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Energy transport in quantum many-body systems with well defined quasiparticles has recently
attracted interest across different fields, including out of equilibrium conformal field theories, one
dimensional quantum lattice models and holographic matter. Here we study energy transport be-
tween strange quantum baths without quasiparticles, made by two Sachdev-Ye-Kitaev (SYK) models
at temperatures TL 6= TR and connected by a Fermi-Liquid system. We obtain an exact expression
for the nonequilibrium energy current, valid in the limit of large bath and system size and for any
system-bath coupling V . We show that the peculiar criticality of the SYK baths has direct con-
sequences on the thermal conductance, which above a temperature T ∗(V ) ∼ V 4 is parametrically
enhanced with respect to the linear-T behavior expected in systems with quasiparticles. Interest-
ingly, below T ∗(V ) the linear thermal conductance behavior is restored, yet transport is not due
to quasiparticles. Rather the system gets strongly renormalized by the strange bath and becomes
Non-Fermi-Liquid and maximally chaotic. Finally, we discuss the full nonequilibrium energy current
and show that its form is compatible with the structure J = Φ(TL)− Φ(TR), with Φ(T ) ∼ T γ and
power law crossing over from γ = 3/2 to γ = 2 below T ∗.

Nonequilibrium heat and energy transport phenom-
ena in strongly interacting quantum matter are attract-
ing interest across condensed matter, atomic physics,
statistical mechanics and high-energy physics. From
one side new experimental platforms to explore quan-
tum heat transport in mesoscopic systems [1], ultracold
atomic gases [2] or strongly correlated quantum materi-
als [3, 4] have raised new interest on this topic. In par-
allel, fresh theoretical understanding on quantum many-
body systems far from equilibrium has brought forward
new results on energy transport and surprising univer-
salities [5, 6]. A well established paradigm concerns
systems in which energy transport is due to well de-
fined quasiparticles such as mesoscopic systems made
by ballistic channels, leading to the quantum of ther-
mal conductance recently measured experimentally [7].
For one dimensional integrable quantum many-body sys-
tems, where quasiparticles scatter elastically, several re-
sults have been obtained concerning linear response en-
ergy transport, both in quantum lattice models [8] and in
Luttinger Liquids [9, 10] as well as on the full nonequi-
librium energy current [11–14]. The latter was found
to display a universal form, predicted by out of equilib-
rium conformal field theories and related to the Stefan-
Boltzmann law [5, 15, 16]. Deviations due to irrelevant
operators have been also actively discussed [12, 17].

The general transport behavior of strongly coupled
quantum matter which lacks any quasiparticle is on the
other hand much less understood. The Sachdev-Ye-
Kitaev (SYK) model [18–20] has emerged in recent years
as paradigmatic model and building block for strange
metals and Non-Fermi Liquids (NFLs) [21–25], featuring
a peculiar criticality associated to an emergent confor-
mal invariance and which leads to maximal chaos [26, 27].
Understanding transport properties of models in the SYK

Figure 1: Sketch of the setup: two SYK models in equi-
librium at different temperatures TL 6= TR are connected
through a Fermi Liquid dot with random all to all couplings.

family and their crossover to more conventional Fermi
Liquid (FL) behavior can open new windows in our un-
derstanding of exotic phases of matter such as planckian
metals [24, 28].

In this Letter we study the nonequilibrium energy
transport between two maximally chaotic reservoirs, de-
scribed by the SYK model, in equilibrium at different
temperatures and connected by tunnel coupling to a FL
quantum dot. We note that in the literature the in-
terest has been focused on the study of energy trans-
port and thermal conductivity of SYK-like systems cou-
pled to FL contacts (leads) [29–31] or in arrays of SYK
dots [21, 29, 32–34]. Here instead we discuss the role
of interactions and maximal chaos in the reservoirs and
compare it to the case in which well defined quasiparti-
cles are present both in the system and in the environ-
ments. We derive an exact formula for the energy current
through this system which takes the form of a gener-
alised Meir-Wingreen formula [35] for interacting reser-
voirs. We discuss the linear transport regime and show
how the strange metal nature of the bath leaves clear
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fingerprints in the thermal conductance, which is para-
metrically enhanced by a weak coupling V to the SYK
environment and at low temperature crosses over to a lin-
ear temperature scaling. Interestingly we show that the
system at low temperature is not a FL, despite the linear
thermal conductance, but rather is strongly renormalised
by the strange quantum bath, leading to anomalous spec-
tral function and maximal chaos. Furthermore, we com-
pute the full out of equilibrium energy current and pro-
vide evidence that it takes the form J = Φ(TL)−Φ(TR),
with Φ(T ) = T γ and a power-law exponent crossing over
from γ = 3/2 to γ = 2, as the temperature goes below a
crossover scale T ∗(V ) ∼ V 4.
SYK Thermal Transport Setup — We consider the

transport setup represented in Fig. (1) where two sets
of M randomly interacting Majorana fermions ψαa (a =
1, · · · ,M , α = L,R) described by the SYK4 model in
equilibrium at temperatures TL, TR, are suddenly con-
nected by an island made of N non-interacting Majo-
rana fermions χi (i = 1, · · · , N) with random hoppings,
described by the SYK2 model. The total Hamiltonian is

H =
∑

α=L,R

Hα
4 +HS +

∑
α=L,R

HSα
(1)

where Hα
4 with α = L/R describes the left/right SYK4

reservoirs with Hamiltonian

Hα
4 = − 1

4!

