
HAL Id: hal-03864942
https://hal.science/hal-03864942

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelet Density and Regression Estimators for
Continuous Time Functional Stationary and Ergodic

Processes
Sultana Didi, Salim Bouzebda

To cite this version:
Sultana Didi, Salim Bouzebda. Wavelet Density and Regression Estimators for Continuous
Time Functional Stationary and Ergodic Processes. Mathematics , 2022, 10 (22), pp.4356.
�10.3390/math10224356�. �hal-03864942�

https://hal.science/hal-03864942
https://hal.archives-ouvertes.fr


����������
�������

Citation: Didi, S.; Bouzebda, S.

Wavelet Density and Regression

Estimators for Continuous Time

Functional Stationary and Ergodic

Processes. Mathematics 2022, 10, 4356.

https://doi.org/10.3390/

math10224356

Academic Editors: Mustapha Rachdi

and Leonid V. Bogachev

Received: 10 October 2022

Accepted: 17 November 2022

Published: 19 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Wavelet Density and Regression Estimators for Continuous
Time Functional Stationary and Ergodic Processes
Sultana Didi 1,† and Salim Bouzebda 2,*,†

1 Department of Statistics, College of Sciences, Qassim University, P.O. Box 6688, Buraydah 51452, Saudi Arabia
2 LMAC (Laboratory of Applied Mathematics of Compiègne), Université de Technologie de Compiégne,

60200 Compiègne, France
* Correspondence: salim.bouzebda@utc.fr
† These authors contributed equally to this work.

Abstract: In this study, we look at the wavelet basis for the nonparametric estimation of density
and regression functions for continuous functional stationary processes in Hilbert space. The mean
integrated squared error for a small subset is established. We employ a martingale approach to obtain
the asymptotic properties of these wavelet estimators. These findings are established under rather
broad assumptions. All we assume about the data is that they are ergodic, but beyond that, we make
no assumptions. In this paper, the mean integrated squared error findings in the independence or
mixing setting were generalized to the ergodic setting. The theoretical results presented in this study
are (or will be) valuable resources for various cutting-edge functional data analysis applications.
Applications include conditional distribution, conditional quantile, entropy, and curve discrimination.

Keywords: multivariate regression estimation; multivariate density estimation; stationarity; ergod-
icity; rates of strong convergence; wavelet-based estimators; martingale differences; continuous
time series

MSC: 62G07; 62G08; 62G05; 62G20; 62H05; 60G42; 60G46

1. Introduction and Motivations

In recent years, the statistical literature has become increasingly interested in statistical
issues pertaining to the study of functional random variables or variables with values
in an infinite-dimensional space. The availability of data measured on ever-finer tempo-
ral/spatial grids, such as in meteorology, medicine, and satellite images, is driving the
expansion of this research topic; statistical modeling of these data as random functions un-
covered numerous complex theoretical and numerical research challenges. The reader may
consult the monographs to summarize functional data analysis’s theoretical and practical
aspects [1] for linear models for random variables with values in a Hilbert space, [2] for
scalar-on-function and function-on-function linear models, functional principal component
analysis, and parametric discriminant analysis [3], on the other hand, concentrated on non-
parametric methods, particularly kernel-type estimation for scalar-on-function nonlinear
regression models. Such tools were extended to classification and discrimination analysis
[4] discussed the application of several interesting statistical concepts to the functional
data framework, including goodness-of-fit tests, portmanteau tests, and change point prob-
lems [5] was interested in analyzing variance for functional data, whereas [6] was more
concerned with regression analysis for gaussian processes. Recent studies and surveys on
functional data modeling and analysis can be found in [7–22].

The subject of estimating conditional models has been extensively studied in the
statistical literature, utilizing several estimation techniques, the most prevalent of which is
the conventional kernel method. This is because these methods have broad applications and
play an important role in statistical inference. However, such methods may have certain
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drawbacks when predicting compactly supported or discontinuous curves at boundary
locations. The prevalence of alternative wavelet approaches can be attributed to the
adaptability of these methods to discontinuities in the curve that is to be approximated.
In application, the wavelet method offers a straightforward estimating algorithm to both
implement and compute. Refs. [23–26] provided more information on wavelet theory.
We quote the work of [27], which discusses the properties of wavelet approximation and
analyzes the application of wavelets in various curve estimation issues in depth. In [28],
numerous applications of wavelet theory are described for the independent unidimensional
case, with an emphasis on calculating the integrated squared derivative density function.
The findings of [28] were later extended by [29] to estimate the density derivatives for
negatively and positively related sequences, respectively. In [30], wavelet estimators for
partial derivatives of a multivariate probability density function were constructed, and
convergence rates for an independence scenario could be determined. In detail, [31]
discusses the estimation of partial derivatives of a multivariate probability density function
in the presence of additive noise. We could consult [32,33] for the most recent information
on this subject. Using the independent and identically distributed paradigm, [34] examined
density and regression estimation issues unique to functional data. Ref. [34] proposed a
novel adaptive method based on the term-by-term selection of wavelet coefficient estimators
and wavelet bases for Hilbert spaces of functions.

The primary purpose of this paper is to provide further context for the earlier dis-
cussion of stationary ergodic processes. The lack of research on the general dependence
framework for wavelet analysis prompted us to conduct the present study. Several argu-
ments for contemplating an ergodic dependency structure in that data as opposed to a
mixing structure are presented in [35–42], where further information on the notion of the
ergodic property of processes and examples of such processes are provided. In [43], one of
the arguments used to justify the ergodic setting is that establishing ergodic characteristics
rather than the mixing condition can be significantly simpler for some classes of processes.
Therefore, the ergodicity hypothesis provides the ideal framework for examining data
series created by chaotic noise.

In the body of statistical research that has been published, estimation issues based
on discretely sampled observations as well as continuous time have been investigated. In
finance, even if the underlying process is continuous across time, only its values at a finite
number of points are known. The first one is more important from the standpoint of finan-
cial econometrics (see [44,45]). On the other hand, the technical development of statistical
inference using a continuous time record of observations is far easier to accomplish than an
inference based on discretely observed data. It makes it possible to advance further in the
model’s statistical analysis and find solutions to various concerns concerning discretely
observed diffusions that had not been resolved until this point. Further, remember that
the discrete-time model hits its limits when the discretization step equals zero, which is
when the continuous-time model becomes the limit (see [46]). As a result, the asymptotic
behavior of estimate processes in actuality may be close to the asymptotic behavior es-
tablished theoretically for continuous-time observations if the available data are “dense
enough” relative to the observation period. The knowledge of the most accurate estimate
derived from continuous-time data is also of practical significance. Ref. [47] investigated
the challenge of estimating an invariant density function for a continuous-time Markov
process and established the mean-square consistency of kernel-type estimators. Ref. [48]
demonstrated the homogeneity and consistency of these estimators. Ref. [48] showed that a
family of smoothed estimators, including kernel-type estimators, are asymptotically normal
with a rate of convergence T1/2 for continuous-time processes. This finding is unexpected
because the invariant density estimators operate differently in this instance than in discrete-
time processes, where the convergence rate is often smaller than 1/2. Numerous physical
phenomena, such as seismic waves, the Earth’s magnetic field, and isotherms and isobars
in meteorology, are functional variables observable in continuous time, as is evident.
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In [49], we have considered the wavelet basis for the nonparametric estimation of
density and regression functions for continuous functional stationary processes in Hilbert
space. We have characterized the mean integrated square errors. This research aims to
provide the first complete theoretical rationale for wavelet-based functional density and
regression function estimation for continuous stationary processes by extending our earlier
work [49] to the continuous setting. The employment of wavelet estimators in functional
ergodic data frames and the resulting difficulty of establishing the mean integrated square
error over suitable decomposition spaces is, to the best of our knowledge, still an unresolved
topic in the literature. By merging different martingale theory techniques utilized in the
mathematical construction of the proofs, we aim to contribute to the literature by addressing
this gap. In the independent or mixing setting, the tools employed for regression estimation
change significantly in the ergodic setting. Nevertheless, we shall see that more than merely
mixing preexisting ideas and outcomes is needed to address the issue. In order to deal
with wavelet estimators in an ergodic setting, one must resort to complex mathematical
derivations.

The paper’s structure is as follows: The multiresolution analysis is described in
Section 2. The principal density estimate results are presented in Section 3. Section 4
summarizes the principal outcomes for regression estimation. Section 5 provides some
examples of potential applications. There are some concluding observations in Section 6.
All proof is compiled in Section 7.

2. Multiresolution Analysis

Following [34,49,50], we will now introduce some basic notations for defining wavelet
bases for Hilbert spaces of functions with a few modifications to accommodate our context.
In this study, nonlinear, thresholded, wavelet-based estimators are examined. Beginning
with a description of the fundamental theory of wavelet approaches, we then introduce
nonlinear wavelet-based estimators. The interested reader should consult [23,24], see
also [51,52] and the references therein, despite the fact that the wavelet is based on a
separable Hilbert space H of real or complex-valued functions on a complete separable
metric space. Let H represent the separable Hilbert space of real-valued functions de-
fined on a separable complete metric space S. Given that H is separable; it possesses an
orthonormal basis

E =
{

ej : j ∈ ∆
}

,

where ∆ is a countable index set. The space H is equipped with an inner product 〈·, ·〉 and
a norm ‖ · ‖. Consider the sequence of subsets {Ik; k ≥ 0} an increasing sequence of finite
subsets of ∆ such that ⋃

k≥0

Ik = ∆.

The subset Jk denotes the orthogonal complement of Ik in Ik+1, i.e.,

Jk = Ik+1/Ik.

Choose, for any k ≥ 0, ζk,` ∈ S, ` ∈ Ik and ηk,` ∈ S, ` ∈ Jk, such that the follow-
ing matrices

Ak =
(
ej(ζk,`)

)
(j,`)∈Ik×Ik

, Bk =
(
ej(ηk,`)

)
(j,`)∈Jk×Jk

, (1)

fulfill one of the two following conditions, for instance, see [34,50] and the references therein.

(A.1) A∗k Ak = diag(ak,`)`∈Ik
and B∗k Bk = diag(bk,`)`′∈Jk

where ak,` and bk,` for ` ∈ Ik
and `′ ∈ Jk are positive constants.

