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ON THE SIZE OF MINIMAL SURFACES IN R
4

ARI AIOLFI, MARC SORET AND MARINA VILLE

April 29, 2022

Abstract
The Gauss map g of a surface ⌃ in R

4 takes its values in the Grass-
mannian of oriented 2-planes of R4: G+(2, 4). We give geometric cri-
teria of stability for minimal surfaces in R

4 in terms of g. We show
in particular that if the spherical area of the Gauss map |g(⌃)| of a
minimal surface is smaller than 2⇡ then the surface is stable by de-
formations which fix the boundary of the surface. This answers the
question of [BDC3] in R

4.

Keywords— Gauss map, Grassmannian, minimal surface, stability

1 Introduction

A geometric criterion for the stability of a minimal surface ⌃ in the Euclidean space
R

3 is the spherical area of its Gauss map image |g(⌃)|. Thus, if this area counted
without multiplicity is smaller than 2⇡ then the surface is stable (see [BDC] &
[BDC2]).
A similar stability criterion was later generalized for simply-connected minimal
surfaces in R

n where the Gauss map of ⌃ takes its values in the Grassmannian
G+(2, n) (see also [HO]):

Theorem 1 ( [BDC3] ). Let ⌃ be a minimal surface in R
n. If ⌃ is simply-connected

and if the area |g(⌃)| counted with multiplicity is smaller than 4⇡
3 , then ⌃ is stable.

In [BDC3] one asks whether the weaker condition |g(⌃)| < 2⇡ ensures stability.
We prove in particular that this is true for minimal surfaces in R

4 even when |g(⌃)|
is counted without multiplicity as it is already known for minimal surfaces in R

3.
More precisely, we suppose that ⌃ is a minimal surface of R4. The Gauss map of

⌃ takes its values in the Grassmannian of oriented 2-planes in R
4 g : ⌃ �! G+(2, 4).

Note that G+(2, 4) is isometric to the product of spheres S
2
⇣

1p
2

⌘
⇥ S

2
⇣

1p
2

⌘
and

that g is the product of two S
2-valued maps: the left Gauss map and right Gauss
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map which is denoted by g = (gL, gR). As ⌃ is minimal, it is a critical point for
the area functional for deformations with fixed boundary. If it is a local minimum
then it is stable.
We begin by studying the relationship between the stability of ⌃ and the area of
each projection of the Gauss map image of ⌃. We first show:

Theorem 2. Let ⌃ be a minimal surface in R
4. Let � (resp. µ) be the first Dirichlet

eigenvalues of the Gauss images gL(⌃) (resp. gR(⌃)). If the harmonic mean of �
and µ is larger than 2 then ⌃ is stable.

We deduce from this theorem Proposition 3 (p. 11) where the stability condition
is expressed in terms of the area of the left and right Gauss map images. This is
obtained by replacing the Dirichlet eigenvalues by lower bounds in terms of the
area via the standard isoperimetric inequality for spherical domains as in [BDC2].
One derives the next corollary which directly implies Theorem 1 of [BDC3] in R

4.

Corollary 1. Let ⌃ be a minimal surface in R
4. Suppose that the spherical areas

of ⌃ satisfy |gL(⌃)|+ |gR(⌃)|  4⇡
3 then ⌃ is stable.

Notice first that there is no condition on the topology of ⌃ because only the
classical isoperimetric inequality on 2-spheres is used (and not an isoperimetric
inequality for surfaces in G(2, 4) as in[BDC3]). Secondly, one always has |gL(⌃)|+
|gR(⌃)|  |g(⌃)| (cf. Lemma 3 and Corollary 3), hence the stability condition
of Corollary 1 on the sum of the projected area is a weaker hypothesis than the
spherical area upper bound of Theorem 1 of [BDC3].
The stability domain obtained in Corollary 1 (resp. in Proposition 3 ) is represented
by Domain 1 (resp. Domain 3) of figure 1.
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Figure 1.1: Stability wrt to the projected spherical area :⌃ 7!⇣
|gL(⌃)|

2⇡ , |gR(⌃)|
2⇡

⌘
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Remark 1. The spherical areas |g(⌃)| or |gL(⌃)| + |gR(⌃)| are counted without
multiplicity. In particular |gL(⌃)|+ |gR(⌃)| is bounded from above by 4⇡ contrary
to |g(⌃)| which has no a priori upper bound (see Proposition 4). Notice also that
the Corollary 1 can be restated in terms of proportionate area by saying that if the
proportionate area sum is less than one third - then the minimal surface is stable.

Complex curves ⌃ ⇢ R
4 satisfy |gL(⌃)| = 0, |gR(⌃)|  2⇡, |g(⌃)|  2⇡, and are

examples of stable minimal surfaces. In light of these examples, one may wonder
-as in [BDC3] - if the upper bound 4⇡

3 of Theorem 1 can be replaced by 2⇡. Indeed,
one shows in the second part of the paper that

Theorem 3. Let ⌃ be a minimal surface in R
4. If |g(⌃)| < 2⇡ then ⌃ is stable.

The proof relies on Theorem 2 and on next proposition.

