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Abstract

In this position paper, we would like to offer and defend a template to study
equivalences between programs—in the particular framework of process algebras
for concurrent computation. We believe that our layered model of development
will clarify the distinction that is too often left implicit between the tasks and
duties of the programmer and of the tester. It will also enlighten pre-existing
issues that have been running across process algebras such as the calculus
of communicating systems, the π-calculus—also in its distributed version—or
mobile ambients. Our distinction starts by subdividing the notion of process in
three conceptually separated entities, that we call process terms, (completed)
processes and tests, and by stressing the importance of formalizing the completion
of process terms and the instrumentation that results from placing a (completed)
processes into a test. While the role of what can be observed and the subtleties
in the definitions of congruences have been intensively studied, the fact that not
every term can be tested, and that the tester should have access to a different set
of tools than the programmer is curiously left out, or at least not often formally
discussed–in this respect, the theory of monitor is a counter-examples that we
discuss and compare to our approach. We argue that this blind spot comes
from the under-specification of contexts—environments in which comparisons
occur—that play multiple distinct roles but are generally—at least, on the surface
of it—given only one definition that fails to capture all of their aspects.
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1. Introduction – What Is A Context?

In the study of programming languages, contextual equivalences play a central
role: to study the behavior of a program, or a process, one needs to observe its
interactions with multiple environments, e.g. what outcomes it produces based
on different inputs or configurations. If the program is represented by a term
in a given syntax, environments are often represented as contexts surrounding
the terms. But contexts play multiple roles that serve different actors with
different purposes. The programmer uses them to construct larger programs,
e.g. by surrounding implementations of algorithms—snippets—with user-input
validation or variable declarations. The user employs them to provide input and
obtain an output, e.g. by providing a username and a set of preferences. Finally,
the tester or attacker uses them to debug and compare the program or to try to
disrupt its intended behavior, e.g. using a fake user environment endowed with
a timer for timing attack.

We believe that representing those different purposes with the same “mono-
lithic” syntactical notion of context forced numerous authors to repeatedly
“adjust” their definition of context without always acknowledging it. We also
argue that collapsing multiple notions of contexts into one prevented further
progress. In this article, we propose a way of clarifying how to define contextual
equivalences, and show that having co-existing notions of equivalences legitimates
and explains recurring choices, and supports a rigorous guideline to separate the
development of a program from its usage and testing.

Maybe in the mind of most of the experts in the formal study of programming
language is our proposal too obvious to discuss. However, if this is the case, we
believe that this “folklore” remains unwritten, and that since we were not at that
“seminar at Columbia in 1976”1, we are to remain in darkness. Furthermore,
we believe that “this purity has a price” [2, p. 1:2], and that unraveling the
required subtleties of syntactical definitions will “bring us closer to a realistic
programming language or modeling language—[and] that [this] is not always a
bad thing.” [2, p. 1:2]

Non-technical articles can at times have a tremendous impact [3], and even
if we do not claim to have Dijkstra’s influence or talent, we believe that our
precise, documented proposition can shed a new light on past results, and frame
current reflections and future developments. We also believe that ignoring or
downplaying the distinctions we stress have repeatedly caused confusions.

The tone and scope of this essay may seem “timeless”, but discussions
during the Combined 27th International Workshop on Expressiveness in Concur-
rency and 17th Workshop on Structural Operational Semantics—where our first
draft [4] was presented—and the 14th Interaction and Concurrency Experience
(particularly with Ilaria Castellani, Alceste Scalas and Emilio Tuosto) and with
colleagues (among which David Baelde and Ross Horne) finished anchoring it
into concrete and timely questions.

1To re-use in our setting Paul Taylor’s witty comment [1].
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1.1. Changelog

Compared to our post-proceedings publication [5], this version contains an in-
depth discussion on monitors (Sect. 6), clarifies a distinction between complete
processes and process terms that was absent previously, refrains from using
the loaded term “system”, and generally improve the wording and intuitions
with better and more precise examples and explanations. The general tone
of the paper shifted from being focused on contexts to being focused on the
interconnection of the components we are discussing, and large sections were
re-organized and streamlined to help with readability.

2. The Flow of Testing – A Java Metaphor

We begin by illustrating with a simple Java example the four syntactic
notions—process term, (completed) process, instrumentation and test—we will
be using. Imagine giving a user the code

while(i < 10){

x *= x;

i++;

}

or any other partial implementation of a useful algorithm, as found e.g. in a
textbook or on a message board. That user cannot execute or use this “snippet”
unless it is wrapped into a method, with an adequate header, possibly variable
declarations and a return statement. Once the programmer has performed this
operation, the user can use the obtained program, and the tester can interact
with it further, e.g. by calling it from a main method.

All in all, a programmer would build on the snippet, then the tester would
build an environment to interact with the resulting program, and we could
obtain the code in Figure 1. We believe this is a fair rendering of “the life of a
snippet”, that includes other scenarios: typically, the snippet could be shipped
already wrapped, and additionally with pre-loaded tests—in this cases, the role
of the programmer or the user would be to substitute one wrapping or test with
another, but that would not change the different nature of those elements and
the division of labor we sketched. Note that we do not distinguish between
tests, attacks and interactions with users: they all correspond in our terminology
to tests, only their objectives (debugging, compromising, using) differ, but we
decided against sub-dividing them further.

In this example, the snippet is what we will call a process term, the snippet
once wrapped is what we will call a (completed) process and the “test” part
(i.e., without the completed process in it, but with additional “observations”
such as measures on the execution or terminal output) is what we will call a
test. The result of the insertion of a completed process into its test is called
an instrumentation, or, sometimes, a system and it is the only element that
can actually be executed—as neither the process term, the completed process
nor the test can be run in isolation. We synthesize this vocabulary and the
Java analogy in Figure 2. Our terminology comes from the study of concurrent
process algebras, where most of our intuitions and references are located, but we
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// Test

// Wrapping

// Snippet

class Program{

public static int foo(int x){

int i = 0;

while(i < 10){

x *= x;

i++;

}

return x;

}

public static void main(){

System.out.print(foo(2));

}

}

Figure 1: Life of a Snippet

Term Built by Obtained by Java Analogy
Process Term Programmer Implementing an algorithm Snippet
(Completed) Process Programmer “Wrapping” the process term foo method
Test User / Tester Implementing an usage for the process Test (main)
Instrumentation Computer Executing a test calling a process Compiled Program

Figure 2: Roles and Terminology

will make a brief detour to examine how our lens applies to λ-calculus, and was
partially inspired by it.

3. A Foreword on λ-Calculus and Its Feedback Loop

Theoretical languages often take λ-calculus as a model or a comparison basis.
It is often said that the λ-calculus is to sequential programs what the π-calculus
is to concurrent programs [6, 7]. Indeed, pure λ-calculus (i.e. without types or
additional features like probabilistic sum [8] or quantum capacities [9, 10]) is
a reasonable [11], Turing-complete and elegant language, that requires only a
couple of operators, one reduction rule and one equivalence relation to produce
a rich and meaningful theory, sometimes seen as an idealized target language for
functional programming languages.

