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ABSTRACT Vehicular communications are an important focus of studies for 5G applications and beyond.
However, in a scenario with doubly-selective and highly variable channel characteristics, tracking the
wireless channel to ensure communication reliability is one of the main goals to provide communication
efficiency. Moreover, multicarrier modulation schemes usually employed in these scenarios are susceptible
to nonlinear distortions caused by high power amplifiers (HPA) at the transmitter, impairing the channel
estimation and detection capability of the receivers. In view of these requirements and challenges, in
the present work we propose a low complexity estimator based on the long short-term memory (LSTM)
network, followed by a neural network (NN) in order to improve the data-pilot aided (DPA) estimation. In
addition, we propose a new technique to exploit the characteristics of the vehicular channel, by sampling the
subcarriers used at the input of the LSTM. Thus, besides tracking the variations of the wireless channel, the
LSTM network is also used to interpolate the channel estimates for all subcarriers. The simulation results
show the superiority of the proposed scheme in comparison with other state-of-the-art schemes, especially
in high signal-to-noise ratio (SNR) regimes. Furthermore, the proposed scheme significantly reduces the
computational complexity due to the subcarrier sampling procedure.

INDEX TERMS Channel estimation, HPA distortions, LSTM, Machine learning, Vehicular communica-
tion.

I. INTRODUCTION

Vehicular communications are part of a broader 5G ecosys-
tem that is continuously evolving, being crucial to enable
connected vehicles and road infrastructure [1]. The related
applications and functionalities are considered to have a
major impact on modern society, and expected to pose even
more challenging scenarios on the road to 6G systems, shap-
ing the future of connected vehicles. In this scenario, one
of the biggest challenges is the time-varying and complex
communication environment itself, once accurate channel
estimation may be arduous and, therefore, jeopardize reliable

communication. The IEEE 802.11p [2] standard, for in-
stance, defines the physical layer specifications for vehicular
communication based on the orthogonal frequency division
multiplexing (OFDM) scheme, with channel estimation sup-
ported by pilot subcarriers.

Due to the limited number of data pilots, several methods
in the literature have been proposed to improve the channel
estimation in vehicular networks. Most methods for IEEE
802.11p networks are based on the data-pilot aided (DPA)
scheme, which exploits the demapped data symbols in order
to improve the channel estimation, thus providing a low
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computational complexity solution [3]–[5]. However, the
performance of these schemes is heavily influenced by the
data pilots’ reliability, which tends to degrade given the harsh
dynamic of vehicular channels. In addition, classical DPA-
based methods incur error propagation during the frames, a
problem that is even more significant in high-order modula-
tion schemes and high-mobility [6].

In view of the challenges of vehicular communication
networks, deep neural network (DNN)-based schemes have
been successfully employed recently to improve the channel
estimation for vehicular channels. For instance, an auto-
encoder (AE)-DNN was proposed by [7] in order to improve
the DPA method. The DPA-DNN scheme trains a DNN of-
fline, aiming at reducing the error propagation by correcting
the errors between the initial DPA estimation and the perfect
channel. Convolutional neural networks (CNNs) have also
been considered as a solution for vehicular scenarios [8],
[9]. The TS-ChannelNet estimator introduced by [8], e.g.,
suffers from high computational complexity, since it consid-
ers integrating both LSTM and CNN networks to achieve
the final channel estimates. The authors in [9] present an
estimator based on weighted adaptive interpolation, which
is able to reduce the complexity and at the same time out-
performs TS-ChannelNet, given a modification considered
in the IEEE 802.11p standard to allocate the pilots within
each transmitted frame, adapting the scheme according to
the mobility condition. However, by considering frame-by-
frame solutions, both CNN-based receivers require reception
of the whole frame before starting the channel estimation,
thus increasing the latency and limiting its performance for
real-time applications [10].

Moreover, other recent studies have considered more ad-
vanced deep learning (DL) algorithms to explore the cor-
relation between OFDM symbols. As it was shown in [11]
and [12], DL is able to capture more features of the vehicular
channel and to improve the estimation performance com-
pared to conventional methods. In this sense, a promising
approach relies on the long short-term memory (LSTM)
network, which was introduced by [13] as a neural network
with feedback connections, capable of handling sequential
information where there is correlation over time. Thus, the
LSTM can be a robust and efficient DL solution to track
the vehicular channel, especially in high mobility scenarios.
Nevertheless, the LSTM architecture still poses a significant
challenge related to its high complexity. For instance, the
authors in [11] combined the DPA estimation with an LSTM
layer followed by a multilayer perceptron (MLP) network.
The proposed LSTM-NN-DPA estimator outperforms previ-
ous DNN-based estimators in terms of channel estimation.
However, such performance gain is attained at the cost of
huge computational complexity. Reducing part of the LSTM
complexity was addressed by [12], where the proposed chan-
nel estimation scheme uses only one LSTM layer within the
DPA, while the residual estimation noise is alleviated using a
temporal averaging (TA) post-procedure.

A common aspect of the works in [3]–[5], [7], [9], [11],

[12] is the consideration of a linear communication envi-
ronment, assuming an ideal radio frequency (RF) interface.
In spite of the OFDM advantages, this modulation intro-
duces challenges related to its high peak-to-average power
ratio (PAPR) [14], leading to nonlinear distortions at the
high power amplifier (HPA) output signal at the transmitter.
Many different compensation techniques have been proposed
aiming to reduce the effect of these imperfections. At the
transmitter side, a digital pre-distortion (DPD) block is com-
monly adopted in order to linearize the output signal [15].
However, such linearization task is not trivial to be optimally
performed, while occurring at a complexity cost. As an
alternative, the HPA nonlinearity can also be compensated
at the receiver side, where it may be possible to reduce the
power consumption [16].