Proposition 1. For any minimal surface ⌃, there is an associate minimal surface
⌃⇤ isometric to ⌃, such that:

1. the left and right Gauss area of ⌃⇤ are equal.

2. if ⌃⇤ is stable than so is ⌃.

Finally one notices in Section 4.2 that the domain of stability of Proposition 3
and Corollary 1 can be enlarged. Also, the consideration of complex curves show
that the domain of stability as illustrated in Figure 1 must contain the left and
bottom edge of the square. Hence Domain 4 of Figure 1 may reasonnably represent
a larger domain of stability and a stronger result than Theorem 3 might then be
true.

Question. Let ⌃ be a minimal surface in R
4. If |gL(⌃)|+ |gR(⌃)| < 2⇡ then is ⌃

stable?

2 Quaternions and Gauss maps

The use of quaternions allows us to combine the classical approach to the Grass-
mannian G+(2, 4) as a quadric in CP 3 (see for example [HO]) with Eells-Salamon’s
approach via complex structures on R

4 ([ES]).

We identify R
4 with C

2 and with the quaternions H = R�RI �RJ �RK ; we
choose the identification such that the canonical complex structure on C

2 will be
identified to I. Let us recall some basic facts. Each quaternion is the sum of a real
and a pure quaternion, namely X = a + bI + cJ + dK = a + PX . The product of
two quaternions is then given by:

X · Y = aa0� < PX , PY > +aPY + a0PX + PX ^ PY (1)

where X = a+ PX , Y = a0 + PY and ^ is the cross product of R3. The conjugate
of X is denoted by X = a � PX and <(X) = a. The Euclidean scalar product

3



on H is then given by : hX,Y i := <(X · Y ), X, Y 2 H. We identify the set of
unit quaternions : HU with the 3-sphere S

3 of radius 1 around 0. Similarly, we
identify the set of pure quaternionss HP - ie span(I, J,K)- with R

3. With these
identifications HUP := HP \ HU is a 2-sphere S

2 which is an equator of the unit
quaternionss HU = S

3.

2.1 The Grassmannian G+(2, 4)

For any oriented vector plane P ⇢ H choose any orthogonal positive basis of vectors
of same length {T1, T2}; then q := T2 · T�1

1 doesn’t depend on the choice of the
direct orthogonal basis of P and q is the only pure unit quaternion -or complex
orthogonal structure- that leaves the oriented plane invariant when operating on
the left (qT1 = T2T

�1
1 T1 = T2, and qT2 = q2T1 = �T1. It is also useful to notice

that X�1 = X
|X|2 ).

Proceeding identically for the right multiplication we define a map from the Grass-
mannian of oriented planes of R4 to S

2 ⇥ S
2:

G = (gL, gR) :

✓
G+(2, 4) �! S

2 ⇥ S
2

P 7! (T2 · T�1
1 , T�1

1 · T2)

◆

As G is onto, g is 1 to 1 and onto.
We then identify the Grassmannian G+(2, 4) with S

2⇥S
2 via this 1-1 map G where

S
2 is the round sphere of radius one.

Remark 2. Notice that G+(2, 4) provided with its natural metric is isometric to

S
2
⇣

1p
2

⌘
⇥ S

2
⇣

1p
2

⌘
. Thus, although we will make the computations in S

2 ⇥ S
2,

results in final statements will be expressed in terms of the Gauss maps with values
in the standard Grassmannian as in the introduction.

2.2 Left and right Gauss maps of T⌃ and N⌃ in isothermal coordi-
nates

Let ⌃ be a C2-surface. Around any point p 2 ⌃ we will choose local isothermal
parameters (x, y) for the immersion X : U �! ⌃ ⇢ H. Whether we consider the
tangent bundle T⌃ or the normal bundle N⌃ then two Gauss maps are generated.

Let us first consider the Gauss map of the tangent bundle. At each tangent
plane Tp⌃, we compute, at point p = X(x, y), the derivatives Xx, Xy 2 Tp⌃ ; we
define the (tangent) Gauss map of ⌃ by:

G := (gL, gR) :

✓
⌃ �! S

2 ⇥ S
2 = HPU ⇥HPU

p 7! (Xy ·X�1
x , X�1

x ·Xy)

◆

gL(p) (resp. gR(p)) is the orthogonal complex structure that leaves the tangent
plane at p invariant when acting on the left (resp. on the right).
We then consider the Gauss map of the normal bundle. The useful information
here is recalled in a lemma:
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Lemma 1. Left (resp. right) multiplication by gL (resp. by gR ) on H both define
rotations of H such that the angle between any quaternion and its image is of
absolute value ⇡/2. Their respective actions are equal on T⌃ and of opposite sign
on N⌃.