Since most terms do not reduce as they are2, studying their behavior requires
to make them interact with an environment, formally represented by a context.
Contexts are generally defined as “term[s] with some holes” [13, p. 29, 2.1.18],
that we prefer to call slots and denote [�]. Under this apparent simplicity, they
should not be manipulated carelessly, as having multiple slots or not being careful

2Actually, if application, abstraction and variables all count as one, the ratio between
normal term and term with redexes is unknown [12]. We imply here “since most interesting
terms”, i.e. terms that represent programs.
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when defining how to place a term in the slot can lead to e.g. lose confluence [14,
pp. 40–41, Example 2.2.1], and as those issues persist even in the presence of
a typing system [15]. Furthermore, definitions and theorems that use contexts
frequently impose some restrictions on the contexts considered, to exclude e.g.
(λx.y)[�] that simply “throws away” the term placed in the slot in one step of
reduction.

In technical terms, contexts generally come in two flavors, depending on the
nature of the term for which the context is constructed:

For closed terms (i.e. without free variables), a context is essentially a series of
arguments to feed the term. This observation allows to define e.g. solvable
terms [13, p. 171, 8.3.1 and p. 416, 16.2.1].

For open terms (i.e. with free variables), a context is a Böhm transforma-
tion [13, p. 246, 10.3.3], which is equivalent [13, p. 246, 10.3.4] to a series
of abstractions followed by a series of applications, and sometimes called
“head context” [16, p. 25].

Being closed corresponds to being “wrapped”—ready to use—, and feeding
arguments to a term corresponds to interacting with it from a main method:
the Böhm transformation actually encapsulates two operations—closing, then
applying the arguments—in one notion. In the λ-calculus, the interaction can
observe different aspects: whether the term terminates, whether it grows in size,
etc., but it is generally agreed upon that no additional operator or reduction
rule should be used. Actually, the syntax is restricted when testing, as only
application is allowed: the tested term should not be wrapped in additional
layers of abstraction if it is already closed.

Adding features to the λ-calculus does not restore the supposed purity or
unicity of the concept of context, but actually distances it even further from
being simply “a term with a slot”. For instance, contexts are narrowed down
to term context [10, p. 1126] and surface context [8, pp. 4, 10] for respectively
quantum and probabilistic λ-calculus, to “tame” the power of contexts. In
resource sensitive extensions of the λ-calculus, the quest for full abstraction even
led to a drastic separation of λ-terms between terms and tests [17], a separation
naturally extended to contexts [18, p. 73, Figure 2.4].

This variety happened after the 2000’s formal studies of contexts was under-
taken [14, 15, 19], which led to the observation that treating contexts “merely as
a notation [. . .] hinders any formal reasoning[, while treating them] as first-class
objects [allows] to gain control over variable capturing and, more generally,
‘communication’ between a context and expressions to be put into its holes”
[19, p. 29]. It is ironic that λ-calculists took inspiration from a concurrent
language to split their syntax in two right at its core [17, p. 97], or to study
formally the communication between a context and the term in its slot, while
concurrent languages sometimes tried to keep the “purity” of their contexts
and their indistinguishability from terms—beside their slot. This re-definition
of contexts had impacts on other fields, e.g. on modal type theory [20], but it

5



seems to us that an opportunity to benefit from this feedback loop was missed
in process algebras.

4. Contextual Relations Alter the Definition of Context

Comparing terms is at the core of the study of programming languages,
and process algebra is no exception. Generally, and similarly to what is done
in λ-calculus, a comparison is deemed of interest only if it is valid in every
possible context, an idea formally captured by the notion of (pre-)congruence.
An equivalence relation R is usually said to be a congruence if it is closed by
context, i.e. if for all P , Q (open or closed) terms, (P,Q) ∈ R implies that for
all context C[�], (C[P ], C[Q]) ∈ R. Additional requirements occur sometimes,
such as requiring that terms in the relation needs to be similar up to uniform
substitution [21].

A notable example of congurence is barbed congruence [22, Definition 2.1.4][23,
Definition 8], which closes by context a reduction-closed relation used to observe
“barbs”—the channel(s) on which a process can emit or receive. It is often
taken to be the “reference behavioural equivalence” [22, p. 4], as it observes the
interface of processes, i.e. on which channels they can interact.

But behind this apparent uniformity in the definition of congruences, the
definition of contextual relations itself have often been tweaked by altering the
definition of context, with no clear explanation nor justification:

In the calculus of communicating systems, notions as central as contex-
tual bisimulation [24, pp. 223-224, Definition 421] and barbed equiva-
lence [24, p. 224, Definition 424] considers only static contexts [24, p. 223,
Definition 420], which are composed only of parallel composition with
an arbitrary term and restriction. As the author of those notes puts it
himself, “the rules of the bisimulation game may be hard to justify [and]
contextual bisimulation [. . .] is more natural” [24, p. 227]. But there is no
justification—other than technical, i.e. because they “they persist after a
transition” [24, p. 223]—as to why one should consider only some contexts
in defining contextual equivalences.

In the π-calculus, contexts are sometimes [25, p. 516, Definition 2] drastically
restricted to be only closure by substitution. But they are more generally
defined liberally [26, p. 19, Definition 1.2.1], however still excluding contexts
like e.g. [�]+0 without really justifying why. Congruences are then defined
using this notion of context [26, p. 19, Definition 1.2.2], and strong barbed
congruence is no exception [26, p. 59, Definition 2.1.17]. Other notions,
like strong barbed equivalence [26, p. 62, Definition 2.1.20], are shown to
be a non-input congruence [26, p. 63, Lemma 2.1.24], which is a notion
relying on contexts that forbids the slot to occur under an input prefix [26,
p. 62, Definition 2.1.22]. In other words, two notions of contexts and of
congruences co-exist generally in π-calculus, but “[i]t is difficult to give
rational arguments as to why one of these relations is more reasonable
than the other.” [27, p. 245]
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In the distributed π-calculus, contexts are restricted right from the begin-
ning to particular operators [27, Definition 2.6]. Then, relations are defined
to be contextual if they are preserved by static contexts [27, Definition
2.6], which contains only parallel composition with an arbitrary term and
name binding. These contexts also appear as “configuration context” [28,
p. 375] or “harness” in the ambient calculus [29, p. 372]. Static operators
are deemed “sufficient for our purpose” [27, p. 37] and restrictions to static
contexts are implemented “[t]o keep life simple” [27, p. 38], but no further
justification is given.

In the semantic theory for processes, at least in the foundational theory
we would like to discuss below, one difficulty is that the class of formal
theories restricted to “reduction contexts” [21, p. 448] still fall short on
providing a satisfactory “formulation of semantic theories for processes
which does not rely on the notion of observables or convergence”. Hence,
the authors have to furthermore restrict the class of terms to insensitive
terms [21, p. 450] to obtain a notion of generic reduction [21, p. 451] that
allows a satisfactory definition of sound theories [21, p. 452]. Insensitive
terms are essentially the collection of terms that do not interact with con-
texts [21, p. 451, Proposition 3.15], an analogue to λ-calculuus’ genericity
Lemma [13, p. 374, Proposition 14.3.24]. Here, contexts are restricted by
duality: insensitive terms are terms that will not interact with the context
in which they are placed, and that need to be equated by sound theories.

