
HAL Id: hal-03864595
https://hal.science/hal-03864595

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control-Oriented Neural State-Space Models for
State-Feedback Linearization and Pole Placement

Alexandre Hache, Maxime Thieffry, Mohamed Yagoubi, Philippe Chevrel

To cite this version:
Alexandre Hache, Maxime Thieffry, Mohamed Yagoubi, Philippe Chevrel. Control-Oriented
Neural State-Space Models for State-Feedback Linearization and Pole Placement. ICSC’2022:
10th International Conference on Systems and Control, Nov 2022, Marseille, France.
�10.1109/ICSC57768.2022.9993820�. �hal-03864595�

https://hal.science/hal-03864595
https://hal.archives-ouvertes.fr

Control-Oriented Neural State-Space Models for State-Feedback
Linearization and Pole Placement

Alexandre Hache, Maxime Thieffry, Mohamed Yagoubi and Philippe Chevrel

Abstract— Starting from a data set consisting of input-output
measurements of a dynamical process, this paper presents a
training procedure for a specifically control-oriented model.
The considered dynamic model adopts a particular neural state-
space representation: its structure guarantees its linearizability
by state feedback. Moreover, the linearizing control law follows
trivially from the parameters of the learned model. The method
relies on a parameterized continuous-time neural state-space
model whose structure is inspired from well-known exact
linearization. The feasibility and efficiency of the approach is
illustrated on a nonlinear identification benchmark, namely the
Silverbox one. The quality of learning and linearizing feature
of the control design are validated on two nonlinear models by
comparing the input-output behavior of each closed-loop and
its best linear approximation.

I. INTRODUCTION

In control community it is generally accepted that the
design of linear systems control can be done in a more
systematic way than in the nonlinear case. In this framework,
feedback linearization techniques have proven to be an ap-
pealling challenge. The latter are positioned, in particular, in
a framework where the nonlinear system can be transformed
exactly into a linear system proceeding by state feedback
and coordinate change. The dynamic requirements on the
controlled system are then expressed on the resulting linear
model.
Feedback linearization theory usually considers input

affine nonlinear models of the form:

𝑃 :

{
¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢
𝑦 = ℎ(𝑥)

(1)

where 𝑢 ∈ R𝑛𝑢 is the system input, 𝑦 ∈ R𝑛𝑦 the output,
𝑥 ∈ R𝑛𝑥 is the state and where functions 𝑓 , 𝑔 and ℎ are
nonlinear mappings.
Founding works on exact linearization problems for this

class of systems were published in the late 1980s [1] and nec-
essary and sufficient conditions for an exact linearization of
input-affine systems have been established. A lock, however,
consists in working from experimental input-output data, in
the absence of a relevant and accurate physical model.
During the last decades, neural networks have aroused the

interest of the scientific community due to their universal
approximation properties [2] and the development of dedi-
cated and powerful optimization algorithms [3]. In nonlinear

Authors are with IMT Atlantique, LS2N, UMR CNRS 6004, Nantes,
France. Contact : alexandre.hache@imt-atlantique.fr
This work was supported by ANR project AI@IMT - Responsible AI for
Industry and Society (ANR-20-THIA-0019).

identification, they have proven their ability to provide accu-
rate dynamic models and the recent rise of physics-informed
neural networks [4], [5] makes them attractive for modeling
nonlinear dynamical systems.
Using machine learning techniques and especially neural

networks to learn linearizing controllers is not new, see e.g.
[6] or [7] for a recent review. However, recent works take
advantage of the development of computational resources
to tackle the problem of learning linearizing controllers
from data, using reinforcement learning in [8] or Gaussian
processes to improve robustness of feedback linearization in
[9].
Furthermore, recent advances in nonlinear system identifi-

cation of neural (state-space) models are numerous and open
the way to promising simulation and analysis approaches.
A neural state-space model (NSSM) is a model where the
functions 𝑓 , 𝑔 and ℎ from (1) are approximated using neural
networks. This kind of models has first been introduced
in discrete time in [10] and recent works propose to add
an integration scheme on top of the standard forward pass
to approximate ODEs [11]. Both the state and the output
equations of (1) can be approximated by a one-hidden layer
feedforward neural network:

𝑓 (𝑥) = 𝑊 𝑓𝜎(𝑊 𝑓 𝑥𝑥 + 𝑏 𝑓 𝑥) + 𝑏 𝑓

𝑔(𝑥) = 𝑊𝑔𝜎(𝑊𝑔𝑥𝑥 + 𝑏𝑔𝑥) + 𝑏𝑔
ℎ(𝑥) = 𝑊ℎ𝜎(𝑊ℎ𝑥𝑥 + 𝑏ℎ𝑥) + 𝑏ℎ

(2)

where 𝑊𝑖 and 𝑏𝑖 are weight matrices and biases respectively
and 𝜎(·) an appropriate nonlinear activation function, usually
sigmoid or hyperbolic tangent.
It has been shown that the inclusion of an explicit linear

part in the nonlinear model (2) improves the learning stage
by providing a good initialization, see e.g. [12]. Thus, recent
works introduce an explicit linear part in NSSM via the
matrices 𝐴, 𝐵, 𝐶, 𝐷 in such a way:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑓 (𝑥) + 𝑔(𝑥)𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢 + ℎ(𝑥)

(3)

The purpose of this article is to proceed by constrained
learning of neural state-space models, which are by design
feedback linearizable and where the control law and the
targeted linear dynamics appear explicitly in the structure
of the network.

II. RELATED WORK AND STATE OF THE ART

This section provides a reminder of the so-called exact and
approximate feedback linearization techniques.

A. Exact feedback linearization

Considering an input-affine nonlinear system of the form
(1), the objective of exact feedback linearization is to find a
control law of the form:

𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣 (4)

where 𝛼(𝑥), 𝛽(𝑥) are nonlinear functions of the state, and a
diffeomorphism 𝑧 = Φ(𝑥) such that the closed-loop system
according to (1) and (4) is an input-output linear one, from
𝑣 to 𝑧 and 𝑦:

¤𝑧 = 𝐴𝑧 + 𝐵𝑣
𝑦 = 𝐶𝑧

(5)

Several conditions on the state equation (1) must be
fulfilled in order to perform exact linearization. In the case
where these conditions (which will not be recalled, we refer
the reader to [1] for more details) are satisfied, there exists
an output function 𝜆(𝑥), called flat output, such that:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢
𝑦̃ = 𝜆(𝑥)

(6)

has a relative degree equals to the size of the state-space
[13]. Given a well-suited 𝜆(𝑥), a valid change of coordinates
is then given by:

𝑧 =

©­­­«
𝜆(𝑥)
¤𝜆(𝑥)
. . .

𝜆 (𝑛𝑥−1) (𝑥)

ª®®®¬ = Φ(𝑥) (7)

This transformation leads to a linear system which is a
chain of integrators and a state-space model expressed in
Brunovsky canonical form that possesses no physical mean-
ing of the system being linearized. In addition to being
ill-conditioned, it changes completely the dynamic of the
system and thus may not be robust to modelling uncertainties.
To cope with these limitations, one can do another change
of coordinates in order to linearize the system around an
equilibrium point leading to a model better suited to a
robust controller design [14]. Moreover, this exact lineariza-
tion method requires a precise knowledge of the plant 𝑃
and the equilibrium point around which the linearization is
performed.

B. Approximate feedback linearization

Approximate feedback linearization comes at hand when
the system is not exactly linearizable or when a model
is not available. Different techniques exist for approximate
linearization depending on the objective: some of them will
be discussed in this section and a comprehensive review is
available in [15] for interested readers.
The classic linearization of a nonlinear system is its Taylor

approximation around an equilibrium point 𝑥0 induced by 𝑢0:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

(8)

where:
𝐴 =

𝜕 𝑓

𝜕𝑥

����
𝑥=𝑥0

𝐵 =
𝜕 𝑓

𝜕𝑢

����
𝑥=𝑥0

𝐶 =
𝜕𝑔

𝜕𝑥

����
𝑥=𝑥0

𝐷 =
𝜕𝑔

𝜕𝑢

����
𝑥=𝑥0

(9)

There are systems where this first order Taylor approx-
imation fails or is only valid in a restricted region of the
state space. In [16] a higher order approximation is proposed
by ignoring the third order (and higher) terms in the Taylor
approximation around the equilibrium point (𝑢0, 𝑥0) in order
to increase its domain of validity.
In [17], the concept of a pseudolinear system is introduced

that is a system of the form:

¤𝑧 = 𝐴𝑧 + 𝐵𝑣 + 𝑞(𝑧, 𝑣) (10)

where the term 𝑞(𝑧, 𝑣) has desired properties and where
the 𝐴, 𝐵 matrices comes from Taylor approximation and are
independant from the operating point. Pseudo-linearization
then seeks a feedback control input such that the state
equation of (1) is equivalent to (10).
Finally, in [18], an approximate linearization approach is

proposed for affine nonlinear systems that do not satisfy all
the conditions required for input-to-state linearization but are,
instead, linearly controllable in a neighborhood of a set of
operating points.

III. PRESENT CONTRIBUTIONS
Given a dataset described by input-output measurements
(𝑢𝐷 , 𝑦𝐷) our objective is to identify a feedback linearizable
model using neural networks. A first approach could be to
enforce the conditions for exact linearization described in
[13], but the computation of the iterated Lie Brackets and the
rank condition that must be imposed on the resulting matrix
make the implementation of this solution too complicated
practically.
This paper proposes a data-driven control design solution

to overcome these difficulties. Neural networks are involved,
first to identify a neural state-space model of the process,
and then to trawe make the assumption that there exists
a diffeomorphismin a structured one with the same input-
output behavior, parameterized and with the property to be
feedback linearizable.
The remainder of the paper is organized as follows : Sec-

tion IV presents the main results, introducing the proposed
linearizable network and giving the key elements for its
implementation. Then this approach is tested in section V
on a popular benchmark used for nonlinear identification.
Finally, open challenges and further works are discussed in
section VI.

IV. MODEL IDENTIFICATION WITH
LINEARIZABILITY PROPERTY

A. Preliminar results
Given a process 𝑃 described by an unknown input-affine

nonlinear model of the form (1) and considering that the state
𝑥 is available either directly or from the use of an observer,

we make the assumption that there exists a diffeomorphism
𝑧 = Φ(𝑥) such that (1) is equivalent to the following model:

𝑃̃ :

{
¤𝑧 = 𝐴𝑧 + 𝐵𝛽(𝑥) (𝑢 − 𝛼(𝑥))
𝑦 = 𝐶𝑧

(11)

Proposition 1. The control law defined by 𝑢 = 𝛽(𝑥)−1𝑣 +
𝛼(𝑥) is a feedback linearizing control input for model 𝑃̃ and
therefore for 𝑃. ■
However, functions 𝛼(𝑥) and 𝛽(𝑥) are in practice not

known. We then consider the following parameterized model:

𝑀 :

{
¤𝑧 = 𝐴̂𝑧 + 𝐵̂𝛽(𝑥) (𝑢 − 𝛼̂(𝑥))
𝑦̂ = 𝐶̂𝑧

(12)

where 𝐴̂, 𝐵̂, 𝐶̂, 𝛼̂(𝑥) and 𝛽(𝑥) are unknown matrices and
functions to be identified.

Definition 1. Two models Σ1 and Σ2 are said similar in
terms of input-output behavior if, whatever input 𝑢 applied
to both systems and time 𝑇 , the output 𝑦1 of Σ1 and 𝑦2 of
Σ2 are sufficiently close:

∀ 𝑢,∀ 𝑇 ∈ R+,
∫ 𝑇

0
(𝑦1 (𝑡) − 𝑦2 (𝑡))2𝑑𝑡 < 𝜖 (13)

with 𝜖 sufficiently small. ■
These notations and definitions lead to the main contribu-

tion of this paper. The following result holds:
Proposition 2. If models 𝑀 and 𝑃̃ are similar in terms of

their input-output behavior, then the control law defined as:

𝑢̂ = 𝛽(𝑥)−1𝑣 + 𝛼̂(𝑥) (14)

is a feedback-linearizing control input for model 𝑀 , 𝑃̃ and
therefore for 𝑃. ■

B. Methodological procedure
The neural-network training procedure ensures that models

𝑀 and 𝑃̃ are similar in terms of input-output behavior. The
loss function of the training is defined as the mean squared
error between the data measurements 𝑦𝐷 and the simulated
output 𝑦𝑠𝑖𝑚 of model 𝑀:

𝐽 =
1
𝑇

𝑇−1∑︁
𝑖=0
(𝑦𝐷𝑖 (𝑡) − 𝑦𝑠𝑖𝑚𝑖 (𝑡))2 (15)

The structure of model 𝑀 makes it feedback linearizable
by design and the control law (14) yields a linear closed-loop
system of the form:

¤𝑧 = 𝐴̂𝑧 + 𝐵̂𝑣
𝑦 = 𝐶̂𝑧

(16)

where 𝑣 is the new input of the closed-loop system.
The linear structure of the corresponding closed-loop

system eases the design of efficient control laws. In addition,
if the matrix 𝐴̂ has desired dynamics and is fixed during
training, then the control law given by (14) is a feedback
linearizing control input and the resulting linear model has
desired closed-loop dynamics.

C. Implementation
1) Learning algorithm: In this paper, continuous-time

neural networks are considered. In order to learn the un-
derlying ODEs from data points, we follow the framework
described in [5]: an integration scheme is added on top of the
forward pass of the neural network and back-propagation is
performed overall. In addition, the initial state for the hidden
layer, namely 𝑧0, is considered as a variable for optimization.
A tensor 𝑍 containing the initial states of the size of the
training data is created and is optimized along the way. The
implementation1 is described in algorithm 1, 𝜃 denoting the
network parameters including the matrices 𝐴̂, 𝐵̂, 𝐶̂ and one
hidden-layer networks :

𝛼(𝑥) = 𝑊𝛼𝜎(𝑊𝛼𝑥
𝑥 + 𝑏𝛼𝑥

) + 𝑏𝛼
𝛽(𝑥) = 𝑊𝛽𝜎(𝑊𝛽𝑥

𝑥 + 𝑏𝛽𝑥
) + 𝑏𝛽

(17)

The training is implemented using PyTorch framework [19]
using a Runge-Kutta 4 step method in the forward pass as
integration scheme and ADAM optimization algorithm [3].

Algorithm 1: Training procedure
Inputs : (𝑢𝐷 , 𝑥𝐷 , 𝑦𝐷) dataset, 𝑛𝑥 state order, 𝑛ℎ

number of hidden neurons, 𝑁𝐵 batch size,
𝑇 sequence length, 𝑁 number of
optimization steps; 𝑡𝑠 integration step, 𝛼
learning rate

Initialize the network :
Determine linear initialisation for 𝐴0, 𝐵0, 𝐶0 ;
Set desired closed-loop poles 𝑝𝑖 via
state-feedback pole-placement
𝐴̂ = (𝐴0 − 𝐵0𝐾 (𝑝𝑖));
Freeze 𝐴̂ matrix;
Instantiate hidden states tensor 𝑍 = 0;

for 𝑖 ← 0 to 𝑁 do
Select randomly 𝑧0 tensors among 𝑍;
for 𝑗 ← 0 to 𝑇 − 1 do

𝑦𝑠𝑖𝑚
𝑗

= 𝐶̂𝑧 𝑗 ;
¤𝑧 𝑗 = 𝐴̂𝑧 𝑗 + 𝐵̂𝛽(𝑥 𝑗) (𝑢 𝑗 − 𝛼̂(𝑥 𝑗));
𝑧𝑠𝑖𝑚
𝑗

= 𝑂𝐷𝐸𝐼𝑁𝑇 (𝑡𝑠 , ¤𝑧 𝑗);
end
Compute the loss :

𝐽 (𝜃, 𝑍) = 1
𝑁𝐵𝑇

𝑁𝐵−1∑︁
𝑘=0

𝑇−1∑︁
𝑗=0
(𝑌𝐷

𝑘, 𝑗 − 𝑌
𝑠𝑖𝑚
𝑘, 𝑗 (𝜃, 𝑍))

2

Compute gradients : ∇𝜃 𝐽 =
𝜕𝐽
𝜕𝜃
, ∇𝑍 𝐽 = 𝜕𝐽

𝜕𝑍
;

Update parameters :

𝜃 ← 𝜃 − 𝛼∇𝜃 𝐽

𝑍 ← 𝑍 − 𝛼∇𝑍 𝐽

end
Outputs: Network parameters 𝜃

1Code is available upon request.