(A.2) Ak A∗k = diag(ck,`)`∈Ik
and BkB∗k = diag(dk,`)`′∈Jk

where ck,` and dk,` for ` ∈ Ik and
`′ ∈ Jk are positive constants.
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Condition (A.1) implies that

ak,` = ∑
j∈Ik

|ej(ζk,`)|2, ` ∈ Ik, and bk,` = ∑
j∈Jk

|ej(ηk,`)|2, ` ∈ Ik, (2)

which means that all the columns of Ak and Bk are not zero vectors. As for (A.2), it gives

ck,` = ∑
`∈Ik

|ej(ζk,`)|2, j ∈ Ik, and dk,` = ∑
`∈Jk

|ej(ηk,`)|2, j ∈ Ik, (3)

saying that all the rows of Ak and Bk are not zero vectors. For any x ∈ S, we set

φk(·; ζk,`) = ∑
j∈Ik

1
√gj,k,`

ej(ζk,`)ej(·),

ψk(·; ηk,`) = ∑
j∈Jk

1√
hj,k,`

ej(ηk,`)ej(·),
(4)

where

gj,k,` =


ak,` if (A.1),

ck,` if (A.2),
hj,k,` =


bk,` if (A.1),

dk,` if (A.2),
(5)

The following collection serves as the orthonormal basis for H (see Theorem 2 of [50]):

B =
{

φ0(x, ζ0,`), ` ∈ I0; ψk(x, ηk,`), k ≥ 0, ` ∈ Jk
}

. (6)

For further details, see [34,50,53]. Hence, we infer that for any f ∈ H, we have

f (x) = ∑
`∈I0

α0,`φ0(x; ζ0,`) + ∑
k≥0

∑
`∈Jk

βk,`ψk(x; ηk;`), (7)

where
α0,` = 〈 f , φ0(·; ζ0,`)〉, βk,` = 〈 f , ψk(·; ηk;`)〉. (8)

Adding two additional assumptions to the orthonormal basis E :

(E.1) There exists a constant C1 > 0 such that, for any integer k ≥ 0, we have

(i)

∑
j∈Ik

1
gj,k,`

∣∣ej(ζk,`)
∣∣2 ≤ C1,

(ii)

∑
j∈Ik

1
hj,k,`

∣∣ej(ηk,`)
∣∣2 ≤ C1.

(E.2) There exists a constant C2 > 0 such that, for any integer k ≥ 0, we have

sup
x∈S

∑
j∈Jk

∣∣ej(x)
∣∣2 ≤ C2|Jk|.

Remark 1. Clearly, the assumption (E.1) is satisfied under assumption (A.1) whenever C1 = 1;
we may also consult [50], Example 2 and its applications for further details. [50,53] have provided
three examples satisfying condition (E.2) taking

sup
x∈S

∑
j∈Jk

∣∣ej(x)
∣∣2 ≤ 1,
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see also [53] Theorem 3.2. Moreover, [34] has used both assumptions in the independent and
identically distributed functional data.

Besov Space

Over the years, numerous statisticians have pondered the following question: given
an estimating method and a required estimation rate for a certain loss function, what is the
largest space over which this rate can be accomplished, for example, see [27,54] and the
references therein. We are interested in estimating methods based on thresholding methods
given by wavelet bases in a natural situation. It is common knowledge that wavelet bases
serve to characterize the smoothness of spaces such as the Hölder spaces Cs, Sobolev
spaces Ws(Lp), and Besov spaces Bs

q(Lp) for a range of indices s that depend on both the
smoothness properties that are dependent on both the smoothness of ψ and its dual function
ψ̃, for instance, see [54] for more detail and examples, at this point, we may consult [55]. The
following statistical definition is used in approximation theory for the study of nonlinear
procedures, such as thresholding and greedy algorithms; see [27,52,54,56].

Definition 1 (Besov space). Let s > 0. We say that the function f ∈ H, defined by statement (7),
belongs to the Besov space Bs

∞(H) if and only if:

sup
m≥0
|Jm|2s ∑

k≥m
∑
`∈Jk

|βk,`|2 < ∞. (9)

Definition 2 (Weak Besov space). Let r > 0. We say that the function f ∈ H, defined by
statement (7), belongs to the weak Besov spaceW r(H) if and only if:

sup
λ≥0

λr ∑
k≥0

∑
`∈Jk

1{|βk,` |≥λ} < ∞. (10)

3. The Density Estimation

Let {Xt, Yt}t≥0 denote a sequence of strictly stationary ergodic pairs of random el-
ements, where Xt takes values in a complete separable metric space of Hilbert space S
associated with the corresponding Borel σ-algebra B and Yi is a real or complex-valued
variable. Let PX denote the probability measure induced by X0 on (S,B). Assume that
there exists σ-finite measure ν on the measurable space (S,B) in such a way that PX is
dominated by ν. The Radon–Nikodym theorem guarantees the existence of a measurable
function that is nonnegative f (·) in such a way that

PX(B) =
∫

B
f (x)ν(dx), B ∈ B. (11)

In this framework, we intend to estimate f (·) on the basis of n observed functional
data (Xt){0≤t≤T}. We assume that f ∈ H, where H is a separable Hilbert space of real or
complex-valued functions defined on S and square integrable with respect to the σ-finite
measure ν. In this research, we are especially interested in the wavelet estimation processes
created in the 1990s, see Meyer’s work for the functional data of a Hilbert space and, more
specifically, the nonlinear estimators. The majority of this model’s approaches involve
introducing kernel estimator techniques to estimate the functional component of the model,
see [57]. Let f (·) be the sample’s common density function (Xt){0≤t≤T}, which is assumed
to be

(F.1) ∃C f > 0 is a known constant such that

sup
x∈S

f (x) ≤ C f . (12)
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Density Function Estimator

From now, suppose that the density function f (·) ∈ H is a separable Hilbert space.
Then f (·) satisfies the wavelet representation (7). Assume that we observe a sequence
{(Xt, Yt)}0≤t≤T of copies of (X, Y) that is supposed to be functional stationary and ergodic
with X with the density function f (·). We examine density estimation utilizing wavelet
bases for Hilbert spaces of functions of [50]. We consider the estimated coefficients {αk,`}
and {βk,`} given, respectively, by (14) and (15), for any j0 ≤ m. Here the resolution level
m = m(T) → ∞ at the rate specified below. Since we assume that φ(·) and ψi(·) have a
compact support so that the summations in (7) are finite for each fixed x (note that in this
case, the support of φ(·) and ψi(·) is a monotonically increasing function of their degree
of differentiability [24]). We focus our attention on the nonlinear estimators (13), which
will be studied in the mean integrated squared error over adapted decomposition spaces,
in a similar way as in [34] in the setting of the independent and identically distributed
functional processes, in particular, we refer to [49]. The density wavelet hard thresholding
estimator f̂ (·) is defined for all x ∈ S, by

f̂T(x) = ∑
`∈I0

α̂0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

β̂k,`1
{
|β̂k,` |≥κ

√
ln T

T

}ψk(x; ηk;`), (13)

where

α̂k,` =
1
T

∫ T

0
φk(Xt; ζk,`)dt, (14)

β̂k,` =
1
T

∫ T

0
ψk(Xt; ηk,`)dt. (15)

Here κ denotes a large-enough constant, and mT is the integer satisfying

1
2

T
ln T

≤ |JmT | ≤
T

ln T
. (16)

See [36,38] for further details on the multivariate case.

Comments on the Method of Estimation

Our estimation method is divided into three steps:

1. Estimation of the wavelet coefficients αk,` and βk,`, see statement (8), α̂k,` and β̂k,`
given by Equations (14) and (15);

2. The greatest β̂k,` is selected by applying hard thresholding;
3. Reconstruction of the selected elements of the initial wavelet basis.

It is essential to highlight that our choice is the universal threshold κ
(

ln T
T

)1/2
and the

definition of mT is based on theoretical considerations. The estimator under consideration
is not dependent on the smoothness of f (·); see [53] for more details in the case of the linear
wavelet estimator of f (·). Moreover, for additional information on the case of H = L([a, b])
and more standard nonparametric models, refer to [27,58]. Notation is necessary for stating
the results. Throughout the paper, we shall denote by B ∈ B, the open set of the Borel
σ−algebra B. For any 0 ≤ t ≤ T and δ > 0 small real, we define

FXt = P(Xt ∈ B) = PX(B), see statement (11),

and
FFt−δ

Xt
= P(Xt ∈ B|Ft−δ)
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as the distribution function and the conditional distribution function, given the σ−field
Ft−δ, respectively. Before presenting our results, we present supplementary notation and
our hypotheses. For the remainder of the paper, for a positive real δ, we will denote by

n =
T
δ
∈ N , and Tj = jδ, for j = 1, . . . , n.

Let Ft−δ be the σ−field generated by

{(Xs, Ys) : 0 ≤ s < t− δ}

Let Fj be the σ−field generated by{
(Xs, Ys) : 0 ≤ s ≤ Tj

}
and

St = σ{(Xs, Ys); (Xr) : 0 ≤ s ≤ t, t ≤ r ≤ t + δ}.

The following assumptions are required for the entire paper.

(C.0) There is a nonnegative measurable function fFt−δ
t such that

PFt−δ
X (B) =

∫
B

fFt−δ
t (x)ν(dx), B ∈ B. (17)

We may refer to [3,35,59] for further details.
(C.1) For any x ∈ S

lim
n→∞

1
T

∫ T

0
fFt−δ
t (x) = f (x), in the a.s. and L2 sense.

At this point, we may refer to [60] for further details.

Comments on hypotheses. Approximating the integral
∫ T

0
fFt−δ
t (x)dt by its Riemann’s

sum, we have

1
T

∫ T

0
fFt−δ
t (x)dt =

1
T

n

∑
i=1

∫ Ti

Ti−1

fFt−δ
t (x)dt w

1
n

n

∑
i=1

f
FTi−1
Ti

(x).

By the fact that process (XTj)j≥1 is stationary and ergodic, in a similar way as in [61]
(see, Lemma 4 and Corollary 1 together with their proofs), one may establish that the
sequence (

f
FTi−1
Ti

(x)
)

i≥1
= ( fiδ,(i−1)δ(x))i≥1

of random functions is stationary and ergodic. Indeed, it suffices to substitute the condi-
tional densities in the work of Delecroix with fiδ,(i−1)δ and the density by function f (·).
Refer to [35,62] and the references therein.

Theorem 1. Under the assumptions (C.0), (C.1), (F.1), (E.1), and (E.2), and Equation (16) for any
θ ∈ (0, 1),

f ∈ Bθ/2
∞ (H) ∩W2(1−θ)(H),

there is a constant C1 > 0 such that

E

(∥∥∥ f̂T(x)− f (x)
∥∥∥2
)
≤ C1

(
ln T

T

)θ

, (18)

for a large-enough T.
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The following upper bound finding is an immediate consequence: if f ∈ Bs/(2s+1)
∞ (H)∩

W2/(2s+1)(H) for s > 0, then there is a constant C2 > 0 in such a way that

E
(
‖ f̂T − f ‖2

)
≤ C2

(
ln T

T

)2s/(2s+1)
.