Across calculi, a notion of “closing context”—inspired by λ-calculus [24, p. 85],
and matching the “wrapping” of a snippet—can be found in e.g. typed
versions of the π-calculus [26, p. 479], in mobile ambient [7, p. 134], in
the applied π-calculus [2, p. 7], and in the fusion calculus [30, p. 6]. Also
known as “completing context” [31, p. 466], those contexts are parametric
in a term, the idea being that such a context will “close” the term under
study, making it amenable to tests and comparisons.

Let us try to extract some general principles from this short survey. It seems
that contexts are

1. in appearance given access to the same operators than terms, with the
addition of the slot � operator,

2. sometimes deemed “un-reasonable”, without always a clear justification—
other than technical,

3. shrunken by need, to bypass some of the difficulties they raise, or to
preserve some notions3,

4. sometimes picked by the term itself—typically because the same “wrapping”
cannot be applied to all processes.

3We expand on this comment, taking as an example the “context lemma”, in Appendix A.
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Additionally, in all those cases, contexts are given access to a subset of operators,
or restricted to contexts with particular behavior, but never extended—aside
from �. If we consider that contexts are the main tool to test the equivalence of
processes, then why should testers—or attackers—always have access to fewer
tools than the programmer, and observe only what programmers can observe—i.e.
channel names or termination? This perspective, among other flaws, prevents
the study and formalization of e.g. side-channel attack, which relies precisely
on exploiting different operators and observations to corrupt programs. What
reason is there not to extend the set of tools, of contexts, or simply take it to
be orthogonal? The method we sketch below allows and actually encourages
such nuances, justifies and acknowledges the restrictions we discussed instead of
adding them passing-by, and seems closer to common usage and applications.

5. Processes and Tests – Principles in Principled Developments

5.1. Acknowledging Pre-Existing Distinctions

As in the λ-calculus, most concurrent calculi make a distinction between
open and closed terms. For instance, the distributed π-calculus [27] implements
a distinction between closed terms (called processes [27, p. 14]) and open terms,
based on binding operators (input and recursion).

Most of the time, and since the origin of the calculus of communicating sys-
tems (CCS), the theory starts by considering only programs—“closed behaviour
expression[s], i.e. ones with no free variable” [32, p. 73]—when comparing terms,
as—exactly like in λ-calculus—they correspond to self-sufficient, well-rounded
programs: it is generally agreed upon that open terms should not be released
“into the wild”, as they are not able to remain in control of their internal variables,
and can be subject to undesirable or uncontrolled interferences—exactly like a
Java snippet cannot be compiled on its own, even if it has been wrapped in a
method.

However, in concurrent calculi, the central notions of binders and of variables
have been changing, and still seem today sometimes “up in the air”. For instance,
in the original CCS, restriction was not a binder [32, p. 68], and by “refusing
to admit channels as entities distinct from agents” [33, p. 16] and defining two
different notions of scopes [33, p. 18], everything was set-up to produce a long
and recurring confusion as to what a “closed” term meant in CCS. In the original
definition of π-calculus [34, 35], there is no notion of closed terms, as every
(input) binding on a channel introduces a new and free occurrence of a variable.
However, the language they build upon—ECCS [36]—made this distinction clear,
by separating channel constants and variables.

Once again in an attempt to mimic the “economy” [37, p. 86] of λ-calculus, but
also taking inspiration from the claimed “monotheism” of the actor model [38],
different notions such as values, variables, or channels have been united under
the common terminology of “names”. This is at times identified as a strength, to
obtain a “richer calculus in which values of many kinds may be communicated,
and in which value computations may be freely mixed with communications.”
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[34, p. 20]. However, it seems that a distinction between those notions always
needs to be carefully re-introduced when discussing technically the language [24,
p. 258, Remark 493], extensions to it [2, p. 4] or possible implementations [39,
p. 13][40]. Finally, let us note that extensions of π-calculus can sometimes have
different binders, e.g. making output binders binding in the private π-calculus [41,
p. 113].

In the λ-calculus, being closed is what makes a term ready to be executed
in an external environment. But in concurrent calculi, being a closed term—no
matter how it is defined—is often not enough, as it is routine to exclude e.g.
terms with un-guarded operators like sum [26, p. 416] or recursion [33, p. 166].
However, these operators are sometimes not excluded from the start, even if they
can never be parts of completed terms. The usual strategy [24, Remark 414][33]
is to retain them as long as possible, and to exclude them at the last moment,
when their power cannot be tamed any more to fit the framework or prove the
desired result, such as the preservation of weak bisimulation by all contexts.

In our opinion, the right distinction is not about binders of free variables, but
about the role played by the syntactic objects in the theory. As “being closed” is

1. not always well-defined, or at least changing,

2. sometimes not the only condition,

we would like to use the slightly more generic adjectives complete and incomplete—
wrapped or not, in our Java terminology. Process algebras generally study terms
by

1. completing them if needed,

2. inserting them in an environment that contains a test,

3. executing them,

4. observing them thanks to predicates on the execution (“terminates”, “emit-
ted the barb a”, etc.),

hence constructing equivalences, preorders or metrics [42] on them. Often, the
environment is essentially made of another process composed in parallel with
the one studied, and tweaked to improve the likeliness of observing a particular
behavior: hence, we would like to think of them as tests that the observed
completed process has to pass, justifying the terminology we will be using.

5.2. Our Terminology – Using Different Names For Different Objects

Process Terms are “partial” programs, still under development; sometimes
called “open terms”, they correspond to incomplete terms. They would be
called code fragments, or snippets, in standard programming. They come
with a definition of completion, that transform them into “(closed) terms”,
or completed processes.
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Tests are defined using contexts and observations, and aims at testing completed
processes. They would be main methods calling a library or an API in
standard programming, along with a set of observables.

Instrumentations are obtained by joining together compatible completed
processes and tests. How they are joined is part of their definition. Often
a notion of empty test is provided to obtain a “dummy instrumentation”,
or system. Instrumentations are ready to be executed and observed, and
would correspond to a compiled binary ready to be executed in standard
programming.

In the literature of process algebra, the term “process” is commonly used to
denote these objects—process terms, completed processes and tests—and the
same operator (parallel composition) is used to construct process terms, tests,
and to instrument them together, possibly generating confusion. We believe
this usage comes from a strong desire to keep all layers uniform, using the same
name, operators and rules, but this principle is actually constantly dented (as
discussed in Sect. 4), for reasons we expose below. Before doing so, let us note
that our terminology is close to the one used e.g. in aDpi [27, Chapter 5] or
mobile ambients [43], in bold below:

In aDpi [27, Figure 5.2], a process term that is closed is a process [27,
p. 131], and a located process is a system that can execute. Hence, this
calculus actually offers two orthogonal levels of completion (being closed
and being located), and accounts for instrumentations later on with the
addition of type system and configurations [27, Definition 6.1] that let
the author defines actions-in-context. To perfectly fit our description,
aDpi would need to define systems (completed processes) reduction using
a trivial configuration (test) and action-in-context (instrumentation)
instead of defining its reduction semantics “without test”, but it otherwise
closely matches our description.