M∑
a,b,c,d=1

Jabcd ψ
α
aψ

α
b ψ

α
c ψ

α
d (2)

HS describes the island of non-interacting Majorana
fermions with SYK2 Hamiltonian

HS =
i

2

N∑
i,j=1

Γij χiχj (3)

and the remaining terms describe a linear coupling be-
tween reservoir and island

HSα = i

N∑
i=1

M∑
a=1

Via χiψ
α
a (4)

The couplings entering the Hamiltonian, Jabcd,Γij , Via
are all independent Gaussian random variables with zero
mean and variance respectively J2

abcd = 3!J2

M3 , V 2
ia = V 2

M

and Γ2
ij = Γ2

N . We consider the two reservoirs to be
identical and equally coupled to the system and set
JL = JR = J and VL = VR = V in the following. We
emphasize that the choice of HS to be non-interacting is
made for the sake of highlighting the transport anomalies
due to the interacting and maximally chaotic reservoirs,
but can be relaxed as we will discuss later on. Finally, we
will compare this transport setting to the more conven-
tional case of FL reservoirs described by the SYK2 model,
Hα

2 = i
2

∑M
a,b=1 Jab ψ

α
aψ

α
b , where one expects ballistic en-

ergy transport due to quasiparticles. We note that in the

literature related models have appeared discussing the
effect of coupling one (or multiple) non-interacting bath
to the SYK4 model and also studying transport [36–40].
The model is exactly solvable using Keldysh techniques
in the limit N,M → ∞ at fixed p ≡ N/M (see Sup-
plementary Material [41]). Here we will focus on the
energy transport, namely on the stationary state current
that sets at long times through the two reservoirs when
TL 6= TR.

A Formula for the Energy Current - Despite our model
is fully interacting, the exact solvablity of the SYK4

model allows us to obtain an exact formula for the energy
current flowing from one reservoir to the other. In partic-
ular using Keldysh techniques, we can compute the cur-
rent Jα = Ėα(t) = i〈[H,Hα]〉(t) from the lead α = L,R
where 〈· · · 〉 is the average over the Keldysh action while
the overline represents average over all disordered cou-
plings. In the nonequilibrium steady-state the energy
current between the two reservoirs J ≡ (JL−JR)/2 can
be written as [41]

J = −NV
2

2

∫
dω

2π
ω
(
G<L (ω)−G<R(ω)

)
G>S (ω) (5)

where G<α (ω) and G>S (ω) are, respectively, the lesser and
greater components of the Green’s function for fermions
of the bath α and of the system [41].

Several remarks are in order concerning Eq. (5), which
is one of our main result. First, the expression for the
energy current in Eq.(5) is an exact result in the large
N,M limit, at fixed ratio p = N/M , and it is non-
perturbative in the system-bath coupling V . In this re-
spect the Green’s functions entering the energy current
J are those fully renormalized by the system-bath inter-
action [41]. The structure of Eq. (5) is reminiscent of
the Meir-Wingreen formula usually describing transport
between two non-interacting reservoirs connected by an
interacting intermediate region [1, 35]. This analogy be-
comes more transparent in the limit p � 1, correspond-
ing to a bath which is parametrically larger than the sys-
tem, as we are going to consider here. With respect to
the Meir-Wingreen formula, our result can account for
fully interacting and maximally chaotic reservoirs, lin-
early coupled to a central system. Furthermore we can
show that in fact Eq. (5) holds with much more gener-
ality, being valid both when reservoirs and systems are
non-interacting Majorana fermions with SYK2 Hamilto-
nian and in presence of random qB−body interactions of
the SYK type in both system and reservoirs [41].

Linear Energy Transport through Strange Quantum
Baths - We start our discussion of energy transport from
the linear regime, corresponding to two temperatures dif-
fering by a small amount ∆T → 0, i.e. TL,R = T±∆T/2.
In this case from Eq. (5) we can obtain the thermal con-
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Figure 2: Linear Thermal conductance G(T ) at weak (top
panel) and strong (bottom panel) system-bath coupling, for
both conventional SYK2 corresponding to qB = 2 and strange
quantum bath corresponding to qB = 4.

ductance G(T ) ≡ J /∆T as

G(T ) =
NV 2

2

∫
dω

2π
ω AeqS (ω)feq(−ω)

∂

∂T

(
AeqB (ω)feq(ω)

)
(6)

In this expression, all quantities are evaluated at thermal
equilibrium with temperature T . In particular AeqB , A

eq
S

are the equilibrium spectral density of the bath and the
system coupled to it, which can be obtained numerically
by solving a Dyson equation [41], while feq(ω) is the equi-
librium Fermi-Dirac distribution. We note that in the
limit p� 1 that we consider here the system is strongly
renormalised by the bath, which instead is not affected by
the feedback of the system since its size is parametrically
larger.

