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The Scholz conjecture on addition chain is true for infinitely many integers with ℓ(2n) = ℓ(n)
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It is known that the Scholz conjecture on addition chains is true for all integers n with ℓ(2n) = ℓ(n) + 1. There exists infinitely many integers with ℓ(2n) ≤ ℓ(n) and we don't know if the conjecture still holds for them. The conjecture is also proven to hold for integers n with v(n) ≤ 5 and for infinitely many integers with v(n) = 6. There is no specific results on integers with v(n) = 7. In [thurber], an infinite list of integers satisfying ℓ(n) = ℓ(2n) and v(n) = 7 is given. In this paper, we prove that the conjecture holds for all of them.

I INTRODUCTION

Let n be a positive integer. The problem of finding a minimal addition chain for n is quite interesting. Addition chains can give the fastest exponentiation methods. Knowing a good way to reach n from 1 leads to a method of computing x n .

Definition 1:

An addition chain for a positive integer n is a set of integers {a 0 = 1 < a 1 < a 2 < . . . < a r = n} such that every element a k can be written as sum a i + a j of preceding elements of the set.

Definition 2:

We define ℓ(n) as the smallest r for which there exists an addition chain {a 0 = 1 < a 1 < a 2 < . . . < a r = n} for n.

Definition 3:

Let n be an integer. We define v(n) as the number of "1"s in its binary expansion. Let us also define by λ(n) = ⌈log 2 (n)⌉.

The problem of finding ℓ(n) for a given n is known to be NP-complete. An integer n can also have several distinct minimal addition chains. One of the most efficient method is the so-called "fast exponentiation" which refers to the binary method. It is also called the "double-and-add" method. It is proven to be the fastest method for all integers with v(n) ≤ 3. It is proven that Theorem 1. Let n be a positive integer. Then,

1. If v(n) = 1, meaning n = 2 a then ℓ(n) = a 2. IF v(n) = 2, meaning n = 2 a + 2 b then ℓ(n) = a + 1 3. IF v(n) = 3, meaning n = 2 a + 2 b + 2 c then ℓ(n) = a + 2
It become interesting to look at techniques based on the binary expansion of n.

If v(n) = 4, then n = 2 a + 2 b + 2 c + 2 d and ℓ(n) ∈ {a + 2, a + 3}.
And it is the same case for v(n) = 5 where ℓ(n) ∈ {a + 3, a + 4, a + 5}.

In [thurber], Thurber has been able to prove that there are integers with v(n) ≥ 6 and ℓ(n) = a + 4.

It seems to be difficult to characterize the integers based on their binary representation. In [neill1], Neill Clift manage to list all integers having 4 or 5 small steps in their minimal addition chains, meaning ℓ(n) = a + 4 or ℓ(n) = a + 5.

The Scholz conjecture give a bound on the length of minimal addition chains for integers with only 1s in their binary representation. In 1937, it was stated as follows:

Conjecture 1. Let n be a positive integer. We have

ℓ(2 n -1) ≤ ℓ(n) + n -1.
Let us define the notion of short addition chain, which is not necessarily minimal as follows Definition 4:

Let n be a positive integer, an addition chain for 2 n -1 is called a short addition chain if its length is ℓ(n) + n -1.

In [knuth], it is proven to hold for n ≤ 16. Later, Thurber [thurber1] prove that it holds for n ≤ 32. Aiello and Subbaru [aiello] proved that it is true for all integers with v(n) = 1. It gains interested and have been proven to hold for v(n) ≤ 5.

Thanks to Hatem

[hatem], It is also true for v(n) = 6 with ℓ(n) = λ(n)+3 and ℓ(n) = λ(n)+5.
In 2005, Neill Clift [neill2] confirmed that the Scholz conjecture is true for n < 5784689, the first non-hansen number. No results is known on integers with v(n) = 7 and ℓ(n

) = λ(n) + 4.
Now, let us look at the product of integers. Thanks to the factor method, we can see that

ℓ(mn) ≤ ℓ(m) + ℓ(n), ∀m, n
We are tempted to believe that ℓ(2n) = ℓ(n) + 1 and it is easy to prove the following:

Lemma 1. It the Scholz conjecture hold for n, and ℓ(2n) = ℓ(n) + 1, then it holds for 2n

Proof. Let n 0 = 2n be another positive integer, we have

2 n 0 -1 = (2 n -1)(2 n + 1),
using the factor method, we can deduce a chain for 2 n 0 -1 of length

ℓ(n) + n -1 + n + 1 = ℓ(n) + 2n = ℓ(n 0 ) + n 0 -1.
The chain is

C = {1, 2, . . . , 2 n -1, 2(2 n -1), 2 2 (2 n -1), . . . , 2 n (2 n -1), 2 n (2 n -1)+(2 n -1) = 2 2n -1}
However, it has also been proven that there are infinitely many integers with ℓ(2n) ≤ ℓ(n). Thurber [thurber] has listed a group of integers with v(n) = 7, ℓ(n) = λ(n) + 4 and ℓ(2n) = ℓ(n). In this paper, we prove that the Scholz conjecture is true for his list.

