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Polytype nanowires fabricated in both silicon and germanium are particularly attractive for 

thermoelectric engineering. In this work, the transport of phonons across polytype 

heterojunction such as Si 3C/Si 2H and Ge 3C/Ge 2H is theoretically studied by using a particle 

Monte Carlo simulation for phonons. Full-Band dispersions and phonon-phonon scattering 

rates are calculated by using the density-functional theory (DFT). Phonon transmission across 

interfaces are implemented by using a Full-Band version of the Diffusive Mismatch Model 

(DMM).  

First, the different transport regimes (diffusive, ballistic and intermediate) for homogenous 3C 

and 2H Si and Ge bars are investigated by using the Knudsen number as well as the spectral 

contributions of the thermal flux.  

Then, single and double polytype Si and Ge heterostructures are studied. The variation of the 

interface thermal conductance as a function of the geometric dimension as well as the effects 

of the spectral distribution of the flux are investigated. This local indicator of the phonon 

transport regime can be used as a local indicator of the occurrence the out of equilibrium 

transport regime. Finally, it is shown that the polytype interfaces exhibit significant thermal 

resistances and generate an out of equilibrium phonon transport regime around the interface 

over several nanometers. 
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1. Introduction 

To harvest the large amount of thermal losses released into the environment [1], the use of 

thermoelectric (TE) generators that directly convert heat into electricity is appealing to power 

small electronic systems [2]. This conversion requires material having both good electrical 

conductivity and poor thermal conductivity, leading to the concept of "Phonon-Glass Electron-

Crystals". These properties are rare in nature and the main commercial TE module exhibiting 

the best (but modest) thermoelectric efficiency are made of a BiTe alloy using atomic species 

that are toxic and not abundant on earth.  

However, since the theoretical prediction of Hicks and Dresselhaus [3], nanostructuring has 

been used to boost the thermoelectric performance [4]. In particular, thermoelectric 

nanostructures are designed to benefits from the fact that at the nanoscale the mean free path 

(mfp) of phonons is usually significantly higher than that of electrons [4]. For instance, the 

presence of interfaces separated by a distance in the order of magnitude of the phonon mfp is 

expected to significantly degrade the thermal properties while degrading marginally the 

electron transport. In addition, nonlinear transport properties around interfaces could be used to 

improve the Seebeck coefficient [5], [6]. In this context, a polytype interface, i.e. an interface 

separating two phases of the same material, seems of high potential. This kind of interface 

involving both the of cubic 3C and hexagonal 2H phases can be processed in nanowires made 

of Silicon [7] or Germanium [8] that may even exhibit a high density of polytype interface 

(which remains currently difficult to control in terms of position and quality). Since based on 

the most standard materials of the semi-conductor industry, such nanostructures are thus 

particularly attractive to boost thermoelectric efficiency. 

To theoretically investigate these nanostructures, the Fourier heat equation is poorly relevant. 

Indeed, at the nanoscale the phonon transport regime is barely diffusive but often out of 

equilibrium, i.e. fully or quasi ballistic. To characterize the transport regime, the Knudsen 

number, defined as the ratio of the mfp to the system length, is commonly considered [9]. 

However, this parameter is an average material parameter that cannot be used as a local 

indicator of the transport regime inside a nanodevice.  

Moreover, the modeling of the interface by an interfacial thermal resistance (or Kapitza’s 

resistance [10]) requires an accurate description of the phonon flux across the interface and 

above all a relevant definition of the temperature on each side of the interface [11] [12]. The 

introduction of hemispherical temperature, naturally available from particle Monte Carlo 

simulation, is required to estimate accurately the interface thermal conductance [13]. Besides, 

the simulation of phonon transport across polytype interface in which there is no atomic mass 

mismatche requires an atomistic approach or at least a full band description of the phonon 

dispersion on each side of the interface. 