In Fig. 2 we plot the thermal conductance G(T ) as
a function of temperature, for both the SYK2 and the
SYK4 baths and for two different values of the system-
bath coupling V . We first note that for a FL bath such as
SYK2 the conductance shows a linear scaling with tem-
perature, independently on the value of V (see top and
bottom panels, for qB = 2). This result is expected for

gapless systems with well defined quasiparticles [1] and
can be obtained from Eq. (6) by considering that in the
low-energy limit ω, T � J the system spectral density
becomes flat AeqS (ω) ' 2/Γ̃ but with a modified coupling
constant Γ̃ [41], so that we obtain after re-introducing
the physical dimensions and writing explicitly ~ and kB ,

G(T ) = N
V 2

Γ̃J

π2k2
B

3h
T = N

V 2

Γ̃J
GQ (qB = 2) (7)

where GQ =
π2k2B

3h T is the quantum of thermal conduc-
tance which corresponds to ballistic transport i.e a proba-
bility of transmission across the channel equal to 1. Thus
we can interpret the factor V 2/(Γ̃J) as a typical proba-
bility of transmission of an energy carrier from the left
reservoir to the right reservoir.

We now turn to the interacting SYK4 reservoirs for
which, on the contrary, the thermal conductance G(T )
shows a non-trivial dependence on the system-bath cou-
pling V . In particular, as we see in Fig. 2 (top panel,
for qB = 4), for weak coupling V/J = 0.05 and low-
to-intermediate temperatures the thermal conductance
shows a

√
T scaling, i.e. a strange quantum bath leads

to an enhanced thermal conductance with respect to a
non-interacting bath of quasiparticles.

We can understand the origin of this effect by consid-
ering the structure of bath and system spectral functions
in the low-frequency conformal limit ω, T � J . In fact
we know that for the SYK4 baths the spectral density is
peaked at the origin and is given by the expression

AeqB (ω) = 2
( π
J2

)1/4 1√
2πT

Re
(

Γ
(

1
4 −

iω
2πT

)
Γ
(

3
4 −

iω
2πT

)) (8)

where Γ(z) is the gamma function and we note that the
bath shows quantum critical scaling ω/T . When the tun-
nel coupling V is weak the spectral density of the system
remains close to the isolated one, at least for not too low
temperatures, and the Dyson equation can be solved per-
turbatively in powers of V 2/Γ2. As the energy current
has an overall V 2 factor we can keep the spectral den-
sity of the system at order 0 in V 2/Γ2, so AeqS ' 2/Γ.
Plugging this ansatz and Eq. (8) in the expression for
the conductance we get up to a numerical prefactor [41]

G(T ) ∼ N V 2

Γ
√
J

√
T (qB = 4) (9)

Similar scaling have been reported for linear thermal
transport of an SYK4 model coupled to FL baths [30].
We emphasize here that the anomalous temperature scal-
ing is a direct consequence of the strange metal nature
of the two reservoirs, whose enhanced density of states
leads to an increased thermal conductance as compared
to the non-interacting SYK2 case, i.e. G4G2 ∼

√
J
T � 1.

The parametrically large enhancement in the ther-
mal conductance does not however survive up to strong
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Figure 3: Transport phase diagram as a function of tempera-
ture T and system-bath coupling V . Above the crossover tem-
perature T ∗(V ) = V 4/(Γ2J) the thermal conductance G(T )

is enhanced for the SYK4 bath through the
√
T scaling, while

at low temperatures or strong-coupling the linear behavior is
restored.

system-bath couplings, as we see in Fig. (2) (bottom
panel, for qB = 4) where for V/J = 0.5 the thermal
conductance crosses over to a linear temperature scal-
ing. To see how this comes about we note that for larger
couplings V the spectral function of the system becomes
dressed by the strange metal bath and develops a dip at
small frequency and in particular at zero temperature it
scales like ∝

√
ω, a behavior reminiscent of the zero-bias

anomaly in one dimensional disordered interacting con-
ductors [42–44]. In the limit V � V ∗(T ) ≡ (Γ2JT )1/4,
which also defines a low-temperature scale T ∗(V ), we
can obtain an analytic expression for the system spectral
function which reads [41]

AeqS (ω) =
1

V 2

(J2

π

)1/4√
2πT Re

(
Γ
(

3
4 −

iω
2πT

)
Γ
(

1
4 −

iω
2πT

)) (10)

The suppressed spectral density of the system renor-
malised by our strange quantum bath leads to a sup-
pression of thermal conductance and restoring a linear
temperature scaling, as it would be for the FL leads

G(T ) ∼ NT ∼ NGQ(T ) (qB = 4) (11)

This similarity is however only superficial, as energy
transport in this regime is not due to quasiparticles. The
linear T -scaling arises in fact from a subtle cancellation
between the enhanced spectral density of the SYK4 baths
and the suppressed density of state of the system and re-
minds other situations in which violation of a FL scaling
leads to a thermal conductance linear in temperature [45].
To further appreciate the physics behind this result it is
interesting to comment on the relation between transport
and chaos in our system. In fact the calculation of the
out of time-order correlators for the model in Eq. 1 in

Figure 4: Non-Linear Energy Current J as a function of TL
and different TR for weak (top) and strong (bottom) cou-
plings.

the large N,M limit shows [36] that below T ∗(V ), when
the system is dressed by the stange bath and the thermal
conductance is linear, the Liapunov exponent saturates
the bound on chaos. In other words, the phase at strong
coupling and low-temperature provides an example where
transport is suppressed by the strange bath while chaos
is enhanced, pointing towards different mechanisms con-
trolling these two processes.

