,p R p-1 1,0 x i (k) pert ≤ L
for some universal constant L that only depends on C and ∆ ∞ . Since the E W,g ϕ has a bounded derivative for each coordinate x 0 i (k) and x 0 i (k) is almost surely bounded by C, it satisfies the bounded difference inequality, |E W,g ϕ(x 0 1 (1), . . . , x 0 i (k), . . . , x 0 N (κ)) -E W,g ϕ(x 0 1 (1), . . . , x0 i (k), . . . , x 0 N (κ))| ≤ CL so ϕ satisfies the bounded difference property for some universal constant L that only depends on the maximal value of the support. From the concentration inequality for functions of independent random variables satisfying the bounded differences property [START_REF] Boucheron | Concentration inequalities[END_REF]Corollary 3.2] if follows that

E x 0 (E W,g ϕ -Eϕ) 2 ≤ C 2 L 2 κN.
Combining the estimates in (5.24) and (5.25) proves (5.25) after applying Jensen's inequality.

From the overlap concentration estimate Lemma 5.2, we deduce

(5.26) E u E ((λ T m,p (R t 1,2 ) p λ m,p ) -E (λ T m,p (R t 1,2 ) p λ m,p ) pert ) 2 pert ≤ L m,p N + N ε 2 N N 2 ε 4 N 1/3 + 1 ε 2 N N . In particular, if ε N = N -γ for 0 < γ < 1/4, then N ε 4
N → ∞ so (5.22) holds for any m, p and t. Since the λ m,p are dense in the sphere, the result follows.

Remark 5.6. The condition that γ > 0 implies that the limit of the free energy is unchanged by Lemma 5.1. The condition that γ < 1/4 is required to ensure that the perturbation is large enough to regularize the Gibbs measure. The exponent 1/4 is not expected to be optimal.

The concentration of the quadratic forms in Corollary 5.5 is insufficient to determine concentration of the overlaps (see Corollary 5.8) because the limiting arrays may not be a priori symmetric. Indeed, even though the convergence in Corollary 5.5 can be turned into an almost sure uniform convergence in λ

(λ T R t 1,2 λ) -E (λ T ER t 1,2 λ) pert → 0 a.s.
this allows to conclude only that

((R t 1,2 ) p -E (R t 1,2 ) p pert + ((R t 1,2 ) p -E (R t 1,2 ) p pert ) T goes to zero. It is not hard to see that E (R t 1,2
) p pert is symmetric, but at this point nothing guarantees that (R t 1,2 ) p is as well symmetric. To prove asymptotic symmetry of the overlaps, we invoke the synchronization property first observed for overlap matrix arrays in the vector spin glass models.

The entries of the overlap matrix are bounded, the matrix of overlaps is tight and there exists a subsequence such that R t N = (R t (x , x )) , ≥1 converges in distribution to some matrix Rt = ( R(x , x )) , ≥1 . The concentration of the quadratic forms (5.22) 

proves that (λ T k (R t , ) p λ k ) is close to E (λ T k (R t , ) p λ k ) pert for =
with probability going to one in the limit. This means that the off diagonal entries of the array of quadratic forms are constant

(5.27) ((λ T k (R t , ) p λ k )) = = L t,p k
for some function L that only depends on t, p and λ k . The fact that the off diagonals of the quadratic forms are constant is sufficient to proving that the limiting array R must have symmetric entries. In particular, R satisfies the synchronization property proved for vector spin models in [START_REF]Free energy in the mixed p-spin models with vector spins[END_REF]Theorem 4]. Proof. We adapt the general proof of synchronization to this simpler setting where we have concentation of the quadratic forms of the powers of the overlaps. The proof is essentially identical to the general case [START_REF]Free energy in the Potts spin glass[END_REF]Section 6], but avoids relying on the Ghirlanda-Guerra identities because they are trivially satisfied by the replica symmetric array.

Step 1: We first recover the values of the overlaps. By (5.27), we observe that there exists some constants L t k , L t k,k etc that depend only on t ≤ n and entries k, k such that : (1) First Order Diagonal Elements: For all 1 ≤ k ≤ κ, if we take p = 1 and λ

= e k then Rt , (k, k) = L t k,k for some constant L t k = E Rt 1,2 (k, k).
(2) First Order Off-Diagonal Elements: For all 1 ≤ k = k ≤ κ, if we take p = 1 and λ 1 = e k + e k and λ 2 = e k -e k then (5.27

) implies Rt , (k, k) + Rt , (k , k ) + Rt , (k, k ) + Rt , (k , k) = L t e k +e k Rt , (k, k) + Rt , (k , k ) -Rt , (k, k ) -Rt , (k , k) = L t e k -e k so (5.28) Rt , (k, k ) + Rt , (k , k) = L t k,k = 1 2 (L t e k +e k -L t e k -e k ).
(3) Second Order Off-Diagonal Elements: 

For 1 ≤ k = k ≤ k, if
( Rt , (k, k )) 2 + ( Rt , (k , k)) 2 = Lt k,k .
From the formulas (5.28) and (5.29) we can explicitly solve the system to conclude that R , (k, k ) and R , (k, k ) can take one of two possible values

Rt , (k, k ), Rt , (k , k) 
= L t k,k ± 2 Lt k,k -(L t k,k ) 2 2 .
Note that all the concentration results above only apply for the offdiagonal elements of the overlap array, because Theorem 5.2 only holds when = . Obviously L t and Lt are symmetric matrices. Moreover, by Corollary 5.5, the indices does not depend on the choice of , as the distribution of any limit point should be symmetric in the replicas.

Step 2: It remains to show that

Rt , (k, k ) = Rt , (k , k) = L t k,k 2 .
We proceed by contradiction by showing that if Rt , (k, k ) = Rt , (k , k) with positive probability, then we can always examine a large enough subarray such that the diagonals are identical. We consider a 2n × 2n array of 2 × 2 blocks of the form R

, (k, k) R , (k, k ) R , (k , k) R , (k , k ) ,
By the computations in step 1, for = the offdiagonal blocks must be of the form

a b c d or a c b d where a = L t k,k d = L t k ,k b = L t k,k + 2 Lt k,k -(L t k,k ) 2 2 c = L t k,k -2 Lt k,k -(L t k,k ) 2 2 .
We will show that b = c is impossible, by examining the barycenters of the infinite arrays, namely using the fact that we have n, the number of replicas, as large as we wish. For large enough n, we can find arbitrary large disjoint set of indices ∈ V 1 and ∈ V 2 each of cardinality m [23, Theorem 3] such that the corresponding matrix array is only of the first form a b c d .