Among the available numerical modeling techniques for the heat transport at the nanoscale, 

including that based on the Non-equilibrium Green Function approach (NEGF) [14], [15], the 

Molecular Dynamics (MD) [16]–[18], or the hydrodynamic equation, the particle Monte Carlo 

method [19]–[21] is interesting as it naturally captures all transport regimes with all details on 

the spectral properties of phonon transport. This transport formalism which solves 

stochastically the Boltzmann transport equation is able to consider at equilibrium the Bose-

Einstein statistics and can thus be used in a wide temperature range including the temperature 

below the Debye’s temperature.  

In this work, a homemade Full Band Monte Carlo simulator [22] [23] dedicated to the phonon 

transport has been used to investigate the thermal transport across simple and multiple 3C/2H 

polytype interfaces of Silicon and Germanium. The material properties such as the phonon 

dispersion and relaxation rates in the 3D Brillouin zone (BZ) were computed using ab-initio 
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computation [24]. The phonon transmission across interfaces was implemented in the Full Band 

Monte Carlo simulator for phonons [22], [23] by using a Full-band version of the Diffusive 

Mismatch Model (DMM) [25], [26]. 

The present work focuses on the spectral and modal properties of transport to locally 

characterize the out of equilibrium phonon transport regime occurring around the interfaces. In 

section 2, the MC simulator and the simulated devices are presented. In section 3, the phonon 

flux crossing the interfaces is investigated and the related thermal interface conductances are 

discussed. The spectral and modal contributions are analyzed in the last section. 

2. Full Band Monte Carlo Model 

2.1. Ab-initio material description 

Two materials have been investigated, i.e. Si and Ge, in both their hexagonal (2H) and cubic 

(3C) forms. The latter one being quite well known, we emphasized our study on the hexagonal 

phase and, especially, on the 2H/3C interfaces of these materials. It should be noted that we 

have studied here the bulk properties of the 2H and 3C phases, because even for nanowires, 

these properties remain relevant for systems larger than a few tens of nanometers [27]. 

Full Band Monte Carlo simulations require the prior knowledge of phonon dispersions, phonon 

group velocities and phonon scattering rates.  

Ab-initio calculations were performed using the Quantum ESPRESSO [28] code, the energy 

functional is approximated with the LDA-PZ [29] local density approximation which gives 

good agreement for the lattice geometry for pure Silicon and Germanium. The ions were 

modeled using norm-conserving pseudopotentials adapted from the SG15 ONCV library [30], 

keeping the same pseudization radii. The charge density has been expanded up to a kinetic 

energy cutoff of 50 Ry and integrated over a regular shifted grid of 8×8×8 electronic kpoints 

for cubic structures, and 8×8×4 k-points for the 2H structures. Harmonic 2-body force constants 

are obtained by Fourier transform of a density-functional perturbation theory [31] over a 8×8×8 

(cubic) or 8×8×4 (2H) grid of q-points, while anharmonic 3-body force constant are computed 

ab-initio over a shorter range grid of 4×4×4 (cubic) or 4×4×2 (2H) q-points. From these force 

constants, the 2nd and 3rd order dynamical matrices can be obtained at any q-points via Fourier 

interpolation [32]. This interpolation is carried on over a grid of 29×29×29 (29×29×21) q-points 

for the cubic (2H) structure, in order to integrate the intrinsic lifetime of any phonon. The 

integration calculation is repeated for every point in an “outer” grid of 31×31×31 (19×19×13) 

q-points to sample the lifetime of the entire BZ. The properties of Fourier transform can also 

be used to interpolate the phonon group velocity at any q-points. 

The DFT calculation allowed us to determine the forces acting on the atoms, from which the 

harmonic and anharmonic force constants have been extracted. The phonon frequency and 

group velocity can then be computed from the dynamical matrix, together with the scattering 

rates corresponding to phonon–phonon interactions. In the conventional 3C phase, there are six 

phonon modes, i.e. two transverse acoustic (TA), one longitudinal acoustic (LA), one 

longitudinal optical (LO) and two transverse optical (TO) modes, in the case of the 2H phase 

with four atoms per unit cell, there are up to twelve modes, including nine optical modes. 