We summarize the linear transport regime of our model
in Fig. (3). We note that the crossover scale T ∗(V ) is
strongly dependent on system-bath coupling and con-
trols also the regime of validity of Eq. (9), setting a low-
temperature scale below which the

√
T scaling crosses

over to the linear one. Yet at weak coupling V this scale
is parametrically small (corresponding to a temperature
T ∗ ∼ 10−5 for the parameters in Fig. (9)) leaving a broad
range of temperatures where the enhanced conductance
is visible.
Non-Linear Energy Transport through Strange Quan-

tum Baths - Finally, we discuss the full nonequilibrium
energy current J as a function of the two temperatures
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TL, TR and beyond the linear response regime. We first
note that for qB = 2, corresponding to a non-interacting
bath with well defined quasiparticles, the energy current
takes the form J = Φ(TL) − Φ(TR), with Φ(T ) ∼ T 2

at low temperatures T � J , both at weak and strong
coupling V . This can be seen explictly by using the fact
that for a SYK2 bath the spectral function of the sys-
tem remains temperature independent [41]. This result
resembles the one recently obtained in out of equilibrium
Conformal Field Theories [5, 16] and implies a Stefan-
Boltzmann type of law for the thermal conductance. The
situation is richer for SYK4 baths, as we see in Fig. (4)
where we plot the energy current J as a function of TL,
for different values of TR and for weak (top) and strong
(bottom) system-bath coupling V . In both cases we see
that the effect of changing TR is to induce a rigid shift
of the current, suggesting that a functional form of the
type J = Φ(TL)−Φ(TR) is still compatible with the data
despite the fact that, as we know, the spectral function
of the system is strongly renormalized by the bath and
acquires a rich temperature dependence. As we show in
the insets of Fig. (4), for weak system-bath coupling we
find Φ(T ) = T 3/2, a power-law behavior which, while
compatible with the thermal conductance discussed ear-
lier, extends for a temperature range well above the lin-
ear regime implying a modified Stefan-Boltzmann scal-
ing. For large system-bath coupling on the other hand,
or for low enough average temperature (TL + TR)/2, we
see from the inset in the bottom panel that the conven-
tional scaling is recovered Φ(T ) = T 2, which in this con-
text however does not signal the presence of well-defined
quasiparticles.

Conclusions - In this work we studied the energy
transport between two strange quantum baths, described
by the maximally chaotic SYK4 model, coupled through
an SYK2 system. We have obtained an exact formula for
the energy current in this setting, which is valid in the
large N,M limit at fixed ratio and arbitrary system-bath
coupling. We have shown that the quantum-critical na-
ture of the SYK baths has direct consequences on energy
transport. The thermal conductance shows a

√
T scaling

above a temperature T ∗ and crosses over to a linear-T
behavior at low temperatures, even though the system
becomes Non-Fermi-Liquid and maximal chaotic due to
the strange bath. We show that the full nonequilibrium
energy current takes the form J = Φ(TL)−Φ(TR), with
Φ(T ) ∼ T γ and a power-law exponent γ crossing over
from γ = 3/2 to γ = 2 below T ∗. Future directions
include considering the charged SYK model to discuss
thermoelecricity and the full counting statistics of energy
current.

This work was supported by the ANR grant
“NonEQuMat”(ANR-19-CE47-0001). We acknowledge
computational resources on the Collége de France IPH
cluster.
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Supplemental Material to ‘Energy Transport Through a Strange Quantum Bath’

In this Supplemental Material, we provide details on (i) the large N,M Keldysh solution of our model, (ii) the
exact formula for the energy current, (iii) the expression for the Green’s function of the system in terms of those
of the bath, (iv) their expressions in the conformal low-energy limit and (v) the resulting estimates for the thermal
conductance.

KELDYSH FORMALISM AND SCHWINGER-DYSON EQUATIONS

In this section we use Keldysh formalism to derive the exact Schwinger-Dyson equations for the single-particle
Green’s functions of system and baths in the large N,M limit. We write down the partition function on the closed-
time Keldysh contour Z =

∫
D[χ, ψL, ψR]eiS[χ,ψL,ψR] with the action S[χ, ψL, ψR]

S[χ, ψL, ψR] =

∫ +∞

−∞

∑
s=±

s
{ i

2

N∑
i,j=1

χsi (t)∂tχ
s
i (t) +

i

2

M∑
i,j=1

∑
α=L,R

ψα,sa (t)∂tψ
α,s
b (t)− i

2

N∑
i,j=1

Γij χ
s
iχ
s
i

− i
qB
2

qB !