Proof. Suppose q 2 HU . Then left or right multiplication by q defines an isometry:
hq · x, q · xi = <(qxx̄q̄) = |x|2. And hq · x, xi = <(qxx̄) = <(q)|x|2. Hence the
isometry is a rotation and the absolute angle between any nonzero quaternion and
its image is constant. If q 2 H

⇤
UP then then absolute angle is ⇡/2. By construction,

left multiplication by gL and right multiplication by gR restricted to T⌃ are equal
to the same ⇡/2- rotation. Since both are isometries, the normal bundle is stable
and the restriction of both rotations to N⌃ are ⇡/2-rotations. If they were equal,
then gLx = xgR for any x 2 H. Hence gL = gR and gL commutes with any
quaternion, which is impossible since gL is a nonzero pure quaternion. Hence the
rotation of gL and gR on N⌃ are of opposite angle so gLx = xg�1

R = �xgR for any
x 2 N⌃ since the angle is ⇡/2.

The action of gL on the left is a rotation by the lemma above. Hence it preserves
the orientation of Tp⌃ � Np⌃ and, thus, acts positively on Np⌃. Hence the left
Gauss map gN⌃,L of the normal bundle N⌃ verifies gN⌃,L = gL. Moreover we
deduce from the lemma that the right Gauss map gN⌃,R of the normal bundle
verifies gN⌃,R = g�1

R . The expression of the normal Gauss map in isothermal
coordinates is thus given by:

GN⌃ :

✓
⌃ �! S

2 ⇥ S
2

p 7! (Xy ·X�1
x , X�1

y ·Xx)

◆

and GN⌃ = (Id,�Id) �G.

Remark 3. We will not need it here but one can prove that gL (resp. gR) is a
rotation of angle +⇡

2 (resp. �⇡
2 ) on N⌃.

3 First derivatives of gL and gR for minimal surfaces

In order to prove the results of stability we will need some properties of the left
and right Gauss maps. We will use local isothermal coordinates on a Riemann
surface U for the immersion X : U �! ⌃ ⇢ H with these notations : E := |Xx|2 =
|Xy|2, hXx, Xyi = 0 , the induced metric of ⌃ on U being ds2⌃ = E|dz|2 with
z = x+ iy.

Proposition 2. The left Gauss map gL and right Gauss map gR of the Gauss map
g := (gL, gR) of the tangent bundle of a minimal surface in R

4 satisfy the following
properties:

1. Left multiplication by gL defines a complex structure on T⌃ and on N⌃.
Right multiplication by gR defines the same complex structure on T⌃ but the

5
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antiholomorphic structure on N⌃. The values of gL and gR are pure unitary
quaternions and

g2L = g2R = �1.

In particular, gL,x and gL (resp. gR,x and gR) anticommute.

2. The Gauss maps gL and gR are anti- holomorphic for the gL- or gR -complex
structure on ⌃. More precisely

gL,y = �gLgL,x, gR,y = �gR,xgR.

Notice that the values of the maps gZ,a are pure quaternions where Z =
L,R, a = x, y.

3. Let Bab be the second fundamental form defined by the normal projections of
the second derivatives of the position vector XN

ab, where a, b = x or y. We
have:

gL,x = �gL(Bxx + gLBxy)X
�1
x , gR,x = �X�1

x (Bxx +BxygR)gR.

Notice that left multiplication by gL,x or gL,y ( resp. right multiplication by
gR,x or gR,y) permutes T⌃ and N⌃ and are also elements of TS2.

4. The quaternion fields

Bxx + gLBxy(= gL,yXx), Bxx +BxygR(= XxgR,y)

are anti- holomorphic sections of the normal bundle of ⌃.

5. We have: ⇢
E|gL,x|2 = 1

2 |B|2 + �
E|gR,x|2 = 1

2 |B|2 � �
(2)

where |B|2 := 2|Bxx|2 + 2|Bxy|2, � = 2hBxx, gLBxyi.

Proof. 1. is clear.

2. We first show that the right Gauss map gR is anti-conformal.
Recall that X : U �! ⌃ ⇢ H be a minimal immersion then for isothermal
coordinates we have |Xx| = |Xy|, Xx ? Xy. If X minimal then �X =
Xxx +Xyy = 0.

In order to prove
gR,y = �gR,xgR

one first computes:

gR,x = (X�1
x Xy)x = X�1

x (�XxxX
�1
x Xy +Xxy) = X�1

x (�XxxgR +Xxy)

and

gR,y = (X�1
x Xy)y = X�1

x (�XxyX
�1
x Xy+Xyy) = �X�1

x (Xxy�XxxgR)gR = �gR,xgR.

6
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Similarly one proves that

gL,y = �gLgL,x. (3)

From which one deduces the conformal property of the map :

|gL,x| = |gL,y|, hgL,x, gL,yi = 0. (4)

3. A direct computation gives:

gL,x = (XyX
�1
x )x = (Xxy � gLXxx)X

�1
x = �gL(Xxx + gLXxy)X

�1
x .

Similarly, for the right Gauss map

gR,x = (X�1
x Xy)x = X�1

x (Xxy �XxxgR) = �X�1
x (Xxx +XxygR)gR.

Thus from (3)
gL,yXx = �(Bxx + gLBxy).

4. We need the following lemma:

Lemma 2. Xxx + gLXxy (resp. Xxx + XxygR) is a holomorphic normal
section of ⌃ equal to Bxx + gLBxy (resp. to Bxx +BxygR).

