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Abstract. This is a technical clarifying note consisting of two parts. In the first part we derive the ex-
pression for a boost in two representations of the homogeneous Lorentz group, viz. the two-dimensional
representation SL(2,C) and the four-dimensional Dirac representation in its Cartan-Weyl form. The deriva-
tion is purely algebraic. It uses the development of a Clifford algebra for a group of isometries of a vector
space, whereby the group is generated by reflections. We prove that a boost can be obtained as a product
of two space-time reflections, in perfect analogy with the way a rotation in R3 can be obtained as a prod-
uct of two reflections. The derivation does therefore not rely on physical considerations as in Einstein’s
approach. It is purely based on symmetry arguments. The second part deals with the justification of the
definition of a Clifford algebra given in certain mathematical textbooks, which immediately introduce a
basis of multi-vectors 1, ej , ej1 ∧ ej2 , ej1 ∧ ej2 ∧ ej3 , · · · for this algebra. Rather than as a bemusing
“postulate” that descends from heaven, we will present the introduction of this basis as an obvious result
of a logical construction of the group representation theory. This will provide the reader with a much
better understanding of what is going on behind the scenes of the formalism. We prove that this basis of
multi-vectors 1, ej , ej1 ∧ ej2 , ej1 ∧ ej2 ∧ ej3 , · · · is orthogonal in terms of a scalar product whose use is
very natural in vector spaces of matrices.

PACS. 03.65.Ta, 03.65.Ud, 03.67.-a

1 Introduction

The idea behind Clifford algebra is to construct a representation for a group of isometries of a vector space by
constructing a representation of a larger group G, generated by reflections. The isometry group is the subgroup of the
elements of G which are generated by an even number of reflections. The isometries are leaving distances defined by
a quadratic form invariant. The group of three-dimensional rotations around the origin O(0, 0, 0) ∈ R3 are a group
of isometries of R3 which leave the quadratic form x2 + y2 + z2 invariant. This group is a three-dimensional curved
manifold. That all rotations of R3 can be constructed as a product of two reflections is illustrated in Fig. 1 of [1].
This is the basis for the construction of SU(2) by Clifford algebra. We will remind shortly below how this construction
works. The full details are given in [1] and [2]. SU(2) works on column matrices which are spinors. We will also discuss
the representations SO(2) and SO(3). In these representations the column matrices correspond to vectors.

These developments for the rotation groups will serve as models for analogous constructions of two representations
of the Lorentz group SO(1,3) by the methods of Clifford algebra, viz. the 2× 2 representation SL(2,C) and the 4× 4
Dirac representation (in the Cartan-Weyl form). The Lorentz transformations are indeed also isometries of space-time
R4, but now with respect to its pseudo-metric. In this document we will use the pseudo-metric with the signature
(+−−−) based on the quadratic form c2t2−x2−y2−z2. In all rigour, the representation of the homogeneous Lorentz
group based on the signature (+−−−) for the metric should be noted as SO(1,3), while the notation SO(3,1), which is
often used in textbooks corresponds stricto sensu to the representation based on the quadratic form x2 +y2 +z2−c2t2
with the signature (− + ++). But one encounters also the notation SO(3,1) for the Lorentz group while the metric
(+ − −−) is being used. This is then sloppy and in principle not correct. However, this error is further immaterial,
because it is all only a matter of conventions.
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2 The rotation group representations SU(2), SO(3) and SO(2)

2.1 SU(2)

In R3 we define a plane A through the origin O by a vector a ⊥ A of unit length, i.e. |a| = 1. As explained in [1], in
the construction of SU(2) the reflection with respect to the plane A defined by the vector a is given by the matrix:

[a·σ ] =̂ axσx + ayσy + azσz =

[
az ax − ıay

ax + ıay −az

]
. (1)

Here σx, σy, and σz are the Pauli matrices. 1 We use here the symbol =̂ to draw the attention to the fact that the
notation [a·σ ] is a mere shorthand and should not be confused with a true scalar product.2 The product of two
reflection matrices [b·σ ] [a·σ ] = (a · b)1− ı[ (a ∧ b)·σ ] yields then the Rodriguez formula for a rotation:

R(s, ϕ) = cos(ϕ/2)1− ı sin(ϕ/2)[ s·σ ]. (2)

Here s ‖ a ∧ b is a unit vector along the rotation axis. 3. The angle ϕ/2 between the reflection planes A and B leads
to a rotation over an angle ϕ. The SU(2) matrices are operating on 2× 1 column matrices:

ξ =

[
ξ0
ξ1

]
, (3)

called spinors. These spinors represent rotations as explained in [1,2]. The rotation group of R3 is a three-dimensional
curved manifold, because it is a non-abelian group. Based on its notation as a column matrix we might believe that
the spinors ξ are “column vectors” belonging to a complex vector space. This is wrong because the spinors do not
build a vector space. They form a curved manifold as discussed in [3]. This has dire consequences for the way we must
define infinitesimal generators in the Lie algebra (see Section 4) and and also for the way one must define probabilities
in quantum mechanics. 4

2.2 SO(3)

On the other hand, SO(3) matrices operate on 3 × 1 column matrices which do represent vectors (x, y, z) ∈ R3. As
discussed in [1,2], the vectors of R3 are “squares” of spinors.5 In SO(3), the 3× 3 matrix A representing the reflection
A with respect to a plane A defined by the normal a ⊥ A , is given by (see [1], p.10, Eq. 6):

1 For any group G, the application f ∈ F(G,R) where ∀g ∈ G, f(g) = 1 is a representation of the group. Here we use the
notation F(A,B) for the set of all mappings whose domain is A and which take their values in B. However such a representation
is not bijective because when g2 ◦g1 6= g1 ◦g2 we will nevertheless obtain f(g2 ◦g1) = 1 = f(g1 ◦g2). For a non commuting group
we must therefore use non-commuting matrices. Now reflections r are certainly not commuting as (r2 ◦ r1) ◦ (r1 ◦ r2) = (r2 ◦ r2)
is the identity element, such that (r2 ◦ r1) is not identical to (r1 ◦ r2) but its inverse. This explains why we need a matrix
formalism. Of course also the three-dimensional rotation group is not commuting.

2 In fact [a·σ ] does not represent a scalar but the vector quantity a. Physics textbooks make the error of considering e.g.
[B·σ ], where B is the magnetic field, as a scalar product when they introduce the expression B·µ for the anomalous Zeeman
effect into the formalism, thereby considering σ as the spin, although the mathematical formalism of SU(2) is purely geometrical
and therefore cannot contain a physical concept like spin. In reality, σ = (σx, σy, σz) just represents the vector basis (ex, ey, ez),
such that [B·σ ] just represents Bxex +Byey +Bzez = B.

3 Mathematicians may well point out that the notation used in Eq. 2 is a curse because a ∧ b is conceptually a bi-vector
rather than a vector s. Similarly, also angular momentum r ∧mv is indeed a bi-vector, which is very illuminating for linking
conservation of angular momentum to Kepler’s second law, but unlike mathematicians we are also concerned about applying
the formalism to physics and in all physics textbooks these bi-vectors are steadfastly presented as axial vectors.

4 For a Lie group we can define volume elements corresponding to the Haar integral. One may ask why we do not calculate
probabilities in quantum mechanics using the Haar integral. The answer is that we enrich the structure of the Lie group when
we introduce linear combinations of group elements and that in this extension we must use the Born rule (see e.g. [1] p.15).
This is why it is so important to point out that spinors do not form a vector space.

5 As explained in [1,2] complex 3× 1 column vectors (x, y, z) ∈ I = {(x, y, z) ∈ C3 ‖ x2 + y2 + z2 = 0} ⊂ C3 can be obtained
from tensor products ξ ⊗ ξ. One calls I the isotropic cone. These tensor products have four components ξ20 , ξ0ξ1, ξ1ξ0, ξ

2
1 . But

as ξ0ξ1 = ξ1ξ0, the tensor product contains only three different components, which explains why we can reduce the 4×1 column
matrix to a 3× 1 matrix. SO(3) can this way be considered algebraically as a reduced form of the tensor representation SU(2)
⊗ SU(2). By this we main that the algebra we carry out on (x, y, z) ∈ R3 has the same identical structure as the one we
carry out on (x, y, z) ∈ I . Of course the meaning of (x, y, z) in these two cases is geometrically entirely different. All harmonic
polynomials can this way be obtained as tensor products of spinors.



G. Coddens: A Lorentz boost as the product of two space-time reflections, Clifford algebra 3

A = 1− 2

 ax
ay
az

⊗ [ ax ay az
]
. (4)

This transforms indeed a vector r ∈ R3 into r − 2 [ r · a ]a as is easily checked by operating with Eq. 4 on the 3 × 1
column matrix corresponding to r. In general, we do not go through the fuss of constructing an SO(3) matrix from two
such reflections, because the action of a rotation on a vector is obvious, when the rotation axis is one of the coordinate
axes. One can then use Euler’s construction based on the three Euler angles (α, β, γ) to obtain the general case. We
may note that the expression for a reflection in Eq. 4 is quadratic in the parameters (ax, ay, az):

A =

 a2y + a2z − a2x −2axay −2axaz
−2axay a2x + a2z − a2y −2ayaz
−2axaz −2ayaz a2x + a2y − a2z

 , (5)

while in SU(2) it is linear in (ax, ay, az) as evidenced by Eq. 1.

2.3 The group SO(2) ⊂ SO(3) of rotations in R2

Let us apply this result in SO(3) to the special case of a reflection in the Oxy plane. This will then be the starting
point for a construction of SO(2), which operates on vectors of R2, in contrast with SU(2) which operates on spinors.
A general vector of unit length is parameterized by (cos(ϕ), sin(ϕ)). Indeed |(cos(ϕ), sin(ϕ))|2 = cos2 ϕ + sin2 ϕ = 1.
Applying Eq. 4 yields then for A(ϕ):

1− 2

[
cos(ϕ)
sin(ϕ)

]
⊗
[

cos(ϕ) sin(ϕ)
]

=

[
sin2 ϕ− cos2 ϕ −2 cosϕ sinϕ
−2 cosϕ sinϕ cos2 ϕ− sin2 ϕ

]
=

[
− cos(2ϕ) − sin(2ϕ)
− sin(2ϕ) + cos(2ϕ)

]
. (6)

The product A(ϕ)A(0) yields then:[
− cos(2ϕ) − sin(2ϕ)
− sin(2ϕ) + cos(2ϕ)

] [
−1 0

0 +1

]
=

[
+ cos(2ϕ) − sin(2ϕ)
+ sin(2ϕ) + cos(2ϕ)

]
. (7)

This is indeed a rotation. We see that starting with an angle ϕ leads to an angle 2ϕ in the final result. To obtain a
rotation through an angle ϕ we must therefore use the reflection defined by (cos(ϕ/2), sin(ϕ/2)). The doubling of the
angles is explained in [1], Fig.1.