We now restrict ourselves to indices from

V = V 1 V 2 .
Because the arrays of each of the entries restricted to V is positive semidefinite, we can find vectors u and w in a Hilbert space such that (5.30) u , u u , w w , u w , w

, ∈V = R , (k, k) R , (k, k ) R , (k , k) R , (k , k ) , ∈V . 
Notice that for = ∈ V we have u , u = a and w , w = d. Furthermore, by construction if ∈ V 1 and ∈ V 2 , we see that u , u u , w w , u w , w

∈V1, ∈V2
= a b c d .

For i = 1, 2, if we examine the barycenters

U i = 1 m ∈Vi u and W i = 1 m ∈Vi w , then (5.30) readily gives U 1 , U 2 U 1 , W 2 W 1 , U 2 W 1 , W 2 = a b c d .
However, if we look at the differences between the barycenters, (5.30) implies that

U 1 -U 2 2 = 1 m 2 ∈V1 u - ∈V2 u 2 ≤ 2C 2 + 2a m and W 1 -W 2 2 = 1 m 2 ∈V1 w - ∈V2 w 2 ≤ 2C 2 + 2d m .
Indeed, the diagonal entries of the overlap arrays are bounded by some universal constant C 2 and the offdiagonals are fixed for ∈ V 1 and ∈ V 2 by (5.30). We used the fact that u , u = a and w , w = d for any = to cancel off all the offdiagonal terms. If we take m → ∞, then

U 1 ≈ U 2 and W 1 ≈ W 2 , so U 1 , W 2 = W 1 , U 2
which implies that b = c, so the overlap array must be symmetric.

In particular, the limiting matrix overlaps Rt are almost surely symmetric. This allows us to conclude the concentration of the overlap entries instead of its quadratic forms as previously found in Theorem 5.2, see (5.7).

Theorem 5.8 (Concentration of the Overlaps)

If ε N = N -γ for some 0 < γ < 1/4, then for all t ≤ n (1) E R t 1,2 -E R t 1,2 pert 2 2 pert → 0. (2) E R t 1,0 -E R t 1,0 pert 2 2 pert → 0. Furthermore, Q t := E R t 1,2 pert = E R t 1 
,0 pert , so the limit points are the same.

Proof. The first point is a direct consequence of Corollary 5.5 and Theorem 5.7. For the second point we use the Nishimori property to get concentration of the overlap with respect to the planted signal from the first case

E R 1,0 -E R 1,0 pert 2 2 pert → 0. and E R t 1,2 pert = E R t 1,0 pert .

5.2.

Cavity Computations via the Aizenman-Sims-Starr Scheme. We will now apply the concentration of the overlaps to prove the matching upper bound of the free energy using the Aizenman-Sims-Starr scheme.

We have for any M ≥ 1

F (∆) := lim sup N →∞ F N (∆) = lim sup N →∞ 1 M ((N + M )F N +M (∆) -N F N (∆)).
We can partition the cavity coordinates into groups such that

I + = {N + 1, . . . , N + M } = s≤n I + s ,
and the proportions in each of these groups converge as M → ∞ for every fixed N (at least on average) lim

M →∞ ρ M s = |I + s | M = ρ s
We decompose the Hamiltonians into its common part and its cavity fields,

H N +M (x, y) = H N (x) + M i=1 (y T i z i (x) + y T i m i (x) + y T i s i (x)y i ) + o(N ) and H N (x) d = H N (x) + y(x)
Here, the common Hamiltonian is given by

H N (x) = 1≤i<j≤N 1 ∆ ij √ N + M g ij x i •x j + 1≤i<j≤N 1 ∆ ij (N + M ) (x 0 i •x 0 j )(x i •x j )- 1≤i<j≤N 1 2∆ ij (N + M ) (x i •x j ) 2
The cavity fields in this model are of the form :

z i (x) = N j=1 g j,N +1 1 ∆ ij √ N + M x j m i (x) = N j=1 1 ∆ ij (N + M ) x 0 j • x 0 N +i x j = s≤n ρ M t ∆ st R t 1,0 x 0 N +i + O(N -1 ) = Ri 1,0 x 0 i + O(N -1 ) i ∈ I + s s i (x) = - N j=1 1 2∆ ij (N + M ) x j x T j = - 1 2 s≤n ρ M t ∆ st R t 1,1 + O(N -1 ) = - 1 2 Ri 1,1 + O(N -1 ) i ∈ I + s
where we used the notation

Ri 1,1 = s≤n ρ M t ∆ st R t 1,1 = s≤n ρ M t ∆ st R t (x, x) Ri 1,0 = s≤n ρ M t ∆ st R t 1,0 = s≤n ρ M t ∆ st R t (x, x 0 ).
Noting that we can write that the Gaussian variables with variance 1/N decompose as g ij / (N + M ) + g ij M/N (N + M ) with independent Gaussian variables g ij and g ij

y(x) = 1≤i<j≤N √ M ∆ ij N (N + M ) g ij x i • x j + i<j M ∆ ij N (N + M ) (x 0 i • x 0 j )(x i • x j ) - i<j M 2∆ ij N (N + M ) (x i • x j ) 2 = i<j √ M ∆ ij N g ij x i • x j + M 2 st ρ M s ρ M t ∆ st R s 1,0 R t 1,0 - M 4 st ρ M s ρ M t ∆ st R s 1,1 R t 1,1 + O(N -1 )
where g ij is independent of g ij . Notice that the covariance of the Gaussian fields are given by (5.31)

Ez i (x 1 )z i (x 2 ) T = t ρ M t ∆ 2 s,t R t 1,2 := Ri 1,2 i ∈ I + s and E i<j 1 ∆ ij (N + M ) g ij x 1 i • x 1 j i<j 1 ∆ ij (N + M ) g ij x 2 i • x 2 j = M 2 s,t ρ M s ρ M t ∆ st R s 1,2 , R t 1,2 .
By adding and subtracting the normalization terms H N , we need to compute

∆F N,M := 1 M E log exp M i=1 y T i z i (x) + y T i m i (x) + y T i s i (x)y i dP 0 (y) -E log exp(y(x))
where • denotes the average with respect to the Gibbs measure H N . Of course, this procedure works as well if we added the perturbation terms in Theorem 5.2, resulting in (5.32)

∆F pert N,M = 1 M E log exp M i=1 y T i z i (x) + y T i m i (x) + y T i s i (x)y i dP 0 (y) pert -E log exp(y(x)) pert + o(1)
after a straightforward interpolation argument (see for example [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]Chapter 3.5]). It suffices to compute this quantity in the limit. We now recall a modification of a general result [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]Theorem 1.4] that implies that the functional ∆F N,M is continuous with respect to the distribution of the off-diagonal elements of the array (R , ) = . We now state precisely what we mean. Lemma 5.9 (Continuity with Respect to Overlap Distribution)