DL-based processing has been shown to be an efficient
tool to compensate HPA nonlinear effects at the receiver,
given the nonlinear nature of the DL architectures and thanks
to their generalization properties [17], [18]. In this context,
we have compared in [19] different conventional vehicular
channel estimators and DL-based methods, with the effect
of the nonlinear amplification of OFDM signals based on the
polynomial distortion model developed by [20], [21]. Results
show that DL-based receivers are intrinsically more robust to
the HPA-induced nonlinearities, providing reliable channel
estimates even in high-mobility scenarios. Nevertheless, the
effort in [19] only highlights the robustness of hybrid estima-
tors that combine DNNs with conventional methods, inspir-
ing this work toward designing novel receiver architectures.

Furthermore, another key characteristic of vehicular com-
munication channels is related to a certain smoothness in the
frequency domain, which can be exploited to reduce com-
plexity of the channel estimation at the receiver. For instance,
the authors in [22] propose a CNN-based channel estimation
and phase noise compensation scheme for doubly-selective
channels (in time and frequency) by considering only part of
the pilots from the channel. The channel estimation process is
treated as an image completion problem, so that the proposed
solution is shown to be robust enough to track the channel
variation in both frequency and time domains. In addition,
the work in [23] also exploits the frequency response smooth-
ness to perform channel estimation. The proposed scheme is
based on a truncated discrete Fourier transform interpolation,
which uses only the dominant channel taps from the channel
delay profile to perform estimation. As their main result, the
proposed estimator outperforms conventional methods that
employ all data subcarriers to obtain the channel estimation,
while also having a decreased computational complexity.
An overview of the literature for IEEE 802.11p channel
estimators and their respective techniques is presented in
Table 1.

In this paper, we propose a novel receiver for vehicular
communications subject to HPA-induced distortions, exploit-
ing the features of the channel in the frequency domain. It
is worth pointing out that both nonlinear and the relative
smoothness in the frequency domain characteristics of the
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TABLE 1: Literature overview for IEEE 802.11p channel estimators.

Year Use of DPA Use of DNNs LSTM Layer HPA Nonlinearities Complexity optimization
Fernandez et al. [3] 2012 ✓

Zhao et al. [4] 2013 ✓
Kim et al. [5] 2014 ✓
Han et al. [7] 2019 ✓ ✓

Gizzini et al. [24] 2020 ✓ ✓ ✓
Zhu et al. [8] 2020 ✓ ✓

Gizzini et al. [9] 2021 ✓ ✓
Pan et al. [11] 2021 ✓ ✓ ✓

Gizzini et al. [12] 2021 ✓ ✓ ✓ ✓
Mattu et al. [22] 2022 ✓ ✓

Gizzini et al. [23] 2022 ✓
Dos Reis et al. [19] 2022 ✓ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓

wireless channel are crucial for practical vehicular commu-
nications scenarios, and have not been well explored in the
literature yet. In our proposed method, a first estimation given
by the DPA method is fed to an LSTM layer, which will track
the channel variation and learn the channel correlation in the
time domain. The LSTM is then followed by a shallow neural
network (NN) in order to enhance the denoising capability.
Such combination of the DPA, the LSTM layer and the NN
is key to dealing with the HPA distortions at the receiver.
Therefore, we denote our proposed scheme by DPA-LSTM-
NN. In addition and unlike previous works, we exploit the
channel response in the frequency domain in order to reduce
the LSTM size. To that end, we employ a subcarrier sampling
at the input of the LSTM, so that the interpolation of the
missing subcarriers’ information is performed by the LSTM
itself. The main contributions of this paper are summarized
as follows:

• The proposed DPA-LSTM-NN estimator exhibits robust
performance in the presence of HPA-induced nonlinear-
ities. The numerical results show that the DPA-LSTM-
NN proposal outperforms DPA-DNN [7], LSTM-NN-
DPA [11] and LSTM-DPA-TA [12] schemes both in
terms of bit error rate (BER) and normalized mean
square error (NMSE). For instance, we show that a
BER of 10−4 can be achieved only with the proposed
scheme in some situations, depending on the employed
modulation order and velocity.

• The obtained results show that the DPA-LSTM-NN
scheme outperforms other methods from the literature
regardless of the velocity level. In addition, only a slight
performance degradation of the DPA-LSTM-NN is ob-
served in very high-mobility scenarios (up to 200 km/h).

• A significant reduction of the computational complexity
is obtained by sampling the subcarriers at the input of
the LSTM layer. Our proposed DPA-LSTM-NN scheme
is the least complex scheme, measured in terms of the
number of required real-valued operations, compared
to [7], [11] and [12].

Signal Data

Preamble:

C
P

C
P

C
P tp,1 tp,2

Short Long

FIGURE 1: IEEE 802.11p packet structure [2].

The remainder of this paper is organized as follows. The
system model is presented in Section II, including the main
characteristics of the HPA nonlinear distortion model and
the vehicular channel model. The proposed DPA-LSTM-NN
channel estimator with subcarrier sampling is detailed in Sec-
tion III, while other benchmark DL-based channel estimation
schemes are described in Section IV. Results and discussions
are presented in Section V and Section VI concludes the
paper. Finally, for convenience, the acronyms and symbols
adopted in this work are summarized in Tables 2 and 3,
respectively.

II. SYSTEM MODEL
Let us consider the IEEE 802.11p standard [2] as the basis
for our analysis, which employs an OFDM modulation in
order to enable vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication. As illustrated by Fig-
ure 1, each transmitted packet consists of a preamble, a signal
field, which carries the physical layer information, and a data
field. The preamble includes short and long training sym-
bols, known by the receiver in order to conduct the channel
synchronization. In addition, the long training symbols are
divided into two predefined sequences tp,1 and tp,2, used for
channel estimation. Moreover, a cyclic prefix (CP) is used
to absorb the inter-symbol-interference (ISI) caused by the
multi-path propagation.