3 Representations of the Lorentz group

3.1 Methodology

We will derive the expression for a Lorentz boost in space-time by considering it as a product of two space-time
reflections. We can no longer represent this kind of geometry visually on a sheet of paper, because the sheet of paper
follows the Euclidean metric while the points of space-time follow a hyperbolic pseudo-metric. E.g. lines that are
orthogonal in space-time will not look orthogonal in the visual representation of space-time in a Minkowski space-time
diagram. The development will therefore be based on algebraic methods and on analogy because it is difficult to get
a conceptual grasp on how a boost could be geometrically the product of two space-time reflections. Whereas for
rotations we learned the algebra from the geometry, we will now use the dialogue between the geometry and the
algebra in the reverse way and learn the geometry from the algebra.

3.2 The abelian group SO(1,1) of boosts along the x-axis

We will first treat the special case of Lorentz boosts along the x-axis by analogy with SO(2). This will lead to
the abelian group of boosts SO(1,1). Whereas in the Oxy plane a general vector of unit length is parameterized
by (cos(ϕ), sin(ϕ)) = cos(ϕ) ex + sin(ϕ) ey, a general vector of unit length in the Otx plane is now parameterized by

(cosh(χ/2), sinh(χ/2)) = cosh(χ/2) ect+sinh(χ/2) ex. In fact, |(cosh(χ/2), sinh(χ/2))|2 = cosh2(χ/2)−sinh2(χ/2) = 1.
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Such a unit vector will now serve as reflection normal. This time we use the half of the argument χ right from the start,
based on what we learned from the derivation in the rotation group. The form analogous to Eq. 4 for the reflection
matrix is now:

A(χ) = 1− 2

[
cosh(χ/2)
sinh(χ/2)

]
⊗
[

cosh(χ/2) − sinh(χ/2)
]
. (8)

The minus sign − sinh(χ/2) in the 1×2 line matrix is due to the signature of the pseudo-metric c2t2−x2 in Minkowski
space time, such that the scalar product of (ct1, x1) and (ct2, x2) is now c2t1t2− x1x2. This intervenes when we apply
A(χ) to the column vector representing r = (ct, x). Writing 1 as (cosh2(χ/2)− sin2(χ/2))1, the calculation yields:

A(χ) = (cosh2(χ/2)− sin2(χ/2))1−
[

2 cosh2(χ/2) −2 cosh(χ/2) sinh(χ/2)
2 sinh(χ/2) cosh(χ/2) −2 sinh2(χ/2)

]
=

[
− cosh2(χ/2)− sinh2(χ/2) +2 cosh(χ/2) sinh(χ/2)
−2 sinh(χ/2) cosh(χ/2) cosh2(χ/2) + sinh2(χ/2)

]
=

[
− cosh(χ) + sinh(χ)
− sinh(χ) + cosh(χ)

]
. (9)

The transformation:[
ct′

x′

]
=

[
− cosh(χ) + sinh(χ)
− sinh(χ) + cosh(χ)

] [
ct
x

]
implies: ct′ = − cosh(χ) ct+ sinh(χ)x, (10)

such that in the new frame the time runs backwards. To obtain a Lorentz boost with the time running forwards, we
must therefore combine A(χ) with the pure time reversal A(0). We then obtain an orthochronous transformation:

A(χ)A(0) =

[
− cosh(χ) + sinh(χ)
− sinh(χ) + cosh(χ)

] [
−1

+1

]
=

[
+ cosh(χ) + sinh(χ)
+ sinh(χ) + cosh(χ)

]
. (11)

We can actually take the opposite sign with + sinh(χ) in Eq. 8 for a motion along the positive x-axis. We obtain then
exactly the textbook equation for a Lorentz boost along the positive x-axis in the Oxt plane. In all this we can make
the usual identifications cosh(χ) = γ and sinh(χ) = γv/c, which are compatible with the identity cosh2 χ−sinh2 χ = 1.
We have then [cosh(χ), sinh(χ) ] = cosh(χ) ect+sinh(χ) ex, whereby ex = v/v. We obtain then x′ = γ(x−vt), which is
like the Galileo transformation, but with the four-vector (1,−v/c) renormalized to 1. We may note that detA(χ) = −1,
such that det[A(χ)A(0) ] = detA(χ) detA(0) = 1.

The we way we introduce here the identifications cosh(χ) = γ and sinh(χ) = γv/c is actually a kind of a cheat based
on using information obtained from the traditional textbook derivation, rather than deriving everything completely
from the framework of the Clifford algebra. To obtain the identification entirely within the framework of the Clifford
algebra we can write x′ = coshχ(x − tanhχ ct) and consider the point vt. As for this point x′ = 0 must be true
at any moment t, it follows then from x′ = coshχ(v − c tanhχ)t that we must identify tanhχ = v/c. From this
result one obtains then easily coshχ = γ. This way we have derived the algebraic expression for a boost of SO(1,1)
by considering a boost as a product of two space-time reflections, just like we obtained a rotation as the product
of two reflections in SU(2). Of course this derivation follows a logic that is different from the one used in the more
intuitive approach presented in physics textbooks. We have derived this proof to show that there is always an all-out
equivalence between the intuitive geometrical approach and the more formal algebraic approach. All geometry can be
translated into algebra and vice versa. This insight is important because it indicates that the whole algebraic formalism
of quantum mechanics has a natural geometrical meaning, such that all attempts to find a physical interpretation of
the algebra must just stick to this geometrical meaning. All alternative attempts are undue parallel interpretations
that will a priori be wrong.

3.3 The full homogeneous Lorentz group SO(1,3)

Let us now generalize this to a Lorentz transformation in R4 within the Cartan-Weyl representation, defined by:

γx =

[
σx

−σx

]
, γy =

[
σy

−σy

]
, γz =

[
σz

−σz

]
, γct =

[
1

1

]
. (12)

This will be done in analogy with the derivation of SU(2) but not with the same complete generality. In fact, the
homogeneous Lorentz group is a six-dimensional curved manifold and a general Lorentz transformation is a product
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RB or BR of a rotation R and a boost B. We will therefore derive the expressions for the boosts and for the rotations
separately. For the rotations this is easy enough such that the real issue is to derive the expression for a general boost.
To derive this expression we carry over the idea from Subsection 3.2 to obtain the boost as a product A(χ)A(0)
whereby we now replace the direction ex of the boost vector v by a general unit vector u.6

We define therefore u = v/v and the reflection normal will now be cosh(χ/2) ect + sinh(χ/2)u, represented by
cosh(χ/2) γct + sinh(χ/2) [u·γ ]. In analogy with the derivation in SU(2), the pendant of Eq. 11 becomes then:

A(χ)A(0) =

[
cosh(χ/2)1+ sinh(χ/2)[u·σ ]

cosh(χ/2)1− sinh(χ/2)[u·σ ]

] [
1

1

]
. (13)

This is of the form:

B(v) =

[
B(v)

B(−v)

]
, (14)

where the 2×2 boost matrices B(v) and B(−v) can be used as 2×2 representations of boosts B(±v). We may note that
now det J cosh(χ/2)1± sinh(χ/2)[u·σ ] K = 1 and det1 = 1 such that detB(±v) = 1. These 2 × 2 representations
are both SL(2,C) representations. We can figure out how we must write cosh(χ/2) and sinh(χ/2) as follows. As
cosh(χ) = γ, sinh(χ) = γv/c we have 1 + cosh(χ) = 1 + γ = 2 cosh2(χ/2), cosh(χ) − 1 = γ − 1 = 2 sinh2(χ/2), such
that:

cosh(χ/2) =

√
γ + 1

2
,

sinh(χ/2) =

√
γ − 1

2
. (15)

We have this way proved that in SL(2,C) a boost B(v) with velocity parameter v is given by:

B(v) =

√
γ + 1

2
1−

√
γ − 1

2
[u·σ ], (16)

where v = vu. This has now been derived in a purely algebraic way. In [4]. The general reflection normal a in space-time
has then the form:

a = cosh(χ/2)1± sinh(χ/2)[u·σ ] = (cos(χ/2), sin(χ/2) sin(θ) cos(φ), sin(χ/2) sin(θ) sin(φ), sin(χ/2) cos(θ)), (17)

where the unit vector u is defined by its spherical coordinates (θ, φ). Note that we use here φ and ϕ as different
symbols. In the Cartan-Weyl representation we can rewrite Eq. 14 as:

B(v) =

[
B(v)

[B(v) ]†−1

]
. (18)

6 If we wanted to use the analogy with SU(2) in its full generality, we might think that we would just have to consider
products A2A1 of two reflections, and that this will then lead to a general Lorentz transformation of the form RB or BR,
which in principle depends on six independent real parameters whereas both pure boosts and pure rotations depend on only
three independent real parameters. But it is not God-given that in R4 a general Lorentz transformation could be obtained
as the product of just two reflections, in strict analogy with what we can do in SU(2). In fact, each reflection A in R4 has a
three-dimensional invariant subspace {(ct, x, y, z) ∈ R4 ‖ A(ct, x, y, z) = (ct, x, y, z)}, whose points remain invariant under the
transformation (the reflection hyperplane). The composition of two reflections would then have a two-dimensional invariant
subspace, viz. the intersection of the two invariant three-dimensional subspaces. But the invariant subspace of a boost B along
the x-axis is the subspace {(ct, x, y, z) ∈ R4 ‖ B(ct, x, y, z) = (ct, x, y, z)} = {(0, 0, y, z) ‖ (x, y) ∈ R2}. The invariant subspace
of a rotation R in the Oyz-plane is the subspace {(ct, x, y, z) ∈ R4 ‖ R(ct, x, y, z) = (ct, x, y, z)} = {(ct, x, 0, 0) ‖ (ct, x) ∈ R2}.
These two invariant subspaces do not have a two-dimensional intersection. The intersection of the sets of invariant points of
RB is just the singleton {(0, 0, 0, 0)}, which proves that RB cannot be obtained as the product of two reflections. However, RB
can obviously be obtained as the product of four reflections. Hence the Lorentz group is generated by reflections but generating
a general Lorentz transformation takes more than two reflections, in marked contrast with what happens in SU(2). This shows
that we can no longer determine the composition of two Lorentz transformations geometrically in the same way as we did for
the product of two rotations in SO(3), described in the legend of Fig. 3.3 of [4]. It also shows that a rotation of SO(4) will in
general not have a “rotation axis”. On the other hand, as explained above, a pure rotation in SO(4) does not have a single axis
but a whole plane as invariant subspace and the same applies for a pure boost.
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Here [B(v) ]†−1 = B(−v), because the Pauli matrices are Hermitian and [B(v) ]−1 = B(−v). The expression in Eq.
18 is a generalization to take into account that for rotations R we have R† = R−1. A rotation is represented by:

BA =

[
[b·σ ]

−[b·σ ]

] [
[a·σ ]

−[a·σ ]

]
=

[
−R(s, ϕ)

−R(s, ϕ)

]
. (19)

As SU(2) is a double covering of SO(3) we can drop the minus signs. A rotation is thus represented by:

R(s, ϕ) =

[
R(s, ϕ)

R(s, ϕ)

]
=

[
R(s, ϕ)

[R(s, ϕ) ]†−1

]
. (20)

This way we can see that for a general Lorentz transformation, which is the product of a rotation and a boost, we
have:

L(v, s, ϕ) =

[
L(v, s, ϕ)

[L(v, s, ϕ) ]†−1

]
. (21)

The 4×4 matrices L(v, s, ϕ) are the Cartan-Weyl form of the Dirac representation of the Lorentz group, which is a six-
dimensional manifold. The 2×2 matrices L(v, s, ϕ) build the representation SL(2,C), characterized by detL(v, s, ϕ) =
1. The rotations are obtained from reflections with respect to hyperplanes defined by the unit vectors:

a = (0, sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). (22)

In [4] on p. 354 we have derived the expression for B(v) in SL(2,C) in a rather clumsy ad hoc fashion. by using the
fact that a general element L ∈ SL(2,C) operates on a four-vector (ct, x, y, z) represented by:

X =

[
ct+ z x− ıy
x+ ıy ct− z

]
, (23)

according to:

X→ LXL†, (24)

thereby using our prior knowledge for the expression of the Lorentz transformation and working backwards. We may
note that Eq. 24 leaves detX = c2t2 − x2 − y2 − z2 invariant because detL = detL† = 1 by definition. In many
textbooks the expression for a boost along the x-axis is only derived for points that are reached by a light ray emitted
at x = 0 at t = 0, which is even not general. But all this is of course not deriving the expression for the Lorentz
transformation from the Clifford algebra.

4 Derivation of the expression for a boost by using the Lie algebra

4.1 The textbook algebra

4.1.1 Context

Our motivation for the derivations given above has been that in [5] it is claimed that spinor calculus in SL(2,C) can be
obtained by generating the Lorentz group from reflections while the calculus developed afterwards does not follow this
principle. It rather uses the relation between the Lie algebra and the Lie group, based on infinitesimal transformations
in the representation SL(2,C). It inverts in a sense the procedure of deriving the infinitesimal generators of the Lie
algebra from the expressions for the group elements of the Lie group. The aim of the present Section 4 is to raise
a number of red flags about pitfalls the reader may not be aware of. Most of it concerns the use we can make of
the number ı in the representation theory. Some of it is quite meticulous and requires a very good understanding
of the group representation theory. Consulting [6] beforehand may be compulsory in order to avoid that some less
knowledgeable readers will think that what we will present here is far-fetched moonshine. The reader who is in a hurry
might want to skip the reading of this Section and take up the argument again in Section 5.
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4.1.2 Rotations

Several textbooks also derive the expression for a rotation in SU(2) by this reverse method from the Lie algebra. This
runs as follows. The eigenvalue equation for the matrix [ s·σ ] leads to the following polynomial :

det

[
sz − λ sx − ısy
sx + ısy −sz − λ

]
= λ2 − s2x − s2y − s2z. (25)

The eigenvalues of [ s·σ ] are therefore given by λ ∈ {−1, 1}. Even without making this calculation, we actually know
that:

∃R ∈ SU(2) : [ s·σ ] = R

[
1
−1

]
R−1 = R [ ez·σ ]R−1, (26)

because s and ez are vectors and vectors transform by similarity transformations. Now:

e−ı [ ez·σ ]ϕ/2 = exp

[
−ıϕ/2

+ıϕ/2

]
=

[
e−ıϕ/2

e+ıϕ/2

]
= cos(ϕ/2)1− ı sin(ϕ/2)[ ez·σ ]. (27)

Therefore:

e−ı [ s·σ ]ϕ/2 = e−ıR [ ez·σ ]R−1 ϕ/2

= R [ e−ı [ ez·σ ]ϕ/2 ]R−1

= R {cos(ϕ/2)1− ı sin(ϕ/2)[ ez·σ ] }R−1

= cos(ϕ/2)1− ı sin(ϕ/2)[ s·σ ]. (28)

In conclusion, we have now derived the Rodriguez formula from the Lie algebra by exponentiating:

e−ı [ s·σ ]ϕ/2 = cos(ϕ/2)1− ı sin(ϕ/2)[ s·σ ]. (29)

4.1.3 Boosts

We can use the same methods for Lorentz boosts. First we calculate a boost along the z-axis according to:

e−[ ez·σ ]χ/2 =

[
exp(−χ/2)

exp(+χ/2)

]
= cosh(χ/2)1− sinh(χ/2) [ ez·σ ] =

√
γ + 1

2
1−

√
γ − 1

2
[ ez·σ ]. (30)

We have here used Eq. 15. Now we use:

∃R ∈ SU(2) : [u·σ ] = R [ ez·σ ]R−1. (31)

This leads then to:

e−[u·σ ]χ/2 =

√
γ + 1

2
1−

√
γ − 1

2
[u·σ ]. (32)

However, the calculations in Eqs. 29, 30 and 32 must be considered as a mere cheat. They are elegant identities, but
they do not explain why the exponentiation procedures proposed are supposed to lead to correct results in the first
place. We can note the relation between Eq. 29 and the differential equation:

dR

dϕ
= −ı (ϕ/2) [ s·σ ]R. (33)

And we have a similar relation between Eq. 32 and the differential equation:

dB

dχ
= −(χ/2) [u·σ ]B. (34)

These differential equations lead to the infinitesimal generators:
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ı

[
∂R

∂ϕ

]
ϕ=0

=
1

2
[ s·σ ]. (35)

ı

[
∂B

∂χ

]
χ=0

= − ı
2

[u·σ ]. (36)

Therefore the calculations presented in the Eqs. 29 and 32 are just a reversal of the calculations of the infinitesimal
generators, as we pointed out above. The true logical path of the derivation is p⇒ q ⇒ r. The reversal presents this
under the form: r ⇒ q. Here p ⇒ q is the derivation of the expressions for a boost and a rotation given in Sections
2 and 3, and q ⇒ r the ensuing calculation of the infinitesimal generators. The logical proposition r is the end point
of the reasoning. The reversed calculation r ⇒ q uses r as the starting point, which it just introduces out of the blue
without any motivation for it. This is not a complete, logical build-up like p ⇒ q ⇒ r. It is only a leading argument
that overwhelms the reader with a loose “plausible” narrative. Now coshχ = γ such that:

e+χ + e−χ = 2γ. (37)

Putting e+χ = h we obtain the quadratic equation

h2 − 2γh+ 1 = 0, (38)

with two solutions:

h = +γ ±
√
γ2 − 1, (39)

such that:

χ = ln[ γ ±
√
γ2 − 1 ], (40)

and:

χ/2 = ln

√
γ ±

√
γ2 − 1 . (41)

We may wonder why we are obtaining two solutions rather than just one. To answer this question we may start noting
that the product of these two solutions for χ is:

[ γ +
√
γ2 − 1 ] [ γ −

√
γ2 − 1 ] = 1. (42)

We have thus:

χ = ± ln[ γ +
√
γ2 − 1 ], (43)

This conveniently illustrates the fact that Eq. 37 defines χ only up to the sign, because the substitution χ| − χ leaves
the equation invariant. If we adopt the convention χ ≥ 0, then we can drop the minus sign. We can elaborate the
expressions:

γ2 − 1 =
1

1− v2

c2

− 1 =
γ2v2

c2
. (44)

Therefore:

χ = ln[ γ(1 +
v

c
) ] = ln

√
c+ v

c− v
≥ 0. (45)

The opposite sign convention for χ leads to:

χ = ln[ γ(1− v

c
) ] = ln

√
c− v
c+ v

≤ 0. (46)
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4.2 Caveat

In [5], the representation SL(2,C) is presented as the result of a generalization of SU(2) according to:

[ s·σ ]ϕ/2→ [ s·σ ]ϕ/2 + ı[u·σ ]χ/2. (47)

This may look rather natural. But a generalization is a method of inductive reasoning. It is a heuristic tool permitting
to guess results but does not constitute by any means a form of valid proof. At the very best we can validate afterwards
that the result is correct, but obtained this way the good result must be qualified as a fluke, because it stems from an
approach based on trial and error. There is actually no real proof given here that the result obtained is correct except
a posteriori verification. It is only tacitly assumed to be correct. We have shown above that the whole presentation in
[5] rests on replacing the correct derivation p⇒ q ⇒ r by a surrogate derivation r ⇒ q.

The development in [5] is therefore misleading. We may note that the boosts in the Dirac equation are by construc-
tion expressed in the quantities 1, γxγt, γyγt, γzγt while the rotations are expressed in the quantities 1, γxγy, γyγz, γzγx.
This suggests that the six bi-vectors γxγt, γyγt, γzγt, γxγy, γyγz, γzγx constitute a basis for the six-dimensional homo-
geneous Lorentz group (see below). However, the complexification procedure proposed in [5] creates the illusion that
we have a three dimensional basis. This is only an illusion, as conceptually, the vectors ex, ey, ez that occur in s cannot
be considered to be parallel to the vectors ıex, ıey, ıez that occur in ıu. They must be seen as an extension of a basis
for R3 to a basis of R6. In other words, the step ex → ıex is not a multiplication with a scalar, but an expedient to
introduce new basis vectors. In fact, in the 4 × 4 formalism the matrices γyγz and γxγt are different because γyγz
contains two identical blocks −σyσz = −ıσx, while γxγt contains two blocks of opposite signs ±σx. Due to these
opposite signs in its blocks γxγt is not proportional to γyγz by a scalar factor ı, because γyγz has identical signs in its
blocks. In fact, s is an axial vector, while u is a true vector. This transpires also from the following calculation:[

∂
∂ct

1−∇·σ
∂

∂ct
1+∇·σ

] [
V
c
1+ A·σ

V
c
1−A·σ

]
=[

1
c2

∂V
∂t
1− ∂

∂ct
A·σ − 1

c
∇V ·σ + (∇ ·A)1+ ı(∇∧A)·σ

1
c2

∂V
∂t
1+ ∂

∂ct
A·σ + 1

c
∇V ·σ + (∇ ·A)1+ ı(∇∧A)·σ

]
=[ [

1
c2

∂V
∂t

+ (∇ ·A)
]
1− 1

c
[(∇V + ∂A

∂t
)·σ] + ı[ (∇∧A)·σ ] [

1
c2

∂V
∂t

+ (∇ ·A)
]
1+ 1

c
[(∇V + ∂A

∂t
)·σ] + ı[(∇∧A)·σ]