For every ε > 0, there exists a function F ε (R n = ) of finitely many elements of

R n = = (R , ) 1≤ = ≤n such that |∆F pert N,M -F ε (R n = )| < ε.
Proof. Recall that without loss of generality, we can assume that P 0 is supported on finitely many points. The proof is essentially identical to the proof of in [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]Theorem 1.4]. The key difference is that the covariance structures of the cavity fields in these models imply that the diagonal self overlap terms cancel, leaving us with a functional of the off diagonal terms of the overlaps. By Gaussian concentration, we will be able to restrict the logarithms in ∆F N,M to a compact set without introducing a large error. We first define the truncation

f a (x) =      -a x < -a x -a ≤ x ≤ a a
x > a and the corresponding truncated Hamiltonians 

H a Z (x, y) = f a M i=1 y T i z i (x) + y T i Ri 1,0 x 0 i - 1 2 y T i Ri 1,1 y i H a Y (x) = f a ( √ M y(x ) + M 2 st ρ M s ρ M t ∆ st R s 1,0 R t 1,0 - M 4 st ρ M s ρ M t ∆ st R s 1,1 R t 1,1
y T i z i (x) + y T i m i (x) + y T i s i (x)y i dP 0 (y) - 1 M E log e H a Y (x) ≤ e -ca 2
for all a sufficiently large. We will defer the proof of this fact to the end of the proof, and first explain the rest of the logic.

The key observation is that by Weierstrass Theorem, we can approximate the logarithm by a polynomial uniformly on a compact set, so we can approximate ∆F N,M as a linear combination of the moments of the overlaps. Since H Z (x) and H Y (x) is bounded, we can restrict the logarithm to the set [e -a , e a ] and approximate it by polynomials. The expectations of these polynomials are of sums of terms of the form E e H Z (x,y) dP 0 (y) We start by computing the first of these terms. These moments can be computed explicitly. Because of (5.33) and (5.33) it suffices to compute the moments with respect to the untruncated Hamiltonians. In particular, for any r > 0, the moments simplify to

E exp M i=1 y T i z i (x) + y T i Ri 1,0 x 0 i - 1 2 y T i Ri 1,1 y i dP 0 (y) r = E ≤r exp M i=1 (y i ) T z i (x ) + (y i ) T R ,0 x 0 i - 1 2 (y i ) T R , y i dP 0 (y ) = E ≤r exp M i=1 (y i ) T z i (x ) + (y i ) T R ,0 x 0 i - 1 2 (y i ) T R , y i dP 0 (y )
where • = • pert is the average on with respect to the perturbed Gibbs measure. Taking expectations with respect to

z i E exp ≤r M i=1 (y i ) T z i (x ) + (y i ) T R ,0 x 0 i - 1 2 (y i ) T R , y i = E exp = M i=1 1 2 (y i ) T Ri , y i + (y i ) T R ,0 x 0 i since E ≤r M i=1 (y i ) T z i (x ) ≤r M i=1 (y i ) T z i (x ) = 1 2 r , =1 M i,j=1
(y i ) T Ri , y j .

In particular, these terms only depend on the offdiagonal elements of R , and R 0, , because the diagonal terms canceled off. A similar computation works for the second term in ∆F N,M since again

E exp ≤r √ M y(x ) + M 2 st ρ M s ρ M t ∆ st R s 1,0 R t 1,0 - M 4 st ρ M s ρ M t ∆ st R s 1,1 R t 1,1 = E exp = - M 4 st ρ M s ρ M t ∆ st R s , R t , + M 2 st ρ M s ρ M t ∆ st Tr(R s ,0 R t ,0 ))
is a function of the off diagonal elements of the array (R , ) , ≥0 . Therefore, we can approximate ∆F N,M with a continuous function of finitely many off diagonal elements of the array. All that remains is to prove that the logarithm can be approximated by polynomials by proving the bounds (5.33) and (5.34). The proofs of both inequalities follow from the same argument, so we only show the first one. We prove this by showing that

(5.35) 1 M E log e H ∞ Z (x,y) dP (y) - 1 M E log a e H ∞ Z (x,y) P X (y) ≤ e -ca 2 and (5.36) 1 M E log a e H ∞ Z (x,y) dP (y) - 1 M E log a e H a Z (x,y) P X (y) ≤ e -ca 2
where log a (x) = f a (log(x)) is the truncated logarithm. We begin by proving the first inequality. Because the support of P X is bounded, the covariance

Ez i (x 1 )z i (x 2 ) T = Ri 1,2
defined in (5.31) is almost surely bounded by some universal constant. Let

F Z = 1 M log e H ∞ Z (x,y) dP (y) = 1 M log exp M i=1 y T i z i (x) + y T i m i (x) + y T i s i (x)y i dP 0 (y) .
By Gaussian concentration [34, Theorem 1.2],

(5.37)

P (|F Z -EF Z | ≥ a) ≤ 2e -ca 2
where c only depends on sup t≤n sup x∈supp P X Rt 1,2 . By Jensen's inequality, and the concavity of the logarithm

0 ≤ EF Z ≤ 1 M log E exp M i=1 y T i z i (x) + y T i m i (x) + y T i s i (x)y i dP 0 (y) ≤ C
for some constant that only depends on the upper bound of the covariance sup t≤n sup x∈supp P X Rt 1,2 . This implies that {|F Z | ≥ a} ⊂ {|F Z -EF Z | ≥ a/2} for a ≥ C. The Gaussian concentration inequality (5.37) implies that there exists a constant c such that for all a sufficiently large

P (|F Z | ≥ a) ≤ e -ca 2
and the bounds on the tails of a sub-Gaussian random variable [34, Equation 1.80] implies that

E(|F Z | 1(|F Z | ≥ a)) ≤ e -ca 2
for some universal constant c. This proves (5.35).

To prove (5.36) 

P (y) ≤ e a E |H ∞ Z (x, y)| 1(|H ∞ Z (x, y)| ≥ a) .
Since the H Z is a Gaussian process, the exponential decay of the tails implies that we can also bound this by e -ca 2 for a sufficiently large.

Remark 5.10. The fact that the functionals do not depend on the diagonal terms is essential to understanding the limiting behavior, because concentration Corollary 5.8 only applies to the offdiagonal terms of the array.