Proof. Let us prove first that there is no component along Xx:

hgXxy, Xxi = �hXxy, Xyi = hXx, Xyyi = �hXx, Xxxi.

Hence
hXxx + gLXxy, Xxi = 0.

Similarly hXxx + gLXxy, Xyi = 0. Hence Xxx + gLXxy is a normal section
hence equal to Bxx + gLBxy.
In order to prove the holomorphy, we write Codazzi equations in the isother-
mal coordinates x, y:

⇢
Bxx,y �Bxy,x = 0
Bxy,y �Byy,x = 0.

(5)

Hence, using the Codazzi equations:

(Bxx + gLBxy)y = Bxx,y+gL,yBxy+gLBxy,y = Bxy,x�gLgL,xBxy+gLByy,x.

Since ⌃ is minimal: Bxx = �Byy and

(Bxx + gLBxy)y = �gL (Bxx + gLBxy)x .
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Remark 4. The Gauss map gL,. is of the form v.w�1 where v 2 N⌃ and
w 2 T⌃ from which it is clear that gL,.(T⌃) = N⌃ and from which one
deduces also that gL,.(N⌃) = T⌃.

5. Let E = |Xx|2 = |Xy|2 then

|gL,x|2 =
1

E
|Xxx + gLXxy|2 and |gR,x|2 =

1

E
|Xxx +XxygR|2. (6)

Thus

E|gL,x|2 = |Bxx + gLBxy|2 = |Bxx|2 + |Bxy|2 + 2hBxx, gLBxyi.

And
E|gR,x|2 = |Bxx|2 + |Bxy|2 + 2hBxx, BxygRi.

As hBxx, BxygRi = �hBxx, gLBxyi we obtain:

⇢
E|gL,x|2 = 1

2 |B|2 + �
E|gR,x|2 = 1

2 |B|2 � �
(7)

where |B|2 := 2|Bxx|2 + 2|Bxy|2 and � = 2hBxx, gLBxyi.

Remark 5. One can express the curvatures of the tangent and normal bundle of
a minimal surface in terms of the derivatives of the left and right Gauss maps in
isothermal coordinates.
From the Gauss equation we deduce that the curvature tensor of the tangent bundle
is equal to
R(Xx, Xy, Xy, Xx) := Rxyyx = hBxx, Byyi � hBxy, Byxi = �|Bxx|2 � |Bxy|2.
Hence the tangent Gaussian curvature computed in the chosen isothermal coordi-

nates is equal to: KT := Rxyyx

|Xx|2|Xy|2�hXx,Xyi2 = � |B|2
2E2 . Similarly, the Ricci equation

gives for the normal curvature in terms of B: hRN (Xx, Xy)⇠, ⌘i = h[A⇠, A⌘]Xx, Xyi
where ⇠, ⌘ are normal vectors and A⇠ is the shape operator of the the second form B
in the direction ⇠ so that hA⇠X,Y i = hB(X,Y ), ⇠i. Choose ⇠ = e1, ⌘ = e2 such that
{Xx, Xy, e1, e2} is a conformal frame in H. Let Bi

ab := hBab, eii ( i = 1, 2, a, b =

x, y). Then KN :=
RN

xy12

E2 = hRN (Xx,Xy)e1,e2i
E2 = � 2

E

�
B1

xxB
2
xy �B2

xxB
2
xy

�
= 2

E2 hBxx, gLBxyi =
1
E2 �. From equations (7) we deduce that

⇢
KT = � 1

2E

�
|gL,x|2 + |gR,x|2

�

KN = � 1
2E

�
|gL,x|2 � |gR,x|2

� (8)

We see in particular that |KT | � |KN |.
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4 Proof of Theorem 2 and corollaries

4.1 Proof of Theorem 2

Let us recall [BDC]’s stability condition for minimal surfaces in R
3.

Theorem 4. [BDC] Let ⌃ be a minimal surface. If the spherical area g(⌃) ⇢ S
2

in the round sphere of radius one is smaller than 2⇡ then ⌃ is stable.

We first follow the proof of [BDC] applied to the right and left Gauss maps.

Proof. Let X : U �! ⌃ ⇢ R
4 be the minimal immersion. Suppose the first

Dirichlet eigenvalue of the spherical image D := gL(U) is �; then from Rayleigh’s
formula Z

D
|rf |2S2daS2 � �

Z

D
f2daS2 � 0 (9)

for all compact support functions f : D �! R.
From the conformality of gL and from equations (4), the left Gauss map gL induces
on U a spherical area and a spherical pseudo-metric which in terms of the pulled-
back metric element ds2⌃ or area element da⌃ of ⌃ on U are -using equations (8)-
given by

g⇤L(daS2) =
|gL,x|2

E
da⌃ = �(KT +KN )da⌃ g⇤L(ds

2
S2) = �(KT +KN )ds2⌃. (10)

On a subdomain U 0 ⇢ U where gL is a di↵eomorphism, |gL,x|2ds2 is a metric
element and |r(f � gL)|2⌃da⌃ = |rf |2S2daS2 . Thus
Z

gL(U 0)

�
|rf |2S2 � �f2

�
daS2 =

Z

U 0

�
|r(f � gL)|2⌃ + �(KT +KN )(f � gL)2

�
da⌃.