]
. (48)

Here:

1

c2
∂V

∂t
+∇ ·A = 0, (49)

corresponds to the Lorentz condition, while:

− [∇V +
∂A

∂t
] = E, (50)

and:

∇∧A = B, (51)

such that we obtain:

1

c

[
[E·σ ] + ıc[B·σ ]

−[E·σ ] + ıc[B·σ ]

]
. (52)

We see that B does not change sign under a parity transformation, because it takes the same expression in both
SL(2,C) blocks. It is therefore an axial vector. On the other hand E is a true vector because it changes sign under the
parity transformation. We see also that B and E which look parallel in SL(2,C) are not parallel in the Dirac formalism.
They are not three-dimensional vector quantities but build a six-component tensor with Lorentz symmetry. The vector
E is expressed in a basis of matrices of the type γzγt while the axial vector cB is expressed in a basis of matrices
γyγz. The four Maxwell equations can be written as a single matrix equation in this representation, illustrating their
Lorentz symmetry.7 We may further illustrate the absence of a true proportionality by noting that for v > c we obtain:

χ = ln ı

√
c+ v

v − c
= ı(π/2) + ln

√
v + c

v − c
= ı(π/2) + ln

√
vw + cw

vw − cw
= ı(π/2) + ln

√
c+ w

c− w
, (53)

7 These calculations have not been carried out correctly in [4]. There are errors in the pre-factors.
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where we have introduced wv = c2, such that w < 0. Based on the presentation in [5] one might start to suspect that
this parameter would correspond to the product of a boost and a rotation. For sure, we all know about the pitfall:

e−ı[ s·σ ]ϕ/2−[u·σ ]χ/2 6= [ e−ı[ s·σ ]ϕ/2 ] [ e−[u·σ ]χ/2 ], (54)

but one might still be tempted to wonder if it could be a product of a different boost and a different rotation. The
surprise contained in Eq. 53 shows that the “self-evident” easy-going complexification of ϕ [ s·σ ] as is proposed in [5]
is too fast and too furious a procedure.

If we took the example of Eq. 53 literally, it would indicate that not all linear combinations of the infinitesimal
generators need to correspond to elements of the Lie group. In fact SL(2,C) implies that the determinant of the matrix
must be 1, which is not the case for v > c. We observe then that both ı(π/2)[ s·σ ] and [u·σ ]χ/2 give rise to elements
of the Lie group, while their sum apparently does not. That seems to contradict the proof given in Schuller’s lecture
[6]. The solution is that Schuller considers only charts on the manifold that are based on a real basis of Rn such that
all the basis vectors are real. In the Lorentz group, the basis vectors ej and ıej are conceptually not parallel even if
they look parallel due to the proportionality. This is why it is important that we can do the Clifford algebra with only
real numbers [7]. This renders the confusion impossible. We can then define the correspondence between the real and
the complex formalism.

The point is therefore that ı[u·σ ]π/2 in Eq. 53 does not define a rotation like ı(π/2)[ s·σ ]. The multiplication by
the number ı in ı[u·σ ]π/2 in Eq. 53 induces truly a multiplication and not a change of basis vector. We see that the
restriction of the Dirac representation to the representation SL(2,C) introduces ambiguity. SL(2,C) is also not able to
distinguish between et and 1.

5 Observation: The bi-vectors γtγz and γxγy are not parallel

In the Clifford algebra we have expressed orthogonality of vectors eµ and eν by: γµγν + γνγµ = 2gµν1. Based on this
orthogonality criterion, we can qualify γµ as a basis. We will see now that we cannot use this orthogonality criterion
for bi-vectors. Nevertheless we would like to state that γµγν with µ 6= ν form an orthogonal basis eµ ∧ eν for the
bi-vectors. This will be the motivation for introducing a new criterion for orthogonality. Let us remind that:

σxσy =

[
1

1

] [
−ı

ı

]
=

[
ı
−ı

]
= ıσz (cycl). (55)

Let us now calculate the products of the gamma matrices:

γxγy =

[
σx

−σx

] [
σy

−σy

]
=

[
−σxσy

−σxσy

]
=

[
−ıσz

−ıσz

]
, (56)

where we have used Eq. 55 and:

γtγz =

[
1

1

] [
σz

−σz

]
=

[
−σz

σz

]
. (57)

We can notice that ¬∃λ ∈ C ‖ γxγy = λγtγz. In fact we have: γxγy = ıγ5γtγz, where:

γ5 =

[
1
−1

]
, (58)

such that γxγy and γtγz are not parallel. However, when we restrict the formalism to SL(2,C), e.g. by selecting the 2×2
block matrix with indices (1, 1), then γ5 y 1, such that the restriction of ıγ5 to SL(2,C) becomes a proportionality
constant: ıγ5 y ı. Here we use the notation Ay B to indicate that A reduces to B in the restriction. The restrictions
to SL(2,C) are then γxγy y −ıσz and γtγz y −σz such that the restrictions of the matrices γxγy and γtγz to SL(2,C)
look proportional with proportionality constant ı. But in reality they are not, as shown by the equation γxγy = ıγ5γtγz.
The matrices γxγy and γtγz are commuting, but they are not parallel. They are also not orthogonal according to the
criteria of the Clifford algebra:

γtγzγxγy + γxγyγtγz =

[
−σz

σz

] [
−ıσz

−ıσz

]
+

[
−ıσz

−ıσz

] [
−σz

σz

]
= 2ıγ5, (59)

with γtγzγxγy − γxγyγtγz = 0. It is therefore not obvious that γµγnu constitute a basis for the bi-vectors as we have
not yet proved their linear independence.
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6 The orthogonality criterion for the Lie algebra and for matrices

We see that γtγz is not orthogonal to γxγy according to the criteria used in the build-up of the Clifford algebra. In
fact, we must always have γµγν + γνγµ = 2gµν1. Therefore:

[ γtγz ] [ γxγy ] = −γtγxγzγy = γtγxγyγz = −γxγtγyγz = [ γxγy ] [ γtγz ]. (60)

Hence:

[ γtγz ] [ γxγy ] + [ γxγy ] [ γtγz ] 6= 0. (61)

In fact, we have [ γtγz ] [ γxγy ] − [ γxγy ] [ γtγz ] = 0 such that [ γtγz ] [ γxγy ] + [ γxγy ] [ γtγz ] = 0 would imply that
[ γtγz ] = 0 ∨ [ γxγy ] = 0. But the later is meaningless. In fact, assume e.g. [ γxγy ] = 0. Then [ γyγx ] = −[ γxγy ] = 0.
As γ2y = −1, [ γxγy ][ γyγx ] = 0 would imply γ2x = 0 while we must have γ2x = −1 6= 0. However:

[ γtγz ] [ γzγy ] + [ γzγy ] [ γtγz ] = −γtγy − γyγt = 0. (62)

According to the orthogonality criteria of the Clifford algebra we have therefore γtγz ⊥ γzγy but ¬(γtγz ⊥ γxγy).
Hence, if the six bi-vectors constitute a basis then this basis is not orthogonal according to the criteria we used up to
now. Now we may think that we can identify γµγν with eµ ∧ eν based on the anti-symmetry. But if we tacitly imply
that this automatically entails that eµ ∧ eν form an orthogonal basis for the volume elements, then we are wrong.

As orthogonality is a convenient property for a basis, which permits to check linear independence, we will introduce
a new definition of orthogonality. According to this new criterion the six bi-vectors γµγν , with µ 6= ν will now be all
mutually orthogonal, which proves then that they constitute an orthogonal basis for the Lorentz group, and that we
can identify γµγν with eµ ∧ eν .

To calculate the norm of an n× n matrix A we can use:

|A|2 =

n∑
j=1

n∑
k=1

a∗jkajk. (63)

This leads to the orthogonality condition:

A ⊥ B ⇔ A ?B =

n∑
j=1

n∑
k=1

(a∗jkbjk + ajkb
∗
jk) = 0. (64)

This follows from defining the scalar product by:

A ?B =
1

2

[
|A + B|2 − |A|2 − |B|2

]
. (65)

When bjk = ıajk with ajk ∈ R this leads to: a∗jkıajk + ajk(−ı)a∗jk = 0. We have then e.g.:

σx ? σy =

[
+1

+1

]
?

[
−ı

+ı

]
= +1(−ı) + 1(+ı) + 1(+ı) + 1(−ı) = 0,

σx ? ıσy =

[
+1

+1

]
?

[
+1

−1

]
= +1(+1) + 1(−1) + 1(+1) + 1(−1) = 0,

σy ? ıσy =

[
−ı

+ı

]
?

[
+1

−1

]
= +ı(+1)− ı(−1)− ı(+1) + ı(−1) = 0. (66)

In summary:

σx ? σy = 0, σy ? σz = 0, σz ? σx = 0,
ıσx ? ıσy = 0, ıσy ? ıσz = 0, ıσz ? ıσx = 0,
σx ? ıσx = 0, σx ? ıσy = 0, σx ? ıσz = 0,
σy ? ıσx = 0, σy ? ıσy = 0, σy ? ıσz = 0,
σz ? ıσx = 0, σz ? ıσy = 0, σz ? ıσz = 0,
σx ? 1 = 0, σy ? 1 = 0, σz ? 1 = 0,
ıσx ? 1 = 0, ıσy ? 1 = 0, ıσz ? 1 = 0.

(67)

We can then use
∑
λjAj with λj ∈ R as vectors of a real vector space with basis Aj . We see then that the six basis

vectors σj and ıσj of SL(2,C) are all orthogonal and that it is not allowed to have
∑
λjσj + ı

∑
µjσj with λj ∈ C\R ∨



12 G. Coddens: A Lorentz boost as the product of two space-time reflections, Clifford algebra

µj ∈ C\R. The coefficients λj and µj must belong to R. In other words we have a set of vectors
∑
λjej + ı

∑
µjej+3,

where λj ∈ R, µj ∈ R, which constitutes a real six-dimensional vector space R6 despite the fact that the basis vectors
ej and ej+3 are represented by complex matrices. Complex coefficients λj , µj are then by definition not allowed. This
is the reason why we cannot obtain a boost with v > c.

7 Orthogonality of vectors and bi-vectors according to the scalar product ?

We will show that orthogonality according to the Clifford algebra implies orthogonality according to the scalar product
?. However, the reverse is not true, and the definition of orthogonality according to the scalar product ? is more general.
It is important to point out the difference between the definitions of orthogonality for a Lie group and a Lie algebra. It
explains e.g. why we cannot derive the eight infinitesimal generators gj for SU(3) by postulating gjgk+gkgj = 2δjk1. It
just will not work. For SU(2) not pointing out this difference can lead to confusion because the infinitesimal generators
coincide accidentally with the reflection operators σj introduced by the Clifford algebra. The Lorentz group shows
that this equality is truly accidental because the Clifford algebra defines four basic reflections γj while there are six
infinitesimal generators. For the vectors we have:

γx ? γy =

[
σx

−σx

]
?