This convergence rate is close to optimal in the “standard” minimax configuration
(see, [27]). Moreover, on the application of [52] (Theorem 3.2), one obtains that Bθ/2

∞ (H)∩
W2(1−θ)(H) is the “maxiset” associated with f̂ (·) at the convergence rate of (ln T/T)θ , i.e.,

lim
T→∞

(
T

ln T

)θ

E
(
‖ f̂T − f ‖2

)
< ∞⇔ f ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H).

4. The Regression Estimation

Let ρ : Rq → R be a measurable function. The regression function m(·, ρ) is defined by

ρ(Y) = m(X, ρ) + ε, (19)

where ε is a random variable independent of X with N (0, 1). We assume that m(·, ρ) ∈ H,
where H is a separable Hilbert space of real or complex-valued functions defined on S and
a square-integrable with respect to the σ-finite measure ν. We shall assume that there is a
known constant and Cm > 0 in such a way that

sup
x∈S

m(x, ρ) ≤ Cm. (20)

In this framework, we redefine the probability measure PX in (11) and assume that f (·) is a
nonnegative measurable known function.

(M.1) We shall assume that there is a known constant Cm > 0 in such a way that

sup
x∈S

m(x; ρ) ≤ Cm.

(M.2) We shall suppose that there is a known constant c f > 0 in such a way that

inf
x∈S

f (x) ≥ c f .

Regression Function Estimator

In this framework, our goal is to estimate m(·, ρ) based on observed functional data
(Xt, Yt){0≤t≤T}. The kernel estimator for the regression function of functional data has been
suggested by [59]

m̂n;hT (x, ρ) :=

∫ T

0
ρ(Yt)K

(
d(x, Xt)

hd
T

)
dt

∫ T

0
K

(
d(x, Xt)

hd
T

)
dt

.

This estimator is similar to the one proposed by [59] in the discrete framework. By
using the idea of [58], we propose the hard wavelet thresholding estimator m̂(·, ρ), for all
x ∈ S, by

m̂(x, ρ) = ∑
`∈I0

η̂0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

θ̂k,`1|θ̂k,`| ≥ κ

√
ln T

T


ψk(x; ηk;`), (21)
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where

η̂k,` =
1
T

∫ T

0

ρ(Yt)

f (Xt)
φk(Xt; ζk,`)dt, (22)

θ̂k,` =
1
T

∫ T

0

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)dt. (23)

where mT is the integer satisfying

1
2

T
(ln T)2 ≤ |JmT | ≤

T
(ln T)2 , (24)

and κ is a large-enough constant. The multivariate case for discrete- and continuous-time
linear wavelet estimators was examined by [36,38].

Theorem 2. Under the assumptions (E.1), (E.2) (M.1), (M.2), (C.0), and (C.1), combined with
condition (24), for any θ ∈ (0, 1), m(·, ρ) ∈ Bθ/2

∞ (H) ∩W2(1−θ)(H), there is a constant C3 > 0
such that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C

(
ln T

T

)θ

, (25)

for T large enough.

Assume that m(·, ρ) and f (·) fulfill (M.1) and, for any θ ∈ (0, 1),

m(·, ρ) ∈ Bθ/2
∞ (H) ∩W2(1−θ)(H),

where Bθ/2
∞ (H) is in (Definition 1) with s = θ/2 andW2(1−θ)(H) is in (Definition 2) with

r = 2(1− θ), then there is a constant C3 > 0 in such a way that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C3

(
(ln T)2

T

)θ

for T large enough. Again, note that for s > 0, if

m(·, ρ) ∈ Bs/(2s+1)
∞ (H) ∩W2/(2s+1)(H),

then there is a constant C4 > 0 in such a way that

E
(
‖m̂(·, ρ)−m(·; ρ)‖2

)
≤ C4

(
(ln T)2

T

)2s/(2s+1)

.

This convergence rate is close to optimal in the “standard” minimax framework
(see, [27]) up to an extra logarithmic term. According to our knowledge, Theorem 2 is the
first one to examine an adaptive wavelet-based estimator for functional data in the context
of nonparametric regression for an ergodic process. Ref. [49] studied the same estimator in
a discrete time setting.

From the fact that the coefficients defined in Equations (22) and (23) depend on the
unknown function f (·), it is possible to use

η̃k,` =
1
T

∫ T

0

ρ(Yt)

f̂ (Xt)
φk(Xt; ζk,`)dt, (26)

θ̃k,` =
1
T

∫ T

0

ρ(Yt)

f̂ (Xt)
ψk(Xt; ηk,`)dt. (27)
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The wavelet hard thresholding estimator is defined by m̃(·, ρ), for all x ∈ S, by

m̃(x, ρ) = ∑
`∈I0

η̃0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

θ̃k,`1{|θ̃k,` |≥κ
√

ln T
T }

ψk(x; ηk;`). (28)

Keep in mind the following elementary observation

1

f̂ (·)
=

1
f (·) +

( f (·)− f̂ (·))
f (·) f̂ (·)

.

We can infer, from the last equation, the following

η̃k,` = η̂k,` +
1
T

∫ T

0

( f (Xt)− f̂ (Xt))

f (Xt) f̂ (Xt)
ρ(Yt)φk(Xt; ζk,`)dt,

θ̃k,` = θ̂k,` +
1
T

∫ T

0

( f (Xt)− f̂ (Xt))

f (Xt) f̂ (Xt)
ρ(Yt)ψk(Xt; ηk,`)dt.

Notice that

(η̃k,` − η̂k,`)
2 =

{
1
T

∫ T

0

( f (Xt)− f̂ (Xt))

f (Xt) f̂ (Xt)
ρ(Yt)φk(Xt; ζk,`)dt

}2

≤ 1
T

∫ T

0

{
( f (Xt)− f̂ (Xt))

f (Xt) f̂ (Xt)

}2

dt

× 1
T

∫ T

0

{
ρ(Yt)φk(Xt; ζk,`)

}2dt.

This gives

E(η̃k,` − η̂k,`)
2 ≤ E

 1
T

∫ T

0

{
( f (Xt)− f̂ (Xt))

f (Xt) f̂ (Xt)

}2

dt

× 1
T

∫ T

0
E(ρ(Yt)

2 | Xt)φk(Xt; ζk,`)
2dt
}

.

Under the conditions of Theorems 1 and 2, one can find a positive C constant such that

E(η̃k,` − η̂k,`)
2 ≤ C

(
ln T

T

)θ

.

A combination of Theorem 1 with Theorem 2 gives the following corollary.

Corollary 1. Under the hypotheses of Theorems 1 and 2, there exists a constant C5 > 0 in such a
way that

E
(
‖m̃(x; ρ)−m(x; ρ)‖2

)
≤ C5

(
ln T

T

)θ

, (29)

for T large enough.

Remark 2. Let {Xn, n ∈ Z} be a stationary sequence. Consider the backward field An = σ(Xk :
k ≤ n) and the forward field Bn = σ(Xk : k ≥ n). The sequence is strongly mixing if

sup
A∈A0,B∈Bn

|P(A ∩ B)− P(A)P(B)| = α(n)→ 0 as n→ ∞.
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The sequence is ergodic if

lim
n→∞

1
n

n−1

∑
k=0

∣∣∣P(A ∩ τ−kB
)
− P(A)P(B)

∣∣∣ = 0,

where τ is the shift transformation or time-evolution. The labeling of strong mixing in the pre-
ceding definition is more rigorous than what is commonly referred to as strong mixing (when
using the terminology of measure-preserving dynamical systems), meaning that it satisfies the
following conditions

lim
n→∞

P
(

A ∩ τ−nB
)
= P(A)P(B)

for any two measurable sets A, B, see, for instance, [63]. Therefore, substantial mixing requires
ergodicity, although the opposite is not necessarily true (see, for instance, Remark 2.6 on page 50
about Proposition 2.8 on page 51 in [64]).

Remark 3. Ref. [43] provided an example of an ergodic but non-mixing process in their discussion,
which can be summarized as follows: Let (Ti, λi) : i ∈ Z be a strictly stationary process such
that Ti | Ti−1 is a Poisson process with parameter λi, where Ti is the sigma-field generated by
(Ti, λi, Ti−1, . . .). Assume

λi = f (λi−1, Ti−1),

and f : [0, ∞]×N→ (0, ∞) is a given function. This process is not mixing in general (see Remark
3 of [65]). It is known that any sequence (εi)i∈Z of independent and identically distributed random
variables is ergodic. Hence, according to Proposition 2.10 in [64], it is easy to see that (Yi)i∈Z with

Yi = ϑ((. . . , εi−1, εi), (εi+1, εi+2, . . .)),

for some Borel-measurable function ϑ(·). Ref. [66] has constructed an example of a non-mixing
ergodic continuous-time process. It is well known that the fractional Brownian motion {WH

t :
t ≥ 0} with parameter H ∈ (0, 1) has strictly stationary increments. Otherwise, the fractional
Gaussian noise, defined for every s > 0 by

{GH
t : t ≥ 0} := {WH

t+s −WH
t : t ≥ 0},

is a strictly stationary-centered, long memory process when H ∈ ( 1
2 , 1) (for instance, see [67]

p. 55, [68] p. 17), hence the condition of strong mixing is not satisfied. Let {Gt : t ≥ 0} be a strictly
stationary-centered Gaussian process with correlation function

R(t) = E[G0Gt].

Relying on the work of [69], Lemma 4.2, it follows that the process {Gt : t ≥ 0} is ergodic
whenever

lim
t→∞

R(t) = 0,

which is the case for the process {GH
t : t ≥ 0}.

Remark 4. In continuous time, sampling is frequently used to obtain data. Several discretization
strategies, including deterministic and random sampling, have been proposed in the literature. The
interested reader is referred to [70–74]. To simplify the concept, we consider the density estimator
of f (·) based on {Xt : t ∈ [0, T]} and its sampled discrete sequence {X(tk) : k = 1, . . . , n}. The
estimator of the sampled density f (·) is

fn(x) =
1

nhd
n

n

∑
i=1

K
(x− Xtj

hn

)
.

As stated in [70], we can only recollect two designs: irregular sampling and random sampling.
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• Deterministic sampling. Consider the situation where (tk)1≤k≤n is deterministically irreg-
ularly spaced with

inf
1≤k≤n

|tj+1 − tj| =
1
τ

,

for some τ > 0. Gk := σ(X(tk)) the σ-field generated by {Xs : 0 ≤ s ≤ tk}. Clearly,
(Gk)1≤k≤n in a family of increasing σ-fields.