In mobile ambients [43, Table 1], a process needs to be placed under an
ambient construct to become a system that can execute. Tests are
formulated in terms of system contexts, a restriction on static contexts
that preserve the closedness of the system, and that comes with the trivial
instrumentation (i.e., “replace the slot with a system”).

5.3. The Design Phases – Separating Tools and Layers

To conculde the proposal, we identify three phases during the design of a
process formalism. We believe those three phases should be carried out after
having decided what the purpose of the formalism would be—since, as surprising
as this may seem, the answer to that question in existing formalisms fluctuated.
For instance, CCS was originally supposed to be a programming and specification
language—an original perspective that was reminded to us by Ilaria Castellani,
who we wish to thank. The specification was supposed to be the program itself,
that would be easy to check for correctness: the goal was to make it “possible to
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describe existing systems, to specify and program new systems, and to argue
mathematically about them, all without leaving the notational framework of
the calculus” [44, p. 1]. This original research project slightly shifted—from
specifying programs to specifying behaviors—, and it is sometimes not clear
what the ultimate goal of the process algebra is: we believe that the purpose of
the formalism should precedes its definition.

1. The first step is to select a set of operators called construction operators,
used by the programmer to write process terms. Those operators should
be expressive, easy to combine, with constraints as light as possible, and
selected with in mind the situation that is being modeled—and not thinking
whether they fare well with not-yet-defined relations, as it is often done
when one chooses to have guarded sum over the internal choice. To ease
their usage, a “meta-syntax” can be used, something that is generally
represented by a structural equivalence. Another interesting approach,
proposed in “the π-calculus, at a distance” [45, p. 45], bypasses the need for
a structural equivalence without losing the flexibility it usually provides.

2. The second step requires to define

(a) a set of testing operators,

(b) a notion of environment—avoiding to use the loaded word “context”—
constructed from those operators, along with instructions on which
types of completed processes can be placed in it, and how to place
them in it,

(c) a set of observables, i.e. a function from completed processes in
environments to a subset of a set of atomic proposition (like “emits
barb a”, “terminates”, “contains recursion operator”, etc.).

3. The last step requires to define

(a) a deployment criteria, explaining what makes a process complete,

(b) an instrumentation criteria, explaining how a complete process can
be placed inside a test,

(c) and an operational semantics that establishes how the whole can be
executed.

The first two criteria should be defined as a series of conditions on the
binding of variables, the presence or absence of some construction operators
at top-level, and even the addition of deployment operators, marking the
process as ready to be deployed in an external environment4. Having a set
of deployment operators that restricts, expands or intersects with the set
of construction operators is perfectly acceptable, and it should enable the
transformation of processes and tests into executable instrumentations.

4Exactly like a Java method header can use keywords—extends, implements, etc.—that
cannot be used in a method body.
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Some of those definitions could be mutually referenced: typically, how to
complete a process is needed to define correct tests, but may not come before
instrumentations are defined, which itself requires a definition of tests.

The important message to take home is that each step uses its own set of
operators and generates its own notion of context—to construct, to test or to
deploy—and that different actors will manipulate those tools—we discussed
for instance who should be in charge of constructing the instrumentation in
Appendix B.

6. A(n other) Theory of Monitors

As a major example, we will relate Francalanza’s monitors [46] to our termi-
nology. Monitors fit our framework for the most part, but there are also some
divergences we want to discuss.

Generally speaking, monitors are pieces of code that run alongside another
program and observes it to enforces e.g. security policy rules or test some of its
properties. Sometimes named “secretaries” [47, p.6], “meta-code” [48] or “edit
automata” [49], this range of tools all share the same key component: they are
tests in our terminology, and are often thought about in those terms. While
they can be interfering or non-interfering with the process they monitor (e.g.,
change its output or observational behavior or not), all monitors are always
thought as being composed in parallel using sometimes a different operator than
the one used by programs5, and as being able to access different functionalities
than programs. In Francalanza’s work, monitors are described from an operator
algebra perspective as running alongside π-calculus processes. We present this
formalism, following closely the most recent presentation [46], to which we refer
if more details or examples are needed.

6.1. Brief Presentation of Existing Theory

We remind of the standard synchronous early π-calculus with name match-
ing [46, Figure 1]:

Syntax We let a, b, c, . . . range over channel names, x, y, z, . . . range over channel
name variables, X,Y, . . . range over process variables, and u, v range over
channel names and name variables.

P,Q := u!v.P (output)

| nil (nil)

| recX.P
(recursion)

| P‖Q (parallel)

| u?x.P (input)

| if u = v thenP elseQ (conditional)

| X (process variable)

| new c.P (scoping)

5“Inlined reference monitors” [50] are to our knowledge the only type of monitors that are
embedded “inside” the code they observe, but they conserve nevertheless a different status
than the code that they observe.
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pOut

I B c!d.P
c!d−−→ P

pIn

I B c?x.P
c?d−−→ P [d/x]

pThn
I B if c = c thenP elseQ

τ−→ P
pEls

I B if c = d thenP elseQ
τ−→ Q

pRec
I B recX.P

τ−→ P [recX.P/X]
I B P

µ−→ P ′
pPar

I B P‖Q µ−→ P ′‖Q

I ∪ {d} B P c!d−−→ P ′ I ∪ {d} B Q c?d−−→ Q′
pCom

I B P‖Q τ−→ P ′‖Q′

I ∪ {d} B P µ−→ P ′ d#µ
pRes

I B new d.P
µ−→ new d.P ′

I ∪ {d} B P c!d−−→ P ′
pOpn

I B new d.P
c!d−−→ P ′

I B P
c!d−−→ P ′ I B Q

c?d−−→ Q′ d#I
pCls

I B P‖Q τ−→ new d.(P ′‖Q′)

Figure 3: Semantics of π-calculus

Semantics The labeled transition system (LTS), defined in Figure 3, produces

judgments of the form I B P
µ−→ P ′, where

1. the set of channel names I is the interface of names shared by the
process and an implicit observer with which the interactions occur,
and it must be s.t. the set of names in P is included in I,

2. P is a closed term, i.e. with no free channel name variable, knowing
that c?x.P binds x in P ,

3. µ ranges over input actions c?d, output actions c!d and a distinguished
silent action τ .

We write o#o′ if the two syntactical objects o and o′ share no free names,
and P [Q′/Q] for the result of the substitution of Q by Q′ in P . We also
omitted the symmetric rules for pPar, pCom and pCls.

A monitor may reach either of two verdicts, detection (X) or termination
(end), denoting respectively success and an inconclusive verdict.

Syntax We let α range over external actions—all actions but τ—o, r range over
names, variables and variable binders, p, q range over patterns—input and
output actions—, and define match(p, α)—which is either undefined, or a
substitution σ—in an usual way [46, Sect. 3].