[
σy

−σy

]
= σx ? σy + σx ? σy = 0. (68)

γx ? γz =

[
σx

−σx

]
?

[
σz

−σz

]
= σx ? σz + σx ? σz = 0. (69)

γy ? γz =

[
σy

−σy

]
?

[
σz

−σz

]
= σy ? σz + σy ? σz = 0. (70)

Note that we will have σj ? σk = 0 ⇔ σk ? σj = 0 when j 6= k and therefore also γj ? γk = 0 ⇔ γk ? γj = 0, when
j 6= k. This follows from the fact that the definition of A ?B in Eq. 63 is symmetrical. We will use Roman indices for
the x, y, z and Greek indices for x, y, z, ct and 5. As far as the Greek indices are concerned, we also have:

γx ? γt =

[
σx

−σx

]
?

[
1

1

]
= σx ? 1− σx ? 1 = 0. (71)

γy ? γt =

[
σy

−σy

]
?

[
1

1

]
= σy ? 1− σy ? 1 = 0. (72)

γz ? γt =

[
σz

−σz

]
?

[
1

1

]
= σz ? 1− σz ? 1 = 0. (73)

The proofs for γt ? γx = 0, γt ? γy = 0 and γt ? γz = 0 are similar. This can be proved by detailed calculations but we
can use also the fact that the definition of A ?B in Eq. 63 is symmetrical. Finally, we have:

γj ? γ5 =

[
σx

−σx

]
?

[
1
−1

]
= 0. (74)

γt ? γ5 =

[
1

1

]
?

[
1
−1

]
= 0. (75)

Consequently, we have also γ5 ? γj = 0 and γ5 ? γt = 0. For the bi-vectors we have:

γtγz ? γxγy =

[
−σz

σz

]
?

[
−ıσz

−ıσz

]
= −σz ? (−ıσz) + σz ? (−ıσz) = 0. (76)

γtγz ? γyγz =

[
−σz

σz

]
?

[
−ıσx

−ıσx

]
= −σz ? (−ıσx) + σz ? (−ıσx) = 0. (77)

γtγz ? γzγx =

[
−σz

σz

]
?

[
−ıσy

−ıσy

]
= −σz ? (−ıσy) + σz ? (−ıσy) = 0. (78)

γtγx ? γxγy =

[
−σx

σx

]
?

[
−ıσz

−ıσz

]
= −σx ? (−ıσz) + σx ? (−ıσz) = 0. (79)
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γtγx ? γyγz =

[
−σx

σx

]
?

[
−ıσx

−ıσx

]
= −σx ? (−ıσx) + σx ? (−ıσx) = 0. (80)

γtγx ? γzγx =

[
−σx

σx

]
?

[
−ıσy

−ıσy

]
= −σx ? (−ıσy) + σx ? (−ıσy) = 0. (81)

γtγy ? γxγy =

[
−σy

σy

]
?

[
−ıσz

−ıσz

]
= −σy ? (−ıσz) + σy ? (−ıσz) = 0. (82)

γtγy ? γyγz =

[
−σy

σy

]
?

[
−ıσx

−ıσx

]
= −σy ? (−ıσx) + σy ? (−ıσx) = 0. (83)

γtγy ? γzγx =

[
−σy

σy

]
?

[
−ıσy

−ıσy

]
= −σy ? (−ıσy) + σy ? (−ıσy) = 0. (84)

γxγy ? γyγz =

[
−ıσz

−ıσz

]
?

[
−ıσx

−ıσx

]
= (−ıσz) ? (−ıσx) + (−ıσz) ? (−ıσx) = 0. (85)

γyγz ? γzγx =

[
−ıσx

−ıσx

]
?

[
−ıσy

−ıσy

]
= (−ıσx) ? (−ıσy) + (−ıσx) ? (−ıσy) = 0. (86)

γzγx ? γxγy =

[
−ıσy

−ıσy

]
?

[
−ıσz

−ıσz

]
= (−ıσy) ? (−ıσz) + (−ıσy) ? (−ıσz) = 0. (87)

The proofs for γ5γj ? γkγ`, γ5γt ? γjγk, γ5γj ? γtγk are trivial because these products do not contain non-zero terms,
because the matrix products which do not contain γ5 are block diagonal while the ones that contain γ5 are block
off-diagonal.

8 Rotations and boosts in the Cartan-Weyl representation

We have:

exp(γxγyϕ/2) =

[
e−ıσzϕ/2

e−ıσzϕ/2

]
=

[
cos(ϕ/2)1− ı sin(ϕ/2)[ ez·σ ]

cos(ϕ/2)1− ı sin(ϕ/2)[ ez·σ ]

]
.

(88)

exp(γtγzχ/2) =

[
e−σzχ/2

e+σzχ/2

]
=

 √
γ+1
2 1−

√
γ−1
2 [ ez·σ ] √

γ+1
2 1+

√
γ−1
2 [ ez·σ ]

 . (89)

We see that there is no “factor” ı needed to obtain the matrices for the rotations and the boosts. They are just
obtained both by exponentiating, which clearly shows that ı is not a factor but a means to define new basis vectors in
the restricted context of SL(2,C). We recover Eq. 14 and we recover Eq. 19 up to a sign. Introducing ı nevertheless,
we would obtain:

exp(ıγtγzϕ/2) =

[
e−ıσzϕ/2

e+ıσzϕ/2

]
=

[
cos(ϕ/2)1− ı sin(ϕ/2)σz

cos(ϕ/2)1+ ı sin(ϕ/2)σz

]
. (90)

We could rewrite this as:

cos(ϕ/2)1− ı sin(ϕ/2)

[
σz

−σz

]
, (91)

whereby: [
σz

−σz

]
?

[
σz

σz

]
= 0, (92)
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such that this looks almost as defining SO(4). At first sight this cannot be right because it does not seem to correspond
to the right metric. But in reality ıγt would square to −1 just like γx, γy, and γz. We would then have the quadratic
form −c2t2−x2− y2− z2. To obtain the right quadratic form c2t2 +x2 + y2 + z2, the better approach would consist in
keeping γt and replacing γx|ıγx, γy|ıγy, and γz|ıγz. This would result in the substitutions: γxγy|−γxγy and γtγx|ıγtγx,
which leads to a correct formalism for SO(4). Moreover, we obtain then Eq. 19 with the right sign. We may finally
note that the infinitesimal generators g corresponding to Eqs. 88 and 89 would be:

1

2

[
σz

σz

]
,

1

2

[
−ıσz

+ıσz

]
. (93)

This shows that the infinitesimal generators are not basis vectors taken from R4 as the SL(2,C) formalism might
suggest. They constitute a basis of bi-vectors. In general, the infinitesimal generators are:[

[ s·σ ]/2
[ s·σ ]/2

]
,

[
−ı[u·σ ]/2

+ı[u·σ ]/2

]
, (94)

for pure rotations and pure boosts. All transformations are then of the type e−ıgϕ or e−ıgχ.

9 The multi-vectors build an orthogonal basis for the Clifford algebra

9.1 Motivation

Certain textbooks introduce the Clifford algebra as the linear combinations of quantities:

1, ej , · · · ej , · · · eN , e1 ∧ e2, · · · ej ∧ ek, · · · eN−1 ∧ eN ,

e1 ∧ e2 ∧ e3, · · · ej ∧ ek ∧ e`, · · · eN−2 ∧ eN−1 ∧ eN , · · · e1 ∧ e2 ∧ · · · ∧ ej ∧ · · · eN . (95)

whereby ∧ is anti-symmetrical and ej are a basis of RN . The quantities are multi-vectors of rank 0, 1, 2, · · · N . In

principle N = 2n or N = 2n+ 1, such that bN2 c = n. The wedge products correspond then to oriented hyper-volumes

in RN , as explained in [8]. By using this formalism one can derive the group theory for rotations in RN . The results
can be obtained with almost no effort. All one needs is the slight of hand that consists in considering the completely
different quantities ej1 ∧ ej2 · · · ejp with p ∈ [ 0, n ] ∩ Z as belonging to a vector space. In textbooks the vector space
spanned by the multi-vectors is often written as (see e.g. [8], p.41):

R⊕ RN ⊕
2∧
RN ⊕

3∧
RN ⊕ · · · ⊕

N∧
RN . (96)

To paraphrase it ironically we are adding here kiwis and bananas, something we have been taught we should never do
in mathematics. Well, apparently once in a blue Moon it is nevertheless allowed. That the whole group theory with
all its impressive results can be obtained without any effort looks like magic and this raises the suspicion that the
reason for this might be concealed behind the slight of hand of representing Eq. 96 as self-evident. The definition just
descends from heaven without any explanation, and there is a passage in the work of Hestenes [9] where he ridicules
rather aggressively persons who are expressing their bewilderment with these definitions, only to hide the fact that
he does not know to justify this puzzling procedure himself. The justification for these definitions resides in the way
one builds up the Clifford algebra logically in the construction of the group representation theory, where all these
multi-vectors become represented by matrices of the same dimensions 2bN/2c × 2bN/2c where N is the dimension of
the vector space RN and its multi-vectors the isometries are acting on. It is this logical construction which is being
bluntly glossed over in the rather cavalier, abrupt introduction of the definition of the Clifford algebra described above.
Sweeping these prior justifications under the rug leaves the reader clueless behind in the dark.

In this respect, arguing that a presentation of the group representation theory for the isometries of a vector space
can be done much more elegantly in terms of Clifford algebra based on the postulate in Eq. 96 than by our approach is
just a hype whereby the price to pay for the sacred cow of elegance is a significant loss of insight.8 The ever so elegant
development reads then like a book of which the first chapters have gone missing. Mathematicians may have very good

8 In April 2014 an anonymous Springer referee mentioning Kähler’s work stipulated that I should rewrite my whole monograph
[4] building it on Clifford algebra, thereby censoring my attempts to clarify the construction of Clifford algebra itself and the
surprizing postulate formulated in Eq. 96. He stated that “it is remarkable that the author has seen things that others do not
see” but that their publication could wait. All this happened after the editor Aldo Rampioni had already stalled the monograph
for more than a year. As true professionals we are expected to accept such tactics tongue in cheek because it is all about gold
standards and quality control.
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reasons to present their results the way they do, but they should write them down in less cryptic ways, because some
of their results will have to be used by physicists. We are convinced that the stilted elitist presentation of spinors in
Cartan’s monograph [10] has endowed it with a rocksolid impenetrability that renders it totally unaccessible to almost
all physicists, while it holds a crucial key to understanding quantum mechanics, as we have tried to convey by our
work. If my presentations look unconventional it can only illustrate how I have been forced by this impenetrability to
figure it out all by myself.