2) Network initialization: Inspired by the efficient initial-
ization approach as in the general state-space case [20] and
one-hidden-layer neural networks, we propose the following
initialization. The network (12) is initialized with linear part
only, i.e. before first iteration 𝛽(𝑥) = 1 and 𝛼̂(𝑥) = 0. The
network is thus initialized with the following linear model:

¤𝑧 = 𝐴̂𝑧 + 𝐵̂0𝑣

𝑦̂ = 𝐶̂0𝑧
(18)

where matrices 𝐵̂0 and 𝐶̂0 are defined using classic linear
model estimation techniques such as best linear approxima-
tion (BLA, see e.g. [21]).
The matrix 𝐴̂ is computed before training and fixed during

the learning stage in such a way that the resulting closed-loop
tends to be as close as possible to the dynamics imposed in
the linear case through the pole-placement:

𝐴̂ = 𝐴̂0 − 𝐵̂0𝐾0 (19)
V. SIMULATION RESULTS

The proposed control-oriented training approach is illus-
trated on a popular benchmark for nonlinear identification :
the SilverBox benchmark2. It is an electrical oscillator anal-
ogous to a second-order mechanical system with nonlinear
polynomial spring:

𝑚 ¥𝑦(𝑡) + 𝑑𝑦(𝑡) + 𝑘 (𝑦(𝑡))𝑦(𝑡) = 𝑢(𝑡) (20)

where 𝑘 (𝑦(𝑡)) = 𝑎 + 𝑏𝑦2. This system is affine with respect
to the control input and fits the class of systems for feedback
linearization. Moreover one can see this system is feedback
linearizable with 𝑢(𝑡) = 𝑏𝑦3.
The input-output signals are made of 131 072 samples and

only the first 40 000 points of the dataset (the arrowhead)
are given as a training set.
A. Training results
In order to validate our approach, we first identify an input-

affine model (𝑃, see equation (1)) of the plant. It will be our
simulator to access the state 𝑥 for the training procedure of
a feedback linearizable model (𝑀 , equation (12)).
As the Silverbox example is a single-input single-output

system, 𝛽(𝑥) is invertible if we impose 𝛽(𝑥) ≠ 0 during
training. To do so, the following activation function is added
at the final layer of the network 𝛽:

𝜂(𝑥) = 𝐸𝐿𝑈 + 1 =

{
𝑥 + 1, 𝑥 ≥ 0
𝑒𝑥 , 𝑥 < 0

(21)

where 𝐸𝐿𝑈 stands for exponential linear unit. This choice
may not be optimal and the choice of 𝜂 is left to the user but
it has the advantage over ReLu to have a non-zero gradients
for all 𝑥.
To validate both models we simulate them and compute

the mean squared simulation error on the whole dataset.
The training procedure is performed3 using algorithm 1 with

2The training data are publicly available for download, see [22]
or visit https://sites.google.com/view/nonlinear-benchmark/
benchmarks/silverbox

3Training is performed on a Intel(R) Core(TM) i7-8665U CPU@1.90GHz,
4 cores and both models are trained for 30min.

Fig. 1. Illustrations of training results. Blue : data measurements 𝑦𝐷 .
Red (top) : error between data and simulation model 𝑃.
Yellow (bottom) : error between data and trained model 𝑀.

Model 𝑁𝐵 𝑁 𝑇 𝑡𝑠 𝛼

𝑃 512 30 000 20 1.63𝑒 − 3 5𝑒 − 3
𝑀 512 20 000 30 1.63𝑒 − 3 1𝑒 − 3

TABLE I
Hyperparameters used for training model 𝑃 and 𝑀 for the

Silverbox benchmark.

parameters given in table I. The learning results are gathered
in table II and the simulation errors for both models are
displayed on figure 1, which confirms that both model 𝑃
and 𝑀 represents faithfully the Silverbox benchmark.

B. Closed-loop results

The whole modelling structure for the closed-loop is
depicted in figure 2. It summarizes equation (1), (12) and
(14) : the dynamics of plant 𝑃 from 𝑣 to 𝑦 in closed-loop is
equivalent to the one of a linear system.
In order to estimate the capability of our approach to

impose specific dynamics for the closed-loop, we set the
poles of 𝐴̂ in (12) in order to remove oscillations. From
BLA estimate 𝐴̂0 with eigenvalue 𝑝0, the system matrix

Model MSE 𝐽 (15)
𝑃 2.12 10−6

𝑀 2.20 10−6

TABLE II
Training results for Silverbox benchmark.