M∑
a1,··· ,aqB =1

∑
α=L,R

Ja1,··· ,aqB ψ
α,s
a1 · · ·ψ

α,s
aqB
− i θ(t)

N∑
i=1

M∑
a=1

∑
α=L,R

Via χ
s
iψ

α,s
a

} (S1)

Here s = ± denotes the upper and lower branches of the closed-time contour and qB = 2, 4 for the SYK2 and SYK4

reservoirs respectively. After averaging the partition function over the disorder we can rewrite the action in terms of
the bilocal fields

Gss
′

S (t1, t2) = − i

N

N∑
i=1

〈χsi (t1)χs
′

i (t2)〉 =

(
GTS (t, t′) G<S (t, t′)

G>S (t, t′) GT̃S (t, t′)

)
ss′

(S2)

Gss
′

α (t1, t2) = − i

M

M∑
a=1

〈ψα,sa (t1)ψα,s
′

a (t2)〉 =

(
GTα(t, t′) G<α (t, t′)

G>α (t, t′) GT̃α(t, t′)

)
ss′

α = L,R (S3)

which describe the single-particle Green’s functions of Majorana fields for the system and the bath respectively, and
with the corresponding Lagrange multipliers

Σss
′

S (t1, t2) =

(
ΣTS (t, t′) −Σ<S (t, t′)

−Σ>S (t, t′) ΣT̃S (t, t′)

)
ss′

, Σss
′

α (t1, t2) =

(
ΣTα(t, t′) −Σ<α (t, t′)

−Σ>α (t, t′) ΣT̃α(t, t′)

)
ss′

α = L,R (S4)

After integrating over the fermions χ, ψL and ψR we get an effective action Seff written only in terms of the fields
G and Σ

Seff [G,Σ] = −iN
2
Tr log

[
− i Ĝ−1

0,S + iΣ̂S
]
− i M

2
Tr log
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− iĜ−1
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]

+ i
N

2

∫
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ss′
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Gss

′
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′
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′
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+ i
M

2
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ss′
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iqB
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2
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dt dt′
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α=L,R

∑
ss′

ss′ θ(t)θ(t′)V 2
αG

ss′

S (t, t′)Gss
′

α (t, t′)

(S5)

The saddle-point of the action Seff in the large N,M limit gives us the Schwinger-Dyson equations

[
Ĝ−1

0 − Σ̂S

]
◦ ĜS = 1,

[
Ĝ−1

0 − Σ̂L,R

]
◦ ĜL,R = 1 (S6)
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and

Σss
′

S (t, t′) = ss′Γ2Gss
′

S (t, t′) + ss′V 2
L θ(t)θ(t

′)Gss
′

L (t, t′) + ss′V 2
R θ(t)θ(t

′)Gss
′

R (t, t′) (S7)

Σss
′

L,R(t, t′) = −iqBss′J2Gss
′

L,R(t, t′)qB−1 + p ss′V 2
L,R θ(t)θ(t

′)Gss
′

S (t, t′) (S8)

where [Ĝ−1
0 ]ss

′
(t, t′) = isδss′δ(t − t′)∂t is the free Majorana Green’s function and we have introduced the ratio

p = N/M . We note that in general the baths Green’s functions are coupled to the system’s one due to the term in
Eq. (S8) which describes the feedback of the system on the environment and which vanishes in the limit of infinite
bath p → 0. As we are going to discuss in the next section, this feedback is crucial in order to generate a finite
contribution to the energy current between the interacting baths.

Rather than working in the s, s′ = ± basis it is convenient to introduce the retarded, advanced and Keldysh Green’s
functions

GRS (t, t′) = θ(t− t′)
(
G>S (t, t′)−G<S (t, t′)

)
(S9)

GAS (t, t′) = θ(t′ − t)
(
G<S (t, t′)−G>S (t, t′)

)
(S10)

GKS (t, t′) = G>S (t, t′) +G<S (t, t′) (S11)
(S12)

and likewise for the self-energies. We can perform a rotation to the retarded, advanced and Keldysh basis by
multiplying the Dyson equation S6 on the left and on the right by the unitary matrix U

U =
1√
2

(
1 1
1 −1

)
(S13)

we get

(
0 [GA0 ]−1 − ΣA

[GR0 ]−1 − ΣR −ΣK

)
◦
(
GK GR

GA 0

)
= 1 (S14)

from which we can read out the three Dyson equations on GRS , G
A
S and GKS

(
[GR0 ]−1 − ΣR

)
◦GR = 1 (S15)(

[GA0 ]−1 − ΣA
)
◦GA = 1 (S16)(

[GR0 ]−1 − ΣR
)
◦GK = ΣK ◦GA (S17)

Finally, it can be shown that the first Dyson equation S6 can be recast into a more convenient form known as the
Kadanoff-Baym equations

i∂t1G
>,<
S (t1, t2) =

∫ +∞

−∞
dt
(

ΣRS (t1, t)G
>,<
S (t, t2) + Σ>,<S (t1, t)G

A
S (t, t2)

)
(S18)