13



mVer
w

α−→ w

match(p, α) = σ
mPat

p.M
α−→Mσ

M
µ−→M ′

mChL
M +N

µ−→M ′

mRec
recX.M

τ−→M [recX.M/X]

mThn
if c = c thenM elseN

τ−→M

c#d
mEls

if c = d thenM elseN
τ−→ N

Figure 4: Semantics of monitors

I B P
α−→ P ′ M

α−→M ′
iMon

I B P CM
α−→ P ′ CM ′

I B P
τ−→ P ′

iAsyP
I B P CM

τ−→ P ′ CM

I B P
α−→ P ′ M 6α−→ M 6τ−→

iTer
I B P CM

α−→ P ′ C end

M
τ−→M ′

iAsyM
I B P CM

τ−→ P CM ′

Figure 5: Instrumentation semantics of configurations

p, q := o?r (input pattern)

w := X
(detection verdict)

M,N := w (verdict)

| M +N (choice)

| recX.M (recursion)

| o!r (output pattern)

| end (termination verdict)

| p.M (pattern match)

| if u = v thenM elseN (branch)

| X (monitor variable)

Semantics The labeled transition system (LTS) for monitors, defined in Fig-

ure 4, produces judgments of the form M
µ−→ M ′. We omitted the rule

mChR, that can easily being inferred.

A monitored system P C M consists of a process P instrumented with a
monitor M analyzing its external behavior. The instrumentation semantics for
configurations, I B P C M , is given in Figure 5, where M 6α−→ and M 6τ−→ are
used to denote that M cannot reduce.

The study generally looks for a couple of key properties:

• That verdicts are irrevocable [46, Proposition 1], i.e. that a monitor will
not “change its mind” on the result of its analysis.

• That verdict do not interfere [46, Proposition 2], i.e. that a process will
execute the same way regardless of it being “wrapped” and tested in a
configuration or executing on its own.

• The definition and characterization of pre-orders on potential (resp. deter-
ministic) detections [46, Definition 3], that quantifies over some (resp. all)
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traces of configurations.

6.2. How Does the Theory of Monitors Fits Our Frame?

The first (crucial) point to note is that monitors, and not processes, are
tested, as it is on monitors that pre-order are defined, using processes to test
them. Once this “flipping” of terminology is acknowledged, one can observe that
the theory fits pretty closely our frame: process terms (“pre-monitors”) have a
completion mechanism to become processes (typically, a pattern cannot have free
variables [46, Section 3] in a monitor) and are syntactically different from tests
(π-calculus terms). Aside from the conditional and recursion, tests and processes
do not share any constructor, as monitors are shaped like patterns, trees: they do
not have access to parallelism, terminate in a state of success or failure, and have
access to non-deterministic sum and a match operator. The semantics is also
different: while the main execution mechanism of tests represents the passing
of messages (pOut and pIn), monitors mostly proceeds by pattern-matching
(mPat).

The instrumentation mechanism is also formally specified and far from trivial,
as it involves an explicit interface I containing the names shared by the tests
and the observer that acts like a “deployment operator”: it marks that a test
is ready to be used and contains its instructions, explaining how to use it. Not
every test is suited for every monitor—they must agree on the interface—and
their interactions is complex: the test drives the execution of the configuration,
and hence of the monitor, on external actions (iMon and iTer), but they can
proceed independently on internal actions (iAsyp and iAsym), providing a rich
and delicate mechanism to execute configurations.

Last but not least, the completion mechanisms are formally stipulated for all
syntactical objects (tests, monitors and configurations), also thanks to the clear
distinction between channel names and channel name variables. That monitors
can not alter the behavior of their tests is an interesting feature, that is harder
to obtain because of inessential syntactical complications [46, Example 5]. It is
also interesting to note that the monitor preorders and their characterizations do
not impose any additional constraints on the syntactical objects, but re-inforces
the idea that “a proper definition of monitor correctness needs to take into
consideration system instrumentation” [46, p. 25]: a theory of tests or processes
without a solid, technical, definition of their interactions (discussing e.g. whenever
monitors can learn new channel names [46, Section 9.1]) should always be taken
with a pinch of salt. Also, instead of being contrived and simpler, tests “are
usually far more complex than the monitors that analyse them.” [46, p. 25].

This theory could still be technically refined on a couple of aspects to get closer
to our guiding principles. Typically, we believe that the current τ -transitions
of monitors (mRec, mThn and mEls) should be replaced by a structural
congruence: those transitions do not correspond to an interesting action, simply
to some syntactical simplification, and should be treated as such. It could also
be more elegant to close the processes and monitors, and to observe only silent
transitions (that would need to carry a mention of the channel name on which
they took place): a proper reduction semantics for configurations would then
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allow to execute only independent, self-contained, configurations, still letting
processes and monitors access each other internal transitions. As a consequence,
the preorders would not need to quantify over traces [46, Definition 4], since the
configuration could evolve based on the channel names used in the transition, this
quantification could be removed from the predicates pp and pd [46, Definition 3].

7. Further Applications

We propose here some more applications of our framework.

7.1. Re-Framing Existing Issues

Co-defining observations and contexts Originally, the barb was a predi-
cate [23, p. 690], whose definition was purely syntactic. Probably in-
spired by the notion of observer for testing equivalences [51, p. 91], an
alternative definition was made in terms of parallel composition with a
tester process [22, p. 10, Definition 2.1.3]. This illustrates perfectly how
the set of observables and the operators allowed in testing contexts are
inter-dependent, and that tests should always come with a definition of
observable. We believe our proposal could help in clarifying this interplay,
and in opening up the possibility of obtaining a series of “contexts and ob-
servations lemmas” illustrating how certain observations can be simulated
by some operators, or reciprocally.

Justifying the “silent” transition’s treatment It is routine to define rela-
tions (often called “weak”) that ignore silent (a.k.a. τ -) transitions, seen
as “internal”. This sort of transition was dubbed “unobservable internal
activity” [27, p. 6] and sometimes opposed to “externally observable ac-
tions” [52, p. 230]. While we agree that “[t]his abstraction from internal
differences is essential for any tractable theory of processes” [33, p. 3], we
would also like to stress that both can and should be accommodated, and
that “internal” transition should be treated as invisible to the user, but
should still be accessible to the programmer when they are running their
own tests.

The question “to what extent should one identify processes differing only in
their internal or silent actions?” [53, p. 6] is sometimes asked, and discussed
as if it was a property of the process algebra and not something that can be
internally tuned when needed. We argue that the answer to that question
is “it depends who is asking!”: from a user perspective, internal actions
should not be observed, but it makes sense to let a programmer observe
them when testing to help in deciding which process to prefer based on
information not available to users.

Letting multiple comparisions co-exist The discussion on τ -transitions res-
onates with a long debate on which notion of behavioral relation is the most
“reasonable”, and—still recently—a textbook can conclude a brief overview
of this issue by “hop[ing] that [they] have provided enough information to
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[their] readers so that they can draw their own conclusions on this long-
standing debate” [52, p. 160]. Sometimes, a similar question is phrased
in terms of choosing the right level of abstraction to obtain meaningful
language comparisons [54, Section 3]. We firmly believe that the best
answer to both questions is to acknowledge that different relations and
comparisons tools match different needs, and that there is no “one size fits
all” answer for the needs of all the variety of testers. Of course, comparing
multiple relations is an interesting and needed task [55, 56], but one should
also state that multiple comparison tools can and should co-exist, and such
vision will be encapsulated by the division we are proposing.