We denote Kon as the set of active subcarriers, where
Kon = |Kon| is the cardinality of the set. Then, for each
active subcarrier k ∈ Kon within the i-th OFDM symbol, the
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TABLE 2: List of acronyms adopted in this work.

Acronym Meaning
ADAM Adaptive Moment Estimation
AE Auto-encoder
AM/AM Amplitude to Amplitude
AM/PM Amplitude to Phase
AWGN Additive White Gaussian Noise
BER Bit Error Rate
CNN Convolutional Neural Network
CP Cyclic Prefix
DL Deep Learning
DNN Deep Neural Network
DPA Data-Pilot Aided
DPD Digital Predistortion
EM Ensemble Modeling
HPA High Power Amplifier
IBO Input Back-Off
ISI Inter-Symbol-Interference
LS Least Square
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NN Neural Network
NMSE Normalized Mean Square Error
OFDM Orthogonal Frequency Division Multiplexing
PAPR Peak-to-Average Power Ratio
PDP Power Delay Profile
RF Radio Frequency
SNR Signal-to-Noise Ratio
STA Spectral Temporal Averaging
TA Temporal Averaging
TRFI Test Frequency Domain Interpolation
UC Urban Canyon
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle

demodulated OFDM frame in the frequency domain can be
expressed as

Y[k, i] = H[k, i]U[k, i] +N[k, i], (1)

where H[k, i] represents the time variant frequency response
of the channel for the k-th subcarrier within the i-th OFDM
symbol, U[k, i] is the transmitted OFDM symbol affected by
the HPA distortion and N[k, i] is the additive white Gaussian
noise (AWGN), with power

η0 =
εp

ξ ·K , (2)

where εp is the preamble power per sample, ξ the average
signal-to-noise ratio (SNR) at the receiver and K is the
total number of subcarriers employed within each OFDM
symbol (note that K > Kon). The coefficients of the channel
response H[k, i] are modeled according to a Rayleigh fading
distribution with Jakes’ Doppler spectrum and a Doppler

TABLE 3: List of symbols adopted in this work.

Symbol Meaning
tp,1, tp,2 Long training predefined symbols

Y[k, i]
Received OFDM frame for the k-th subcarrier
and i-th OFDM symbol

H[k, i] Channel frequency response

U[k, i]
Transmitted OFDM symbol affected by the
HPA distortion

N[k, i] AWGN

yi[k]
Vectorized received data for the k-th subcarrier
in the i-th transmitted OFDM data symbol

hi[k] Vectorized channel frequency response

ui[k]
Vectorized Transmitted OFDM symbol affected
by the HPA distortion

xi[k]
Transmitted OFDM symbol without effects from
the HPA distortion

ni[k] Vectorized AWGN
η0 Power from AWGN
εp Preamble power per sample
ξ SNR
fD Doppler frequency
ν velocity in m/s
c Speed of the light in m/s
fc Carrier frequency
δi[k] Nonlinear distortion from the HPA
γ0 Complex gain from the HPA
ϱ Gain to ensure IBO
τxi[k] Mean power of the input signal
L Number of OFDM symbols
K Total number of subcarriers
Kon Active subcarriers
Kn Inactive subcarriers
Kp Pilot subcarriers
Kd Data subcarriers
Kon set of Kon

Kp set of Kp

Kd set of Kd

S Subset of subcarriers
ι Number of hidden layers of the DNN

ND
l

Number of neurons of the l-th
hidden layer of the DNN

lt Input of the LSTM unit

ot, ot−1
Output of the LSTM unit hidden state
at the current and previous time step

ct, ct−1
Memory of the LSTM unit at the current
and previous time step

P Number of hidden states of the LSTM Unit
U Input size of the LSTM unit

frequency given by [25]

fD =
ν

c
fc, (3)

where ν is the velocity of the vehicle in m/s, c is the speed of
light in m/s and fc is the carrier frequency. In order to lighten
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the notation considered hereafter, we rewrite (1) to represent
the received OFDM symbols for the k-th subcarrier in the
i-th transmitted data symbol as

yi[k] = hi[k]ui[k] + ni[k], (4)

where ui[k] denotes the k-th subcarrier in the i-th transmitted
OFDM data symbol at the output of the HPA, subjected to
nonlinear distortions, as follows.

A. HIGH POWER AMPLIFIER DISTORTION MODEL
To model ui[k], let us denote the signal at the input of the
HPA as xi[k], so that we have a non-compensated HPA
output ũi[k] given by

ũi[k] = γ0xi[k] + δi[k], (5)

where δi[k] is a nonlinear distortion with zero mean and
variance σδ

2 that is uncorrelated with the input, while γ0 is
a complex gain. Then, in order to model the HPA nonlinear
distortions in (5) we follow [20], focusing on a memoryless
HPA. The advantage of such model is that it characterizes
both amplitude to amplitude (AM/AM) and amplitude to
phase (AM/PM) distortions, while it fits a commercial evalu-
ation of a HPA from the 3GPP [26] into a polynomial.

This model shows that the HPA response is usually con-
stant over the useful signal frequency band, allowing us to
neglect the memory effect of the HPA on the channel. In
addition, phase compensation can be assumed to be perfectly
done at the receiver, as the standard in several works in the
literature [27], [28]. Furthermore, the key component in this
analysis is the Bussgang’s Theorem [29], which states that if
the input signal at the HPA has a Gaussian distribution, as the
case of an OFDM symbol with a sufficiently large number
of subcarriers, the output signal of the HPA can be written
as (5). Furthermore, the accuracy of the considered model
has been validated in the literature [20], [21].

In practice, in order to reduce the effects of the nonlinear-
ities, the HPA operates at a given input back-off (IBO) from
the 1 dB compression point, which refers to the input power
level where the characteristics of the amplifier have dropped
by 1 dB from the ideal linear characteristics [30]. Therefore,
the input signal xi[k] is scaled by the gain ϱ before being
amplified by the HPA to ensure the desired IBO, given by

ϱ =

√
τ1dB

10
IBO
10 τxi[k]

, (6)

where τ1dB is the input power at 1 dB compression point,
τxi[k] is the mean power of the input signal, and the IBO is
given in dBs.