−i∂t2G
>,<
S (t1, t2) =

∫ +∞

−∞
dt
(
GRS (t1, t)Σ

>,<
S (t, t2) +G>,<S (t1, t)Σ

A
S (t, t2)

)
(S19)

and likewise for the left and right baths.
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ENERGY CURRENT

In this section we derive the expression for the energy current flowing across the two baths given in the main text.
To this extent we first evaluate the rate of energy flow across the left bath

JL ≡ ĖL =
d

dt
〈HL(t)〉 (S20)

We can proceed in two ways, either taking the time derivative first and then average over disorder, or do it in the
opposite order. Both ways lead to the same result. We chose to take the disorder average first and compute EL(t).
In Keldysh formalism, the expectation value of an operator O can be obtained by introducing a generating functional
Z[η]

〈O(t)〉 =
i

2
lim
η→0

δZ[η]

δη(t)
(S21)

where Z[η] is the partition function defined in the previous section except that we shift the Hamiltonia in the
Keldysh action S[χ, ψL, ψR] by H → H + η(t)O on the upper branch and by H → H − η(t)O on the lower branch of
the time contour. Averaging over the disorder and following the same steps as in the derivation of the Schwinger-Dyson
equation in the previous section we find

EL(t) = −M iqB+1 J
2

qB

∫ t

−∞
dt′
[
G>L (t, t′)qB −G<L (t, t′)qB

]
(S22)

where qB = 2 for the SYK2 baths and qB = 4 for the SYK4 bath. Taking the derivative with respect to time we get

dEL(t)

dt
= −M iqB+1J2

∫ t

−∞
dt′
[
G>L (t, t′)qB−1∂tG

>
L (t, t′)−G<L (t, t′)qB−1∂tG

<
L (t, t′)

]
(S23)

Then we use the expression of the self-energy of the bath, Eq. (S8), to get

dEL(t)

dt
= iM

∫ t

−∞
dt′
[
Σ>L (t, t′)∂tG

>
L (t, t′)− Σ<L (t, t′)∂tG

<
L (t, t′)

]
− ipMV 2

∫ t

−∞
dt′
[
G>S (t, t′)∂tG

>
L (t, t′)−G<S (t, t′)∂tG

<
L (t, t′)

] (S24)

Using the Kadanoff-Baym equation for G>,<L (t, t′), equivalent to Eq. (S19) with S ↔ L, to replace ∂tG
>,<
L (t, t′) one

can show that the first integral is zero. Thus the time derivative of the energy of the L−bath is

dEL(t)

dt
= −iNV 2

∫ t

−∞
dt′
[
G>S (t, t′)∂tG

>
L (t, t′)−G<S (t, t′)∂tG

<
L (t, t′)

]
(S25)

We see therefore that the presence of a finite energy flow from the bath is an effect of the feedback term between
system and bath encoded in the last term of Eq. (S8).

Now we look at the long time limit, assume the system reaches a non-equilibrium steady state with a finite energy
current and therefore that the two-point functions are time translational invariant G(t, t′) = G(t− t′). Then we can
introduce the Fourier transform of the Green’s functions

G(ω) =

∫
dteiωtG(t), G(t) =

∫
dω

2π
e−iωtG(ω) (S26)

After some simple manipulations we can rewrite ĖL(t) as a single integral over frequencies
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JL = −N V 2

∫
dω

2π
ωG<L (ω)G>S (ω) (S27)

from which the expression given in the main text for the net current immediately follows.
As already discussed in the main text, we are interested in the regime p� 1. We can evaluate the Green’s functions

of system and bath entering the expression of the energy current at p = 0. This amounts to disregard the feedback
term and consider as self energy of the baths the expression

Σss
′

L,R(t, t′) = −iqBss′J2Gss
′

L,R(t, t′)qB−1 (S28)

and so we can consider that the ψL,R fermions are isolated and are not affected by the small system. As an immediate
consequence we can safely assume that the left and right baths are in thermal equilibrium and satisfy Fluctuation-
Dissipation Theorem at temperature TL, TR respectively.

G<L (ω) = iAL(ω)fL(ω), G<R(ω) = iAR(ω)fR(ω) (S29)

where fL(ω) and fR(ω) are the Fermi-Dirac distributions of the left and right baths respectively. Thus we finally
arrive at the expression

J = − iNV
2

2

∫
dω

2π
ω
(
AL(ω)fL(ω)−AR(ω)fR(ω)

)
G>S (ω) (S30)

FORMAL SOLUTION OF DYSON EQUATION FOR SYSTEM GREEN’S FUNCTION

In this section we show how to get an exact expression of G>S (ω) in terms of the left and right baths Green’s
functions. We assume that the system is in a stationary state, possibly nonequilibrium, and that two-point functions
are time translational invariant. In particular the greater/lesser self-energy of the system is

Σ>,<S (t) = Γ2G>,<S (t) + V 2
L G

>,<
L (t) + V 2

RG
>,<
R (t) (S31)

Σ>,<S is a linear function of the Green’s functions, so the retarded self-energy ΣRS (t) = θ(t)
(
Σ>S (t) − Σ<S (t)