• Random sampling. Assume that the instants (tk)1≤k≤n in the interval [0, T] form a sequence
of uniform random variables independent of the process {Xt : t ∈ [0, T]}. Define

0 ≤ τ1 < · · · < τn ≤ T,

as the corresponding order statistics. Observe that (τk)1≤k≤n are the observation points for
the procedure. Clearly, all of the distances between these sites are positive. As a consequence,
taking Gk := σ(X(tk)) the σ-field generated by {Xs : 0 ≤ s ≤ τk}, it follows that (Gk)1≤k≤n
is a sequence of increasing σ-fields.

As established in [75], the penalization approach for the choice of the mesh δ of the observations
provides an optimal rate of convergence; we leave this subject open for future investigation within
the context of ergodic processes.

Remark 5. In a previous publication [36], we tackled the nonparametric estimation of the density
and regression function in a finite-dimensional setting using an orthonormal wavelet basis. Our
findings differ significantly from those presented in this publication. In [36], we demonstrated the
strong uniform consistency characteristics of these estimators over compact subsets of Rd under a
general ergodic condition on the underlying processes. In addition, we demonstrate the asymptotic
normality of wavelet-based estimators. The Burkholder–Rosenthal inequality, a more complex
technique than the exponential inequality used in the previous publication, was the central concept
of this study. Significantly, the current study studies the mean integrated square error over compact
subsets, which is fundamentally different from the conclusions of the prior publication.

5. Applications
5.1. The Conditional Distribution

Our findings can be utilized to examine the conditional distribution F(y | x) for y ∈ Rd.
To be more precise, let ρ(y) = 1{y ≤ z}. The wavelet’s hard thresholding estimator of
F(y | x), is defined, for all x ∈ S, by

F̂(y | x) = ∑
`∈I0

η̆0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

θ̆k,`1
{
|θ̆k,`| ≥ κ

√
ln T

T

}ψk(x; ηk;`), (30)

where

η̆k,` =
1
T

∫ T

0

1{Yt ≤ y}
f (Xt)

φk(Xt; ζk,`)dt, (31)

θ̆k,` =
1
T

∫ T

0

1{Yt ≤ y}
f (Xt)

ψk(Xt; ηk,`)dt. (32)

A direct consequence of Theorem 2 is

E

(∥∥∥F̂(y | x)− F(y | x)
∥∥∥2
)
≤ C

(
ln T

T

)θ

. (33)
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5.2. The Conditional Quantile

Remark that whenever F(· | x) is strictly increasing and continuous in a neighborhood
of qα(x), the function F(· | x) has a unique quantile of order α at a point qα(x), which is
F(qα(x) | x) = α. In this situation

qα(x) = F−1(α | x) = inf{y ∈ R : F(y | x) ≥ α},

which can be estimated by q̂T,α(x) = F̂−1(α | x). Consequently, the fact

F(qα(x) | x) = α = F̂(q̂T,α(x) | x)

and F̂(· | x) is continuous and strictly increasing, we then have

∀ε > 0, ∃η(ε) > 0, ∀y,
∣∣∣F̂(y | x)− F̂(qα(x) | x)

∣∣∣ ≤ η(ε)⇒ |y− qα(x)| ≤ ε,

implying that, ∀ε > 0, ∃η(ε) > 0

P(|q̂T,α(x)− qα(x)| ≥ η(ε))

≤ P
(∣∣∣F̂(q̂T,α(x) | x)− F̂(qα(x) | x)

∣∣∣ ≥ η(ε)
)

= P
(
| F(qα(x) | x)− F̂(qα(x) | x) ≥ η(ε)

)
.

In addition, suppose that, for fixed x0 ∈ C ⊂ S, F(y | x0) is differentiable at qα(x0) with

∂

∂y
F(y | x0)

∣∣∣∣
y=qα(x0)

:= g(qα(x0) | x0) > ν > 0,

where ν is a real number, and g(· | x) is uniformly continuous for all x ∈ C. From Taylor’s
expansion of the function F(q̂T,α(x) | x) in the neighborhood of qα(x), we have

F(q̂T,α(x) | x)− F(qα(x) | x) = (q̂T,α(x)− qα(x))g
(
q∗T,α(x) | x

)
where q∗T,α(x) is a point between qα(x) and q̂T,α(x). Using the fact that q̂T,α(x) converges
a.s. toward qα(x) as T goes to infinity, combined with the uniform continuity of g(· | x),
allows us to write that

sup
x∈C
|q̂T,α(x)− qα(x)| sup

x∈C
|g(qα(x) | x)| = Oa.s.

(
sup
y∈S

sup
x∈C

∣∣∣F̂T(y | x)− F(y | x)
∣∣∣).

By the fact that g(qα(x) | x) is uniformly bounded from below, we can then claim that

E
(
‖q̂T,α(x)− qα(x)‖2

)
≤ C

(
ln T

T

)θ

. (34)

Remark 6. (Expectile regression). For p ∈ (0, 1), the choice given by ψ(T − θ) = (p− 1{T −
θ ≤ 0})|T − θ| leads to quantities called expectiles by [76]. Expectiles, as defined by [76], may be
introduced either as a generalization of the mean or as an alternative to quantiles. Indeed, classical
regression provides us with a high sensitivity to extreme values, allowing for more reactive risk
management. Quantile regression, on the other hand, provides the ability to acquire exhaustive
information on the effect of the explanatory variable on the response variable by examining its
conditional distribution; refer to [77–79] for further details on expectiles in functional data settings.

Remark 7. (Conditional winsorized mean). As in [80], if we consider ψ(T− θ) = −k, T− θ, k
if T − θ < −k, |T − θ| ≤ k, or T − θ > k, then m(x; ψ) will be the conditional winsorized
mean. Notably, this parameter was not considered in the literature on nonparametric functional
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data analysis involving wavelet estimators. Our paper offers asymptotic results for the conditional
winsorized mean when the covariates are functions.

5.3. Shannon’s Entropy

The differential (or Shannon) entropy of f (·) is defined to be

H( f ) = −
∫

S
fX(x) log( fX(x))ν(dx), (35)

whenever this integral is meaningful. We will apply the convention 0 log(0) = 0 since
u log(u)→ 0 as u→ 0. The notion of differential entropy was originally introduced in [81].
Since this epoch, the concept of entropy has been the topic of extensive theoretical and
applied research. We are referencing [82] (Chapter 8) for a thorough overview of differential
entropy and its applications and mathematical characteristics. Entropy concepts and
principles play a fundamental role in many applications, such as quantization theory [83],
statistical decision theory [84], and contingency table analysis [85]. Ref. [86] introduced the
concept of convergence in entropy and showed that the latter convergence concept implies
convergence in L1. This property indicates that entropy is a useful concept for measuring
“closeness in distribution”, and also heuristically justifies the usage of sample entropy as a
test statistic when designing entropy-based tests of goodness-of-fit. This line of research
has been pursued by [87–89] (including the references therein). The idea here is that many
families of distributions are characterized by maximization of entropy subject to constraints
(see [90,91]). Given f̂T(·) in Equation (13), we estimate H( f ) using representation (35),
by setting

HT( f ) = −
∫

An
f̂T(x) log

(
f̂T(x)

)
ν(dx), (36)

where
An = {x ∈ S : f̂T(x) ≥ γn},

and γn ↓ 0 is a sequence of positive constants. To prove the strong consistency of HT( f ),
we shall consider another, but more appropriate and more computationally convenient,
centering factor than the expectation EHT( f ), which is delicate to handle. This is given by

ÊHT( f ) = −
∫

An
E f̂T(x) log

(
E f̂T(x)

)
ν(dx).

We first decompose HT( f )− ÊHT( f ), as in [92–95], into the sum of two components,
by writing

HT( f )− ÊHT( f )

= −
∫

An
f̂T(x) log

(
f̂T(x)

)
ν(dx)

+
∫

An
E f̂T(x) log

(
E f̂T(x)

)
ν(dx)

= −
∫

An

{
log f̂T(x)− logE f̂T(x)

}
E f̂T(x)ν(dx)

−
∫

An

{
f̂T(x)−E f̂T(x)

}
log f̂T(x)ν(dx). (37)

We remark that for all z > 0,

|log z| ≤
∣∣∣∣1z − 1

∣∣∣∣+ |z− 1|.
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Thus, for any x ∈ An, we obtain

| log f̂T(x)− logE f̂T(x)| =
∣∣∣∣∣log

f̂T(x)

E f̂T(x)

∣∣∣∣∣
≤

∣∣∣∣∣E f̂T(x)

f̂T(x)
− 1

∣∣∣∣∣+
∣∣∣∣∣ f̂T(x)

E f̂T(x)
− 1

∣∣∣∣∣
=

∣∣∣E f̂T(x)− f̂T(x)
∣∣∣

f̂T(x)
+

∣∣∣ f̂T(x)−E f̂T(x)
∣∣∣

E f̂T(x)
.

Making use of Theorem 1, gives

E
(
(HT( f )− ÊHT( f ))2

)
≤ C

(
ln T

T

)θ

, (38)

for positive constant C. Note that this is the first estimation result for the entropy of
functional continuous time series processes. A similar idea can be used to estimate other
density functions, such as the extropy; refer to [96] for a definition.

5.4. The Curve Discrimination

The curve discrimination problem can be stated as follows. Let {Xt}0≤t≤T denote a
sample of curves, and each of them is known to pertain to one among G groups ι = 1, . . . , G.
We denote the group of the curve Xt by Tt. Suppose that each pair of variables (Xt, Tt) has
the same distribution as the pair (X, T ). Given a new curve x, the question is to determine
its class membership. To do so, we will estimate the conditional probability for every
ι = 1, . . . , G, as follows:

pι(x) = P(T = ι | X = x).

Following the proposal made in [97,98] permitting the estimation of these probabilities by

p̂ι(x) = ∑
`∈I0

˘̆η0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

˘̆θk,`1
{
| ˘̆θk,`| ≥ κ

√
ln T

T

}ψk(x; ηk;`), (39)

where

˘̆ηk,` =
1
T

∫ T

0

1{Tt =ι}
f (Xt)

φk(Xt; ζk,`)dt, (40)

˘̆θk,` =
1
T

∫ T

0

1{Tt =ι}
f (Xt)

ψk(Xt; ηk,`)dt. (41)

As remarked by [97,98], for each ι we make use of the notation

Y =

{
1 if T = ι

0 otherwise ,

then we can write
pι(x) = E(Y | X = x).