Therefore, the relationship between ũi[k] and xi[k] can be
expressed as

ũi[k] = ϕa (ρ[k]) exp [j(ϕp (ρ[k]) + φ[k])]

= ς (ρ[k]) exp (jφ[k]),
(7)

where ρ[k] = ϱ · |xi[k]| is the input signal modulus, φ[k] =
∠xi[k] is the input signal phase, ϕa (ρ[k]) and ϕp (ρ[k])

Tx ×

ϱ

HPA Channel +

ni[k]

Rx
xi[k] ϱ · xi[k] ui[k] yi[k]

FIGURE 2: Transmission system model.

represent the AM/AM and AM/PM characteristics of the
HPA, while the complex soft envelope of the amplified output
signal ũi[k] is given by

ς (ρ[k]) = ϕa (ρ[k]) exp [jϕp (ρ[k])]. (8)

In our work we consider that the soft envelope of the
amplified signal is approximated by

ς (ρ[k]) ≈
Po∑
l=1

alρ[k]
l, (9)

in which al denotes the complex coefficients from the Po-
order polynomial used to approximate the HPA model, ob-
tained with the least square (LS) method [20].

As a consequence, the input/output relationship of the HPA
is approximated by

ũi[k] ≈
(

Po∑
l=1

alρ[k]
l

)
exp (jφ[k]). (10)

Finally, we assume perfect estimation and compensation
of γ0. Thus, we can write the output of the HPA as ui[k] =
ũi[k]/γ0, which usually yields a BER floor at the receiver
due to the residual nonlinear distortion of the HPA. Figure 2
illustrates the transmission system modeled in the presence
of the nonlinear HPA.

B. VEHICULAR CHANNEL MODEL

We consider the vehicular channel model described in [31],
where the authors provide the Doppler-delay characteristics
of different environments. The characterization is based on
real measurements with one or two vehicles moving under
different velocities, which models V2I and V2V scenarios,
respectively. The channel models are considered with a
tapped-delay line, where each tap is statistically described by
a Rayleigh fading distribution with a Doppler power spectral
density. Throughout this paper, we consider the urban canyon
(UC) model with two vehicles communicating with each
other, i.e., the V2V-UC channel model.

Table 4 describes the power delay profile (PDP) of the
employed V2V-UC channel, while Figure 3 illustrates its
channel frequency response for a velocity v = 48 km/h. From
the figure we can observe that V2V-UC channel presents a
smooth variation in the frequency domain. This characteristic
will be exploited to down-sample the subcarriers at the input
of the LSTM layer in our proposed method in Section III.
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TABLE 4: V2V-UC channel model characteristics.

Path delays [ns] 0 1 100 101 102 200 201 202 300 301 400 401
Average path gains [dB] 0 0 −10 −10 −10 −17.8 −17.8 −17.8 −21.1 −21.1 −26.3 −26.3
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FIGURE 3: Channel frequency response of a V2V-UC chan-
nel.

III. PROPOSED DPA-LSTM-NN CHANNEL ESTIMATOR
WITH SUBCARRIER SAMPLING

In this section, we propose a novel learning-based architec-
ture for the receiver exploiting the vehicular channel charac-
teristics. Using DPA, the proposed DPA-LSTM-NN scheme
performs first a coarse channel estimation that is used as the
input of an LSTM layer. Since the LSTM is a powerful tool to
track the channel variation and learn the channel correlation
in the time domain, we favored the use of the DPA method
instead of more complex estimators, such as the spectral
temporal averaging (STA) [3] or the time domain reliable
test frequency domain interpolation (TRFI) [5]. The LSTM
is then followed by a NN in order to mitigate the remaining
noise from the hybrid estimator, refining the channel esti-
mation. Such a combination of the DPA, LSTM and NN
provides robustness with respect to the HPA distortions at
the receiver.

Furthermore, given the smooth variation of the channel
response in the frequency domain observed in Section II-B,
we exploit such characteristic in order to reduce the LSTM
input size. It is worth noticing that the LSTM layer usually
requires a high computational cost. Consequently, reducing
the size of its input is of paramount importance to address
such high complexity issue.

A. DPA INITIAL ESTIMATION

As illustrated in Figure 4, for a given subcarrier k ∈ Kon the
DPA method combines at its input the i-th received OFDM
symbol (yi[k]) and the channel estimate of the previous
symbol (ĥDPAi−1

[k]). The first DPA estimate is obtained via

DPA

Equalization

(12)

ĥDPAi−1
[k]

Demodulation

Initial channel

estimation (13)

yi[k] ŷeqi
[k]

ĥDPAi
[k]

di[k]

FIGURE 4: Block diagram of the DPA method.

LS method, so that

ĥDPA0
[k] = ĥLS[k] =

yp,1[k] + yp,2[k]

2p[k]
, (11)

where yp,1[k] and yp,2[k] are the frequency domain symbols
for each k-th subcarrier, obtained by the demodulation of the
sequences tp,1 and tp,2 from the OFDM preamble. Moreover,
p[k] is a predefined preamble sequence in the frequency
domain. Then, the equalization step produces

ŷeqi
[k] =

yi[k]

ĥDPAi−1
[k]

, (12)

so that ŷeqi
[k] is further demapped to the nearest constel-

lation symbol to result in di[k]. Finally, the DPA channel
estimate is obtained as

ĥDPAi
[k] =

yi[k]

di[k]
. (13)

Note that, in contrast to the LS estimation exhibiting
significant degradation due to the time variation, the DPA
enhances the performance by exploiting the correlation char-
acteristics between adjacent symbols in the OFDM transmis-
sion.