)
takes

exactly the same form

ΣRS (t) = Γ2GRS (t) + V 2
LG

R
L(t) + V 2

RG
R
R(t) (S32)

Taking the Fourier transform of this equation and plugging ΣRS (ω) into the Dyson equation GRS (ω)−1 = ω−ΣRS (ω)
we arrive at the quadratic equation on GRS (ω)

Γ2GRS (ω)2 −
[
ω − V 2

LG
R
L(ω)− V 2

RG
R
R(ω)

]
GRS (ω) + 1 = 0 (S33)

The solution to this equation is

GRS (ω) =
1

2Γ2

[
ω − SR(ω)− δ(ω)

]
(S34)

where we called SR(ω) ≡ V 2
LG

R
L(ω) + V 2

RG
R
R(ω) and δ(ω) = x(ω) + iy(ω) is given by

x = sign
(
ω − ReSR(ω)

)√1

2

(√
B2 + C2 +B

)
, y =

√
1

2

(√
B2 + C2 −B

)
(S35)

where
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B = ω2 − 4Γ2 − 2ωReSR(ω) + Re2SR(ω)− Im2SR(ω) (S36)

C = −2ωImSR(ω) + 2ReSR(ω)ImSR(ω) (S37)

We continue by deriving an expression for the Keldysh Green’s function of the system. We write equation S17 in
Fourier space and use equation S31 to get an expression of ΣKS (ω)

GKS (ω) = GRS (ω)ΣKS (ω)GAS (ω), ΣKS (ω) = Γ2GKS (ω) + V 2
LG

K
L (ω) + V 2

RG
K
R (ω) (S38)

Combining these two equations we get

GKS (ω) =
GRS (ω)GAS (ω)

1− Γ2GRS (ω)GAS (ω)

(
V 2
LG

K
L (ω) + V 2

RG
K
R (ω)

)
=

AS(ω)

V 2
LAL(ω) + V 2

RAR(ω)

(
V 2
LG

K
L (ω) + V 2

RG
K
R (ω)

) (S39)

where in the second line we used the two Dyson equation GR,AS (ω)−1 = ω − ΣR,AS (ω) to rewrite the first factor.
Assuming that the two baths satisfy FDT

GKL (ω) = −iAL(ω) tanh
(βLω

2

)
, GKR (ω) = −iAR(ω) tanh

(βRω
2

)
(S40)

we arrive at

GKS (ω) = −iAS(ω)
V 2
LAL(ω) tanh

(
βLω

2

)
+ V 2

RAR(ω) tanh
(
βRω

2

)
V 2
LAL(ω) + V 2

RAR(ω)
(S41)

From this we finally get for the lesser component G>S (ω) =
(
GKS (ω)− iAS(ω)

)
/2

G>S (ω) = −iAS(ω)fS(−ω), with fS(ω) =
fL(ω)AL(ω) + fR(ω)AR(ω)

AL(ω) +AR(ω)
(S42)

where we assumed VL = VR = V for simplicity. This form of G>S (ω) reminds of FDT and indeed in the case where
JL = JR = J and TL = TR = T , fS(ω) reduces to the Fermi-Dirac distribution feq(ω) at temperature T . This
suggests to interpret fS(ω) as the steady-state distribution of the system coupled to the reservoirs. Notice that in the
case of the non-interacting SYK2 reservoirs, AL(ω) = AR(ω) (assuming JL = JR) and fS is simply

fS(ω) =
fL(ω) + fR(ω)

2
, qB = 2 (S43)

ANALYTIC EXPRESSION FOR SYSTEM GREEN’S FUNCTIONS IN THE CONFORMAL LIMIT

In this section we obtain an analytic expression for the system Green’s functions in the low-energy conformal limit,
using the well known conformal expressions for the SYK2 and SYK4 baths. We start from the former, i.e. qB = 2,
and neglet in Eq. S33 the term ω in the low-energy limit. We also replace GRL(ω) and GRR(ω) by their conformal
expressions GRL(ω) ' −i/JL and GRR(ω) ' −i/JR (REF) which yields

Γ2GRS (ω)2 − i
(V 2

L

JL
+
V 2
R

JR

)
GRS (ω) + 1 = 0 (S44)
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Figure S1: Spectral Functions of the system renormalized by the bath. For the three plots Γ = JL = JR = 1, TL = 0.05 and
TR = 0.03 (a) Non-interacting SYK2 reservoirs qB = 2. The black dashed line is the low energy conformal solution (S45). Here
VL = VR = 1. (b) Strongly interacting SYK4 reservoirs for VL = VR = 1. In this case, T ∗ ' 1 � TL, TR and the conformal
solution (S46) correclty reproduces the low energy behaviour (dotted black line). (c) Strongly interacting SYK4 reservoirs for
VL = VR = 0.1. Now T ∗ ' 10−4 � TL, TR and one must use the pertubative expansion (S48) to find the low energy behaviour
of As(ω) (dotted gray line).

whose solution is

GRS (ω) = − i
Γ̃
, Γ̃ =

Γ√
1 +

(
V 2
L

2ΓJL
+

V 2
R

2ΓJR

)2

−
(

V 2
L

2ΓJL
+

V 2
R

2ΓJR

) (S45)

As we see from this result, the effect of the SYK2 baths is just to dress the coupling constant of the SYK2 χ fermions.
This is consistent with the fact that with our Hamiltonian VL and VR are marginal perturbations with respect to the
SYK2 fixed point. Thus the scaling dimension of the χ fermions remains ∆χ = 1/2.