Expressing one’s dismay about such expeditious procedures is all but ridiculous. Quantum mechanics is written
in group representation theory. The impression that this group representation theory seems to churn out its results
by magic can only amplify one’s feelings of alienation and the conviction that quantum mechanics is beyond human
understanding. In reality, there is no magic at work in the formalism, but one can only become aware of this or start
suspecting this, after completely demystifying the group representation theory in a prior stage of the development.
Purely mathematical facts one has failed to understand cannot be qualified as quantum mysteries in physics. This is
why we try to clarify here further what is going on behind the scenes of the group representation theory. Just pointing
out that geometrical algebra magically reproduces the results of quantum mechanics, does not explain it as long as
we have not understood in minute detail the whole machinery of the algebra itself.

Furthermore, when we are defining the 2n × 2n representation matrices γj corresponding to ej , the products
γj1γj2 · · · γjp supposed to correspond to ej1 ∧ ej1 ∧ · · · ejp for some p ∈ [ 0, n ] ∩ Z will be indeed anti-symmetrical.
But the question arises if γj1γj2 · · · γjp truly corresponds to ej1 ∧ ej1 ∧ · · · ejp and what kind of basis the matrices
γj1γj2 · · · γjp , of rank p ∈ [ 0, n ]∩Z form for the group of the 2n×2n matrices of the Clifford algebra, if they constitute
a basis in the first place. We will show below that they form an orthogonal basis when we define the scalar product
of two matrices A and B as A ? B according to Eqs. 64-65, and we limit the rank p to p ∈ [ 0, n ] ∩ Z rather than
p ∈ [ 0, N ]∩Z. The proof based on Peano induction is painstaking and lengthy due to the fact that one must consider
all different possible ranks for the multi-vectors. It requires considering a profusion of tedious details. Of course, the
basis can be rendered orthonormal by a straightforward normalization procedure. We are not aware of a previous
derivation of our result in the existing literature, especially not in physics textbooks. The theorem we prove here is
not mentioned in [8]

9.2 General proof by Peano induction - First steps

It is annoying to make general proofs with the pseudo-metric, because for each basis vector we will add we will have
to decide if its square is 1 or −1. It is therefore more convenient not to bother about the metric and to consider the
three matrices:

λx =

[
1

1

]
, λy =

[
−1

1

]
, λz =

[
1
−1

]
. (97)

We have then λjλk+λkλj = 2gjk1, with the pseudo-metric gxx = 1, gyy = −1 and gzz = 1, implying λ2x = 1, λ2y = −1,

and λ2z = 1. To obtain σjσk + σkσj = 2δjk1 with the Euclidean metric, we must take σx = λx, σy = ıλy and σz = λz.
We have now λj ? λk = 0, for j 6= k, and λj ? 1 = 0, for all j because λx and λy have no overlap with 1. Multiplying
λy by ı will not change the orthogonality relations involving σy. In fact, if λy is orthogonal to some matrix, then a
fortiori σy will be orthogonal to it. We also do not introduce fake orthogonalities because σy and λy do not occur
simultaneously. It is easy to check that λx ? λx = 2, λy ? λy = 2, λz ? λz = 2, and that σy ? σy = 2. We have:

λxλy = λz, λyλz = λx, λzλx = −λy. (98)

We see thus that the bi-vectors are mutually orthogonal, because their scalar products can be expressed as scalar
products of vectors and the vectors are mutually orthogonal. We have also the identity:

λxλyλz = 1, λyλzλx = 1, λzλxλy = 1. (99)

From these identities we can actually derive the ones in Eq. 98. E.g. from λx(λxλyλz)λx = λ2x1 we obtain: λyλzλx = 1
and λyλz = λyλzλxλx = λx. We see that the bi-vectors are not necessarily orthogonal to the vectors, because:

λxλy ? λz = λz ? λz = 2. (100)

In fact, due to the identities in Eq. 99 there is some redundancy in using bi-vectors and the vectors simultaneously.
In general, there will be a redundancy in using simultaneously multi-vectors of rank p and rank 2n + 1 − p, where
p ∈ [ 0, 2n+ 1 ]∩Z. In other words, the basis vectors for the vector space will only include multi-vectors up to rank n.

Let us now explore the Peano induction scheme in going from R3 to R5 in order to figure out how we can generalize
it. We expect here an equivalence between bi-vectors and tri-vectors and between vectors and quadri-vectors. We
define:
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γx = λxΛx =

[
λx

λx

]
, γy = λyΛx =

[
λy

λy

]
, γz = λzΛx =

[
λz

λz

]
,

γ4 = Λy =

[
−1

1

]
, γ5 = Λz =

[
1
−1

]
. (101)

We may note that if we call γx = γ1, γy = γ2 and γz = γ3 then we will have γ22 = −1, γ24 = −1 and γ21 = 1, γ23 = 1,
γ25 = 1. In other words, the matrices with even indices square to −1, while the matrices with odd indices square to 1.
This will be general by induction. We have now by pure analogy:

ΛxΛy = Λz, ΛyΛz = Λx, ΛzΛx = −Λy. (102)

and:

ΛxΛyΛz = 1, ΛyΛzΛx = 1, ΛzΛxΛy = 1. (103)

This leads to:

γxγyγzγ4γ5 = 1 (cycl.). (104)

and identities of the type:

γzγ4γ5 = −γyγx1 = γxγy1, (105)

confirming the redundance between bi-vectors and tri-vectors anticipated. It also illustrates the redundance between
multi-vectors of rank 0 and rank 5. We can already see that these properties will be generalized in the Peano induction
scheme. For the vectors we have now γx ? 1 = 0 due to absence of overlap, γx ? γy = 2λx ? λy = 0, γx ? γ4 =
λx ? 1− λx ? 1 = 0, γx ? γ5 = 0 and γ4 ? γ5 = 0 due to absence of overlap. We have further γµ ? γµ = 4. Generalizing
this to RN we will have γµ ? γµ = 2n.

Now we see that there is a single term with no gamma matrices, and there is a single term with all gamma matrices.
These numbers 1 correspond to: (

5
0

)
= 1,

(
5
5

)
= 1. (106)

We have further: (
5
1

)
= 5,

(
5
4

)
= 5,

(
5
2

)
= 10,

(
5
3

)
= 10. (107)

Therefore the number of possibly orthogonal terms will be:

b5/2c∑
j=0

(
5
j

)
=

(
5
0

)
+

(
5
1

)
+

(
5
2

)
= (1/2)25. (108)

That is in general:

b 2n+1
2 c∑
j=0

(
2n+ 1
j

)
= 22n+1/2 = 22n = 2n × 2n = 2b

2n+1
2 c × 2b

2n+1
2 c, (109)

which is exactly the number of entries in the 2b
2n+1

2 c×2b
2n+1

2 c matrix. The idea is thus, that there could be a theorem

that the multi-vectors of dimension 0 to b 2n+1
2 c form an orthogonal basis for the 2b

2n+1
2 c × 2b

2n+1
2 c matrices. We can

expect that this will work because 1 = e11 +e22 and λz = e11−e22 are replacing e11 and e22 while λx = e12 +e21 and
λy = e12 − e21 are replacing e12 and e21. They are filling thus the whole 2× 2 square. The same happens now with 1
and Λz and Λx and Λy for the 2× 2 square of block matrices. And by combining the products up to the multi-vectors
of rank 2 we will fill the whole 4× 4 square of simple matrices. Adding a rank will fill up the whole 8× 8 square, etc...
In this reasoning we find again the rank n = b(2n+ 1)/2c.
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9.3 Defining the setting for the general step

We start from the representation matrices that occur in the Clifford algebra associated with the group representation
theory of the isometries of R2n+1. We know that this algebra contains multi-vectors up to rank n, because the multi-
vectors of rank 2n+ 1− p are redundant with those of rank p, for p ∈ [ 0, n ] ∩ Z. Here the trivial rank 0 corresponds
a multi-vector constructed by picking zero vectors from the set of 2n + 1 basis vectors. It corresponds to a scalar
quantity. We consider a general multi-vector of rank p ∈ [ 1, n ] ∩ N:

V (p) = ej1 ∧ ej1 ∧ · · · ∧ ejk ∧ · · · ∧ ejp−1 ∧ ejp , (110)

where ∀p ∈ [ 1, n ] ∩ N : jp ∈ [ 1, 2n+ 1 ] ∩ N. The number of different multi-vectors of rank p is:(
2n+ 1
p

)
=

(
2n+ 1

2n+ 1− p

)
, (111)

in agreement with the fact that the multi-vectors of rank p and 2n+ 1− p are equal up to a parity factor (−1)P . We
assume also that V (p) has been ordered by transpositions such that:

j1 < j2 < · · · < jk < · · · < jp−1 < jp. (112)

Ordering will just introduce a parity term (−1)P due to the anti-symmetry. We define further V (0) = 1. The corre-
sponding matrices are:

V(0) = 1, and: (∀p ∈ [ 1, n ] ∩ N) (V(p) = λj1λj2 · · ·λjk · · ·λjp−1
λjp). (113)

In the extension from R2n+1 to R2n+2 and R2n+3, the new representation matrices are given by:

∀` ∈ [1, 2n+ 1] : γ` =

[
λ`

λ`

]
, γ2n+2 =

[
−1

1

]
, γ2n+3 =

[
1
−1

]
. (114)

When in the Peano induction scheme we extend the formalism from R2n+3 to R2n+5, the matrices γj , j ∈ [ 1, 2n+3 ]∩N
will then take up the rôle in R2n+3 that was played by λ`, ` ∈ [ 1, 2n+1 ]∩N in R2n+1. We will have to break down the
proof by Peano induction into two steps, because the extension from R2n+1 to R2n+2 involves a matrix γ2n+2 while
the extension from R2n+2 to R2n+3 involves a different matrix γ2n+3.

From λ1λ2 · · ·λ` · · ·λ2n+1 = 1, it follows that γ1γ2 · · · γ` · · · γ2n+1γ2n+2γ2n+3 = 1. In fact:

γ1γ2 · · · γ` · · · γ2n+1γ2n+2γ2n+3 = (λ1Λx)(λ2Λx) · · · (λ`Λx) · · · (λ2n+1Λx)ΛyΛz = λ1λ2 · · ·λ` · · ·λ2n+11 = 1, (115)

where we have used Λ2n+1
x = Λx and ΛxΛyΛz = 1. The fact that the product of all the vector representation matrices

γ` is 1 is this way established by Peano induction. In the extension to R2n+2 and R2n+3 the matrix V(p) is replaced
by:

∀p ≡ 1 (mod 2): W(p) =

[
V(p)

V(p)

]
, ∀p ≡ 0 (mod 2): W(p) =

[
V(p)

V(p)

]
. (116)

In the Peano induction scheme it is assumed that (∀p ∈ [ 0, n ] ∩ Z) (∀q ∈ [ 0, n ] ∩ Z) (p 6= q ⇒ V(p) ? V(q) = 0).