B. LSTM LAYER
Although DPA improves the performance when compared to
the LS estimator, a relevant performance loss is observed in
communication scenarios with high mobility. In these cases,
the demapping error increases since the correlation between
symbols, explored by the DPA, decreases [24]. In order to
deal with this issue, we design an LSTM layer after the DPA
initial estimation. It is based on recurrent units to process
and learn from a sequence of data [13]. This is done by
internal gate units capable of storing the memory content
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LSTM unit

t− 1 t
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FIGURE 5: Structure of the employed LSTM unit.

of the data, while employing structures capable of deciding
when to keep, or override, information of these memory cells.
Therefore, such advanced processing characteristics of the
LSTM make it able to learn the channel correlation over time
and adapt the channel estimates accordingly.

Figure 5 illustrates the classical LSTM unit used in our
approach. Internally, there are three inputs per LSTM unit: lt,
ot−1 and ct−1, denoting respectively the input of the current
time step t, the output of the hidden state and the memory
at the previous time step (t − 1). The operations with the
inputs are illustrated by the activation function σ and the
hyperbolic tangent tanh, following [13]. These operations
define which information is overridden and which is kept
memorized in the current cell state. As outputs, the LSTM
unit produces ct, the memory cell state at the time step t,
and the output ot. The loop continues until the end of the
sequential information, so that ot of the last unit is the output
of the LSTM network. In the context of channel estimation,
a number U of LSTM inputs must be used, which is related
to the number of active subcarriers. In addition, each LSTM
network has P hidden states, dictating the number of steps t
for recurrent operations.

C. SUBCARRIER SAMPLING
The small maximum delay spread of the considered channel
leads to a weak frequency selectivity, i.e., h[k] ≈ h[k ± 1].
Therefore, given the set of nonlinear forward and feedback
operations performed by the LSTM layer, it may be possible
to exploit this local flat fading in the frequency domain and
operate with a reduced subset of subcarriers, resulting in
a reduced size of the LSTM layer. This will considerably
decrease the computational complexity, at the cost of a slight
degradation of the channel estimation performance.

Thus, we define a subset S ⊂ Kon, so that only the
DPA estimates ĥDPAi

[s], ∀s ∈ S , are selected as inputs
of the LSTM layer. Moreover, we also define Kp as the set
containing the Kp pilot subcarriers, while Kd is the set of the

-26 -21 -7 +7 +21 +26

Subcarrier index (k)

Active subcarriers (k ∈ Kon)

Pilots (Kp ⊂ Kon)

(a) Active subcarriers, including pilots.

-26 -21 -7 +7 +21 +26

Subcarrier index (k)

Selected (k ∈ S)
Not selected (k ̸∈ S)
Pilots (Kp ⊂ S)

(b) Subcarriers with 1/2 sampling rate.

FIGURE 6: Subcarrier sampling procedure.

Kd data subcarriers, so that Kon = Kp ∪Kd. As an example,
let us consider a slice of Figure 3 for an arbitrary symbol
index, plotting the magnitude of the V2V-UC channel as a
function of the subcarrier index. Figure 6a shows all active
subcarriers for a given symbol index, with pilot subcarriers
illustrated with dashed lines and data subcarriers are in solid
lines. In this example, the scenario follows the IEEE 802.11p
standard, where there are Kon = 52 active subcarriers, out
of which Kp = 4 subcarriers are pilots and the remaining
Kd = 48 subcarriers carry the data.

Notice that the inclusion of the set Kp in S is mandatory
since it carries the OFDM pilots, so that Kp ⊂ S . Therefore,
we sample only among the subcarriers in Kd. Figure 6b
illustrates a 1/2 sampling rate, where the Kp = 4 pilot
subcarriers are included, while 24 out of the Kd = 48 data
subcarriers are chosen. The selected subcarriers are taken
using a simple down-sampling pattern. In this manner, the
size of the LSTM layer can be adjusted according to the car-
dinality of S, reducing complexity in the channel estimation.

Finally, it is worth noting that the input of the LSTM
layer has size 2 |S|, while its output has size 2 |Kon|, related
to the real and imaginary parts from the complex-valued
channel estimations. The interpolation to produce the channel
estimates for all active subcarriers is intrinsically performed
by the LSTM, by means of training.

D. NN POST-PROCESSING AND TRAINING
The output from the LSTM layer is then processed by a shal-
low NN with N1 neurons to reduce the noise and provide the
final channel estimation, denoted as ĥDPA−LSTM−NNi

[k].
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× +

× ×
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FIGURE 7: Proposed DPA-LSTM-NN channel estimator with subcarrier sampling.

TABLE 5: Parameters for training the proposed estimator.

Parameter Values
Hidden size of the LSTM |S|

Hidden size of the NN N1

Epochs 500
Training samples 8000
Testing samples 2000

Batch size 128
Optimizer Adam

Learning rate 0.001

Furthermore, we follow [32] to define the parameters related
to the training and testing stages of our method. The number
of samples used for the training and testing phases is defined
by splitting 10000 different realizations of the vehicular
channel into sets with 80% and 20% of the total, respectively.
The batch size is set to be sufficiently smaller than the size of
the training dataset, thus speeding up its generalization and
the training process, while the number of training epochs is
set large enough to ensure the convergence of the model. For
the optimizer, we favored the adaptive moment estimation
(ADAM) with ReLU activation function to minimize the
loss between the perfect channel and the estimates from the
proposed DPA-LSTM-NN. This choice is motivated by its
fast computing time, a small number of parameters to tune,
and its well-known ability to solve optimization problems.
Finally, as suggested in [32], the learning rate is set as 0.001,
which is automatically adapted by the ADAM during its
progress, until the method converges. Table 5 summarizes the
DL architecture and parameters used in the training phase
from our proposed scheme. Finally, Figure 7 presents the
block diagram of the proposed DPA-LSTM-NN architecture.