In the limit, we use synchronization of vector spins and multispecies models to study the limiting behavior of the overlaps under the asymptotic Gibbs measure. In our case, Theorem 5.8 implies that

R s , = Q s , = Q s 1,0 = Q s for all s ≤ n, =
where Q , is the values of the limiting overlap matrix. One can check that the free energy functional (5.32) in the limit is equivalent to

1 M E log exp M i=1 y T i Q1/2 i z i + y T i Qi x 0 i - 1 2 y T i Qi y i dP 0 (y) -E log exp y + M 4 st ρ M s ρ M t ∆ st Q s , Q t . (5.38) where Qi = Qs = t≤n 1 ∆ s,t ρ M t Q t i ∈ I s .
a ¯nd the Gaussians z and y have covariance Proof. In our setting, we can replace the off diagonal entries of the array (R = ) and Q, since the elements of the off diagonal array take only one value by concentration. The original cavity fields appear to have some terms that depend on the diagonal terms R , , but we will show that the moments of the cavity field are independent of this term by cancellation.

Cov(z i , z j ) = δ j=i Q i Var(y) = M 2 st ρ M s ρ M t ∆ st Q s , Q t
Since P 0 can be assumed to have finite support by Lemma 3.10, the computation in the proof of Lemma 5.9 implies that for fixed y and x 0 the moments of the first cavity field can be written as a weighted sum of terms of the form

E exp M i=1 (y ) T i z i (x) + (y ) T i m i (x) + (y ) T i s i (x)(y ) i = exp r = M i=1 1 2 y T i Ri , y j + y T i Ri 0, x 0 i where Ri , = t ρ M t ∆ s,t R t 1,2
for i ∈ I s .

When compared to

E exp r =1 M i=1 (y ) T i z i + (y ) T i Qi x 0 i - 1 2 (y ) T i Qi (y ) i = exp r , =1 M i=1 1 2 (y ) T i Qi (y ) i + y T i Qi x 0 i - 1 2 (y ) T i Qi (y ) i = exp 1≤ = ≤r M i=1 1 2 (y ) T i Qi (y ) i + y T i Qi x 0 i - 1 2 (y ) T i Qi (y ) i where Qi = t≤n ρ M t ∆ s,t Q t i ∈ I s
we can conclude that the moments are functionals of the same values of the overlap.

For the second cavity field, it is easy to see that all moments are the same of the overlaps. A direct computation of the moments using the moment generating function of a Gaussian gives

E exp(y(x)) r = exp r =1 y(x ) + M 2 st ρ M s ρ M t ∆ st R s ,0 , R t ,0 - M 4 st ρ M s ρ M t ∆ st R s , , R t , = exp 1≤ = ≤r M 4 st ρ M s ρ M t ∆ st R s , , R t , + M 2 st ρ M s ρ M t ∆ st R s ,0 , R t ,0
. and when compared to

E exp r =1 y + M 4 st ρ M s ρ M t ∆ st Q s , Q t = exp 1≤ = ≤r M 8 st ρ M s ρ M t ∆ st Q s , Q t + M 4 st ρ M s ρ M t ∆ st Q s , Q t
so both functionals are the same functions of the overlaps (R , ) = ≥0 and Q.

By overlap concentration Theorem 5.8, we know (R t , ) = → (Q t ) = for some constant matrix Q t in the limit. Lemma 5.9 implies that the convergence of the offidagonal elements of the array is sufficient and Lemma 5.11 implies that the functional (5.38) characterizes the limiting behavior of ∆F N,M defined in (5.32). That is, lim

N →∞ ∆F pert N,M = F ε (R n = ) + O(ε) = 1 M E log exp M i=1 y T i Q1/2 i z i + y T i Qi x 0 i - 1 2 y T i Qi y i dP 0 (y) -E log exp y + M 4 st ρ M s ρ M t ∆ 2 st Q s , Q t + O(ε) = 1 M i∈I + s E log exp y T i Q1/2 s z s + y T i Qs x 0 i - 1 2 y T i Qs y i dP 0 (y) - M 4 st ρ M s ρ M t ∆ 2 st Q s , Q t + O(ε) (5.39)
The parameters Q s = Q M s appearing above depend on our choice of M . The lower bound (5.39) holds for all M . By compactness, there exists a subsequence such that Q M s converges to a limiting object Q. We may take M → ∞ along a subsequence such that the proportions converge

|I + s | M → ρ s and Q M
s converges, then ε → 0 and use the continuity of our functional in Q to conclude that lim

M →∞ lim N →∞ ∆F N,M = ϕ(Q)
for some sequence Q = (Q s ) s≤n . This gives the matching upper bound.

Theorem 5.12 (Bayes Optimal Upper Bound of the Free Energy )

We have lim sup

N →∞ 1 N E Y ln Z X (Y ) = lim sup N →∞ 1 N E Y ln Z pert X (Y ) ≤ sup Q ϕ(Q).

Solving the Variational Problem

In this section, we examine the stability of the critical points of the functional describing the limit of the free energy (6.1)

ϕ(Q) = - s,t≤n ρ s ρ t 4∆ s,t Tr(Q s Q t ) + s≤n ρ s E z,x 0 ln exp Qs x 0 + Qs z T x - x T Qs x 2 dP 0 (x) where Qs = t≤n 1 ∆ s,t ρ t Q t .
We begin with the case when the prior distribution is Gaussian, which will allow us to explicitly compute a closed form of the solution. Later, we will generalize this analysis to general bounded priors.

6.1. Standard Gaussian Prior. Suppose that the prior is a standard Gaussian on R κ ,

dP 0 (x) = 1 (2π) κ 2 e -x•x 2 .
In this case, the second term in the functional (6.1) can be computed explicitly, Qs .

n s=1 ρ s E z,x 0 ln exp Qs x 0 + Qs z T x - x T Qs x 2 dP 0 (x) = n s=1 ρ s E z,x 0 ln 1 (2π) κ/2 exp Qs x 0 + Qs z T x - x T Qs x 2 - x T Ix 2 dx = n s=1 ρ s E z,x 0 ln 1 (2π) κ/2 exp - 1 
In the last computation, we used the fact that x 0 , z are independent centered standard Gaussians in R κ . By adding and subtracting the identity matrix and using the fact that the trace is invariant under cyclic permutations, Therefore, the general replica symmetric functional ϕ g in the standard Gaussian case is We next investigate the maximizers of ϕ g on the set of symmetric positive semidefinite matrices. Observe that ϕ g is a C ∞ function that goes to -∞ when sup s Q s op → ∞ hence the supremum is attained. We are interested in finding conditions on ∆ s,t and ρ s to determine when ϕ(Q) has a maximizer at the origin Q = 0. We define the following block matrices indexed by s ≤ n,

ϕ g (Q) = - n s,t=1 ρ s ρ t 4∆ s,t Tr(Q s Q t ) + n s=1 ρ s 2 
(6.3) Q = ( Qs ) s≤n 1 ∆ = 1 ∆ s,t s,t≤n ρ = diag(ρ 1 , . . . , ρ n ).
Lemma 6.1 (Phase Transition with Gaussian Prior )

(1) The functional ϕ has a unique maximizer at

Q = 0 if √ ρ 1 ∆ √ ρ op < 1 
(2) The functional ϕ achieves its maximum value away from

Q = 0 if √ ρ 1 ∆ √ ρ op > 1 
Remark 6.2. In the case when n = 1, we have that the phase transition happens when 1 ∆ = 1, which is precisely the phase transition in that model [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF].