The phonon dispersion for both Ge 2H and Si 2H materials is shown in Figure 1 in the form of 

iso-energy cartography of the first phonon mode in some specific planes, which illustrates the 

strong anisotropy of the lattice vibrations modes, except at very low frequency where the iso-

frequency contour are not far from being circular. 
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Figure 1. Cartography of the angular frequency ω in the BZ of (top) Ge 2H and (bottom) Si 

2H. Angular frequencies are given in [1013 2π/s]. In left, middle and right panels, the iso-

frequencies contours are plotted in the (10-10), (11-20) and (0001) planes, respectively. 

 

Figure 2. Cartography of phonon-phonon scattering rates λ in the BZ for the first phonon 

mode. Scattering rates are given in [1010 Hz]. In left, middle and right panels, the iso-rates are 

plotted for the (10-10), (11-20) and (0001) planes, respectively. 

Figure 2 shows the cartography of scattering rates for both hexagonal materials at 300 K. 

Scattering rates were calculated for 101 values of temperature ranging from 0 K to 1000 K, 

though the present study focuses on temperatures around 300 K.  
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The anisotropy of both scattering rates and the phonon dispersion is important which justifies 

the requirement of implementing a Full-Band phonon description within the Monte Carlo 

transport model. 

2.2. Particle Monte Carlo method for phonon transport 

The particle Monte Carlo method used here consists in solving the time-dependent Boltzmann 

equation for phonons by describing the stochastic behaviour of large number of phonons 

considered as classical particles, without any assumption on the shape of the phonon 

distribution function. The trajectories of particles, i.e. the times of free-flight and the type and 

effect of scattering event experienced after each free-flight, are randomly selected according to 

all relevant scattering rates. Here, the previously described full-band phonon dispersion and 

scattering rates are used as material input parameters for the MC simulation.  

The phonon-phonon scattering mechanisms are implemented by using the two-phonon 

approach developed in [20]. To ensure energy conservation, each simulated particle (which 

corresponds to a phonon packet) carries the same energy. This means that for different phonon 

modes (i.e. for different wave vectors or polarizations), a simulated particle represents a 

different number of (real) phonons, but all simulated particles carry the same energy. Besides a 

variance reduction method [33] is used to reduce the simulation time. This approach tends to 

limit the number of simulated phonons to those that are actually involved in heat transport, i.e. 

those that differs from the Bose-Einstein statistics. 

The values of the local pseudo-temperature at each position in the structure are updated 

according to the local (and exact) phonon distributions at each time step.  

The contacts with the external thermostats are assumed to be perfect emitters and absorbers. 

All the details of the Monte Carlo algorithm employed in this work may be found in Ref.[20].  

 

2.3. Thermal parameters 

As detailed in Ref. [13], the hemispherical temperatures T+ and T- are defined, even in out-of-

equilibrium conditions, as the temperature of phonon sub-populations with a positive/negative 

(oriented toward the cold/hot thermostat, respectively) giving the same energy density E as that 

obtained from an equilibrium distribution. Thus, it satisfies the following relationship:  

𝐸(𝑇±) =
Ω

(2𝜋)3
∑ ℏ𝜔𝑠𝑓𝐵𝐸(𝜔𝑠, 𝑇±)

𝑠𝑡𝑎𝑡𝑒 𝑠,   𝑣𝑥
𝑠>

0

𝑣𝑥
𝑠 <0

  (1) 

Where Ω is the volume of the considered reciprocal space fBE is the Bose-Einstein distribution 

function and 𝜔𝑠 the phonon angular frequency of state s. 

These temperatures are instrumental to work out a realistic value of the interface conductance 

𝐺𝑖𝑛𝑡 in heterostructures [13]:  

𝐺𝑖𝑛𝑡 =
𝑄

Δ𝑇𝐼
=

𝑄

𝑇+(𝑥−𝜀)−𝑇−(𝑥+𝜀)
   (2) 

where the local temperature difference at interface Δ𝑇𝐼 = 𝑇+(𝑥 − 𝜀) − 𝑇−(𝑥 + 𝜀) is the 

difference between the hemispherical temperatures on each side of the interface.  