IV. BENCHMARK CHANNEL ESTIMATION SCHEMES
In this section we briefly describe three state-of-the-art DL-
based channel estimators that will be compared with our
method. Specifically, we consider the DPA-DNN [7], the
LSTM-NN-DPA [11] and the LSTM-DPA-TA [12] schemes.
These designs have been chosen from Table 1 since they also
combine DPA estimation with DL techniques for vehicular
channels, with the last two also employing LSTM units.

DNN

DPA

ĥDPAi−1
[k]

yi[k] ĥDPAi
[k] ĥDPA−DNNi

[k]

FIGURE 8: Block diagram of the DPA-DNN estimator [7].

A. DPA-DNN CHANNEL ESTIMATOR
The DPA-DNN scheme was proposed in [7] in order to
improve the DPA method using an AE-DNN. Their receiver
considers an initial DPA estimation that is followed by an
offline trained AE with three hidden layers, consisting re-
spectively of 40, 20 and 40 neurons. Figure 8 illustrates
their approach, in which the goal of the DNN is to update
the estimation initially obtained with the DPA, by learning
to correct the estimation errors between ĥDPAi

[k] and the
perfect channel. The output is denoted by ĥDPA−DNNi

[k],
which is the DPA-DNN channel estimation.

The authors in [7] show that the trained DNN is capable of
learning the channel frequency domain characteristics, pre-
venting the error propagation typical of the DPA method. In
addition, although only a V2V communication scenario free
of the HPA nonlinear distortions has been considered in [7],
we have shown in [19] that DNN-based methods implicitly
have some robustness against these nonlinearities. This is
different from the case of using only conventional channel
estimators, without DNNs, for which the performance is
considerably degraded by the HPA distortions. As our nu-
merical results will show, the DPA-DNN also has interesting
performance in the presence of the HPA nonlinearities, but
still is outperformed by our proposed approach.

B. LSTM-NN-DPA CHANNEL ESTIMATOR
LSTM networks have been recently employed in the context
of vehicular channel estimation. For example, the LSTM-
NN-DPA scheme has been proposed in [11], which employs
an LSTM network allied with a NN in order to reconstruct
the channel as close as possible to the ideal channel re-
sponse. The authors consider that the input of the LSTM
receives the LS of the Kp pilot subcarriers, in two consec-
utive OFDM symbols, denoted by ĥLSi,p [k] and ĥLSi−1,p [k],
and the previous estimated channel ĥLSTM−NN−DPAi−1,d

[k]
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FIGURE 9: Block diagram of the LSTM-NN-DPA [11] scheme.

for the Kd subcarriers. Then, the estimate after the NN
is denoted by ĥLSTM-NNi

[k], which is further used as the
input of the DPA method, providing the final estimation
ĥLSTM-NN-DPAi

[k], ∀k ∈ Kon.
The block diagram of the LSTM-NN-DPA scheme is

shown in Figure 9, while numerical results in [11] show
that this method is able to learn the time and frequency
characteristics of the channel, tracking its variation and mit-
igating noise. Thus, significant performance improvement
in comparison to previous DNN-based receivers has been
achieved.

C. LSTM-DPA-TA CHANNEL ESTIMATOR
Another LSTM-based receiver has been proposed by [12],
where the LSTM estimates are directly fed to the DPA
method, producing ĥLSTM-DPAi [k] as an output. Then, noise
mitigation is achieved by means of a TA scheme, defined as

ĥLSTM-DPA-TAi
[k] =

(
1− 1

α

)
ĥLSTM-DPA-TAi−1[k]

+
1

α
ĥLSTM-DPAi

[k],

(14)

where α defines the fixed time averaging weight.
Figure 10 illustrates the block diagram of the LSTM-

DPA-TA scheme. Furthermore, this estimator exhibits a
lower computational complexity when compared to LSTM-
NN-DPA, while achieving similar performance in different
mobility scenarios. Nevertheless, both LSTM-NN-DPA and
LSTM-DPA-TA still require a large number of neurons to
perform the operations in the LSTM units, since all active
subcarriers are used.

V. SIMULATION RESULTS
In our simulations we use the IEEE 802.11p standard as
basis, with a 10 MHz bandwidth and carrier frequency
fc = 5.9 GHz. Each transmitted OFDM frame consists of
L = 50 symbols. Moreover, a total of K = 64 subcarriers
are employed within each OFDM symbol, in which only
Kon = 52 are active, while the remainder Kn = 12 subcarri-
ers are used as a guard band (inactive). In addition, Kp = 4

LSTM

DPA

yi[k]

Temporal

Averaging

ĥLSi,p [k]

ĥLSTM−DPA−TAi [k]

ĥLSTM−DPA−TAi−1,d [k]

σ σ tanh σ

× +

× ×

tanh

ct−1

ot−1

lt

ct

ot

ot

FIGURE 10: Block diagram of the LSTM-DPA-TA [12]
scheme.

TABLE 6: Simulation parameters.

Parameter Values
Bandwidth 10 MHz

Carrier Frequency (fc) 5.9 GHz
Cyclic Prefix Duration 1.6 µs

Symbol Duration 8 µs
Number of symbols (L) 50

Total number of subcarriers (K) 64
Active subcarriers (Kon) 52
Inactive subcarriers (Kn) 12