(11)
The functional defined by the RHS of (11) extends to U and [BDC2] show that

for all compact support functions f : U �! R

Z

U

�
|rf |2⌃ + �(KT +KN )f2

�
da⌃ � 0 (12)

(if the LHS were negative for a compact support function f on U , then the function
on D defined by f̄(x) :=

P
gL(y)=x f(y) would not satisfy inequality (9); for more

details see [BDC2]).
The same considerations for the right Gauss map yield also - for the first Dirichlet
eigenvalue µ of the spherical domain gR(U):

Z

U
|rf |2⌃da⌃ + µ

Z

U
(KT �KN )f2da⌃

and combining linearly the former two inequalities and applying equations (8):
Z

U
|rf |2⌃da⌃ +

2�µ

�+ µ

Z

U
KT f2da⌃ � 0 (13)

9



On the other hand recall that the surface ⌃ is stable in R
4 if for any normal section

⇠ with compact support which vanishes at the boundary (cf. for example [L]):

Z

U

0

@|rN⇠|2⌃ �
X

i,j=1,2

hBij , ⇠i2
1

A da⌃ � 0 (14)

where rN is the induced connection on the normal bundle of ⌃ and where Bij are
the coordinates of the second form wrt to an orthonornal basis of Tp⌃ - for example

wrt { Xxp
E
, Xyp

E
}. Hence:

Z

U

0

@|rN⇠|2⌃ �
X

i,j=x,y

1

E2
hBij , ⇠i2

1

A da⌃ � 0 (15)

Since
1

E2

X

i,j=x,y

hBij , ⇠i2  �2KT |⇠|2,

the LHS of inequality (15) is larger than
Z

U
|rN⇠|2⌃da⌃ + 2

Z

U
KT |⇠|2da⌃. (16)

Choose ⇠ = f⇣ where f is of compact support and where ⇣ is a unitary vector field.
Using the same notations as in Proposition 2 then

Z

U
|rN⇠|2⌃da⌃ =

Z

U
|rN⇣|2⌃f2da⌃ +

Z
|rf |2⌃da⌃. (17)

Replacing in (16) the first term by (17) and using (13), we obtain

Z
|rN⇣|2⌃f2ds+

✓
2� 2�µ

�+ µ

◆Z
KT f2ds (18)

which is positive if
�µ

�+ µ
> 1 (19)

that is if the harmonic mean of the eigenvalues � and µ is larger than 2.

4.2 Stability in terms of the spherical area of the Gauss maps

One can deduce from the isoperimetric inequality in the round sphere a lower bound
for the first Dirichlet eigenvalue of the spherical domain D of area A as in [BDC2]:

�1(A) � 2(4⇡ �A)

A
= 2(

1

a
� 1) (20)

10



where a := A
4⇡ is the proportionate area of D. Hence Inequality (19) is true if

1

�
+

1

µ
 a

2(1� a)
+

b

2(1� b)
 1

Therefore:

Proposition 3. If the proportionate areas a = |gL(⌃)|
2⇡ and b = |gL(⌃)|

2⇡ satisfy
a  2

3 , b  2�3a
3�4a then ⌃ is stable.

The set {(a, b) : 0  b  2�3a
3�4a 0  a, b  2

3} is a domain in the square
[0, 1]⇥ [0, 1] bounded by the edges x = 0, y = 0 and the equilateral hyperbola pass-
ing through the points (2/3, 0), (0, 2/3), (1/2, 1/2) which corresponds to Domain 3
in Figure 1 and Domain 1 in Figure 4.2.
The lower bound in inequality (20) is not optimal. Using Sato’s second approxi-
mation in [S], we obtain a larger domain of stability bounded by the equilateral
hyperbola passing through the points (.737, 0), (0, .737), (1/2, 1/2) (illustrated by
Domain 2 of Figure 4.2). In a similar fashion the stability domain of Corollary 1
can be enlarged.

�������

1

2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1:stability domain of Proposition 3
using the eigenvalue lowerbound of [BDC3]

2:stability domain using approximation
Q_4/Q_3 of the first eigenvalue as in [S]

Figure 4.1: ⌃ 7!
⇣
|gL(⌃)|

2⇡ , |gR(⌃)|
2⇡

⌘
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4.3 Local parametrization of a minimal surface

For the proof of Theorem 3 and for explicit examples of minimal surfaces it is useful
to introduce Weierstrass-type coordinates.
The set of minimal surfaces in R

4 are locally easy to describe. The data defining a
minimal immersion of a disk is a quadruple of holomorphic function (e, f, g, h) on
U such that

e0f 0 + g0h0 = 0. (21)

The minimal immersion is then given by the map

X :

✓
U �! H

z 7! e(z) + f̄(z) + (g(z) + h̄(z))J

◆
(22)

the coordinates of the immersion are automatically harmonic. In this algebraic
setting, the conformality condition ofX - given by equation (21) - is best understood
in the complexified ambient space.
In Section 6 we will show that the Gauss maps (gL, gR) are given in terms of these
holomorphic coordinates as (gL, gR) where

gL(z) =
e0(z)

h0(z)
= � g0(z)

f 0(z)
, gR(z) = � e0(z)

g0(z)
=

h0(z)

f 0(z)
. (23)