An application of Theorem 2 is

E
(
‖ p̂ι(x)− pι(x‖2

)
≤ C

(
ln T

T

)θ

.
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6. Concluding Remarks

In this study, we investigated the nonparametric estimation of density and regression
function using continuous functional stationary processes and wavelet bases for Hilbert
spaces of functions. We described the mean square error integrated over compact subsets.
The martingale method was used to determine the asymptotic properties of these estimators,
which differs significantly from the mixing and independent settings. Ergodicity is the
assumption of the process’s dependence. Extending nonparametric functional concepts
to local stationary processes is a relatively new area of research. It would be interesting
to extend our work to the case of the functional local stationary process, but this would
require nontrivial mathematics and is well outside the scope of this paper. The exact
logarithm rates of convergence depend on the smoothness parameters θ of functions
f (·) and m(·, ρ) defined in the space H. These results are typical of all nonparametric
estimations and are consistent with the vast majority of academic references. Although θ is
unknown, the smoothness metrics assumed here are more nuanced than the differentiability
criterion of integer orders required for convolution kernel methods. To make the estimator
more practical, techniques have been developed to select the optimal adaptive value of τ,
such that the most commonly used methods of “Stein,” the “rule of thumb,” and “cross-
validation”, we refer to [99] and [27] for details on an asymptotically optimal empirical
bandwidth selection rule. It would be worthwhile to investigate this subject in the future.

7. Proofs

This section is dedicated to proving our findings. The previously presented notations
are used again in the sequel. In this research, we need an upper bound inequality for
partial sums of unbounded martingale differences to derive the asymptotic results for the
estimations of the density and regression functions based on strictly stationary and ergodic
functional data. Here and in the following, “C” denotes a positive constant that may vary
from line to line. The following lemmas express this inequality.

Lemma 1. (Burkholder–Rosenthal inequality) Following Notation 1 in [100].
Let (Xi)i≥1 be a stationary martingale adapted to the filtration (Fi)i≥1, define (di)i≥1 as the

sequence of martingale differences adapted to (Fi)i≥1 and

Sn =
n

∑
i=1

di,

then for any positive integer n,

‖ max
1≤j≤n

|Sj|)‖p � n1/p‖d1‖p +

∥∥∥∥∥ n

∑
k=1

E(d2
k/Fk−1)

∥∥∥∥∥
1/2

p/2

, for any p ≥ 2; (42)

where, as usual, the norm ‖ · ‖p = (E[| · |p])1/p.

Lemma 2 ([101]). Let {Zi, i ≥ 1} denote a sequence of martingale differences in such a way that

|Zi| ≤ B, a.s.,

then, for all ε > 0 and all n large enough, we obtain

P
{∣∣∣∣∣ n

∑
i=1

Zi

∣∣∣∣∣ > ε

}
≤ 2 exp

{
− ε2

2nB2

}
.

The subsequent lemmas characterize the asymptotic behavior of estimators α̂k,` and β̂k,`.
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Lemma 3. For each k ∈ {0, . . . , mT} and each ` ∈ Ik, under conditions (C.0), (C.1), (F.1), and
(E.1)(i), there is a constant C > 0 in such a way that

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ C
(

ln T
T

)
. (43)

Lemma 4. For each k ∈ {0, . . . , mT} and each ` ∈ Jk, and under conditions (C.0), (C.1), (F.1),
(E.1), and (E.2), and condition (16), there is a constant C > 0 in such a way that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) = C
(

ln T
T

)2
, a.s. (44)

Lemma 5. For each k ∈ {0, . . . , mT} and each ` ∈ Jk, for κ > 0 sufficiently large and under
conditions (C.0), (C.1), (F.1), (E.1), and (E.2), and assumption (16) there is a constant C > 0 in
such a way that

P
(∣∣∣β̂k,` − βk,`

∣∣∣ ≥ κ

2

√
ln T

T

)
≤ C

(
ln T

T

)2
. (45)

Proof of Theorem 1. Keep in mind that the proof of Theorem 1 is a straightforward
application is a direct application of [52] (Theorem 3.1), using Lemmas 3–5 alongside
c(n) = (ln T/T)1/2, σi = 1, r = 2. We modified and expanded the approach used to prove
Theorem 3.1 of [34], and to include the stationary ergodic process.

Proof of Theorem 3. Consider the subsequent decomposition

α̂k,` − αk,` = α̂k,` − α̃k,` + α̃k,` − αk,`

= Ak,`,1 + Ak,`,2, (46)

where

α̃k,` =
1
T

∫ T

0
E[φk(xt; ζk,`)|Ft−δ]dt.

Under the assumptions (C.0) and (C.2), we have

α̃k,` =
1
T

∫ T

0

∫
S

φk(x; ζk,`) fFt−δ
t (x)ν(dx)dt

=
∫

S
φk(x; ζk,`)

(
1
T

∫ T

0
fFt−δ
t (x)dt

)
ν(dx)

=
∫

S
φk(x; ζk,`)( f (x) + o(1))ν(dx)

=
∫

S
φk(x; ζk,`) f (x)ν(dx) + o(1)

= αk,` + o(1).

We readily obtain
α̃k,` = αk,`, as, T → ∞, (47)

implying that
Ak,`,2 = o(1), a.s. (48)

Therefore, we infer that

α̂k,` − αk,` = Ak,`,1 + o(1), a.s.
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We now consider the term Ak,`,1. We infer

Ak,`,1 = α̂k,` − α̃k,`

=
1
T

∫ T

0
(φk(xt; ζk,`)−E[φk(xt; ζk,`)|Ft−δ])dt

=
1
n

n

∑
i=1

Φk(ζk,`),

where

Φi,k(ζk,`) =
1
δ

∫ Ti

Ti−1

(φk(xt; ζk,`)−E[φk(xt; ζk,`)|Ft−δ])dt.

Notice that, with respect to the sequence of σ−fields (Fi)0≤k≤n, (Φi,k(ζk,`))0≤k≤n is a
sequence of martingale differences. It is evident, by Lemma 1, to infer that

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φi,k(ζk,`)

∣∣∣∣∣
2
,

where(
E
[∣∣∑n

i=1 Φi,k(ζk,`)
∣∣2]) 1

2 ≤ n1/2
∥∥Φ1,k(ζk,`)

∥∥
2 +

∥∥∥∑n
i=1 E

[
Φ2

i,k(ζk,`)|Fi−1

]∥∥∥1/2

1
= Φ(1) + Φ(2).

(49)

Observe that for all 0 ≤ t ≤ δ, the σ-field Ft−δ = F0 represents the trivial one. On the
one hand, by using the classical decomposition in connection with the fact that F0 is the
trivial σ−field, we have

1
n

Φ2
(1) = ‖ Φ1,k(ζk,`) ‖2

2

= E
[∣∣∣ 1

δ

∫ δ
0 (φk(xt; ζk,`)−E[φk(xt; ζk,`)|F0])dt

∣∣∣2]
≤ 1

δ2

∫ δ
0 E
[
∑2

j=0 | φk(xt; ζk,`) |j (E[| φk(xt; ζk,`) |])2−j
]
dt

= 1
δ2

∫ δ
0

(
∑2

j=0 Cj
2E
[
| φk(xt; ζk,`) |j

]
.(E[| φk(xt; ζk,`) |])2−j

)
dt

= 1
δ2

∫ δ
0

(
C2

2E
[
| φk(xt; ζk,`) |2

]
+ C1

2(E[| φk(xt; ζk,`) |])2 + C0
2E
[
| φk(xt; ζk,`) |2

])
dt.

Remark that, under the conditions (F.1) and (E.1)(i) and the fact that E is an orthonor-
mal basis of H, we obtain

E
[∣∣φk(xt; ζk,`)

∣∣2] =
∫

S

∣∣φk(x; ζk,`)
∣∣2 f (x)ν(dx)

≤ C f
∫

S

∣∣φk(x; ζk,`)
∣∣2ν(dx)

= C f
∫

S

∣∣∣∑j∈Ik
1√gj,k,`

ej(ζk,`)ej(x)
∣∣∣2ν(dx)

= C f
∫

S ∑j∈Ik
1

gj,k,`

∣∣ej(ζk,`)
∣∣2ν(dx)

≤ C f C1,

(50)

where C1 is a positive constant,

E
[
| φk(xt; ζk,`) |2

]
= O(1), (51)

therefore,

Φ(1) = O(T1/2). (52)
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Furthermore, we examine the second term of decomposition (49), and remark that

Φ2 =

(
E
(

n

∑
i=1

E
[
Φ2

i,k(ζk,`)|Fi−1

]))1/2

=

(
n

∑
i=1

E
(
E
[
Φ2

k(xi; ζk,`)|Fi−1

]))1/2

=

(
n

∑
i=1

E
[
Φ2

i,k(ζk,`)
])1/2

,

using the notable identity combined with Jensen’s inequality, we obtain

E
[
Φ2

i,k(ζk,`)
]

= E
[(∣∣∣∣1δ

∫ Ti

Ti−1

(φk(xt; ζk,`)−E[φk(xt; ζk,`)|Ft−δ])dt
∣∣∣∣)2
]

≤ 1
δ2

∫ Ti

Ti−1

E
[(∣∣(φk(xt; ζk,`)−E[φk(xt; ζk,`)|Ft−δ])

∣∣)2
]
dt

≤ 1
δ2

∫ Ti

Ti−1

E
[
2 | φk(xt; ζk,`) |2 +2E

[
| φk(xt; ζk,`) |2 |Ft−δ

]]
dt

≤ 1
δ2

∫ Ti

Ti−1

(
2E
[
| φk(xt; ζk,`) |2

]
+ 2E

[
E
[
| φk(xt; ζk,`) |2 |Ft−δ

]])
dt

≤ 4
δ2

∫ Ti

Ti−1

E
[
| φk(xt; ζk,`) |2

]
dt,

observe that, using (50), we have

Φ2 = O(T1/2). (53)

Therefore, combining Equations (52) and (53), we obtain

E

∣∣∣∣∣ n

∑
i=1

Φi,k(ζk,`)

∣∣∣∣∣
2
 1

2

= O(T1/2).

Hence,

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φi,k(ζk,`)

∣∣∣∣∣
2


=
δ2

T2 O(T)

≤ C
(

ln T
T

)
.

Therefore, there exists a constant C = C f C1 > 0, such that

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ 4Cδ

T
≤ 4C

(
ln T

T

)
. (54)

Hence the proof is complete.

Proof of Lemma 4. Consider the following decomposition

β̂k,` − βk,` = β̂k,` − β̃k,` + β̃k,` − βk,`
= Bk,`,1 + Bk,`,2,

(55)
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where

β̃k,` =
1
T

∫ T

0
E[ψk(xi; ηk,`)|Ft−δ]dt.

Remark that, under conditions (F.1) and (E.1)(i) and making use of the fact that E is an
orthonormal basis of H, and reasoning in a similar way as in Equation (47), we infer that

β̃k,` = βk,`, as, n→ ∞. (56)

This, in turn, implies that
Bk,`,2 = o(1), a.s. (57)

Therefore, we obtain

β̂k,` − βk,` = Bk,`,1 + o(1), a.s.