Pilot subcarriers (Kp) 4
Data subcarriers (Kd) 48

Kp {−21,−7,+7,+21}
Kd Kon ⊉ Kp

SNR (ξ) [0, 30] dB
IBO {2, 4} dB

Velocity (v) {48, 100, 200} km/h
Modulations QPSK, 16-QAM

out of the Kon subcarriers are allocated as pilots, while the
remaining Kd = 48 active subcarriers carry the data. We
also assume perfect synchronization at the receiver, with
constantly updated channel estimation. Table 6 summarizes
the considered simulation parameters, including the IEEE
802.11p standard physical layer specifications, recalling that
we denote Kon, Kp and Kd as the set of Kon, Kp and Kd

subcarriers, respectively.
The performance evaluation of the proposed DPA-LSTM-

NN scheme is done in terms of BER, NMSE and computa-
tional complexity, and compared with DPA-DNN [7], LSTM-
NN-DPA [11] and LSTM-DPA-TA [12] schemes. Follow-
ing [33], the training for all the estimators is performed at
the highest expected SNR value, ξ = 30 dB, in order to
reduce the impact of the noise and better learn the channel
variations. In addition, in order to have a fair comparison
between the solutions in terms of complexity, we considered
P = 52 hidden states for the LSTM networks in both LSTM-
NN-DPA and LSTM-DPA-TA estimators, while N1 = 15
neurons are considered at the hidden layer for LSTM-NN-
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FIGURE 11: BER performance of the proposed DPA-LSTM-
NN scheme for different sets of sampled subcarriers, with
|S| ∈ {52, 36, 28, 20, 16}, v = 48 km/h, 16-QAM modulation
and IBO = 4 dB.

DPA and our proposed DPA-LSTM-NN scheme.
Furthermore, we consider the V2V-UC vehicular channel

model, with two vehicles moving in opposite directions at
v = 48 km/h (low mobility scenario), v = 100 km/h (high
mobility scenario) and v = 200 km/h (very high mobility
scenario). We also considered 16-QAM and QPSK modula-
tion techniques, aiming to cover both lower and higher mod-
ulation order aspects in the analysis, while the impact of the
HPA nonlinearities has been considered for IBO = 4 dB for
the higher modulation order and, since QPSK is considerably
more robust with respect to the nonlinearities, we extend
our analysis to higher effects of HPA-induced nonlinearities,
employing IBO = 2 dB in this case.

A. BER AND NMSE PERFORMANCE
First, we investigate the impact of the subcarrier down-
sampling factor on the BER performance of the proposed
DPA-LSTM-NN scheme. Figure 11 plots the BER as a
function of the SNR of the DPA-LSTM-NN estimator for the
low mobility scenario (v = 48 km/h), 16-QAM modulation
with an IBO = 4 dB. Notice that we indicate the size of
the LSTM unit and the number of neurons of the NN in the
legend. For instance, (52-15) indicates an LSTM unit with
size P = 52 hidden states and N1 = 15 neurons. Then, we
have considered different sets of sampled subcarriers with
P = |S| ∈ {52, 36, 28, 20, 16}. Since the Kp = 4 pilot
subcarriers are always included in S, we illustrate the cases
of sampling the data subcarriers with rates 1/1, 2/3, 1/2,
1/3 and 1/4, respectively. We observe that it is possible to
reduce the input size of the LSTM U and the number of P
hidden states considerably with a slight degradation in the
BER performance. Consequently, the LSTM demonstrated to
be capable to interpolate the information of the missing sub-
carriers even with P = 28. Therefore, in the sequel we only
consider the DPA-LSTM-NN scheme with P = |S| = 28

hidden states and an LSTM input U = 2 |S| = 56.
Figure 12 compares the BER performance of the estima-

tion schemes using 16-QAM modulation and IBO = 4 dB.
As illustrated in Figure 12a for the low mobility scenario,
LSTM-NN-DPA [11] and LSTM-DPA-TA [12] perform bet-
ter than our proposed scheme at low SNR. This is due to the
demapping error of the DPA method, which increases in low
SNR. Thus, since [11], [12] use the LSTM layer before the
DPA, they achieve increased performance. However, when
the SNR increases the DPA method provides a cleaner infor-
mation to the LSTM layer, compared to LS used in [11], [12].
Then, we observe that the DPA-LSTM-NN scheme outper-
forms all other benchmark methods when ξ ≥ 22 dB. Note
also that such SNR level is crucial to achieve BER lower than
10−3, required by many practical applications. Furthermore,
for high and very high mobility scenarios, respectively in
Figures 12b and 12c, we observe a higher advantage for
the proposed DPA-LSTM-NN estimator, outperforming the
other solutions regardless of the SNR. It is also important
to highlight that the proposed method is the sole estimator
to achieve BER in the order of 10−4 for high and very
high mobility. In addition, considering a BER of 10−3, the
proposed scheme has 4 dB of SNR gain compared to the
LSTM-DPA-TA method in Figure 12b, and 2 dB of SNR gain
compared to the LSTM-NN-DPA method in Figure 12c.

The performance improvement of the proposed estima-
tor with respect to LSTM-NN-DPA and LSTM-DPA-TA is
illustrated in Figure 13 in terms of the NMSE gap. We
calculate the NMSE for fixed SNR ξ = 30 dB, 16-QAM
modulation, IBO = 4 dB, for different velocities. Compar-
ing DPA-LSTM-NN and LSTM-NN-DPA, we observe that
the NMSE gap is always higher than 40% regardless of v.
Comparing DPA-LSTM-NN and LSTM-DPA-TA the NMSE
gap is always higher than 20%, increasing with v. This result
shows that the proposed DPA-LSTM-NN performs better in
minimizing the error between the perfect channel and its
channel estimates in high SNR, being a better choice for
tracking the channel in presence of nonlinear distortions.

In order to focus on the effects of the HPA-induced
nonlinearities, the error rate performance is evaluated with
IBO = 2 dB1 in Figure 14. Low, high and very high mobility
scenarios are considered with QPSK modulation. Similarly
to the results considering 16-QAM modulation, we observe
that the proposed DPA-LSTM-NN scheme outperforms other
methods, except in the low mobility scenario at low SNR.
Nevertheless, we can notice here that both LSTM-NN-DPA
and LSTM-DPA-TA estimators present an error floor at high
SNR. This is mainly due to the low IBO, since the LS
estimation used as the input of the LSTM layers in [11],
[12] is highly degraded by the HPA nonlinear distortions. In
addition, the performance gap between the LSTM-NN-DPA,
LSTM-DPA-TA and our proposed method increases with the
SNR, since the DPA method provides more reliable channel

1Note that a smaller IBO value implies in higher nonlinear distortions at
the HPA.
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DPA-DNN (40-20-40) [7]Perfect Channel LSTM-NN-DPA (52-15) [11] LSTM-DPA-TA (52) [12] DPA-LSTM-NN (28-15)

(a) Low mobility, v = 48 km/h. (b) High mobility, v = 100 km/h. (c) Very high mobility, v = 200 km/h.