Proof.

First and Second Variations: Consider an arbitrary perturbation of M = (M 1 , . . . , M n ) of Q. The first and second variation is denoted by

(6.4) ∇ M ϕ g (Q) = ∂ ε ϕ g (Q + εM ) ε=0 and ∇ 2 M ϕ g (Q) = ∂ 2 ε ϕ g (Q + εM ) ε=0 .
We can compute these directly to see that

∇ M ϕ g (Q) = - s,u ρ s ρ u 2∆ s,u Tr(Q u M s ) + s,u ρ s ρ u 2∆ s,u Tr((I -( Qu + I) -1 )M s ) and ∇ 2 M ϕ g (Q) = - s,t ρ s ρ t 2∆ s,t Tr(M s M t ) + s,t u ρ s ρ t ρ u 2∆ s,u ∆ u,t
Tr(( Qu + I) -1 M s ( Qu + I) -1 M t ).

Small Operator Norm: We first find a sufficient condition for ϕ g to have a unique maximizer at the origin. At the critical point, the derivative is equal to 0 for all symmetric M , so we can conclude that

(6.5) Qs = u ρ u ∆ s,u Q u = u ρ u ∆ s,u I -( Qu + I) -1 ∀s.
Consider the following vectors of κ × κ matrices Q = ( Qs ) s≤n f ( Q) = (I -( Qs + I) -1 ) s≤n = ( Qs ( Qs + I) -1 ) s≤n .

The critical point condition can be simplified to

(6.6) Q = 1 ∆ ρf ( Q) =⇒ √ ρ Q = √ ρ 1 ∆ √ ρ ( √ ρf ( Q)) = A( √ ρf ( Q)).
where

A = √ ρ 1 ∆ √ ρ. We therefore can compute the L 2 norm (6.7) √ ρ Q 2 2 = Tr ( √ ρ Q) T ( √ ρ Q) = Tr (A( √ ρf ( Q)) T (A( √ ρf ( Q)) ≤ A op √ ρf ( Q) 2 2 . Because √ ρf ( Q) 2 ≤ √ ρ Q 2 ( Q + I) -1 2 ≤ √ ρ Q 2 , we arrive at √ ρ Q 2 2 ≤ A op √ ρ Q 2 2 .
In particular, when A op < 1 there exists a unique solution to the critical point equation at Q = 0.

Large Operator Norm: We examine the Taylor expansion of ϕ around the origin. The first and second variation simplify greatly at the origin Q = 0 to give (6.8)

∇ M ϕ g (0) = 0 ∇ 2 M ϕ g (0) = s,t - ρ s ρ t 2∆ s,t Tr(M s M t ) + u ρ s ρ t ρ u 2∆ s,u ∆ u,t Tr(M s M t ) .
The second variation will always be negative for any choice of M if and only if

ρ 1 ∆ ρ 1 ∆ ρ -ρ 1 ∆ ρ = ρ 1 ∆ 1 ∆ ρ 1 ∆ -I 1 ∆ ρ
has only negative eigenvalues. By Sylvester's law of inertia, it suffices to study the eigenvalues of the matrix

1 ∆ ρ 1 ∆ -I
and by the invariance of the operator norm of cyclic permutations of the matrices, we get the condition that the Hessian is negative semidefinite when

A op = √ ρ 1 ∆ √ ρ op < 1 
which is precisely the condition for a unique maximizer at 0. We now claim that when the Hessian has a strictly positive eigenvalue, then there exists a maximizer away from the origin. Suppose now that A op > 1. Then there exists a unit eigenvector v ∈ R n such that Av = A op v. Furthermore, the entries of A are non-negative so the entries of the eigenvector v are also non-negative by the Perron-Frobenius Theorem. Therefore, if we define M = (u 1 I, . . . , u n I) where u i = √ ρi v i ≥ 0 then the Hessian at 0 defined in (6.8) is given by

∇ 2 M ϕ g (0) = n u T ρ 1 ∆ s,t ρ 1 ∆ s,t ρu -u T ρ 1 ∆ s,t ρu = n(v T A 2 v -v T Av) ≥ n( A 2 op -A op ) which is strictly non-negative if A op > 1.
Therefore, the function g(ε) = ϕ g (εM ) satisfies g (0) > 0, so it is convex on [0, δ] for some δ > 0. Furthermore, g (0) = 0, so we can conclude that for δ small enough ϕ g (δM ) = g(δ) > g(0) = ϕ g (0) by convexity. Lastly, notice that M ≥ 0 since the entries of u are non-negative, so M is in the domain of the optimization problem. Observe also that 0 is no longer a maximizer. 6.2. General Centered Prior. Now suppose that we are in the scenario that P X is a centered prior measure on R κ with compact support. We want to study the maximizers of the functional (6.1). Let • Q denote the average with respect the Gibbs measure associated with the Hamiltonian (Qx 0 + √ Qz) T x -x T Qx 2 . The partial derivatives of ϕ in the direction M s can be computed using Gaussian integration by parts and the Nishimori property (4.4)

∂ ε ϕ(Q + εM s )| ε=0 = - n t=1 ρ s ρ t 2∆ s,t Tr(Q t M s ) + n t=1 ρ s ρ t ∆ s,t E x T M s x 0 - x T M s x 2 Qt (6.9) + n t=1 ρ t E z T (∂ ε Qt + ε Mt | ε=0 )x = ρ s 2 - n t=1 ρ t ∆ s,t Tr(Q t M s ) + 2 n t=1 ρ t ∆ s,t E x T M s x 0 - x T M s x 2 2 Qt = ρ s 2 - n t=1 ρ t ∆ s,t Tr(Q t M s ) + n t=1 ρ t ∆ s,t E x T M s x 0 Qt . (6.10)
We dealt with the square root that appeared in the first equality using the identity (6.11) Tr

A Qt ∂ ε Qt + ε Mt | ε=0 = Tr A Qt ∂ ε Qt + ερ s ∆ st M s | ε=0 = ρ s 2∆ st Tr(AM s ),
for any symmetric matrix A, which implies that for standard Gaussian vectors z,

E x T Qt z z T (∂ ε Qt + ερ s ∆ st M s | ε=0 )x 2 = Tr x 2 x T Qt ∂ ε Qt + ερ s ∆ st M s | ε=0 = ρ s 2∆ st Tr x 2 x T M s .
Therefore, Gaussian integration by parts implies that