In a 1D homogeneous system of length L in contact with a hot thermostat at a hot temperature 

TH and a cold one at a cold temperature TC, the thermal flux Q can be expressed (in all transport 

regimes) by using these different formulae:  

 𝑄 = 𝐺𝑡𝑜𝑡𝑎𝑙 . Δ𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝜅𝑒𝑓𝑓
Δ𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝐿
= 𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐

Δ𝑇𝑙𝑜𝑐𝑎𝑙

𝐿
 (3) 

where the two temperature differences are defined as follows:  
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 Δ𝑇𝑙𝑜𝑐𝑎𝑙(𝑥) = 𝑇+(𝑥) − 𝑇−(𝑥) 

 ∆𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑇𝐻 − 𝑇𝐶. 

For a homogeneous structure in which a temperature bias ∆𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is applied and working at 

(pseudo) temperature 𝑇̅, the thermal conductivity 𝜅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is given by (cf. [34]):  

 𝜅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 =
Q

∆𝑇𝑐𝑜𝑛𝑡𝑎𝑐𝑡
=

Ω

(2𝜋)3
∑ ℏ𝜔𝑠|𝑣𝑠,𝑥|𝜆𝑒𝑓𝑓,𝑠.

𝜕𝑓𝐵𝐸

𝜕𝑇
(𝜔𝑠, 𝑇̅)𝑠𝑡𝑎𝑡𝑒 𝑠  (4) 

where Ω is the volume of the first Brillouin zone, 𝜆𝑒𝑓𝑓,𝑠=
𝜆𝑚𝑓𝑝,𝑠

1+𝐿/(2.𝜆𝑚𝑓𝑝,𝑠)
 in which 𝜆𝑚𝑓𝑝,𝑠 the mean 

free path of phonon mode s and vs,x is the phonon group velocity of the state s along the x-

direction that is the heat transport direction. In a ballistic system 𝜆𝑚𝑓𝑝,𝑠=L/2 and thus the 

ballistic conductivity 𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 is given by:  

 𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 =
𝐿

2

Ω

(2𝜋)3
∑ ℏ𝜔𝑠|𝑣𝑠,𝑥|

𝜕𝑓𝐵𝐸

𝜕𝑇
(𝜔𝑠, 𝑇̅)𝑠𝑡𝑎𝑡𝑒 𝑠  (5) 

Further details on the inner workings of the simulator were given in previous works [13]. 

2.4. Simulated devices 

In this work, homogeneous and heterogeneous nanostructures of length L along the X axis were 

investigated. In all structures, the thermal flux flows along the X axis, i.e. perpendicular to the 

thermal contact surfaces located at both ends, with a hot thermostat of temperature 𝑇𝐻 = 302𝐾 

and a cold thermostat of temperature 𝑇𝐶 = 298 𝐾, respectively, resulting in a mean temperature 

of 300 K. Unless otherwise stated, these are the standard temperature settings for the 

simulations presented here. 

In the YZ plane the nanostructures are assumed to have an infinitely large cross-section. To be 

consistent with this configuration though using a finite rectangular meshing (Y = Z = 100 

nm), periodic boundary conditions were applied to any particle reaching an external surface. 

First, all structures are uniformly meshed along the X-axis into 20 equally sized cells. Then, the 

meshing is refined in the vicinity of the interfaces (in the case of heterostructure) and the 

thermostats. The length of these refined cells located 5 nm around the interfaces are less or 

equal to 1 nm. This is instrumental in computing a coherent 𝐺𝑖𝑛𝑡 value [23]. 

Figure 3 illustrates the types of devices investigated here: 

 Homogeneous devices (a) of length L. 