For p = q it is further assumed that V
(p)
1 6= V

(p)
2 ⇒ V

(p)
1 ? V

(p)
2 = 0. From this it follows automatically that:

(∀p ∈ [ 0, n ]∩Z) (∀q ∈ [ 0, n ]∩Z) (p 6= q ⇒ W(p) ?W(q) = 0). In fact, when p− q ≡ 1 (mod 2), then W(p) and W(q)

have no overlap. When p− q ≡ 0 (mod 2), then W(p) ?W(q) = 2(V(p) ?V(q)) = 0. For p = q, it follows automatically

that: W
(p)
1 6= W

(p)
2 ⇒W

(p)
1 ?W

(p)
2 = 0, again because then W

(p)
1 ?W

(p)
2 = 2(V

(p)
1 ?V

(p)
2 ) = 0. In other words, in the

extension the orthogonality relations remain preserved. We must now still prove that the new terms we introduce by
an extension are all mutually orthogonal and also orthogonal to all the old terms. As we already mentioned, we must
break this extension down into two steps R2n+1 → R2n+2 and R2n+2 → R2n+3. In all the discussions we will never
mention the multi-vector 1 of rank zero because its orthogonality to all other multi-vectors is trivial.
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9.4 From R2n+1 to R2n+2

Let us first handle the extension R2n+1 → R2n+2. We must then consider four different cases.

� Case 1. First we consider the case that the rank p < n and p ≡ 1 (mod 2). We have then:

W(p) =

[
V(p)

V(p)

]
. (117)

We can now obtain a term W(p+1) of rank p+ 1 from a term W(p) of rank p as:

W(p+1) =

[
V(p)

V(p)

] [
λjp+1

λjp+1

]
=

[
V(p)λjp+1

V(p)λjp+1

]
, (118)

where: jp+1 ∈ [ 1, 2n+ 1 ] ∩ N & jp+1 > jp, or as:

W(p+1) =

[
V(p)

V(p)

] [
−1

1

]
=

[
V(p)

−V(p)

]
. (119)

In the first case (Eq. 118), we just generate a term that is not new. As p+ 1 ≤ n we already generated it in R2n+1. All
orthogonality relations involving W(p+1) and other multi-vectors of R2n+1 are then already established by assumption
in the Peano induction scheme. In the second case (Eq. 119) we obtain a result that is orthogonal to all multi-vectors
we generated in R2n+1 because the matrices corresponding to these multi-vectors can only be of the form:

G1 =

[
V(q)

V(q)

]
, or: G2 =

[
V(q)

V(q)

]
. (120)

Now G2 ?W
(p+1) = 0 due to an absence of overlap and G1 ?W

(p+1) = V(q) ?V(p) −V(q) ?V(p) = 0.

� Case 2. Next we consider the case that the rank p < n and p ≡ 0 (mod 2). The matrix W(p) has then a different
block structure than in Eq.117. It is now block diagonal instead of block off-diagonal:

W(p) =

[
V(p)

V(p)

]
. (121)

We can now obtain a term W(p+1) of rank p+ 1 from a term W(p) of rank p as:

W(p+1) =

[
V(p)

V(p)

] [
λjp+1

λjp+1

]
=

[
V(p)λjp+1

V(p)λjp+1

]
, (122)

where jp+1 ∈ [ 1, 2n+ 1 ] ∩ N & jp+1 > jp, or as:

W(p+1) =

[
V(p)

V(p)

] [
−1

1

]
=

[
−V(p)

V(p)

]
. (123)

In the first case (Eq. 122), we just generate a term that is not new. As p+ 1 ≤ n we already generated it in R2n+1. All
orthogonality relations involving W(p+1) and other multi-vectors of R2n+1 are then already established by assumption
in the Peano induction scheme. In the second case (Eq. 123), we obtain a result that is orthogonal to all terms we
generated in R2n+1 because these terms can only be of the form, given by Eq. 120. Now G1 ?W

(p+1) = 0 due to an
absence of overlap while G2 ?W

(p+1) = −V(q) ?V(p) + V(q) ?V(p) = 0.

� Case 3. Next we consider the case that the rank p = n and p ≡ 1 (mod 2). What changes with respect to Case 1
is that now:

W(n+1) =

[
V(n)

V(n)

] [
λjn+1

λjn+1

]
=

[
V(n)λjn+1

V(n)λjn+1

]
, (124)

where jn+1 ∈ [ 1, 2n + 1 ] ∩ N & jn+1 > jn, is no longer a term that already existed in R2n+1. In fact, it is now of
rank n + 1. Now we use the result λ1λ2 · · ·λ` · · ·λ2n+1 = 1 to replace V(n)λjn+1

by a term (−1)PG(n). This term

is obtained by removing all n + 1 factors that occur in V(n)λjn+1
from λ1λ2 · · ·λ` · · ·λ2n+1. The result will contain

(2n+ 1)− (n+ 1) = n factors instead of n+ 1. Here (−1)P is a parity term. It follows from this that:
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W(n+1) =

[
(−1)PG(n)

(−1)PG(n)

]
and: W(n+1) ?H(n) =

[
G(n)

G(n)

]
?

[
G(n)

G(n)

]
= 0. (125)

Here H(n) corresponds to G(n) in the extension from R2n+1 to R2n+2 or R2n+3. We can use the same algebra to show

that W(n+1) will also be orthogonal to all other terms H
(n)
1 of rank n due to absence of overlap. Furthermore, all

different terms W(n+1) of rank n+ 1 will be mutually orthogonal because the corresponding terms G(n) are mutually
orthogonal. Finally, all other terms W(q) of rank q < n will be of the forms G1 or G2 defined in Eq. 120, and we
will have G(n) ?V(q) = 0, such that .W(n+1) ?G1 = 0 and W(n+1) ?G2 = 0, either by absence of overlap or due to
G(n) ?V(q) = 0. This way all terms W(n+1) are mutually orthogonal (when they are different) and orthogonal to all
terms of lower rank. The other possibility to obtain a term W(n+1) of rank n+ 1 is:

W(n+1) =

[
V(n)

V(n)

] [
−1

1

]
=

[
V(n)

−V(n)

]
. (126)

These terms are orthogonal to all other terms of rank n + 1 discussed in Eq. 125, because (−1)PG(n) ? V(n) −
(−1)PG(n) ?V(n) = 0. They are also mutually orthogonal because the corresponding terms V(n) are mutually orthog-
onal. Finally, they are also orthogonal to terms W(q) of rank q ≤ n either by absence of overlap, or due to the fact
that V(q) ?V(n) −V(q) ?V(n) = 0.

� Case 4. Next we must consider the case that the rank p = n and p ≡ 0 (mod 2). What changes with respect to
Case 2 is that now:

W(n+1) =

[
V(n)

V(n)

] [
λjn+1

λjn+1

]
=

[
V(n)λjn+1

V(n)λjn+1

]
, (127)

where jn+1 ∈ [ 1, 2n + 1 ] ∩ N & jn+1 > jn, is no longer a term that already existed in R2n+1. In fact, it is now of
rank n + 1. Again we use the result λ1λ2 · · ·λ` · · ·λ2n+1 = 1 to replace V(n)λjn+1

by a term (−1)PG(n). This term

is obtained by removing all n + 1 factors that occur in V(n)λjn+1
from λ1λ2 · · ·λ` · · ·λ2n+1. The result will contain

(2n+ 1)− (n+ 1) = n factors instead of n+ 1. Here (−1)P is a parity term. It follows from this that:

W(n+1) =

[
(−1)PG(n)

(−1)PG(n)

]
and: W(n+1) ?H(n) =

[
G(n)

G(n)

]
?

[
G(n)

G(n)

]
= 0. (128)

Here H(n) corresponds to G(n) in the extension from R2n+1 to R2n+2 or R2n+3. We can use the same algebra to show

that W(n+1) will also be orthogonal to all other terms H
(n)
1 of rank n due to absence of overlap. Furthermore, all

different terms W(n+1) of rank n+ 1 will be mutually orthogonal because the corresponding terms G(n) are mutually
orthogonal. Finally, all other terms W(q) of rank q < n will be of the form G1 or G2, and we will have G(n) ?V(q) = 0,
such that .W(n+1) ?G1 = 0 and W(n+1) ?G2 = 0, either by absence of overlap or due to G(n) ?V(q) = 0. This way
all terms W(n+1) are mutually orthogonal (when they are different) and orthogonal to all terms of lower rank. The
other possibility to obtain a term W(n+1) of rank n+ 1 is:

W(n+1) =

[
V(n)

V(n)

] [
−1

1

]
=

[
V(n)

−V(n)

]
. (129)

These terms are orthogonal to all other terms of rank n + 1 discussed in Eq. 128, because (−1)PG(n) ? V(n) −
(−1)PG(n) ?V(n) = 0. They are also mutually orthogonal because the corresponding terms V(n) are mutually orthog-
onal. Finally, they are also orthogonal to terms W(q) of rank q ≤ n either by absence of overlap, or due to the fact
that V(q) ?V(n) −V(q) ?V(n) = 0.

9.5 From R2n+2 to R2n+3

Let us now handle the extension R2n+2 → R2n+3. We must then consider several different cases. First of all, the
maximum rank p of a matrix W(p) in R2n+2 can now be n+ 1. Contrary to what happened in Subsection 9.4, the two
blocks in a matrix W(p) can now also have opposite signs. This happens then because W(p) contains a factor γ2n+2.
As both γ` and γ2n+2 are block off-diagonal, the discussion about the block structure of W(p) in terms of p ≡ 1 (mod
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2) or p ≡ 0 (mod 2) remains the same. We will first consider the cases where W(p) does not contain γ2n+2.