4.4 Stability domain for minimal surfaces with flat normal bundle

Note from (2) and (8) that |gL,x|2 and |gR,x|2 are identical i↵ � = KN = 0. The
normal bundle is then flat which means Bxx and Bxy are colinear from the expres-
sion of � in Equation (2). One deduces that the surface lies in a hyperplane (see for
example [A]). Hence minimal surfaces have a flat normal bundle i↵ they lie in R

3.
Furthermore the Weierstrass representation of such minimal surface can be chosen
of the form X = (e + f̄ , g + ḡ) in the coordinate system of (22); we see from (23)
that the first eigenvalues � and µ of gL and gR are identical. Stability is then
obtained if the first eigenvalue � of the right or left spherical domain is larger than
2. The corresponding domain of stability is the diagonal of the square represented
by Domain 2 of Figure 1 .

4.4.1 Unstability

If the surface lies in a hyperplane then there is a constant normal vector field ⇣.
Then plug ⇠ = f⇣ into LHS of (15) and using equality (17) we obtain:

Z

U
|rf |2⌃da⌃ �

Z

U

X

i,j=x,y

1

E2
hBij , ⇣i2f2da⌃. (24)

Then replace in expression (24) the normal field ⇣ by the normal fields egt⇣ =
(cos t+ g sin t)⇣ and average wrt t 2 [0, 2⇡]. Choose f 2 C0(U) such that

Z
|rf |2ds = �

2

Z
1

E2
(|Bxx|2 + |Bxy|2)f2ds.
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Then (24) is negative if � < 2. Hence

Corollary 2. A minimal surface of R
4 with flat normal bundle is stable if the

first eigenvalue � of the left (or right) spherical domain gL(⌃) satisfies � > 2 and
unstable if � < 2.

4.4.2 An example

Following the notations defined in (22), define on the slab U = {z 2 C : 0 
=(z) < 2⇡} a minimal immersion X : U �! R

4 of Weierstrass representation:
f1 = e�z, f2 = ez, f3 = z = f4 where X(z) = (f1(z) + f̄2(z), f3(z) + f̄3(z)) =
2(coshxeiy + xJ).
From (27) gL = �gR and

Xx = e0 + f̄ 0 + (g0 + ḡ0)J = 2(sinhxeiy + J), Xy = i(e0 � f̄ 0 + (g0 � ḡ0)J) =
2i coshxeiy

gL =
1

E
XyX̄x =

i

E
(|ez|2 � |e�z|2 + 2(e�z + ez)J)

gR =
1

E
XyX̄x =

i

E
(|ez|2 � |e�z|2 + 2(ez + e�z)J)

gR � gL = ↵k.

Hence
hgL � gR, Xi = 0.

The catenoid X(U) is contained in span(1, I, J) and ⇠ = gL�gR is a normal section
of the normal bundle of X(U).

5 The area of a holomorphic curve in S
2 ⇥ S

2

Kählerian geometry on S
2 ⇥ S

2 provided with the product of complex structures
on each S

2 shows that the area of a holomorphic curve in S
2 ⇥ S

2 is the sum of the
projected areas on each sphere- counted with multiplicity (see Remark 1). More
precisely

Lemma 3. Let G be a holomorphic curve in S
2 ⇥ S

2 and let ⇡i, i = 1, 2 be the
projections maps of G on each sphere, then

|G| = |⇡1(G)|⇡⇤
1 (S2) + |⇡2(G)|⇡⇤

2 (S2)

where |⇡i(G)|⇡⇤
i (S2) denotes the spherical area on G pulled-back by ⇡i, i = 1, 2.

Proof. The Kähler form of S2 ⇥ S
2 (provided with the metric which is the direct

product of round sphere metrics) is the sum of the Kahler form on each factor.
Choose local isothermal coordinates of the curve G; then the Kähler-area form - !
in the ambient space is equal to:

!(Xx, Xy) = hiXx, Xyi = hiX1
x + iX2

x, X
1
y +X2

y i.
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Hence

!(Xx, Xy) = hiX1
x, X

1
y i+ hiX2

x, X
2
y i = !S2(X

1
x, X

1
y ) + !S2(X

2
x, X

2
y ).

And

|G| =
Z

G
! =

Z

G
⇡⇤
1!S2 +

Z

G
⇡⇤
2!S2

Comparing the projected area on each sphere with the projected area counted
with multiplicity, we have

Corollary 3. Let ⌃ be a minimal surface in R
4 then

|g(⌃)| � |gL(⌃)|+ |gR(⌃)|

where g = (gL, gR) is the Gauss map of ⌃.

Hence we see that an upper bound on the sum |gL(⌃)|+ |gL(⌃)| as in Corollary
1 does not impose an upper bound on |g(⌃)| as in Theorem 3. Furthermore there
is no a priori upper bound for |g(⌃)|.

Proposition 4. There is a family of minimal surfaces ⌃n such that lim |g(⌃n)| =
+1.