Embracing a feared distinction The distinction between our notions of pro-
cesses and tests is rampant in the literature, but too often feared, as if
it was a parenthesis that needed to be closed to restore some supposedly
required purity and uniformity of the syntax. A good example is probably
given by mobile ambients [43]. The authors start with a two-level syntax
that distinguishes between processes and systems [43, p. 966]. Processes
have access to strictly more constructors than systems [43, p. 967, Ta-
ble 1], that are supposed to hide the threads of computation [43, p. 965].
A notion of system context is then introduced—as a restriction of arbi-
trary contexts—and discussed, and two different ways for relations to be
preserved by context are defined [43, p. 969, Definiton 2.2].

The authors even extend further the syntax for processes with a special
◦ operator [43, p. 971, Definition 3.1], and note that the equivalences
studied will not consider this additional constructor: we can see at work
the distinction we sketched, where operators are added and removed based
on different needs, and where the language needs not to be monolithic.
The authors furthermore introduce two different reduction barbed congru-
ences [43, p. 969, Definition 2.4]—one for systems, and one for processes,
with different notions of contexts—but later on prove that they coincide
on systems [43, p. 989, Theorem 6.10]. It seems to us that the distinction
between processes and systems was essentially introduced for technical
reasons, but that re-unifying the syntax—or at least prove that systems
do not do more than processes—was a clear goal right from the start.
We believe it would have been fruitful to embrace this distinction in a
framework similar to the one we sketched: while retaining the interesting
results already proven, maintaining this two-level syntax would allow to
make a clearer distinction between the user’s and the programmer’s roles
and interests, and to assert that, sometimes, systems can and should do
more than processes—for instance, interacting with users!—, and can be
compared using different tools.

Keeping on extending contexts We are not the first to argue that construc-
tors can and should be added to calculi to access better discriminatory
power, but without necessarily changing the “original” language. The
mismatch operator, for instance, has a similar feeling: “reasonable” testing
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equivalences [57, p. 280] require it, and multiple languages [58, p. 24] use it
to provide finer-grained equivalences. For technical reasons [26, p. 13], this
operator is generally not part of the “core” of π-calculus, but resurfaces
by need to obtain better equivalences: we defend a liberal use of this
fruitful technics, by making a clear separation between the construction
operators—added for their expressivity—and the testing operators—that
improve the testing capacities.

Treating extensions as different completions It would benefit their study
and usage to consider different extensions of processes algebras as different
completion strategies for the same construction operators. For instance,
reversible [59] or timed [60] extensions of CCS could be seen as two
completion strategies—different conditions for a process term to become
a process—for the same class of process term, inspired from the usual
CCS syntax [24, Chapter 28.1]. Those completion strategies would be
suited for different needs, as one could e.g. complete a CCS process term
as a RCCS [61] process to test for relations such as hereditary history-
preserving bisimulation [62], and then complete it with time markers to
obtain a safety-critical process, with possibly a different way of constructing
instrumentation and a different reduction semantics. This would correspond
to having multiple compilation, or deployment, strategies, based on the
need, similar to “debug” and “real-time”, versions of the same piece of
software. We think also of Debian’s DebugPackage, enabling generation
of stack traces for any package, or of the CONFIG PREEMPT RT patch that
converts a kernel into a real-time micro-kernel: both uses the same source
code as their “casual” versions.

Obtaining fine-grained typing systems The development of typing systems
for concurrent programming languages is a notoriously difficult topic. Some
results in π-calculus have been solidified [26, Part III], but diverse difficulties
remain. Among them, the co-existence of multiple calculi for e.g. session
types [63], the difficulty to tie them precisely to other type systems, such
as Linear Logic [64], and the doubts about the adaptation of the “proof-
as-program” paradigm in a concurrent setting [65], make this problem
active and diverse. The ultimate goal seems to find a typing system that
would accommodate different uses and scenarios that are not necessarily
comparable.

Using our proposal, one could imagine easing this process by developing
two different typing systems, one aimed at programmers—to track bugs
and produce meaningful error messages—and one aimed at users—to track
security leaks or perform user-input validation. Once again, having a
system developed along the layers we recommend would allow to have e.g.
a type system for process terms only, and to erase the information when
completing the process, so that the typing discipline would be enforced
only when the program is being developed, but not executed. This is
similar to arrays of parameterized types in Java [66, pp. 253–258], that

18

https://wiki.debian.org/DebugPackage
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch


∅

◦◦

◦

ab

a b

∅

◦◦

◦ ◦

ab

a b

Figure 6: Labeled Configuration Structures

checks the typing discipline at compilation time, but not at run-time.

We hope this series of examples illustrates how our proposal could clarify
pre-existing distinctions. In the next sections we show how additional progresses
could be made using it, e.g. in CCS, π-calculus, and security.

7.2. Applications to CCS

Testing for auto-concurrency Auto-concurrency (a.k.a. auto-parallelism) is
when a system has two different transitions—leading to different states—
labeled with the same action [67, p. 391, Definition 5]. Systems with
auto-concurrency are sometimes excluded as non-valid terms [68, p. 155]
or simply not considered in particular models [69, p. 531], as the definition
of bisimulation is problematic for them.

Consider e.g. the labeled configuration structures (a.k.a. stable family [70,
Section 3.1]) in Figure 6, where the label of the event executed is on the
edge and configurations are represented with ◦. Non-interleaving models of
concurrency [71] distinguish between them, as “true concurrency models”
would.

Some forms of “back-and-forth-bisimulations” cannot discriminate between
them if a = b [72]. While not being able to distinguish between those
two terms may make sense from an external—user’s—point of view, we
argue that a programmer should have access to an internal mechanism
that could answer the question “Can this process perform two barbs with
the same label at the same time?”. Such an observation—possibly coupled
with a testing operator—would allow to distinguish between e.g. !a.P |!a.P
and !a.P , that are generally taken to be bisimilar, and would re-integrate
auto-concurrent processes—that are, after all, unjustifiably excluded—in
the realm of comparable processes.

Representing man-in-the-middle One could add to the testing operators
an operator ∇a.P , which would forbid P to act silently on channel a. This
novel operator would add the possibility for the environment to “spy” on
a determined channel, as if the environment was controlling (part of) the
router of the tested system. One could then reduce “normally” in a context
∇a[�] if the channel is still secure:

∇a(b.Q | b̄.P )→τ ∇a(Q | P ) (If a 6= b)

19



But in the case where a = b, the environment could intercept the com-
munication and then decide to forward, prevent, or alter it. Adding this
operator to the set of testing operators would for instance open up the
possibility of interpreting νa(P ) as an operation securing the channel a in
P , enabling the study of relations ∼ that could include e.g.

∇a(νa(P |Q) ∼ ∇a(νb(P [a/b]|Q[a/b]))
(For b not in the free names of P nor Q)

νa(∇a(P |Q)) ∼ ∇a(P |Q) (Uselessness of securing a hacked channel)

While the first rule enforces that, once secured, channel names are α-
equivalent (the process can decide to migrate to a different channel without
being spied on), the second illustrates that, once a channel is tapped, a
process cannot retrieve confidentiality on it.