II OUR CONTRIBUTION

Tools to prove our main results

Let us give a way to construct addition chains for 2 n -1 based on addition chains for n. We will see later that it can help to get short addition chains.

Lemma 2. If n = 2A for some A, then we can construct a chain for 2 n -1 by adding A + 1 steps to a chain for 2 A -1.

Proof.

2 n -1 = 2 2A -1 = (2 A -1)(2 A + 1)
Using the factor method, we can deduce a chain for 2 n -1 with respect to the theorem as follows

C = {1, 2, • • • , (2 A -1), 2(2 A -1), 2 2 (2 A -1), • • • , 2 A (2 A -1), 2 A (2 A -1)+(2 A -1) = 2 n -1}
Lemma 3. Let n = A + B be an integer with A and B appearing in an addition chain for n (A > B).. Then, we can construct an addition chain for 2 n -1 by adding B + 1 steps to a chain for 2 A -1 which contains 2 B -1.

Proof.

n = A + B ⇒ 2 n -1 = 2 A+B -1 = 2 B (2 A -1) + (2 B -1)
So, if we have an addition chain for 2 A -1 which contains 2 B -1, it easy to construct a chain for 2 n -1 as follows

C n = {1, 2, . . . , 2 B -1, . . . , 2 A -1, 2(2 A -1), . . . , 2 B (2 A -1), n = 2 B (2 A -1) + (2 B -1)}.
Let us illustrate it with an example.

Example 1. Let n = 11 and C = 1, 2, 3, 5, 10, 11 be a chain for 11. We will deduce a chain for 2 11 -1 as follows 1. 1 is the first element of the chain 2. 2 = 2 × 1 is in the chain so we will add 2 and 2 2 -1 = 3 = 2 + 1 3. 3 = 2 + 1, so we need a chain for 2 2 -1 = 3 which contains 2 1 -1 = 1, we add to the chain 2 × 3 = 6 and 2 × 3 + 1 = 7

4. 5 = 3 + 2, we need a chain for 2 3 -1 = 7 which contains 2 2 -1 = 3, we add 2 × 7, 2 2 × 7 and last 2 2 × 7 + 3 = 31 5. and so on 6. The chain for 2 11 -1 is then Proof. It is easy to see that v(c 1 ) = v(c 2 ) = 4 and [knuth] prove that ℓ(c 1 ) = λ(c 1 )+2 = m+6. Similarly for c 2 . Now, One can see that c 1 = 3c 2 + 2 m+1 , so a chain can be constructed as follows

C = {1, 2, 3 = 2 2 -1, 6, 7 = 2 3 -1,
C = {1, 2, . . . , 2 m+1 , 2 • 2 m+1 , 3 • 2 m+1 , c 2 , 2c 2 , 3c 2 = 2c 2 + c 2 , 3c 2 + 2 m+1 } and ℓ(C) = m + 7.
Lemma 5. We can construct a chain for

2 c 1 -1 that contains 2 c 2 -1 of length ℓ(c 1 ) + c 1 = c 1 + m + 6.
We can see that the chain doesn't respect the Scholz bound but it is enough for our proof.

Proof. We know that c 1 = 3c 2 + 2 m+1 , so

2 c 1 -1 = 2 3c 2 +2 m+1 -1 (1) = 2 2 m+1 (2 3c 2 -1) + (2 2 m+1 -1) (2) = 2 2 m+1 (2 c 2 (2 2c 2 -1) + (2 c 2 -1)) + (2 2 m+1 -1) (3) = 2 2 m+1 (2 c 2 ((2 c 2 -1)(2 c 2 + 1)) + (2 c 2 -1)) + (2 2 m+1 -1) (4) 
Then, we can construct a chain for 2 c 1 -1 which contains 2 c 2 -1 and 2 2 m+1 -1 as follows 1. Start by a chain for 2 c 2 -1 which contains 2 2 m+1 -1 using the chain c 2 2. Use the factor method to get the chain for

(2 c 2 -1)(2 c 2 -1) = 2 2(c 2 ) -1 3. Add c 2 doubling to get 2 c 2 (2 2(c 2 ) -1) = 2 3c 2 -1 4. Add 2 m+1 doubling to reach 2 2 m+1 (2 3c 2 -1) 5. Add 2 2 m+1 -1 The total length is ℓ(2 c 2 -1) + c 2 + (c 2 + 1) + 1 + 2 m+1 + 1 = c 1 + m + 6.
Our first result is: Theorem 2. Let m and k be two positive integers with k ≥ 3. The Scholz conjecture on addition chain is true for all integers of the form

n = 101 0 • • • 0 m 11 0 • • • 0 k 11 0 • • • 0 m 1 = c 1 • 2 2m+k+3 + c 2 , with c 1 = 101 0 • • • 0 m 11 = 5 • 2 m+2 + 3 and c 2 = 11 0 • • • 0 m 1 = 3 • 2 m+1 + 1.
Proof. We know that