Proof. Consider the minimal surface ⌃n conformal to C and given by the Weier-
strass representation (see expression 22 in Section 4.3)

e0 = zn f 0 = 1 g0 = zp h0 = �zq

with p+ q = n, (p, q) = 1.
The holomorphic coordinates of the Gauss maps - defined as in equations (23) - are
gL = zp and gR = �zq. Let us show that the map (gL, gR) is injective. Let (z1, z2)
be a double point of (gL, gR). Then zp1 = zp2 and zq1 = zq2 . Since (p, q) = 1, this
implies that z1 = z2. Thus from Lemma 3, |g(⌃)| is equal to 2⇡p+2⇡q = 2⇡n.

Still, the area of the Gauss map image of complex curves is bounded above by 2⇡.

6 Proof of Theorem 3

We denote the complexified quaternions by: HC = H ⌦R C. The Euclidean scalar
product h·, ·i on H extends to HC either as the complexified scalar product h·, ·iC
or as the hermitian metric ((·, ·))C.
The immersion X is conformal wrt z 2 U i↵ the complexified vector (Xx � iXy)(z)
is a null vector i.e. i↵ hXx � iXy, Xx � iXyiC = 0. The tangent Gauss map can be
identified to

G0 :

✓
U �! Q0

2 ⇢ P (HC)
z 7! [Xx(z)� iXy(z)]

◆
(25)

14

aaiol
Lápis



where Q0
2 is the complex 2-dimensional quadric of the complex 3-dimensional pro-

jective space P (HC) - identified to the Grassmanian G+(2, 4) - which is defined as
the zeroes of the following quadratic form

Q0
2 := {[Z] 2 P (HC) : q

0
2(Z) := z21 +z22 +z23 +z24 = 0 for Z = z1+z2I+z3J+z4K}.

If we plug the holomorphic coordinates of (22) into G0, we obtain an equivalent
Gauss map

G :

✓
U �! Q2 ⇢ P (HC)
z 7! [e0(z), f 0(z), g0(z), h0(z)]

◆
(26)

where

Q2 := {[Z] 2 P (HC) : q2(Z) := z1z2 + z3z4 = 0 for Z = z1 + z2I + z3J + z4K}.

(The Weierstrass coordinates whose Gauss map takes its values in Q0
2 appeared

in [E] and those adapted to a parametrization of Q2 appeared in [MW] ). The
passage from this algebraic description of the Gauss map to the geometric one is
summarized in the following diagrams; the second diagram gives the expressions of
the maps of the first diagram.

H U Q2 P
3

S
2 ⇥ S

2
C⇥ C P

1 ⇥ P
1

X G

g
g̃

p
Segre map

�⇥�

e(z)+f̄(z)+(g(z)+h̄(z))J z=x+iy [e0(z),f 0
(z),g0(z),h0

(z)] [z1z3,z2z4,�z2z3,z1z4]

(gL(z),gR(z)) (
z3
z4

,
z1
z2

) ([z1,z2],[z3,z4])

X G

g
g̃

p �e

�⇥�

Figure 6.1: Map diagram of the Gauss map in Weierstrass coordinates

where : G(z) = Xx � iXy, � : C �! S
2 is the stereographic projection, g :=

(gL, gR), g̃ := (gL, gR), p([⇣1, ⇣2, ⇣3, ⇣4]) = ( ⇣1⇣4 ,
⇣4
⇣2
). The dotted arrows represent

rational maps. The holomorphic Weierstrass data of the Gauss maps are then:

gL(z) =
z3
z4

=
e0(z)

h0(z)
= � g0(z)

f 0(z)
, gR(z) =

z1
z2

= � e0(z)

g0(z)
=

h0(z)

f 0(z)
. (27)

Moreover P (HC) is provided with the Fubini metric ds2F so that the projection
⇡ : (HC \ {0}, ((·, ·))C) �! (P (HC), ds2F ) is a Riemannian submersion. Thus the
unitary group U(4) action on HC descends to isometries on P (HC).

The quadrics Q2 and Q0
2 are each provided with the metric induced by the

ambient Fubini metric. One can easily check that Q2 is isometric to Q0
2 via the
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group element A 2 U(4) defined by :

A =

✓
A1 O
O A1

◆
where A1 =

1p
2

✓
1 i
1 �i

◆
(28)

i.e. : 8v 2 HC q2(Av) = q02(v).
Moreover it is clear that Q0

2 is stable by O(4,C). We then deduce that Q2 is stable
by the conjugate group A · O(4,C) · A�1. In particular Q2 is stabilized by the
subgroup A · SO(4,R) ·A�1 ⇢ SU(4).
We introduce now the following permutation of the left and right sphere:

⇡ :

✓
P
1 ⇥ P

1 �! P
1 ⇥ P

1

([a, b], [c, d]) 7! ([d, c], [a, b])

◆
(29)

One checks that ⇡ = ��1
e � S � �e where �e is defined in the diagram of Figure 6.1

and S is the ambient linear map S of HC:

S =

✓
O S1

S2 O

◆
, where S1 =

✓
0 1
�1 0

◆
and S2 =

✓
�1 0
0 1

◆
. (30)

By construction Q2 is stable by the action of S and by its expression one sees that
S 2 SO(4,R) ⇢ SU(4).