Hence, we readily infer

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) =
1
n4E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
, (58)

where

Ψi,k,` =
1
δ

∫ Ti

Ti−1

(ψk(xt; ηk,`)−E[ψk(xt; ηk,`)|Ft−δ])dt.

Remark that, with respect to the sequence of σ−fields (Fi−1)0≤k≤n, (Ψi,k,`)0≤k≤n is a
sequence of martingale differences, an application of the Burkholder–Rosenthal inequality
(see Lemma 1), givesE

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
1/4

≤
∥∥∥∥∥max

1≤j≤n

∣∣∣∣∣ j

∑
i=1

Ψi,k,`

∣∣∣∣∣
∥∥∥∥∥

4

� n1/4‖Ψ1,k,`‖4 +

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`|Fi−2)

∥∥∥∥∥
1/2

4/2

(59)

= Ψ(1)
k,` + Ψ(2)

k,` .

Consider the first term of Equation (59). We recall that for all 0 ≤ t ≤ δ, the σ-field
Ft−δ = F0 represents the trivial one. Applying Jensen’s inequality, we have

1
n

(
Ψ(1)

k,`

)4
= ‖Ψ1,k,`‖4

4

= E
(∣∣∣∣1δ

∫ δ

0
(ψk(xt; ηk,`)−E[ψk(xt; ηk,`)|F0])dt

∣∣∣∣4
)

≤ 1
δ4

∫ δ

0
E
[(∣∣ψk(xt; ηk,`)

∣∣+E
[∣∣ψk(x1; ηk,`)

∣∣])4
]
dt.

Using the Minkowski inequality, we obtain∫ δ

0
E
[(∣∣ψk(xt; ηk,`)

∣∣+E
[∣∣ψk(x1; ηk,`)

∣∣])4
]
dt

=
∫ δ

0

(
E1/4

[∣∣ψk(xt; ηk,`)
∣∣4]+E1/4

[(
E
[∣∣ψk(x1; ηk,`)

∣∣])4
])4

dt (60)

= 16
∫ δ

0
E
[∣∣ψk(xt; ηk,`)

∣∣4]dt.
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This gives that

1
n

(
Ψ(1)

k,`

)4
≤ 16

∫ δ

0

(
E1/4

[∣∣ψk(xt; ηk,`)
∣∣4])4

dt.

By reasoning in a similar way as in Equation (50) and making use of conditions (F.1)
and (E.1)(i), for all 0 ≤ t ≤ T, we infer that

E
[∣∣ψk(xt; ηk,`)

∣∣2] ≤ C, (61)

where C denotes a positive constant. In addition, by the Cauchy–Schwarz inequality in
combination with conditions (E.1)(ii), (E.2) and condition (16), we infer

sup
x∈S

∣∣ψk(x; ηk,`)
∣∣ ≤ sup

x∈S
∑

j∈Jk

1√
hj,k,`

|ej(ηk,`)||ej(x)|

≤
(

∑
j∈Jk

1
hj,k,`
|ej(ηk,`)|2

)1/2(
sup
x∈S

∑
j∈Jk

|ej(x)|2
)1/2

≤ C1/2
1 C1/2

2

√
|Jk| (62)

≤ C4

√
|Jmn |

≤ C4

√
T

ln T
.

We then obtain

E
[∣∣ψk(x1; ηk,`)

∣∣4] = O
(

T
ln T

)
. (63)

Recall that T = δn, we deduce that

Ψ(1)
k,` = O

(
T1/2

(ln T)1/4

)
. (64)

We now consider the upper bound of Ψ(2)
k,` in Equation (59). Remark that

Ψ(2)
k,` =

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,` | Fi−2)

∥∥∥∥∥
1/2

2

=

E

( n

∑
i=1

E
[
Ψ2

i,k,` | Fi−2

])2
1/4

.
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Observe that for all Ti−1 ≤ t ≤ Ti for all i = 1, . . . , n; we have Fi−2 ⊂ Ft−δ. Making
use of Jensen and Minkowski’s inequality, it follows that

n

∑
i=1

E
[
Ψ2

i,k,` | Fi−2

]
=

n

∑
i=1

(
E
[(

1
δ

∫ Ti

Ti−1

(ψk(xt; ηk,`)−E[ψk(xt; ηk,`) | Ft−δ])dt
)2

| Fi−2

])

≤ 1
δ2

n

∑
i=1

∫ Ti

Ti−1

(
E1/2

[
ψ2

k(xt; ηk,`) | Fi−2

]
+E1/2

[
E
[
ψ2

k(xt; ηk,`) | Ft−δ

]
| Fi−2

])2
dt

=
4
δ2

n

∑
i=1

∫ Ti

Ti−1

E
[
ψ2

k(xt; ηk,`) | Fi−2

]
dt.

For all Ti−1 ≤ t ≤ Ti, using the stationarity of the process (Xt)t≥0, we have

fFi−2
t (x) = fFi−2

Ti−1
(x).

Remark, under conditions (F.1), (E.1)(i), (C.0), and (C.1) and statement (61), that

n

∑
i=1

∫ Ti

Ti−1

E
[
(ψk(xt; ηk,`))

2 | Fi−2

]
dt = n

∫
S

∣∣ψk(x; ηk,`)
∣∣2( 1

n

n

∑
i=1

∫ Ti

Ti−1

fFi−2
t (x)dt

)
ν(dx)

≤ n
∫

S

∣∣ψk(x; ηk,`)
∣∣2(δ

1
n

n

∑
i=1

fFi−2
Ti−1

(x)

)
ν(dx)

= n
∫

S

∣∣ψk(x; ηk,`)
∣∣2( f (x) + o(1))ν(dx) (65)

≤ n
(

C f + o(1)
) ∫

S

∣∣ψk(x; ζk,`)
∣∣2ν(dx)

≤
TC f C1

δ
.

It follows that

Ψ(2)
k,` = O

(
T1/2

)
. (66)

Combining statements (59), (64), and (66), we obtain

E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
 = O

(
T2

ln T

)
+ O

(
T2
)

.

We conclude that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) = O
(

1
T2 ln T

)
+ O

(
1

T2

)
. (67)

This implies that there exists a constant C > 0, such that

E
(∣∣∣β̂k,` − βk,`

∣∣∣4) ≤ C
(

ln T
T

)2
. (68)

The proof is achieved.
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Proof of Lemma 5. Consider the previous decomposition in Lemma 4, to write that

β̂k,` − βk,` =
(

β̂k,` − β̃k,`

)
+
(

β̃k,` − βk,`

)
= Bk,`,1 + Bk,`,2,

where

Bk,`,1 =
1
n

n

∑
i=1

Ψi,k,` =
1
n

n

∑
i=1

(
1
δ

∫ Ti

Ti−1

(ψk(xt; ηk,`)−E[ψk(xt; ηk,`)|Ft−δ])dt
)

,

Bk,`,2 =
1
n

n

∑
i=1

(
1
δ

∫ Ti

Ti−1

(E[ψk(xt; ηk,`)|Ft−δ]− βk,`)dt
)

.

Making use of Equation (57), we achieve the desired result for the term Bk,`,2

β̂k,` − βk,` = Bk,`,1 + o(1).

We now remark

P
(∣∣∣∣∣ 1n n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
ln T

T

)
≤ P

(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ δκ

2

√
T ln T

)
.

The application of Lemma 2 implies that∣∣Ψi,k,`
∣∣ =

∣∣ψk(xi; ηk,`)−E[ψk(xi; ηk,`) | Fi−1]
∣∣

≤ 2 supx∈S
∣∣ψk(x; ηk,`)

∣∣
≤ C3

√
T

ln T

≤ C3
√

T.

(69)

Let B = C3
√

T. Then, for all εT = δκ
2

√
T ln T where n is sufficiently large, we have

P
(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
T ln T

)
≤ 2 exp

{
−

ε2
T

2nB2

}

= 2 exp

−
(

δκ
2

√
T ln T

)2

2(T/δ)
(

C3
√

T
)2


= 2 exp

{
− δ3κ2 ln T

8C2
3 T

}
(70)

= 2 exp

{
ln T

− δ3κ2

8C2
3 T

}
= 2T−w(κ,T),

where

w(κ, T) =
δ3κ2

8C2
3 T

.
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By choosing κ such that w(T, κ) = 2, we have

P
(∣∣∣β̂k,` − βk,`

∣∣∣ ≥ κ

2

√
ln T

T

)
≤ C

1
T2 + o(1)

≤ C
(

ln T
T

)2
. (71)

The proof of (45) is achieved.

Recall that

m̂(x, ρ) = ∑
`∈I0

η̂0,`φ0(x; ζ0,`) +
mT

∑
k=0

∑
`∈Jk

θ̂k,`1{|θ̂k,` |≥κ
√

ln T
T }

ψk(x; ηk;`),

where

η̂k,` =
1
T

∫ T

0

ρ(Yt)

f (Xt)
φk(Xt; ζk,`)dt, θ̂k,` =

1
T

∫ T

0

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)dt.

Lemma 6. For each k ∈ {0, . . . , mT} and each ` ∈ Ik and under conditions (E.1)(i), (M.1), (M.2),
(C.0), and (C.1), there is a constant C > 0 in such a way that

E
(∣∣η̂k,` − ηk,`

∣∣2) ≤ C
(

ln T
T

)
. (72)

Lemma 7. For each k ∈ {0, . . . , mT} and each ` ∈ Jk, and under conditions (E.1), (E.2) (M.1),
(M.2), (C.0), and (C.1), in combination with condition (24), there is a constant C > 0 in such a
way that

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) = C
(

ln T
T

)2
, a.s. (73)

Lemma 8. For each k ∈ {0, . . . , mT} and each ` ∈ Jk, for κ > 0 sufficiently large, (E.1), (E.2)
(M.1), (M.2), (C.0), and (C.1), in combination with condition (24), there is a constant C > 0 in
such a way that

P
(∣∣∣θ̂k,` − θk,`

∣∣∣ ≥ κ

2

√
ln T

T

)
≤ C

(
ln T

T

)2
. (74)

Proof of Lemma 2. Remark that the proof of Theorem 2 is a consequence of [52] (Theorem
3.1) with c(n) = (ln T/T)1/2, σi = 1, r = 2 in connection with Lemmas 6–8. We generalized
the method of the proof in [34] (Theorem 4.1).