2 n -1 = 2 c 1 •2 2m+k+3 +c 2 -1 (5) = 2 c 2 (2 c 1 •2 2m+k+3 -1) + (2 c 2 -1) (6) 
= 2 c 2 ((2 c 1 -1)(2 c 1 + 1)(2 2c 1 + 1)(2 2 2 c 1 + 1) • • • (2 2 2m+k+2 c 1 + 1)) + (2 c 2 -1) (7) 
And we have a chain for 2 c 1 -1 which contains 2 c 2 -1. The following is an addition chain for 2 n -1

C = {1, 2, . . . , (2 c 2 -1), . . . , (2 c 1 -1), . . . , (2 2c 1 -1) = (2 c 1 -1)(2 c 1 + 1), . . . , (2 2 2m+k+3 c 1 -1), 2(2 2 2m+k+3 c 1 -1), . . . , 2 c 2 (2 2 2m+k+3 c 1 -1), n} its length is (c 1 + m + 6) + c 2 + (2m + k + 3) + c 1 (2 1m+k+3 -1) + 1 = n + 2m + k + 10 = ℓ(n) + n -1
Some explanations can be found below:

1. c 1 + 1 steps to go from 2 c 1 -1 to 2 2 2 c 1 -1 = (2 c 1 -1)(2 c 1 + 1) 2. 2c 1 + 1 steps to go from 2 2c 1 -1 to 2 2 2 c 1 -1 = (2 2c 1 -1)(2 2c 1 + 1) 3. 2 2 c 1 + 1 steps to go from 2 2c 1 -1 to 2 2 2 2 c 1 -1 = (2 2 2 c 1 -1)(2 2 2 c 1 + 1)
4. and so on 5.

2 2m+k+2 c 1 +1 steps to go from 2 2 2m+k+2 c 1 -1 to 2 2 2m+k+3 c 1 -1 = (2 2 2m+k+2 c 1 -1)(2 2 2m+k+2 c 1 + 1)
Our next result will be to prove that the Scholz conjecture is also true for 2n.

Theorem 3. Let n be defined as in the previous theorem. The Scholz conjecture on addition chain is true for 2n.

Proof. Let us remind that

2n = 101 0 • • • 0 m 11 0 • • • 0 k 11 0 • • • 0 m 10 = (2 m+4 +2 m+2 +2+1)•(2 m+k+4 )+(2 m+3 +2 m+2 +2),
and let us denote by c 3 = (2 m+4 + 2 m+2 + 2 + 1) and c 4 = 2 m+3 + 2 m+2 + 2. A minimal addition chain for c 3 which contains c 4 is

C = {1, 2, . . . , 2 m+2 , , 2 m+2 + 1, , 2 m+3 + 1, , 2 m+3 + 2 m+2 + 2, 2 m+4 + 2 m+2 + 2 + 1}
meaning that we can have a short addition chain for 2 c 3 -1 which contains 2 c 4 -1.

An addition chain for 2 n -1 can be obtained with the following expression, 

2 2n -1 = 2 (2 m+4 +2 m+2 +2+1)•(2 m+k+4 )+(2 m+3 +2 m+2 +2) -1 = 2 c 3 •(2 m+k+4 )+c 4 -1 (8) = 2 c 4 (2 c 3 •(2 m+k+4 ) -1) + (2 c 4 -1) (9) 
= 2 c 4 ((2 c 3 -1)(2 c 3 + 1)(2 2c 3 + 1) • • • ((2 2 m+k+3 c 3 + 1))) + (2 c 4 -1) (10) 

IV CONCLUSION

We have proved that the Scholz conjecture on addition chains is true for infinitely many integers n with ℓ(2n) = ℓ(n). It is still an open problem in general. Also, we know that there are infinitely many integers m and n that satisfy ℓ(mn) ≤ ℓ(m), one can investigate their behavior with the conjecture.

Lemma 4 . 11 = 5 •

 4115 14, 28, 31 = 2 5 -1, 62, 124, 248, 496, 992, 1223 = 2 10 -1, 2446, 2447 = 2 11 -1} III OUR MAIN RESULTS Let us start with: Let m and k be two positive integers with k ≥ 3. Let c 1 = 101 0 • • • 0 m 2 m+2 + 3 and c 2 = 11 0 • • • 0 m 1 = 3 • 2 m+1 + 1 be two integers. Then, ℓ(c 1 ) = m + 6, and ℓ(c 2 ) = m + 4 and we can construct a chain for c 1 of length m + 7 which contains c 2 .

( 11 ) 1 . 4 .

 1114 Similar techniques than in the previous result can be applied to get an addition chain for2 2n -1 of length (ℓ(c 3 ) + c 3 -1) + c 4 + (m + k + 4) + c 3 (2 m+k+4 -1) = 2n + 2m + k + 10 = ℓ(2n) + 2n -Theorem The Scholz conjecture on addition chains is true for infinitely many integers n with ℓ(2n) = ℓ(n).Proof. Let m and k be two positive integers with k ≥ 3.Let n = 101 0 • • • 0 m 11 0 • • • 0 k 11 0 • • • 0 m1 be a positive integer. We have proven that the Scholz conjecture is true for both n and 2n.
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