Improving reversible calculi Reversible CCS (RCCS) [61] and CCS with
keys (CCSK) [73] are two extensions to CCS aiming at formalizing reversible
concurrent computation, that actually are the two faces of the same
coin [59]. However, as a recent survey on the state-of-the-art in reversible
computation puts it bluntly, “[u]nderstanding which notions of behavioural
equivalences are suitable for reversible process calculi is a non-trivial,
and still open, problem” [74, p. 15]. Two recent studies [75, 76] tried to
overcome this shortcoming, starting by defining contexts, but they came
to exactly opposite conclusions: while the RCCS-inspired system seems
to provide definitive evidence that no relation can be a congruence if the
context can change the history of the process [75, Theorem 2], the CCSK
approach came to the conclusion that a particular barbed bisimilarity was
a congruence [76, Corollary 5.12]. Does the difference rest only on the
definition of context, or is there a more subtle distinction at work? It is
our hope that the approach sketched here could help to solve this mystery,
by studying the difference between those instrumentations.

7.3. Applications to the π-Calculus

In the π-calculus, tests must be instantiating contexts (in the sense that
the process term needs to be either already closed, or closed by the context),
and instantiating contexts can use only construction operators, and hence are
construction contexts. This situation corresponds to Situation A in Figure 7.

We believe the picture could be much more general, with tests having access
to more constructors, and not needing to be instantiating—in the sense that
completion can be different from closedness—, so that we would obtain Situation
B in Figure 7. While we believe this remark applies to most of the process
algebras we have discussed so far, it is particularly salient in π-calculus, where
the match and mismatch operators have been used “to internalize a lot of
meta theory” [77, p. 57], being added to the construction operators while most
authors seem to agree that they would prefer not to add it to the internals
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Situation A
Construction context
Instantiating context

Tests

Situation B
Construction context
Instantiating context

Tests

Figure 7: Opening up the testing capacities of π-calculus

of the language6. It should also be noted that the mismatch operator—in its
“intuitionistic” version—furthermore “tried to escape the realm of instantiating
contexts” by being tightly connected [79] to quasi-open bissimilarities [80, p. 300,
Definition 6], which is a subtle variation on how substitutions can be applied by
context to the terms being tested.

Having a notion of completion not requiring closedness could be useful when
representing distributed programming, where “one often wants to send a piece
of code to a remote site and execute it there. [. . . ] [T]his feature will greatly
enhance the expressive power of distributed programming[ by ] send[ing] an open
term and to make the necessary binding at the remote site.” [15, p. 250]. We
believe that maintaining the possibility of testing “partially closed”—but still
complete—terms would enable a more theoretical understanding of distributed
programming and remote compilation.

In the distributed π-calculus, one could explore the possible differences
between two parallelisms: between threads in the same process—in the Unix
sense—and between units of computation. Such a distinction could be rephrased
thanks to two parallel operators, one on process terms and the other on processes.
Such a distinction would allow to observationally distinguish e.g. the execution
of a program with two threads on a dual-core computer and the execution of
two single-thread programs on two single-core computers.

6To be more precise: while “most occurences of matching can be encoded by parallel
composition [. . . ,] mismatching cannot be encoded in the original π-calculus” [78, p. 526],
which makes it somehow suspicious.
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7.4. Applications to the Formal Study of Security

Separating equivalences Semantical approaches to security revealed multiple
small gaps that are hard to explain or solve with usual notions of contexts
and equivalences. For instance, the study of equivalence properties led
to distinguish between semantics where all the communications have to
be made via the environment (i.e., the attacker) and semantics where
communications inside the process and communications between the process
and its environment are treated differently. The (surprising) result [81] is
that while both treatments coincide for reachability properties, they are
incomparable for indistinguishability properties. The resulting classical,
private and eavesdropping semantics each yield their own may-testing
and observational equivalences [82, Section 4.1.6], that could be elegantly
captured by our frame as different instrumentations.

Studying cryptographic protocols The vibrant field of secure compilation
made a clear-cut distinction between “target language contexts” repre-
senting adversarial code and programmers’ “source context” to explore
property preservation of programs [83]. This perspective was already par-
tially at play in the spi calculus for cryptographic protocols [58, p. 1],
where the attacker is represented as the “environment of a protocol”. We
believe that both approaches—coming from the secure compilation, from
the concurrency community, but also from other fields—concur to the same
observation that the environment—formally captured by a particular no-
tion of context—deserves an explicit and technical study to model different
interactions with processes, and need to be detached from construction
contexts. This could make “the formalization of attackers as contexts [. . . ]
continue to play a role in the analysis of security protocols” [2, p. 35].

Recent progresses in the field of verification of cryptographic protocols [82]
hinted in this direction as well. By taking “[t]he notion of test [to] be relative
to an environment” [82, p. 12], a formal development involving “frames” [82,
Definition 2.3] can emerge and give flesh to some ideas expressed in our
proposal. It should be noted that this work also “enrich[. . . ] processes
with a success construct” [82, p. 12], that cannot be used to construct
process terms, to construct “experiments”.

8. Concluding Remarks

We would like to stress that our proposal resonates with previous comments,
and should not be treated as an isolated historical perspective that will have no
impact on the future.

In the study of process algebras, in addition to the numerous hints toward
our formalism that we already discussed, there are at least two instances when
the power of the “testing suite” was explicitly discussed [84, Remark 5.2.21]. In a
1981 article, it is assumed that “by varying the ambiant (‘weather’) conditions, an
experimenter” [85, p. 32] can observe and discriminate better than a simple user
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could. Originally, this idea seemed to encapsulate two orthogonal dimensions:
the first was that the tester could execute the process any number of times,
something that would now be represented by the addition of the replication
operator ! to the set of testing operators. The second was that the tester could
enumerate all possible non-deterministic transitions of the process—which is
something closer to specifying the instrumentation, something formally captured
by e.g. “a language for testing concurrent processes” [86, p. 1] that typically
included a termination operator and probabilistic features not available to the
programmer.

Before daring writing such a lengthy, non-technical paper, we tried to conceive
a technical construction that could convey our ideas. In particular we tried to
build a syntactic (even categorical) meta-theory of process terms, processes, tests
and instrumentations. We wanted to define congruences in this meta-theory, and
to answer the following question: what could be the minimal requirements on
contexts and operators to prove a generic form of context lemma for concurrent
languages? However, as the technical work unfolded, we realized that the
definitions of contexts, observations, and operators, were so deeply interwoven
that it was nearly impossible to extract any general or useful principle. This
also suggests that context lemmas are often fit for particular process algebras
by chance, and dependent intrinsically of the language considered, for no deep
reasons: this is discussed and argued in more details in Appendix A.

This was also liberating, as all the nuances of languages we had been fighting
against started to form a regular pattern: every single language we considered
exhibited (at least parts of) the structure we sketched in the present proposal.
Furthermore, our framework was a good lens to read and answer some of
the un-spoken questions suggested in the margin or the footnotes—but rarely
upfront—of the multiple references we consulted. Even without mathematical
proofs, we consider this contribution a good way of stirring the community, and
to question the traditional wisdom.