 Simple heterojunctions (b) in which a Diffusive Mismatch Model (DMM) 

heterojunction (in yellow) is placed at the centre of the structure (𝑥 = 𝐿 2⁄ ) joining two 

homogeneous bars.  

 Double heterojunctions (not shown in Fig. 3) in which three equally-long homogeneous 

bars are joined to form two DMM interfaces at positions 𝑥 = 𝐿 3 ⁄ and 𝑥 = 2𝐿 3⁄ . 

 
X

ZTH DMM

interface

TC

Y

a) b)
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Figure 3. Schema of studied a) homogeneous device and b) heterostructure. Red and blue 

faces are hot and cold thermostats, respectively. Transparent external faces symbolise that 

periodic boundary conditions are applied in Y and Z directions. 

 

3. Results and discussion 

3.1. Phonon transport regime in homogeneous structures 

In previous works, the coherence and effectiveness of the MC method have been proven for Si 

3C [22], [23]. Figure 4(a) shows the length dependence of the Knudsen number KD for 

homogeneous structures made of Si and Ge, in both 3C and 2H forms. To characterize the 

different heat transport regimes KD is computed by using the ratio 𝜅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒/𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 which is 

equivalent to the ratio of the mfp to the system length according to Eq. 4 and 5. 

Indeed, for lengths smaller than 10 nm, KD is greater than 0.8, which is typical of a ballistic 

transport regime. Lengths over 1 µm lead to quasi-diffusive conductivity characterized by 

KD < 0.1. In between, an intermediary transport regime takes place. The Knudsen number does 

tend to extremely small values. It can be explained by Figure 4(b), where the conductivity 

values of different materials grow about 2 orders of magnitude higher than the ballistic 

conductivity value. 

In long devices, the thermal conductivity 𝜅𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 tends to an asymptotic value, the standard 

thermal conductivity 𝜅𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 (given by Eq. 4 for L∞) which is 136 W.m-1.K-1 (resp. 58 

W.m-1.K-1) for Si 3C (resp. Ge 3C) at 300 K. These values are in very good agreement with 

those found in the literature [35]. 

For a given material, the conductivity values of both 3C and 2H forms are almost identical, 

which may lead one to believe that cubic and hexagonal phases behave in a very same fashion 

in all aspects of thermal transport. However, we will see in the final sub-sections that it is not 

the case.  

 

 

Figure 4. (a) Knudsen number KD and (b) Thermal conductivity effective as a function of 

device length for homogeneous structures at room temperature. 

3.2. Interface thermal conductance 

In a previous work, different kinds of Si/Ge heterostructures have been studied [23]. Here, 

different Polytype Si (Si 3C-2H) and Ge (Ge 3C-2H) heterostructure devices have been studied, 

with total device length ranging from 1 nm to 1000 nm and thermostat temperatures TH and TC 

fixed as previously. We plot in Figure 5 the heat flux density and the interface conductance as 

(a) b) 
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a function of device length. Beyond the fact that both Si and Ge structures behave similarly, the 

notable tendency here is that a convergence is reached for the interface conductance 𝐺𝑖𝑛𝑡, with 

𝐺𝑖𝑛𝑡 285 MW.K-1.m-2 for Polytype Ge devices and 𝐺𝑖𝑛𝑡 500 MW.K-1.m-2 for Polytype Si 

devices. For comparison, these values are very close to those obtained for Si-Ge 

heterostructures 𝐺𝑖𝑛𝑡 = 220 MW.K-1.m-2 [23], [25]. It may be marginally noted that the MC 

error bars in the polytype interfaces are significantly smaller in the polytype interface than in 

the Si/Ge interface although they are calculated with the same methodology [23] (as the 

calculated heat flux without temperature difference, i.e. the flux resolution, is smaller cf. Figs. 

6(a)).  

 

 

 

Figure 5. (a,c) Heat flux density and (b,d) Interface conductance for (a,b) Polytype Ge, (c,d) 

Polytype Si as a function of device length at room temperature. 