Lemma 4. There exists an isotopy H : ([0, 1] �! J := U(4)\A · SO(4,C) ·A�1)
of isometries acting on Q2 ⇢ P (HC) such that H(0) = Id and H(1) = S.

Proof. Id and S belong to J which is path-connected. Indeed, its conjugate by A 2
U(4) equals A�1JA = U(4) \ SO(4,C) = SO(4,R) which is path-connected.

6.1 Deformations by associate minimal surfaces

We start with a minimal surface whose Gauss map in Weierstrass coordinates -
following the notations of (22) - are of the form

G :

✓
U �! G(U) ⇢ Q2 ⇢ P (H⌦ C)
z �! [e0(z), f 0(z), g0(z), h0(z)]

◆
(31)

Remark 6. If the Riemann surface U is not simply-connected then we replace it
by its universal cover; the image by the Gauss map of U will not be a↵ected.

From Lemma 4 , there exists a continuous path � : [0, 1] �! J with �0 = Id
and �1 = S.
This generates a continuous family of maps Gt := �t.G. Since �t 2 J then
�tG(U) ⇢ Q2. In terms of Weierstrass coordinates, let Gt := [et,1, et,2, et,3, et,4]
then et,1.et,2 + et,3et,4 = 0. The Gt are then the Gauss maps of a family of new
minimal surfaces - so called associate minimal surfaces to ⌃.

Xt :

✓
U �! ⌃t ⇢ H

z 7!
R
z e1,t +

R
z e2,t + (

R
z e3,t +

R
z e4,t)J

◆
(32)
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where ⌃0 = ⌃ and by the definition of (29) such that the Gauss map of ⌃1 is given
by :

(gL,1, gR,1) = (�a � gR, gL) (33)

where �a is the antipodal symmetry (see Figure 6.2 below).
Let us describe some invariants of this family of minimal surfaces.

Lemma 5. For any minimal surface ⌃ there is an associate family of minimal
surfaces {⌃t}t2[0,1] defined by (32) such that the following conditions are satisfied:
8p 2 U and 8t 2 [0, 1] :

1. ⌃t is locally isometric to ⌃0 = ⌃:

ds2t (p) := �2
t (p)|dz|2 = �2(p)|dz|2

2. The tangent curvature is invariant by deformation:

KT
t (p) = KT (p)

3. The images of the Gauss maps have the same area:

|gt(⌃t)| = |g(⌃)|

4. If the operator �⌃t0
� 2KT

t0 is positive for some t0 2 [0, 1] then �⌃t � 2KT
t

is positive for all t 2 [0, 1].

Proof. 1. We consider the deformation of ⌃ defined in (32).In local isothermal
coordinates z , in a neighborhood of some p 2 U , ds2 = �|dz|2. where
� = |e0|2 + |f 0|2 + |g0|2 + |h0|2 = ((G,G)) where ((·, ·)) is the hermitian metric in
HC. As �t 2 U(n), the metrics ds2t = �t|dz|2 of ⌃t are all locally isometric
to ⌃ since

�t = ((Gt, Gt)) = |e1,t|2+ |e2,t|2+ |e1,2|2+ |e3,t|2+ |e4,t|2 = ((�tG, �tG)) = ((G,G)) .

2. The metric is invariant, so is the tangent curvature.

3. |gt(⌃)| = |�tg(⌃)| = |g(⌃)|

4. If for some t0:
Z

U
|r�|2⌃t0

da⌃t0
� �2

Z

U
KT

t0�
2da⌃t0

8� 2 C0(U), (34)

then, as the ⌃t are all isometric, |r�|2⌃t0
= |r�|2⌃t

and da⌃t0
= da⌃t and by

the second point, the stability inequality (34) is true for any t 2 [0, 1].
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Figure 6.2: t 7!
⇣
|gL(⌃t)|

2⇡ , |gR(⌃t)|
2⇡

⌘

Let us conclude the proof of Theorem 3.
Let ⌃ be a minimal surface such that the Gauss map area |g(⌃)| < 2⇡.
Then the projected area verifies |gL(⌃)|+ |gR(⌃)| < 2⇡ by Corollary 3.
Suppose |gL(⌃)| = |gR(⌃)| then by the previous inequality, |gL(⌃t0)| and |gR(⌃t0)|
are each less than ⇡ ie the proportionate area of the left and right Gauss map are
less than 1

2 and by Proposition 3, ⌃ is stable.
Suppose that |gL(⌃)| < |gR(⌃)|, then by Equation (33):
|gL(⌃1)| = |gR(⌃)| > |gL(⌃)| = |gR(⌃1)|.
By continuity there is necessarily a t0 2 [0, 1[ such that the left and right spherical
area are equal: |gL(⌃t0)| = |gR(⌃t0)|. By Lemma 5-3 and Corollary 3 each area is
less than ⇡ hence ⌃t0 is stable. By Lemma 5-4 ⌃ is stable.
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