It is a common trope to observe the immense variety of process calculi, and to
sometimes wish there could be a common formalism to capture them all—to this
end, the π-calculus is often considered the best candidate. Acknowledging this
diversity is already being one step ahead of the λ-calculus—that keeps forgetting
that there is more than one λ-calculus, depending on the evaluation strategy
and on features such as sharing [87]—and this proposal encourages to push
the decomposition into smaller languages even further, as well as it encourages
to see whole theories as simple “completion” of standard languages. As we
defended, breaking the monolithic status of contextwill actually make the theory
and presentation follow more closely the technical developments, and liberate
from the goal of having to find the process algebra with its unique observation
technique that would capture all possible needs.
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Appendix A. About Context Lemmas – How Contexts Are Some-
times Shrunken by Need

What is generally refereed to as the context lemma7 is actually a series of
results stating that considering all the operators when constructing the context
for a congruence may not be needed. For instance, it is equivalent to define
the barbed congruence [26, p. 95, Definition 2.4.5] as the closure of barbed
bisimilarity under all contexts, or only under contexts of the form [�]σ | P for
all substitution σ and term P . In its first version [89, p. 432, Lemma 5.2.2], this
lemma had additional requirements e.g. on sorting contexts, but the core idea
is always the same: “there is no need to consider all contexts to determine if a
relation is a congruence, you can consider only contexts of a particular form”.

The “flip side” of the context lemma is what we would like to call the “anti-
context pragmatism”: whenever a particular type of operator or context prevents
a relation from being a congruence, it is tempting to simply exclude it, and
often done. For instance, contexts like [�] + 0 are routinely removed—as we
mentioned in Sect. 4—to define the barbed congruence of π-calculus, or contexts
are restricted to what is called harnesses in the mobile ambients calculus [29]
before proving such results. As strong bisimulation [25, p. 514, Definition 1]
is not preserved by input prefix [25, p. 515, Proposition 4] but is by all the
other operators, it is sometimes tempting to simply remove input prefix from
the set of constructors allowed at top-level in contexts, which is what non-input
contexts [26, p. 62, Definition 2.1.22] do, and then to establish a context lemma
for this limited notion of context. Another way of convincing oneself that context
lemmas use specific features of languages, in a narrow sense, and that they may
not be the cornerstone they sometimes seem to be, is to remark that no context
lemma can exist in the “Situation B” of Figure B.8 [26, p. 117], but that this
did not prevent from studying those type of relations.

Taken together, those two remarks produce a strange impression: while
it is mathematically elegant and interesting to prove that weaker conditions
are enough to satisfy an interesting property, it seems to us that this result is
sometimes “forced” into the process algebra by having ahead of time excluded
all the construction operators that would not fit, hence producing a result that is
not only weaker, but also somehow artificial, or even tautological. Furthermore
the criteria of “not adding any discriminating power” should not be a positive
criterion when deciding if a testing context belongs to the algebra: on the
opposite, one would want contexts to increase the discriminating power—as
for the mismatch operator, mentioned in Sect. 7.1—and not to “conform” to

7At least, in process algebra, as the same name is used with a different meaning in e.g.
λ-calculus [88, p. 6].

24



what some of the construction operators (typically, substitution and parallel
composition) have already decided.

Context lemmas seem to embrace an uncanny perspective: instead of being
used to prove properties about tests more easily, they should be considered
from the perspective of the ease of use of testing systems. Stated differently,
we believe that the set of testing operators should come first, and then then, if
the language designer wishes to add operators to ease the testers’ life, they can
do so providing they obtain a context lemma proving that those operators do
not alter the original testing capacities. Once again, varying the testing suite is
perfectly acceptable, but once fixed, the context lemma is simply present to show
that adding some testing operators is innocent, that it will simply make testing
certain properties easier.

Appendix B. When Should Contexts Come into Play?

The interesting question of when to use contexts when testing terms [26,
pp. 116–117, Section 2.4.4] raises a technical question that is put under a different
perspective by our analysis. Essentially, the question is whether the congruences
under study should being defined as congruences (e.g. reduction-closed barbed
congruence [26, p. 116]), or being defined in two steps, i.e. as the contextual
closure of a pre-existing relation (e.g. strong barbed congruence [26, p. 61,
Definition 2.1.17], which is the contextual closure of strong barbed bisimilarity [26,
p. 57, Definition 2.1.7])?

Indeed, bisimulations can be presented as an “interaction game” [90] generally
played as

1. Pick an environment for both terms (i.e., complete them, then embed them
the same way in the same testing environment),

2. Have them “play” (i.e. have them try to match each other’s step).

But a more dynamic version of the game let picking an environment be part
of the game, so that each process can not only pick the next step, but also in
which environment it needs to be performed. This version of the game, called
“dynamic observational congruence” [91], provides a better software modularity
and reusability, as it allows to study the similarity of terms that can be re-
configured on the fly. Embedding the contexts in the definitions of the relations is
a strategy that was also used to obtain behavioral characterization of theories [21,
p. 455, Proposition 3.24], and that corresponds to open bisimilarities [92, p. 77,
Proposition 3.12]

Those two approaches have been extensively compared and studied—still
are [2, p. 24]—but to our knowledge they rarely co-exist, as if one had to take
a side at the early stage of the language design, instead of letting the tester
decide later on which approach is best suited for what they wish to observe. We
argue that both approaches are equally valid, provided we acknowledge they play
different roles.
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Situation A

Process Term

Write

Process

Complete

Test

Instrumentation

Compare

Programmer Tester

Situation B

Process Term

Write

Process

Complete

Test

Instrumentation

Compare

Programmer Tester

Figure B.8: Distinguishing between divisions of labor

This question of when are the process terms completed? can be rephrased as
what is it that you are trying to observe?, or even who is completing them? : is the
completion provided by the programmer, once and for all, or is the tester allowed
to explore different completions and to change them as the tests unfold? Looking
back at our Java example from Sect. 2, this corresponds to letting the tester
repeatedly tweak e.g. the parameter or return type of the wrapping from int to
long, allowing them to have finer comparisons between snippets. In this frame,
moving from the static definition of congruence—how the instrumentation will
be obtained is agreed upon and cannot be changed, the tester can only change
the nature of the test—to a dynamic one—where the tester can change the
completion, how the instrumentation is obtained and the test repeatedly—would
corresponds to going from Situation A to Situation B in Figure B.8.

This illustrates two aspects worth highlighting:

1. Playing on the variation “should I complete the process terms before or
during their comparison?” is not simply a technical question, but reflects
a choice between two different situations equally interesting.
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2. This choice can appeal to different notions of process terms, completions,
instrumentation and tests: for instance, while completing a process term
before testing it (Situation A) may indeed be needed when the environment
represents an external deployment platform, it makes less sense if we think
of the environment as part of the development workflow, in charge of
providing feedback to the programmer or as a powerful attacker than can
manipulate the conditions in which the process is executed (Situation
B)—including how its instrumentation is obtained.

If completion is seen as compilation, this opens up the possibility of studying how
the bindings performed by the user, on their particular set-up, during a remote
compilation, can alter a program. One can then compare different relations—
some comparing source code, some comparing binaries—to get a better, fuller,
picture of the program.
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