� Case 5. First we consider the case that the rank p < n + 1 and p ≡ 1 (mod 2), while the multi-vector dies not
contain a factor γ2n+2. We have then:

W(p) =

[
V(p)

V(p)

]
. (130)

We can now obtain a term W(p+1) of rank p+ 1 from a term W(p) of rank p as:

W(p+1) =

[
V(p)

V(p)

] [
λjp+1

λjp+1

]
=

[
V(p)λjp+1

V(p)λjp+1

]
, (131)

where: jp+1 ∈ [ 1, 2n+ 1 ] ∩ N & jp+1 > jp, or as:

W(p+1) =

[
V(p)

V(p)

] [
−1

1

]
=

[
V(p)

−V(p)

]
. (132)

or as:

W(p+1) =

[
V(p)

V(p)

] [
1
−1

]
=

[
−V(p)

V(p)

]
. (133)

In the first case (Eq. 131), we just generate a term that is not new. As p+1 ≤ n+1 we already generated it in R2n+2. All
orthogonality relations involving W(p+1) and other multi-vectors of R2n+2 are then already established by assumption
in the Peano induction scheme. In the second case (Eq. 132), we obtain a result that is orthogonal to all multi-vectors
we generated in R2n+2 because the matrices corresponding to these multi-vectors can only be of the forms G1 or G1

defined in Eq. 120. Now G2 ?W
(p+1) = 0 due to absence of overlap and G1 ?W

(p+1) = V(q) ?V(p)−V(q) ?V(p) = 0.
In the third case (Eq. 133), we obtain a result that is orthogonal to all multi-vectors we generated in R2n+2 because
the matrices corresponding to these multi-vectors can only be of the form given in Eq. 120. Now G1 ?W

(p+1) = 0 due
to absence of overlap and G2 ?W

(p+1) = V(q) ?V(p) −V(q) ?V(p) = 0.

� Case 6. Next we consider the case that the rank p < n + 1 and p ≡ 0 (mod 2), while the multi-vector dies not
contain a factor γ2n+2.The matrix W(p) has then a different block structure than in Eq.130. It is now block diagonal
instead of block off-diagonal:

W(p) =

[
V(p)

V(p)

]
. (134)

We can now obtain a term W(p+1) of rank p+ 1 from a term W(p) of rank p as:

W(p+1) =

[
V(p)

V(p)

] [
λjp+1

λjp+1

]
=

[
V(p)λjp+1

V(p)λjp+1

]
, (135)

where jp+1 ∈ [ 1, 2n+ 1 ] ∩ N & jp+1 > jp, or as:

W(p+1) =

[
V(p)

V(p)

] [
−1

1

]
=

[
−V(p)

V(p)

]
. (136)

or as:

W(p+1) =

[
V(p)

V(p)

] [
1
−1

]
=

[
V(p)

−V(p)

]
. (137)

In the first case (Eq. 135), we just generate a term that is not new. As p + 1 ≤ n + 1 we already generated it in
R2n+2. All orthogonality relations involving W(p+1) and other multi-vectors of R2n+2 are then already established by
assumption in the Peano induction scheme. In the second case (Eq. 136), we obtain a result that is orthogonal to all
multi-vectors we generated in R2n+2 because the matrices corresponding to these multi-vectors can only be of the form
given by Eq. 120. Now G1 ?W

(p+1) = 0 due to absence of overlap and G2 ?W
(p+1) = V(q) ?V(p) −V(q) ?V(p) = 0.

In the third case (Eq. 137), we obtain a result that is orthogonal to all multi-vectors we generated in R2n+2 because
the matrices corresponding to these multi-vectors can only be of the form given in Eq. 120. Now G2 ?W

(p+1) = 0 due
to absence of overlap and G1 ?W

(p+1) = V(q) ?V(p) −V(q) ?V(p) = 0.
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� Case 7. Next we might think of considering that the rank p = n + 1 and p ≡ 1 (mod 2). We have then n ≡ 0
(mod 2). And W(p) would then be given by:

W(n+1) =

[
V(n+1)

V(n+1)

]
. (138)

We could then obtain:

W(n+2) =

[
V(n+1)

V(n+1)

] [
λnj+2

λnj+2

]
=

[
V(n+1)λnj+2

V(n+1)λnj+2

]
. (139)

Here W(n+1) is itself obtained as:

W(n+1) =

[
V(n)

V(n)

] [
λnj+1

λnj+1

]
=

[
V(n)λnj+1

V(n)λnj+1

]
, (140)

such that:

W(n+2) =

[
V(n)

V(n)

] [
λnj+1

λnj+1

] [
λnj+2

λnj+2

]
=

[
V(n)λnj+1λnj+2

V(n)λnj+1λnj+2

]
. (141)

But these cases do not exist. We have shown that in the transition from R2n+1 to R2n+2, W(n+1) must be reduced to:[
G(n)

G(n)

]
. (142)

This way we are falling back onto Case 3. We might think that we can get then W(n+2) as a multi-vector of rank n+1:[
G(n)λnj+2

G(n)λnj+2

]
. (143)

This would then again be reduced to a multi-vector of rank n. But this is wrong because it overlooks some details in
the reduction schemes. As a matter of fact, by an alternative reasoning based on Eq. 141 we see that the reduction
scheme will yield in reality a multi-vector of rank 2n+ 1− (n+ 2) = n− 1. This, rather than n is the correct value for
the rank. Let us show how this works on an exemple. Imagine that we work in R7 and that we start from e1 ∧ e2 ∧ e3.
In a first step we add e4. But e1 ∧ e2 ∧ e3 ∧ e4 must now be reduced to e5 ∧ e6 ∧ e7. When we further add e5 we can
argue that e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 must be reduced to e6 ∧ e7. But we can also reason on e5 ∧ (e5 ∧ e6 ∧ e7) which will
also yield e6 ∧ e7. We see that e5 is eliminated in both reasonings. In one reasoning by a reduction of the rank from
n+ 2 to n− 1. In the other reasoning because e5 occurs twice, such that we do not extend the rank again from n to
n + 1 but further reduce it from n to n − 1. Now reasoning on e5 ∧ e6 ∧ e7 we could also think of adding e1 rather
than e5. This would yield e1 ∧ e5 ∧ e6 ∧ e7 which must be reduced and yields then e2 ∧ e3 ∧ e4. Again, this yields
the same result as reasoning on e1 ∧ (e1 ∧ e2 ∧ e3 ∧ e4). In other words, we really obtain a multi-vector of rank n− 1
rather than n and the calculations are self-consistent.

However, there are now extra possibilities to obtain multi-vectors. First of all, we can obtain now a multi-vector
of rank n+ 1 from the multi-vector whose rank has been reduced from n+ 1 to n:

W(n+1) =

[
G(n)

G(n)

] [
1
−1

]
=

[
−G(n)

G(n)

]
, (144)

These terms are orthogonal to all other terms of rank n:

W(n) =

[
H(n)

H(n)

]
. (145)

discussed in Eq. 142, because G(n) ?H(n) −G(n) ?H(n) = 0. They are also mutually orthogonal because the corre-
sponding terms G(n) are mutually orthogonal. Finally, they are also orthogonal to terms W(q) of rank q ≤ n either
by absence of overlap, or due to the fact that V(q) ?G(n) −V(q) ?G(n) = 0. The second extra case is:

W(n+1) =

[
G(n)

G(n)

] [
−1

+1

]
=

[
G(n)

−G(n)

]
. (146)
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These terms are orthogonal to all other terms of rank n given by Eq. 145 or discussed in Eq. 142, due to ab-
sence of overlap. They are also mutually orthogonal because the corresponding terms G(n) are mutually orthogonal.
Finally, they are also orthogonal to terms W(q) of rank q ≤ n either by absence of overlap, or due to the fact that
V(q) ?G(n) −V(q) ?G(n) = 0.

� Case 8. Next we might think of considering that the rank p = n + 1 and p ≡ 0 (mod 2). Just as in Case 7 this
leads to considering expressions that do not exist. However, there now also extra cases. A first one is:

W(n+1) =

[
G(n)

G(n)

] [
1
−1

]
=

[
G(n)

−G(n)

]
. (147)

These terms are orthogonal to all other terms of rank n:

W(n) =

[
H(n)

H(n)

]
. (148)

because G(n) ?H(n) −G(n) ?H(n) = 0. They are also mutually orthogonal because the corresponding terms G(n) are
mutually orthogonal. Finally, they are also orthogonal to terms W(q) of rank q ≤ n either by absence of overlap, or
due to the fact that V(q) ?G(n) −V(q) ?G(n) = 0. The second extra case is:

W(n+1) =

[
G(n)

G(n)

] [
−1

+1

]
=

[
−G(n)

G(n)

]
. (149)

These terms are orthogonal to all other terms of rank n given by Eq. 148, due to absence of overlap. They are
also mutually orthogonal because the corresponding terms G(n) are mutually orthogonal. Finally, they are also or-
thogonal to terms W(q) of rank q ≤ n either by absence of overlap, or due to the fact that V(q)?G(n)−V(q)?G(n) = 0.

We must finally treat the cases where W(p) contains γ2n+2. In all cases Case 1-Case 8 we had to consider sub-cases.
We could multiply W(p) by terms of the type Λxλ, γ2n+2 or by γ2n+3. Here we no longer have to consider multiplying
with a term of the type Λxλ, because after reordering that will be equivalent with a previous case where we multiplied
by γ2n+2. We also do not have to consider multiplying with a term γ2n+2 because that term is already present. The
only case we must consider is therefore multiplying by γ2n+3.

� Case 9. First we consider the case that the effective rank p < n+ 1 and p ≡ 0 (mod 2). We have then:

W(p+1) =

[
−V(p)

V(p)

]
=

[
V(p)

V(p)

] [
−1

1

]
. (150)

The condition p < n+ 1 stems from the fact that in R2n+1 the maximum rank of the multi-vector was n and we have
multiplied this multi-vector by γ2n+2, which does not change its effective rank. By the effective rank p we mean here
the number of matrices λ` we have used in the construction of the multi-vector. We note this multi-vector as W(p+1)

to signal that we have multiplied p+ 1 matrices, such that its true rank is p+ 1. We obtain then:

W(p+2) =

[
−V(p)

V(p)

] [
1
−1

]
=

[
V(p)

V(p)

]
. (151)

As p ≡ 0 (mod 2), the blocks V(p) of rank p in W(p+2) do not occur in the natural off-diagonal positions for a
multi-vector of rank p. The multi-vector W(p+2) of effective rank p is therefore orthogonal to all multi-vectors of rank
p due to absence of overlap. It is also orthogonal to all other multi-vectors W(q) of rank q because V(p) ?V(q) = 0 or
due to absence of overlap.

� Case 10. Finally we consider the case that the effective rank p < n+ 1 and p ≡ 1 (mod 2). We have then:

W(p+1) =

[
V(p)

−V(p)

]
=

[
V(p)

V(p)

] [
−1

1

]
. (152)

For the terminology, the condition p < n+1 and the notation W(p+1) the same remarks apply as in Case 9. We obtain
then:

W(p+2) =

[
V(p)

−V(p)

] [
1
−1

]
=

[
V(p)

V(p)

]
. (153)
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As p ≡ 1 (mod2), the blocks V(p) of rank p in W(p+2) do not occur in the natural off-diagonal positions for a multi-
vector of rank p. The multi-vector W(p+2) of effective rank p is therefore orthogonal to all multi-vectors of rank p due
to absence of overlap. It is also orthogonal to all other multi-vectors W(q) of rank q because V(p) ?V(q) = 0 or due
to absence of overlap. This concludes the proof.
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