Proof of Lemma 6. Consider the subsequent decomposition

η̂k,` − ηk,` = η̂k,` − η̃k,` + η̃k,` − ηk,`
= Ak,`,1 + Ak,`,2,

(75)

where

η̃k,` =
1
T

∫ T

0
E
[

ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
dt

=
1
T

∫ T

0
E
[
(m(Xt, ρ) + εt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
dt

=
1
T

∫ T

0
E
[

m(Xt, ρ)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
dt +

1
T

∫ T

0
E
[

εt

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
dt.
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For all 0 ≤ t ≤ T; we have Ft−δ ⊂ St−δ and from the independence between εt and
Xt, we have

E[εt|St−δ] = E[εt|Xt]

= E[εt] (76)

= 0.

Observe that

E
[

εt

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
= E

[
E[εt|St−δ]

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
= E

[
E[εt|Xt]

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
= E

[
E[εt]

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
= 0.

This implies that

η̃k,` =
1
T

∫ T

0
E
[

m(Xt, ρ)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]
dt.

Using conditions (M.1), (M.2), (C.0), and (C.1), we obtain

η̃k,` =
1
T

∫ T

0

∫
S

m(x, ρ)

f (x)
φk(x; ζk,`) fFt−δ

t (x)ν(dx)dt

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`)

(
1
T

∫ T

0
fFt−δ
t (x)dt

)
ν(dx)

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`)( f (x) + o(1))ν(dx)

=
∫

S

m(x, ρ)

f (x)
φk(x; ζk,`) f (x)ν(dx) + o(1)

= ηk,` + o(1).

We readily obtain that
η̃k,` = ηk,`, as, T → ∞, (77)

implying that
Ak,`,2 = o(1), a.s. (78)

Therefore, we infer that

η̂k,` − ηk,` = Ak,`,1 + o(1), a.s.

Let us now concentrate on the term Ak,`,1 in Equation (75), we infer

Ak,`,1 = η̂k,` − η̃k,`

=
1
T

∫ T

0

(
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)−E

[
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

])
dt

=
1
n

n

∑
i=1

(
1
δ

∫ Ti

Ti−1

(
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)−E

[
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

])
dt
)

=
1
n

n

∑
i=1

Φk,i(ζk,`),
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where

Φk,i(ζk,`) =
1
δ

∫ Ti

Ti−1

(
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)−E

[
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

])
dt.

Remark that, with respect to the sequence of σ−fields (Fi−1)0≤k≤mT , (Φk,i(ζk,`))0≤k≤mT
is a sequence of martingale differences. It is obvious, going with the proof of Equation (54),
to observe that

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk,i(ζk,`)

∣∣∣∣∣
2
,

whereE

∣∣∣∣∣ n

∑
i=1

Φk,i(ζk,`)

∣∣∣∣∣
2
 1

2

≤ n1/2 ‖ Φk,1(ζk,`) ‖2 + ‖
n

∑
i=1

E
[
Φ2

k,i(ζk,`)|Fi−2

]
‖1/2

1

= Φ(1) + Φ(2). (79)

On the one hand, using Jensen and Minkowski’s inequalities combined, we obtain

1
n

Φ2
(1) = ‖ Φk,1(ζk,`) ‖2

2

= E
[∣∣∣∣1δ

∫ δ

0

(
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)−E

[
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

])
dt
∣∣∣∣2
]

≤ 1
δ2

∫ δ

0
E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)−E

[
ρ(Yt)

f (Xt)
φk(Xt; ζk,`)|Ft−δ

]∣∣∣∣2
]

dt

≤ 1
δ2

∫ δ

0

(
E1/2

[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣2
]
+E1/2

[
E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣2|Ft−δ

]])2

dt

≤ 4
δ2

∫ δ

0
E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣2
]

dt.

It follows, from assumptions (M.1) and (M.2), that

|ρ(Yt)| ≤ Cm + |εt|, (80)

combined with the independence between Xt and εt, E[ε2
t ] = 1. Remark that, under

condition (E.1)(i) and using the fact that E is an orthonormal basis of H, we infer

E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣2
]
≤

(
C2

m + 1
) 1

C f
E
[∣∣∣∣ 1

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣2
]

≤
(

C2
m + 1

) ∫
S

1
f (x)

∣∣φk(x; ζk,`)
∣∣2 f (x)ν(dx)

=
(

C2
m + 1

) ∫
S

∣∣∣∣∣∑j∈Ik

1
√gj,k,`

ej(ζk,`)ej(x)

∣∣∣∣∣
2

ν(dx) (81)

=
(

C2
m + 1

) ∫
S

∑
j∈Ik

1
gj,k,`

∣∣ej(ζk,`)
∣∣2ν(dx)

≤
(

C2
m + 1

)
C1 = O(1).
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Therefore, we have

Φ(1) =

(
δn
(
C2

m + 1
)
C1

δ2 )

)1/2

= O(T1/2). (82)

Furthermore, we examine the second term of decomposition (79) and continue as per
the proof of (53) and considering (81), one obtains

Φ2 = O(T1/2). (83)

therefore, combining Equations (82) and (83), we obtainE

∣∣∣∣∣ n

∑
i=1

Φk(Xi; ζk,`)

∣∣∣∣∣
2
1/2

= O(T1/2).

Hence, there exists a positive constant C such that

E
[
|Ak,`,1|2

]
=

1
n2E

∣∣∣∣∣ n

∑
i=1

Φk(xi; ζk,`)

∣∣∣∣∣
2


=
δ2

T2 O(T) (84)

≤ C
(

ln T
T

)
.

Therefore, combining Equations (78) and (84) there exists a constant C such as

E
(∣∣α̂k,` − αk,`

∣∣2) ≤ C
(

ln T
T

)
. (85)

Thus, the proof of Lemma 6 is completed.

Proof of Lemma 7. Consider the subsequent decomposition

θ̂k,` − θk,` = θ̂k,` − θ̆k,` + θ̆k,` − θk,`

= Bk,`,1 + Bk,`,2, (86)

where

θ̆k,` =
1
T

∫ T

0
E
[

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)|Ft−δ

]
dt.

Remark that, under conditions (M.1), (M.2), and (C.1), Equation (76), and using the
fact that E is an orthonormal basis of H, by reasoning as in Equation (77), we obtain

θ̆k,` = θk,`, as, n→ ∞, (87)

giving that
Bk,`,2 = o(1), a.s. (88)

Therefore, we have

θ̂k,` − θk,` = Bk,`,1 + o(1), a.s.

Hence we obtain

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) =
1
n4E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
, (89)
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where

Ψi,k,` =
1
δ

∫ Ti

Ti−1

(
Yt

f (Xt)
ψk(Xt; ηk,`)−E

[
Yi

f (xt)
ψk(xt; ηk,`)|Ft−δ

])
dt.

Notice that (Ψi,k,`)0≤k≤n is a sequence of martingale differences with respect to the
sequence of σ−fields (Fi−1)0≤k≤n, applying the Burkholder–Rosenthal inequality (see
Lemma 1), we obtainE

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
1/4

≤
∥∥∥∥∥max

1≤j≤n

∣∣∣∣∣ j

∑
i=1

Ψi,k,`

∣∣∣∣∣
∥∥∥∥∥

4

� n1/4‖Ψ1,k,`‖4 +

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`|Fi−2)

∥∥∥∥∥
1/2

4/2

(90)

= Ψ(1)
k,` + Ψ(2)

k,` .

Consider the first term of the Equation (90). Applying Jensen and Minkowski’s
inequalities, we have

1
n

(
Ψ(1)

k,`

)4
= ‖Ψ1,k,`‖4

4

= E
(∣∣∣∣1δ

∫ δ

0

(
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)−E

[
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)|Ft−δ

])
dt
∣∣∣∣4
)

≤ 1
δ4

∫ δ

0
E
[(∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

∣∣∣∣+E
[∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

∣∣∣∣|Ft−δ

])4
]

(91)

≤ 1
δ4

∫ δ

0

(
E1/4

[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣4
]
+E1/4

[
E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣4|Ft−δ

]])4

dt

≤ 16
δ4

∫ δ

0
E
[∣∣∣∣ ρ(Yt)

f (Xt)
φk(Xt; ζk,`)

∣∣∣∣4
]

dt.

By proceeding as in Equation (81) and under the same conditions (M.1), (M.2), and
(E.1)(i), for all 0 ≤ t ≤ T, we obtain

E
[∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

∣∣∣∣2
]
≤ C, (92)

where C is a positive constant. Moreover, by the Cauchy–Schwarz inequality in connection
with conditions (E.1)(ii) and (E.2) and assumption (24), we have

sup
x∈S

∣∣ψk(x; ηk,`)
∣∣ ≤ sup

x∈S
∑

j∈Jk

1√
hj,k,`

|ej(ηk,`)||ej(x)|

≤
(

∑
j∈Jk

1
hj,k,`
|ej(ηk,`)|2

)1/2(
sup
x∈S

∑
j∈Jk

|ej(x)|2
)1/2

≤ C1/2
1 C1/2

2

√
|Jk| (93)

≤ C3

√
|JmT |

≤ C3

√
T

(ln T)2 .
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From statements (92) and (93), we deduce that

1
n

(
Ψ(1)

k,`

)4
≤ C4

(
T

(ln T)2

)
.

It follows that

Ψ(1)
k,` ≤

C4

δ

(
T

ln T

)1/2
. (94)

Let us now examine the upper bound of Ψ(2)
k,` of Equation (59). Remark that

Ψ(2)
k,` =

∥∥∥∥∥ n

∑
i=1

E(Ψ2
i,k,`/Fi−2)

∥∥∥∥∥
1/2

2

=

E

( n

∑
i=1

E
[
Ψ2

i,k,`|Fi−2

])2
1/4

,

Observe that for all Ti−1 ≤ t ≤ Ti for all i = 1, . . . , n; we have

Fi−2 ⊂ Ft−δ ⊂ St−δ.

Making use of Jensen and Minkowski’s inequality in the same manner as in Equation (91),
it follows

n

∑
i=1

E
[
Ψ2

i,k,`|Fi−2

]
=

n

∑
i=1

(
E
[(

1
δ

∫ Ti

Ti−1

(
ρ(Yt)

f (Xt)
ψk(xt; ηk,`)−E

[
ρ(Yt)

f (xt)
ψk(Xt; ηk,`)|Ft−δ

])
dt
)2

|Fi−2

])

≤ 4
δ2

n

∑
i=1

∫ Ti

Ti−1

E
[(

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

)2

|Fi−2

]
dt.

From the independence between εt and Xt, for all Ti−1 ≤ t ≤ Ti, we have

E
[
ε2

t |St−δ

]
= E

[
ε2

t |Xt
]

= E
[
ε2

t
]
= 1.