These values remain the same when considering the influence of the temperature bias of 

thermostats for a given length. It is shown on Figure 6 for Ge structures. The heat flux density 

(Fig. 6(a)) and interface thermal conductance (Fig. 6(b)) are plotted as a function of the 

temperature bias (TH-TC) for 20 nm-long devices. The average value of 𝐺𝑖𝑛𝑡 remains very close 

to that found when studying the influence of length at given temperature bias (see Fig. 5(b)). 

(a) (b) 

(c) (d) 
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Figure 6. (a) Heat flux density and (b) Interface conductance (B) for Polytype Ge 

heterostructures as a function of the temperature bias for a given length L = 20 nm. 

The fluctuations that are observed in the 𝐺𝑖𝑛𝑡 values (Figs. 5(b), 5(d) and 6(b) are inherent in 

particle MC simulation and tend to increase when increasing the device length. Such 

fluctuations are less notable in Figure 6 where the length is quite short and fixed to 20 nm, 

having temperature bias as the only variable. However, the resulting average values are well 

within error bars, which gives confidence in assigning a value to 𝐺𝑖𝑛𝑡 for each type of interface.  

3.3. Spectral analysis 

Up to now, the heat flux density has been considered as a macroscopic parameter and analyzed 

as a function of either device length or temperature bias. Figure 7 brings out another manner of 

viewing the heat flux density: the spectral analysis.  

Considering a 𝑇𝐻 = 302𝐾 and 𝑇𝐶 = 298 𝐾, two Polytype Ge (𝑇𝐻:Ge 3C / 𝑇𝐶:Ge 2H) devices 

have been studied for two different lengths, i.e. L = 500 nm (Fig. 7(a)) and L = 10 nm (Fig. 

7(b)). Spectral heat flux density was extracted at four different positions of the devices. The 

flux remains untroubled throughout the whole device, whether it be at the middle of the Ge 3C 

/ 2H halves or near the DMM interface of the two phases. A Noisy may be observed for the 

longer devices (Fig. 7(a)). Nevertheless, the concordance between spectral heat flux before and 

after the junction is intact. This noisy aspect is still being investigated. 

 

Figure 7 . Spectral heat flux density distribution in Polytype Ge devices at room temperature 

for (a) L = 500 nm and (b) L = 10 nm. 

Figure 7 suggests a strong similarity in the behaviour of phonons in both 3C and 2H Ge phases, 

consistently with the results of thermal conductivity shown in Fig. 4. Indeed, the two materials 

(a) (b) 

(a) (b) 
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are basically the same (phonon density of states are similar in both cases). The flux does not 

seem to be disturbed by the presence of the phase interface.  

This question is investigated in more details in the following sub-section, dedicated to modal 

contributions of phonons throughout these devices.  

3.4. Modal analysis 

Figure 8 displays the contributions (in %) of the different phonon modes to the heat transport 

in a 200 nm-long Polytype Ge device (𝑇𝐻:Ge 3C / 𝑇𝐶:Ge 2H) with standard temperature 

conditions (𝑇𝐻 = 302 𝐾 and 𝑇𝐶 = 298 𝐾). 

Along the device, the six phonon modes of cubic Ge (left side) turn into the twelve modes of 

hexagonal Ge (right side). The total heat flux transmission through the interface is conserved, 

as shown in the previous section. However, the modes are significantly disturbed when passing 

through the interface, except for the Longitudinal Optical one. In order to conserve the flux and 

allow all modes to contribute, the contributions of the acoustic branches are lower in the 2H 

half of the device. 

 

 

Figure 8. Modal contributions of phonons to heat transport in a 200 nm-long Polytype Ge 

(Cubic-Hexagonal) device 

Moreover, the total of acoustic branches provides the highest contribution at all positions, which 

is due to their higher group velocity compared to that of optical ones. These results are very 

similar for polytype-Si structures (not shown).  