E z T (∂ ε Qt + ε Ms | ε=0 )x Qt = E E z (x T Qt z)(z T (∂ ε Qt + ερ s ∆ st M s | ε=0 )x) Qt -E E z ((x 2 ) T Qt z)(z T (∂ ε Qt + ερ s ∆ st M s | ε=0 )x) Qt = ρ s ∆ st E x T M s x 2 - x T M s x 2 2 
Qt where we used the same convention for the partial derivatives given in (6.4). At the critical point, the first derivative must vanish for all M s , so the critical point equation simplifies to (6.12)

Qs = n t=1 ρ t ∆ s,t E x 0 x T Qt = n t=1 ρ t ∆ s,t E x Qt x T Qt .
by the Nishimori property. We first prove that the average f

(Q) = E x 0 x T Q is Lipschitz. Lemma 6.3 (Lipschitz Continuity )
The functional f : S + κ → S + κ is Lipschitz in the space S + κ of non-negative κ × κ symmetric matrices: for any

Q, Q ∈ S + κ , f (Q) -f (Q ) 2 ≤ 3κ 2 C 3 Q -Q 2
where C is the bound on the support of P X and κ is the dimension.

Proof. The function f : S κ → R κ×κ is also given by

f (Q) = E x 0 x T exp Qx 0 + √ Qz T x -x T Qx 2 dP X (x) exp Qx 0 + √ Qz T x -x T Qx 2 dP X (x) = E x 0 x T Q . Given arbitrary Q 1 , Q 2 ≥ 0 we define Q α = αQ 1 + (1 -α)Q 2 = Q 2 + α(Q 1 -Q 2 )
to be the interpolation between the matrices. We will show that the function

g k,k (α) := f k,k (αQ 1 + (1 -α)Q 2 ) = f k,k (Q 2 + α(Q 1 -Q 2 )) = E x 0 (k)x(k ) Qα has uniformly bounded derivative for t ∈ [0, 1]. Let M = Q 1 -Q 2 .
A similar computation as the derivation of the first variation in (6.10) via the Gaussian integration by parts computation on (??) implies that

|g k,k (α)| = E x 0 (k)x(k ) x T M x 0 + z T (∂ α Q + αM )| α=0 x - x T M x 2 Q -E x 0 (k)x(k ) (x 2 ) T M x 0 + z T (∂ α Q + αM )| α=0 x 2 - (x 2 ) T M (x 2 ) 2 Q ≤ E x 0 (k)x(k ) x T M x 0 - x T M x 2 2 Q + E x 0 (k)x(k ) (x 2 ) T M x 0 - (x 2 ) T M x 3 2 Q ≤ 2C 2 E M 2 x 0 x T 2 + 1 2 M 2 x 2 x T 2 Q ≤ 3κC 3 M 2 .
In the last second line, we used the Cauchy-Schwarz inequality on the Frobenius inner product and in the last line we used the fact that E • Q is the average with respect to a probability measure. By the mean value theorem, we can conclude that

|f k,k (Q 1 ) -f k,k (Q 2 )| = |g k,k (1) -g k,k (0)| ≤ 3κC 3 Q 1 -Q 2 2 .
Lastly, we get our required estimate

f (Q 1 ) -f (Q 2 ) 2 = κ k,k =1 (f k,k (Q 1 ) -f k,k (Q 2 )) 2 1/2 ≤ 3κ 2 C 3 Q 1 -Q 2 2 .
Taking Q 1 = Qt and Q 2 = Q t gives our estimate.

Using this Lipschitz continuity, we can do a fixed point argument to show that there exists a unique maximizer at 0 if the covariances 1 ∆ 2 s,t are sufficiently small. Lemma 6.4 (Uniqueness of a Maximizer at 0) Consider the model parameters defined in (6.3). The functional ϕ(Q) has a unique maximizer at 0 if

√ ρ 1 ∆ √ ρ op < 1 9κ 4 C 6 .
Proof. Following the computations leading to (6.7) applied to the general critical point equation (6.12), we see that (6.13)

√ ρ Q 2 2 = Tr ( √ ρ Q) T ( √ ρ Q) = Tr (A( √ ρf ( Q)) T (A( √ ρf ( Q)) ≤ A op √ ρf ( Q) 2 2
where

f ( Q) = (E x 0 x T Q1 , . . . , E x 0 x T Qn ) A = √ ρ 1 ∆ √ ρ
We proved in Lemma 6.3 that f ( Qt ) = E x 0 x T Qt is Lipschitz in Qt with a Lipschitz constant that does not depend on t f ( Qt ) -f

( Q t ) 2 ≤ 3κ 2 C 3 Qt -Q t 2 .
Recall that the prior is centered f (0) = 0, so

√ ρf ( Q) 2 2 = t ρ t f ( Qt ) -f (0) 2 2 ≤ 9κ 4 C 6 t ρ t Qt 2 2 . ≤ 9κ 4 C 6 √ ρ Q 2 2 .
Applying this bound to (6.13) yields the result.

This bound is clearly not tight, because it does not depend on the measure P 0 except through the support contained in [-C, C] κ . We will show below that if the operator norm is sufficiently large, then a maximizer away from 0 will appear. Remark 6.6. If we have a Gaussian prior, then x ∼ N (0, I), so Exx T op = I op = 1. Furthermore, it also agrees with condition (194) in [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF] in the case when κ = 1.

Proof. We adapt the proof of the Gaussian prior to the general scenario. Consider an arbitrary perturbation M = (M 1 , . . . , M n ) of Q such that Q + εM ≥ 0 for all ε sufficiently small. The first and second variations are denoted by

∇ M ϕ(Q) = ∂ ε ϕ(Q + εM ) ε=0 and ∇ 2 M ϕ(Q) = ∂ 2 ε ϕ(Q + εM ) ε=0 .
This can be computed explicitly using integration by parts and the Nishimori property,

∇ M ϕ(Q) = s,u ρ s ρ u 2∆ s,u E Tr(x T M s x 0 ) Qu - s,u ρ s ρ u 2∆ s,u Tr(Q u M s )
and

∇ 2 M ϕ(Q) = s,t,u ρ s ρ t ρ u 4∆ s,u ∆ u,t E (x T M s x 0 )(x T M t x 0 ) Qu -E (x T 1 M s x 0 )(x T 2 M t x 0 ) Qu - s,t
ρ s ρ t 2∆ s,t Tr(M s M t ).