(95)

Under conditions (M.1), (M.2), (E.1)(i), and (C.1) and Equations (61) and (95), we
obtain

4
δ2

n

∑
i=1

∫ Ti

Ti−1

E
[(

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

)2

|Fi−2

]
dt

=
4
δ2

n

∑
i=1

E
[
E
[(

ρ(Yi)

f (Xi)
ψk(Xi; ηk,`)

)2

|St−δ

]
|Fi−2

]

≤
4n
(
C2

m + 1
)

δ2C f

∫
S

∣∣ψk(x; ηk,`)
∣∣2 1

n ∑n
i=1
∫ Ti

Ti−1
fFi−2
t (x)dt

f (x)

ν(dx).

For all Ti−1 ≤ t ≤ Ti, using the stationarity of the process (Xt)t≥0, we have

fFi−2
t (x) = fFi−2

Ti−1
(x).
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We deduce

4
δ2

n

∑
i=1

∫ Ti

Ti−1

E
[(

ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

)2

|Fi−2

]
dt

≤ 4δn(C2
m+1)

δ2C f

∫
S

∣∣ψk(x; ηk,`)
∣∣2( 1

n ∑n
i=1 f

Fi−2
Ti−1

(x)

f (x)

)
ν(dx)

=
T(C2

m+1)
δ2C f

(1 + o(1))
∫

S

∣∣ψk(x; ηk,`)
∣∣2ν(dx)

≤ C5T,

(96)

where

C5 =

(
C2

m + 1
)

δ2C f
(1 + o(1)).

It follows

Ψ(2)
k,` = CT1/2. (97)

Combining Equations (59), (64), and (66), we obtain

E

∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣
4
 = O

((
T

ln T

)2
)
+ O

(
T2
)

,

combining this with Equation (89), we conclude

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) = O

((
δ4

T4

)(
T

ln T

)2
)
+ O

((
δ4

T4

)
T2
)

. (98)

Hence there exists a constant C > 0, such that

E
(∣∣∣θ̂k,` − θk,`

∣∣∣4) ≤ C
(

1
T

)2
≤ C

(
ln T

T

)2
. (99)

The proof is achieved.

Proof of Lemma 8. Consider decomposition (86) in Lemma 7, we have

θ̂k,` − θk,` =
(

θ̂k,` − θ̆k,`

)
+
(
θ̆k,` − θk,`

)
= Bk,`,1 + Bk,`,2,

where

Bk,`,1 = 1
n ∑n

i=1 Ψi,k,`

= 1
n ∑n

i=1

(
1
δ

∫ Ti
Ti−1

(
ρ(Yt)
f (Xt)

ψk(Xt; ηk,`)−E
[

ρ(Yt)
f (Xi)

ψk(Xt; ηk,`)|Ft−δ

])
dt
)

,
(100)

Bk,`,2 = 1
n ∑n

i=1
1
δ

∫ Ti
Ti−1

(
E
[

ρ(Yt)
f (Xt)

ψk(Xt; ηk,`)|Ft−δ

]
− θk,`

)
dt. (101)

Statement (88) achieves the desired result for the term Bk,`,2

θ̂k,` − θk,` = Bk,`,1 + o(1).

We consider the next decomposition

Ψi,k,` = Vi,k,` + Wi,k,`, (102)
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where

Vi,k,` =
1
δ

∫ Ti

Ti−1

(
ρ(Yt)

f (Xt)
ψk(xt; ηk,`)1At −E

[
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At |Ft−δ

])
dt,

Wi,k,` =
1
δ

∫ Ti

Ti−1

(
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1

c
At
−E

[
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1

c
At
|Ft−δ

])
dt,

and
1At =

{
|εt| ≥ c∗

√
ln T

}
,

and c∗ represents a constant that will be selected later. Remark that

P
(∣∣∣θ̂k,` − θ̆k,`

∣∣∣ ≥ κ

2

√
ln T

T

)
≤ P

(∣∣Bk,`,1
∣∣ ≥ κ

2

√
ln T

T

)
+ o(1)

= P
(∣∣∣∣∣ n

∑
i=1

Ψi,k,`

∣∣∣∣∣ ≥ κ

2

√
T ln T

)
+ o(1) (103)

= I1 + I2 + o(1),

where

I1 = P
(∣∣∣∣∣ n

∑
i=1

Vi,k,`

∣∣∣∣∣ ≥ κ

2

√
T ln T

)
,

I2 = P
(∣∣∣∣∣ n

∑
i=1

Wi,k,`

∣∣∣∣∣ ≥ κ

2

√
T ln T

)
.

First, we aim to bound the term I1 of Equation (103). The Markov inequality and the
Cauchy–Schwarz inequality yield

I1 ≤ 2

κ
√

T ln T
E
(∣∣∣∣∣ n

∑
i=1

Vi,k,`

∣∣∣∣∣
)

≤ 2

κ
√

T ln T

n

∑
i=1

E
(∣∣Vi,k,`

∣∣). (104)

Observe that

E
(∣∣Vi,k,`

∣∣)
≤ 1

δ

∫ Ti

Ti−1

E
(∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At −E

[
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At |Ft−δ

]∣∣∣∣)dt

≤ 1
δ

∫ Ti

Ti−1

(
E
(∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At

∣∣∣∣)+E
(
E
[∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At

∣∣∣∣|Ft−δ

]))
dt

≤ 2
δ

∫ Ti

Ti−1

E
(∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1At

∣∣∣∣)dt (105)

≤ 2
δ

(
E
(∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)

∣∣∣∣2
))1/2

(P(At))
1/2.

Using Equation (92) combined with an elementary Gaussian inequality and taking c∗
to have

c2
∗
4
− 1/2 = 2.
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We obtain

I1 ≤ 2C
δκ

√
T

ln T
exp

{
− c2
∗ ln T

4

}

≤ 2C
δκ

T
−
(

c2∗
4 −1/2

)
√

ln T
(106)

≤ Cκ

(
1

T2

)
,

where Cκ = 2C
δκ . Now, we are going to look into determining an upper bound for I2

from decomposition (103). We begin by confirming Lemma’s 2 conditions. Assume that
conditions (M.1) and (M.2) are fulfilled in connection with Equation (93), we infer

|Yt1Ac
t
| ≤ Cm + c∗

√
ln T

≤ C
√

ln T,
(107)

which implies

∣∣Wi,k,`
∣∣ ≤ 1

δ

∫ Ti

Ti−1

∣∣∣∣ ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1

c
At
−E

[
ρ(Yt)

f (Xt)
ψk(Xt; ηk,`)1

c
At
|Ft−δ

]∣∣∣∣dt

≤ 2C
√

ln T
δC

sup
x∈S

∣∣ψk(x; ηk,`)
∣∣

≤ 2C
δC f

√
ln T

√
T

(ln T)2 (108)

≤ C3

√
T

ln T
≤ C3

√
T,

where C3 = 2C
δC f

, let B = C3
√

T, then, for all εT = κ
2

√
T ln T with a sufficiently large T, we

have

I2 = P
(∣∣∣∣∣ n

∑
i=1

Wi,k,`

∣∣∣∣∣ ≥ κ

2

√
T ln T

)
≤ 2 exp

{
−

ε2
T

2TB2

}

= 2 exp

−
(

κ
2

√
T ln T

)2

2T
(

C3
√

T
)2


= 2 exp

{
−κ2 ln T

4C2
3 T

}
(109)

= 2 exp

{
ln T

− κ2

4C2
3 T

}
= 2T−w(κ,T),

where

w(κ, T) =
κ2

4C2
3 T

.

Taking κ such that w(n, κ) = 2, we have

I2 ≤ C
(

1
T2

)
. (110)
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It follows from Equations (103), (106), and (110) that

P
(∣∣∣θ̂k,` − θ̃k,`

∣∣∣ ≥ κ

2

√
ln T

T

)
≤ C

1
T2 + o(1) (111)

≤ C
(

ln T
T

)2
. (112)

The proof of Equation (74) is achieved.

8. Besov Spaces

In terms of wavelet coefficients, in [23], the Besov space was described as follows:
0 < s < r is a real-valued smoothness parameter of $ ∈ Lp(Rd), then $ ∈ Bs

p,q(Rd)
equivalent to

(B.1) Js,p,q($) = ‖PV0 $‖Lp +
(

∑j>0

(
2js‖PWj $‖Lp

)q)1/q
< ∞,

(B.2) J′s,p,q($) = ‖a0 · ‖lp +
(

∑j>0

(
2j(s+d(1/2−1/p))‖bj · ‖lp

)q)1/q
< ∞

with

‖a0 · ‖lp =

(
∑

k∈Zd

|a0,k|p
)1/p

and

‖bj · ‖lp =

(
N

∑
i=1

∑
k∈Zd

|bi,j,k|p
)1/p

and classical sup-norm modification for q = ∞. The Besov spaces are useful for describing
the smoothness properties of functional estimation and approximation theory. They contain
well-known statistical research spaces, such as the Hilbert–Sobolev space

(
Hs

2 = Bs
2,2(Rd)

)
,

Holder space Cs = Bs
∞,∞(Rd) for 0 < s /∈ N, and others. We refer readers to [58] for

additional descriptions of Besov space and its merits in approximation theory and statistics.
Reasoning as in [102], suppose that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. Let

(Sτ f )(x) = f (x− τ).

For 0 < s < 1, set

γs,p,q( f ) =

(∫
Rd

(
‖Sτ f − f ‖Lp

‖τ‖s

)q
dτ

‖τ‖d

)1/q

γs,p,∞ = sup
τ∈Rd

‖Sτ f − f ‖Lp

‖τ‖S

For s = 1, set

γ1,p,q( f ) =

(∫
Rd

(
‖Sτ f + S−τ f − 2 f ‖Lp

‖τ‖

)q
dτ

‖τ‖d

)1/q

,

γ1,p,∞ = sup
τ∈Rd

‖Sτ f + S−τ f − 2 f ‖Lp

‖τ‖ .

For 0 < s < 1 and 1 ≤ p, q ≤ ∞, define

Bs
p,q(Rd) =

{
f ∈ Lp : γs,p,q < ∞

}
.
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For s > 1, put s = [s]− + {s}+ with [s]− an integer and 0 < {s}+ ≤ 1. Define Bs
p,q(Rd)

to be the space of functions in Lp

(
Rd
)

such that Dj f ∈ B{s}+ ,p,q for all |j| ≤ [s]−. The norm
is defined by

‖ f ‖Bs
p,q(Rd) = ‖ f ‖Lp + ∑

|j|≤s}−
γ{s}+ ,p,q

(
Dj f

)
.
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