Figure 9 generalizes these tendencies to all device lengths. In this Figure we display the modal 

contribution to heat transport in Polytype Ge (𝑇𝐻:Ge 3C / 𝑇𝐶:Ge 2H) of various lengths at two 

different positions, i.e. x = L/4 (middle of Ge 3C bar, Fig. 9(a)) and x = 3L/4 (middle of Ge 2H 

bar, Fig. 9(b)). 

It appears clearly that, for both 3C and 2H Ge, the contribution of acoustic to the heat flux tends 

to increase when increasing the device length. It is interesting to note that the optical modes 

cannot be ignored in the ballistic regime, i.e. in the absence of scattering in all branches, while 

in long devices the acoustic modes are predominant, apart from one of the TO mode in Ge 2H, 

the contribution of which remains significant even for the longest devices.  
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In longer devices in which the transport is diffusive, the modal contributions tend to be size 

independent. But these contributions are different in small devices of less than 100 nm when 

the transport is close to equilibrium. Thus, these modal flux contributions are dependent on 

the transport regimes and can be used as a local indicator if the contributions differ from those 

expected near equilibrium, i.e., in a diffusive transport regime [23].  

 

 

Figure 9. Modal contributions of phonons to heat transport in Polytype Ge 3C-2H devices in 

function of device length L at two different positions. (a) at x = L/4 (in Ge 3C) and (b) at x = 

3L/4 (in Ge 2H). 

The modal contribution profiles shown in Figure 8 are actually symmetrical when the 

thermostats are inverted (meaning 𝑇𝐻: Ge 2H / 𝑇𝐶: Ge 3C instead of 𝑇𝐻: Ge 3C / 𝑇𝐶: Ge 2H). 

The result of this configuration (not shown) is the exact mirror image of Figure 8. It is consistent 

with the results represented in Figure 10 that shows the modal contributions of phonons to the 

heat flux along a 300 nm long device containing a double heterojunction. It consists of a Ge 3C 

bar on the left (𝑇𝐻) (0 ≤ x ≤100 nm), a Ge 2H bar (100 nm ≤ x ≤ 200 nm) in the middle, and 

another Ge 3C bar on the right (𝑇𝐶) (200 nm ≤ x ≤300 nm). Standard thermostat temperature 

conditions were applied. 

We witness the conservation of heat flux and stabilization of the modal contribution, going 

from Ge 3C to Ge 2H, or vice-versa. The DMM junctions slightly disturb the distribution of 

phonon modes, but they tend to re-stabilize after a few nanometres. This illustrates the 

appearance of a non-equilibrium transport regime around the interface.  

(a) (b) 

Ge 3C side 

Ge 2H side 
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Figure 10. Modal contributions of phonons to heat transport in a 300 nm long Polytype Ge 

3C-2H-3C double –heterojunction device at room temperature. 

Hence, Figure 10 demonstrates the powerful capabilities of the simulator to deal with non-

trivial geometries and heterostructures with multiple interfaces. It also shows that studying such 

a double heterostructure only needs to be done for two thirds of it, as the whole is only a 

mirrored result of a simpler heterostructure one. 

The previous result and subsequent remarks can be extrapolated to simple and double 

heterostructures made of other materials, as Ge-Si or Polytype Si structures. 

4. Conclusion 

A Full Band Monte Carlo simulator for phonons parametrized by DFT calculation has been 

used to study the thermal transport in polytype Ge and Si heterojunctions.  

For homogenous 3C and 2H Si and Ge bars, the thermal conductance values are almost identical 

in each Si and Ge type. Besides, it has been shown that the different transport regimes (diffusive, 

ballistic and intermediate) can be characterized by the Knudsen number as well as by the 

spectral contributions of the thermal flux.  

In single and double polytype Si and Ge heterostructures it was shown that the polytype 

interfaces exhibit significant thermal resistance close the thermal conductance of the Si/Ge 

interface. 

Finally, the modal contribution has been used as a local indicator of the occurrence the out of 

equilibrium transport regime. This out of equilibrium transport generated by the polytype 

interface occurs a few nanometers around the interface. 
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