When Q = 0 the Hessian simplifies because • 0 is simply the average with respect to P X which is centered, since x and x 0 have the same distribution in the Bayes optimal case. The Hessian at 0 defined in (6.14) simplifies greatly for this choice of M ,

∇ 2 M ϕ(0) = s,
∇ 2 M ϕ(0) = C 2 op u T ρ 1 ∆ s,t ρ 1 ∆ s,t ρu -u T ρ 1 ∆ s,t ρu = C 2 op v T A 2 v -v T Av ≥ C 2 op A 2 op -A op .
By our assumption (6.15), ∇ 2 M ϕ(0) > 0. Therefore, the function g(ε) = ϕ(εM ) satisfies g (0) > 0, so it is convex on [0, δ] for some δ > 0. Furthermore, g (0) = 0, so we can conclude that ϕ(δM ) = g(δ) ≥ g(0) = ϕ(0) by convexity. Lastly, notice that M ≥ 0 since the entries of u are non-negative, so M is in the domain of the optimization problem. Remark 6.7. Our choice of M in the proof is the choice of directional derivative that maximizes the Hessian at 0. This gives us the sharp condition when the Hessian of ϕ is no longer negative semidefinite.

6.3.

Comparison with the Naive BBP Transition. In this section, we show that the threshold Lemma 6.5 is stronger than the transition computed by examining the BBP transition of a spiked matrix with homogeneous noise and inhomogenous spike. We will see that the transitions are equal if and only if the models are homogeneous.

We first consider the model with homogeneous noise, but inhomogeneous signal. We want to find the BBP transition of the matrix 1

√ N Y ∆ 1 ∆ 1 2 = x 0 (x 0 ) T N 1 ∆ 1 2 + 1 √ N G.
where G is a Gaussian Wigner matrix. Lemma 6.8 (BBP Transition)

The matrix 1

√ N Y ∆ 1 ∆ 1 2
has an outlier iff

√ ρ 1 ∆ 1 2 √ ρ op > 1 Exx T op .
Proof. It is well known that since G follows the GOE the largest eigenvalue of 1

√ N Y ∆ 1 ∆ 1 2
is given by λ * = max i:γi>1 {γ i + γ -1 i } if (γ i ) 1≤i≤n are the eigenvalues of

R = x 0 (x 0 ) T N 1 ∆ 1 2
But exactly as in the proof of Theorem 3. We now prove that the BBP transition is strictly weaker than the spin glass transition except in the homogeneous models. That is, if ∆ is such that the BBP transition happens

√ ρ 1 ∆ 1 2 √ ρ op ≥ 1 
Exx T op then we are also in the information theoretically feasible detectable region

√ ρ 1 ∆ √ ρ op ≥ 1 Exx T 2 op .
In particular, if it is possible to detect the signal using the spectral method, then it is also possible to detect is using any other method. The converse is false, so there exists some algorithms that beat the naive spectral ones. This statement is true, and in fact a stronger statement holds, which clearly implies Proposition 2.18.

Lemma 6.9 (Gap in Thresholds)

We have √ ρ 1 ∆ where we used again Cauchy-Schwartz's inequality and the fact that ρ s = 1 to see that ρ s u s ≤ u 2 . We deduce by taking the supremum over u so that u 2 = 1 that

√ ρ 1 ∆ 1 2 √ ρ op ≤ √ ρ 1 ∆ √ ρ 1/2 op .
Furthermore, equality holds only if there is equality in the above Cauchy-Schwartz inequality which happens when we take u to be the largest eigenvector of the matrix

√ ρ 1 ∆ 1 2
√ ρ. For this to happen, the largest eigenvector compact space. Using the change of variables η s,t = 1 ∆s,t , the envelope theorem [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF]Corollary 4] implies that at any point where ψ is differentiable,

∂ ηu,v ψ(η) := d dε ψ(η u,v + ε) ε=0 = ρ u ρ v 4 Tr(Q * u Q * v )
where Q * is any maximizer of the right hand side of (6.16). Furthermore, if Q † is another maximizer, then

ρ u ρ v 4 Tr(Q * u Q * v ) = ρ u ρ v 4 Tr(Q † u Q † v )
so the value of Tr(Q * u Q * v ) is unique even though the maximizers Q * and Q † may not be. But ψ is convex in η so that (∂ ηu,v ψ(η)) u,v exists for almost every η, so does the limit of the derivative of the free energy Theorem 2.10 implies lim

N →∞ F N (η) = ψ(η)
and lim

N →∞ ∂ ηu,v F N (η) = ∂ ηu,v ψ(η)
for almost every η so lim

N →∞ n u,v=1 E ρ u ρ v 4 Tr(R u 1,0 R v 1,0 ) = n u,v=1 ρ u ρ v Tr(Q * u Q * v ),
finishing the proof.

We now prove the statements about the MMSE.

Proof of Corollary 2.14. Recall that • is the average with respect to P (x | Y ). The mean squared error can be simplified to 2 

N (N -1) i<j E(x 0 i • x 0 j -E[x 0 i • x 0 j | Y ]) 2 = 2 N (N -1) i<j E (x 0 i • x 0 j ) 2 -2(x 0 i • x 0 j )E[x 0 i • x 0 j | Y ] + E[x 0 i • x 0 j | Y ] 2 = 2 N (N -1) i<j E (x 0 i • x 0 j ) 2 -2(x 0 i • x 0 j )(x 1 i • x 1 j ) + (x 1 i • x 1 j )(x 2 i • x 2 j ) = E

Theorem 2 . 9 ( 1 )

 291 Universality of the Spectrum) If g satisfies Hypothesis 2.2 and the corresponding Fisher information matrix (2.5) satisfies Hypothesis 3.13, then (Conditionally on x 0 , the empirical distribution µ 1 of the eigenvalues of Ỹij √ N and the empirical distribution µ 2 of the eigenvalues of 1 √ N ∆ Y ∆ satisfy lim N →∞ d(µ 1 , µ 2 ) → 0 in probability, where d is a distance compatible with the weak topology. (2) Conditionally on x 0 , when the dimension goes to infinity, 1 √ N ∆ Y ∆ has an extremal eigenvalue away from the bulk if and only if Ỹij √ N does, for almost all ∆ and ρ.

Figure 1 . 1 ∆

 11 Figure 1. The free energy as a function of the noise. A case with a continuous phase transition (dashed line) separating the undetectable regime from one where detection of the signal is possible.

Figure 2 .

 2 Figure2. The free energy as a function of the noise. A case with a discontinuous phase transition (orange dashed line) separating the undetectable regime from one where detection of the signal is possible. We plots the free energy of two local maximizers (in blue and red), it is the larger one that provides the final result. The purple dashed line is a position of the threshold from part 2 of Lemma 2.15 that is not tight in this case.

Figure 3 .

 3 Figure 3. The free energy as a function of the noise parameter, for groups of different sizes p, and diagonal inhomogeneity ∆.

Figure 4 .