Mean-squared error (15) between real data and simulated output
for both models 𝑃 and 𝑀.

https://sites.google.com/view/nonlinear-benchmark/benchmarks/silverbox
https://sites.google.com/view/nonlinear-benchmark/benchmarks/silverbox

𝛽(𝑥)−1 +
+

𝛼̂(𝑥)

𝑃
𝑢 𝑦

¤𝑧 = 𝐴̂𝑧 + 𝐵̂𝑣
𝑦̂ = 𝐶̂𝑧

𝑥

𝑣

𝑦̂

Fig. 2. Architecture for the closed-loop: the plant 𝑃 in closed-loop (top) from 𝑣 to 𝑦 is equivalent to the linear system from 𝑣 to 𝑦̂ (bottom).

Model Fit % Open Loop Fit % Closed loop
Data 80.01% /
P 83.66% 98.36 %
M 84.32% 99.99%

TABLE III
Open-loop and closed-loop comparison of fitting percentage of a
linear model both models 𝑃 and 𝑀 simulated with same data 𝑢𝐷 .

𝐴̂ is computed via pole placement so that it has desired
eigenvalues −|𝑝0 |.
1) Linearity validation via Best Linear Approximation:

After training, to validate our approach and verify that the
closed-loop is linear we simulate the obtained model with the
training data 𝑢𝐷 and use BLA algorithm from MATLAB, i.e
ssest function, to estimate how accurately a linear model
can describe the input-output behavior of the closed-loop.
The fitting criterion for linearity estimation is the Fit

percent:

𝐹𝑖𝑡 = 100
(
1 − ∥𝑦

𝑠𝑖𝑚 (𝑡) − 𝑦𝑙𝑖𝑛 (𝑡)∥
∥𝑦𝑠𝑖𝑚 (𝑡) − 𝑦̄𝑠𝑖𝑚 (𝑡)∥

)
(22)

where 𝑦𝑠𝑖𝑚, 𝑦𝑙𝑖𝑛 are the simulated output and the output of
the estimated resulting linear model respectively and where
∥ · ∥ denotes the 2−norm of the corresponding vector and 𝑦̄
its mean value.
Table III presents the open-loop and closed-loop result:

model 𝑀 in closed-loop presents a linear fitting criterion
of nearly 100% and model 𝑃 in closed-loop corresponds
to 98.36% to a linear model. This validates the theoretical
results presented above : the control law (14) is an exact
feedback linearizing control input for model 𝑀 and an
approximate feedback linearizing control input for model 𝑃.
2) Validation of closed-loop control design: As a second

test in order to validate our approach, we compare the time-
response of the closed-loop models. Figure 3 shows the
comparison between the open-loop and closed-loop response
to initial conditions 𝑦(𝑡 = 0) = 0.05𝑉, ¤𝑦(𝑡 = 0) = 0. The
top figure shows that both models 𝑃 (output in blue) and 𝑀
(output in red) have same open-loop behavior and the bottom
figure shows that model 𝑀 is perfectly damped, in closed-
loop with the linearizing control law, while oscillations
of model 𝑃 are highly removed. Even if the model 𝑃 in

Fig. 3. Comparison of open and closed-loop behavior for model 𝑃 and
𝑀.
Blue : output of model 𝑃, Red : output of model 𝑀.
Top : open-loop response, Bottom : closed-loop response.

closed-loop is not exactly the same as 𝑀 , it shows that
the linearizing control law designed for model 𝑀 yields
promising results when applied to system 𝑃. Indeed, both
models approach to a seemingly linear behavior.

VI. CONCLUSION

In this paper a data-based approach has been presented
to linearize a system using neural networks. During the
initialisation phase, pole placement techniques are used to
enforce specific dynamics to the resulting linearized closed-
loop. The presented method is generic as it is suitable for
any input-affine nonlinear process for which input-output data
measurements are available. The linearizing control law and
the resulting linear model are directly obtained from the
learning stage. A nonlinear benchmark, the Silverbox one,
is used as a demonstrator to show the effectiveness of the
proposed control-oriented model structure and identification
method. Future work will focus on the validation of the

presented control design on real-world processes and to the
extension of this work to a broader class of systems.