We now consider the SYK4 baths and, as done before, we neglect the term ω in the Dyson equation S33 . Besides,
now with the SYK4 baths, VL and VR are relevant perturbations with respect to the SYK2 fixed point and the χ
fermions acquire the scaling dimension ∆χ = 3/4. Thus to find the low energy behaviour of GRS (ω) we can try to
neglect also the term Γ2GRS (ω) in the Dyson equation and we get

GRS (ω) =
−1

V 2
LG

R
L(ω) + V 2

RG
R
R(ω)

(S46)

We recall that in the conformal limit GRL,R(ω) are given by

GRL,R(ω) = −i
( π

J2
L,R

)1/4 1√
2πTL,R

Γ
(

1
4 − i

ω
2πTL,R

)
Γ
(

3
4 − i

ω
2πTL,R

) (S47)

This solution for GRS (ω) can only hold if V 2
LG

R
L(ω)+V 2

RG
R
R(ω)� Γ2GRS (ω). In the simple case where JL = JR = J ,

VL = VR = V and TL = TR = T , this imposes the condition V � V ∗(T ) ≡ ( J Γ2T )1/4 or equivalently T � T ∗ =
V 4/( Γ2 J ). If T ∗ � T � J , we can estimate GRS (ω) by treating the term in V 2 as a small perturbation with respect
to the pure SYK2 solution and we get to first order in V 2/Γ2

GRS (ω) = − i
Γ
− V 2

LG
R
L(ω) + V 2

RG
R
R(ω)

2Γ2
, T ∗ � T � J (S48)

SCALING OF THERMAL CONDUCTANCE

In this section we give more details on the derivation of the scaling with temperature of the thermal conductance

G(T ) =
NV 2

2

∫
dω

2π
ω AeqS (ω)feq(−ω)

∂

∂T

(
AeqB (ω)feq(ω)

)
(S49)
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discussed in the main text.

The simplest case is the one of the non-interacting SYK2 reservoirs. Using the low energy expressions of the spectral
densities AeqS (ω) ' 2/Γ̃ and AeqB (ω) ' 2/J , the thermal conductance becomes

G2(T ) =
NV 2

πΓ̃J

∫
dω

ω2

T 2

e
ω
T

(e−
ω
T + 1)(e

ω
T + 1)2

= N
π

6

V 2

Γ̃J
T (S50)

where we used the integral
∫∞
−∞ duu2 eu

(e−u+1)(eu+1)2 = π2

6 . One must mutiply G(T ) by k2
B/~ to put back the

physical dimensions which leads to the result in the main text.

With the strongly interacting SYK4 reservoirs, using equation S47 we can write

∂

∂T

(
AeqB (ω)feq(ω)

)
= 2
( π
J2

)1/4 1√
2π

1

T
3
2

ψ(u), u ≡ ω

T
(S51)

where

ψ(u) = −1

2

1

eu + 1
Re
(

Γ
(

1
4 − i

u
2π

)
Γ
(

3
4 − i

u
2π

))− u d

du

[
1

eu + 1
Re
(

Γ
(

1
4 − i

u
2π

)
Γ
(

3
4 − i

u
2π

))] (S52)

Then the thermal conductance takes the form

G4(T ) =
NV 2

2π
T

∫
dω

T

ω

T

1

e−
ω
T + 1

ψ
(ω
T

)( π
J2

)1/4 1√
2πT

AeqS (ω) (S53)

If T � T ∗, to leading order in V 2 we can replace AeqS (ω) in the thermal conductance by AeqS (ω) ' 2/Γ and we get

G4(T ) = I4
NV 2

Γ
√
J

√
T , T ∗ � T � J (S54)

with

I4 =
( 1

4π5

) 1
4

∫ ∞
−∞

du
u

e−u + 1
ψ(u) ' 0.36 (S55)

If T � T ∗ we must use the spectral density obtained from S46

AeqS (ω) =
1

V 2

(J2

π

)1/4√
2πT Re

(
Γ
(

3
4 − i

ω
2πT

)
Γ
(

1
4 − i

ω
2πT

)
(S56)

which gives

G4(T ) = I ′4NT, T � T ∗ (S57)

with

I ′4 =
1

2π

∫ ∞
−∞

du
u

e−u + 1
Re
(

Γ
(

3
4 − i

u
2π

)
Γ
(

1
4 − i

u
2π

)
ψ(u) ' 0.16 (S58)


	 Acknowledgments
	 References
	 Keldysh formalism and Schwinger-Dyson equations
	 Energy current
	 Formal Solution of Dyson Equation for System Green's function
	 Analytic Expression for System Green's functions in the conformal limit
	 Scaling of Thermal Conductance