 4 Figure 4. The free energy as a function of the noise parameter, for groups of different sizes p, and nondiagonal inhomogeneity ∆.

Hypothesis 2 . 2 (

 22 Positive Definiteness of Noise Profile): By definition, we have 1

Figure 6 .

 6 Figure 6. Free energy as the function of noise for the DCSBM with comparable sizes of one of the groups. We see a continuous phase transition (purple line).

√N

  and the empirical distribution µ 1 of the eigenvalues of 1 1 , µ 2 ) → 0 in probability. (2) Conditionally on x 0 , when the dimension goes to infinity, 1 √ N ∆ Y ∆ has an extremal eigenvalue away from the bulk iff Ỹij √ N does, for almost all ∆ and ρ.

√N Ỹ and 1 √

 1 N ∆ Y ∆ are approximately the same as those of W and W by Weyl's interlacing property. This shows (3.8). Moreover, [2, Corollary 1.10] show that the eigenvalues of W and W stick to the bulk, namely the extreme eigenvalues converge towards the boundary of the support of the measure with Stieljes transform ρ s m . Because of (3.10), these boundaries are very close to each other. We next study the BBP transition and show that the top eigenvalues of the matrices

Theorem 4 . 1 (

 41 Bayes Optimal Lower Bound of the Free Energy ) Assume Hypotheses 2.3, 2.2, 2.1. Then, for any Q

Lemma 5 . 1 (

 51 Equivalence of the Perturbed Free Energy ) Assume Hypothesis 2.3. Uniformly over all u m,p,t ∈ [1/2, 1]

Theorem 5 . 2 (

 52 Concentration Bound of the Overlap) Assume Hypotheses 2.3 and 2.1. If v N

Theorem 5 . 7 (

 57 Synchronization)Any infinite array ( Rt , ) , ≥1 of κ × κ matrices that satisfy (5.22) implies that Rt , is almost surely symmetric for all , ≥ 1.

  we take p = 2 and λ 1 = e k + e k and λ 2 = e k -e k then (5.27) gives a Lt k,k such that for all = (5.29)

r

  andE e H Y (x) r = E ≤r e H Y (x) 

Lemma 5 . 11 (

 511 Equivalence of the Functionals of the Overlaps)If the overlaps concentrate, then (5.32) and (5.38) can be approximated by the same functionals F ε (R n = ) of finitely many off diagonal entries of the overlap array.

2 x 0

 20 -( Qs + I) -1 ( Qs x 0 + Qs z) T ( Qs + I) x -( Qs + I) -1 ( Qs x 0 + Qs z) Qs x 0 + Qs z T ( Qs + I) -1 Qs x 0 + Qs z + I) -1

Lemma 6 . 5 ( 1

 651 Phase Transition with Centered Prior ) Let x ∼ P X . The functional ϕ has a maximizer away from Q = 0 if √ ρ

For 2 √b i b j b k b x i x 0 j x k x 0 0 =

 20 x ∼ P X , let C = Exx T = Cov(x). Let b denote the unit eigenvector corresponding to the largest eigenvalue of C. In particular, we have b T Cb = C op . Suppose that (ρ has non-negative entries, the eigenvector v associated with the largest eigenvalue has non-negative entries by the Perron-Frobenius Theorem. Therefore, we can takeM = (u 1 B, . . . , u n B)where B = bb T andu i = 1 √ ρ i v i Notice that E Tr(Bx 0 x T ) 2 0 = E i,j,k,l (b T Cb) 2 = Cov(x) 2 op .

√ ρ s ρ t 1 ∆ 1 2 st by the definition v 1 1 √

 11211 [START_REF] Deshpande | Asymptotic mutual information for the balanced binary stochastic block model[END_REF] and Remark 3.15, we can see that the eigenvalues of R are the same as those of matrix whose top eigenvalue converges entrywise when N goes to infinity, by the law of large numbers, towards the top eigenvalue of the matrixM ∞ st = Exx Top in Remark 3.15. We conclude that
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, with equality holding if and only if there exists a constant c such that for all s, t, ∆ s,t = c. In particular, if

∆ √ ρ

  Tr(R 00 , R 00 ) -2 Tr(R 10 , R 10) + Tr(R 12 , R 12 ) = E Tr(R 00 , R 00 ) -E Tr(R 10 , R 10 ) s ρ t Tr(Q s , Q t ).Lemma 2.15 is now immediate.Proof of Lemma 2.15. By Lemma 6.4 and Corollary 2.14, if√ ρ 1 ∆ √ ρ op < 1 9κ 4 C 6 then Q s = 0 for all s, so lim N →∞ MMSE(N ) = E P0 xx T 22 . On the other hand, if such that Q s > 0, so lim N →∞ MMSE(N ) < E P0 xx T 2 2 .

	n					
	= E xx T 2 2 -					
	s,t=1					
	By Lemma 6.10 it follows that					
	n					
	MMSE(∆) = E xx T 2 2 -					
	s,t=1					
	√ ρ 1 ∆	√ ρ op >	1 Exx T 2 op	=	1 Cov(x) 2 op	then there exists
	a s					

ρ s ρ t E Tr(R s 10 , R t 10 ) .

ρ
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must be u = √ ρ so there exists c such that

s ρ 1 2 t , ∀ s, t implying that ∆ s,t must be constant.

6.4. Proof of Corollary 2.14 and Lemma 2.15. We now explain how one can use the phase transition to recover the recovery transitions. Recall that the minimal matrix mean squared error is given by

The limit of the MMSE will follow from the following property of the maximizers of the replica symmetric functional ϕ defined in (2.13).

Lemma 6.10 (Limit of the Overlaps)

∆ is positive definite, the maximizers of (2.13) satisfy

Furthermore, for any maximizer, the values of Tr(Q s , Q t ) ≥ 0 are unique for fixed s, t.

Proof. Using the change of variables η s,t = 1 ∆s,t we consider our Gaussian free energy

where η i,j = η s,t for i ∈ I s and j ∈ I t , which is equivalent to (2.12). Notice that differentiating the free energy with respect to η u,v := 1 ∆u,v and an application of the Nishimori property recovers the Gibbs averages,

i∈Iu,j∈Iv

where • is the Gibbs average with respect to the Hamiltonian (2.11). On the other hand, for fixed 1 ≤ u, v ≤ n, consider the functional 

where the supremum is taken over non-negative matrices. Observe that the function we are optimizing is continuous. Moreover, the second term goes to infinity at most like s Tr( Q2 s )

, whereas the first term goes to -∞ like s Tr( Q2 s ) since we assumed that the smallest eigenvalue of 1 ∆ is positive. Hence, we can restrict the supremum to non-negative matrices such that s Tr( Q2 s ) is bounded by some finite M , which is a