References
[1] A. Isidori, Nonlinear control systems: an introduction. Springer, 1985.
[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[3] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[4] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[5] M. Forgione and D. Piga, “Continuous-time system identification
with neural networks: Model structures and fitting criteria,” European
Journal of Control, vol. 59, pp. 69–81, May 2021.

[6] A. Yeşildirek and F. L. Lewis, “Feedback linearization using neural
networks,” Automatica, vol. 31, no. 11, pp. 1659–1664, Nov. 1995.

[7] M. Alamir, “Learning against uncertainty in control engineering,”
Annual Reviews in Control, 2022.

[8] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu,
S. S. Sastry, and C. J. Tomlin, “Feedback Linearization for Uncertain
Systems via Reinforcement Learning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), May 2020, pp. 1364–
1371.

[9] M. Greeff and A. P. Schoellig, “Exploiting Differential Flatness for
Robust Learning-Based Tracking Control Using Gaussian Processes,”
IEEE Control Systems Letters, vol. 5, no. 4, pp. 1121–1126, Oct. 2021.

[10] J. Suykens, B. De Moor, and J. Vandewalle, “Nonlinear system
identification using neural state space models, applicable to robust
control design,” vol. 62, no. 1. Taylor & Francis, 1995, pp. 129–152.

[11] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neu-
ral ordinary differential equations,” Advances in neural information
processing systems, vol. 31, 2018.

[12] J. Sjoberg, “On estimation of nonlinear black-box models: how to
obtain a good initialization,” in Neural Networks for Signal Processing
VII. Proceedings of the 1997 IEEE Signal Processing Society Work-
shop, Sep. 1997, pp. 72–81.

[13] A. Isidori, “Elementary theory of nonlinear feedback for multi-input
multi-output systems,” in Nonlinear Control Systems. Springer, 1995,
pp. 219–291.

[14] A. Franco, H. Bourles, E. De Pieri, and H. Guillard, “Robust Nonlinear
Control Associating Robust Feedback Linearization and 𝐻∞ Control,”
IEEE Transactions on Automatic Control, vol. 51, no. 7, pp. 1200–
1207, Jul. 2006.

[15] G. O. Guardabassi and S. M. Savaresi, “Approximate linearization via
feedback — an overview,” Automatica, vol. 37, no. 1, pp. 1–15, Jan.
2001.

[16] A. J. Krener, “Approximate linearization by state feedback and coor-
dinate change,” Systems & Control Letters, vol. 5, no. 3, pp. 181–185,
1984.

[17] C. Champetier, P. Mouyon, and C. Reboulet, “"Pseudolinearization
of multi-input nonlinear systems",” in The 23rd IEEE Conference on
Decision and Control, Dec. 1984, pp. 96–97.

[18] J. Hauser, “Nonlinear control via uniform system approximation,”
Systems & Control Letters, vol. 17, no. 2, pp. 145–154, Aug. 1991.

[19] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Process-
ing Systems, vol. 32. Curran Associates, Inc., 2019.

[20] M. Schoukens, “Improved initialization of state-space artificial neural
networks,” in 2021 European Control Conference (ECC). IEEE, 2021,
pp. 1913–1918.

[21] R. Pintelon, M. Schoukens, and J. Lataire, “Best Linear Approximation
of Nonlinear Continuous-Time Systems Subject to Process Noise and
Operating in Feedback,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 10, pp. 8600–8612, Oct. 2020.

[22] T. Wigren and J. Schoukens, “Three free data sets for development and
benchmarking in nonlinear system identification,” in 2013 European
Control Conference (ECC), Jul. 2013, pp. 2933–2938.

	INTRODUCTION
	RELATED WORK AND STATE OF THE ART
	Exact feedback linearization
	Approximate feedback linearization

	PRESENT CONTRIBUTIONS
	MODEL IDENTIFICATION WITH LINEARIZABILITY PROPERTY
	Preliminar results
	Methodological procedure
	Implementation
	Learning algorithm
	Network initialization

	SIMULATION RESULTS
	Training results
	Closed-loop results
	Linearity validation via Best Linear Approximation
	Validation of closed-loop control design

	CONCLUSION
	References