FIGURE 12: BER performance of the DPA-DNN [7], LSTM-NN-DPA [11], LSTM-DPA-TA [12] and DPA-LSTM-NN (proposal)
using 16-QAM modulation and IBO = 4 dB.

FIGURE 13: NMSE gap between the proposed DPA-LSTM-
NN and LSTM-NN-DPA/LSTM-DPA-TA, with ξ = 30 dB, 16-
QAM modulation, IBO = 4 dB and v ∈ {48, 100, 150, 200}
km/h.

estimates in this case. Figure 15 corroborates such analysis,
by showing the NMSE gap between ours and the benchmark
LSTM-based estimators in the same scenario of Figure 14.
Similar conclusions as in Figure 13 can be obtained, with the
DPA-LSTM-NN method outperforming other schemes by at
least 53%. Interestingly, the gap is higher in low mobility
scenarios, while it slightly decreases with v.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In order to compare the computational complexity of the
schemes, we calculate the number of real-valued oper-
ations in terms of multiplications/divisions and summa-
tions/subtractions, required to estimate the channel from a
received OFDM symbol.

The computational complexity of the DPA-DNN estima-
tor has been detailed in [24]. The initial DPA estimation
requires 18Kon multiplications/divisions and 8Kon summa-
tions/subtractions, while the total number of multiplications

and summations of the DNN depends on the number of
neurons at each layer. Following [24], the number of mul-
tiplications and summations of the DNN is given by

CMult
DNN = CSum

DNN =

ι+1∑
l=1

ND
l−1 N

D
l , (15)

where ι is the number of hidden layers of the DNN, and
ND

l is the number of neurons at the l-th hidden layer. In
addition, ND

0 denotes the number of neurons of the input
layer of the DNN, while ND

ι+1 is the number of neurons of
the output layer. The DPA-DNN has been designed in [7]
with ι = 3 hidden layers, respectively with ND

1 = 40,
ND

2 = 20 and ND
3 = 40 neurons. In addition, both input

and output layers depend on the number of active subcarriers
multiplied by two in order to handle real and imaginary parts,
so that ND

0 = ND
4 = 2Kon. Hence, the DPA-DNN requires

178Kon+1600 multiplications/divisions and 168Kon+1600
summations/subtractions.

The shallow NN, by its turn, has a single hidden layer, so
that it computational complexity is given by

CMult
NN = CSum

NN = N0 N1 +N1 N2, (16)

while the computational complexity of the LSTM unit has
been detailed in [12], which depends on the input size of
the LSTM unit U and on the size of its hidden states P .
Following [12], the overall number of real-valued operations
of the LSTM unit is given by

CMult
LSTM = 4P 2 + 4PU + 3P, (17)

CSum
LSTM = 13P + 4U − 8. (18)

The LSTM-NN-DPA estimator considers U = 2 (Kon +
Kp) = 112 inputs for the LSTM, where the multiplication
by two takes both real and imaginary parts into account, and
P = Kon = 52 hidden states. In addition, the input size
of the NN matches the size of the LSTM output, as well
as its output, that is related to the number of subcarriers, so
that N0 = N2 = 2Kon = 104. Also, N1 = 15 has been
considered for all schemes in this paper. Thus, combining
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DPA-DNN (40-20-40) [7]Perfect Channel LSTM-NN-DPA (52-15) [11] LSTM-DPA-TA (52) [12] DPA-LSTM-NN (28-15)

(a) Low mobility, v = 48 km/h. (b) High mobility, v = 100 km/h. (c) Very high mobility, v = 200 km/h.

FIGURE 14: BER performance of the DPA-DNN [7], LSTM-NN-DPA [11], LSTM-DPA-TA [12] and DPA-LSTM-NN (proposal)
using QPSK modulation and IBO = 2 dB.

TABLE 7: Real-valued operations for the considered channel estimators.

Channel Estimator Multiplications/Divisions Summations/Subtractions
DPA-DNN [7] 178Kon + 1600 168Kon + 1600

LSTM-NN-DPA [11] 12Kon
2 + 81Kon + 8Kon Kp 89Kon + 8Kp − 8

LSTM-DPA-TA [12] 12Kon
2 + 23Kon 31Kon − 8

DPA-LSTM-NN 3Kon
2 + 3Kp

2 + 6Kon Kp + 159/2Kon + 3/2Kp 157/2Kon + 21/2Kp − 8

FIGURE 15: NMSE gap between the proposed DPA-LSTM-
NN and LSTM-NN-DPA/LSTM-DPA-TA, with ξ = 30 dB,
QPSK modulation, IBO = 2 dB and v ∈ {48, 100, 150, 200}
km/h.

the computational complexity of the LSTM, the NN and
the DPA corresponds to 12Kon

2 + 81Kon + 8Kon Kp

multiplications/divisions and 89Kon + 8Kp − 8 summa-
tions/subtractions.

In addition, the LSTM unit of the LSTM-DPA-TA scheme
has U = 2Kon = 104 inputs and P = Kon = 52 hid-
den states, while the TA technique requires 2Kon multipli-
cations/divisions and 2Kon summations/subtractions. Thus,
combining the complexity of the LSTM, DPA and TA leads

to 12Kon
2+23Kon multiplications/divisions and 31Kon−8

summations/subtractions.
By its turn, the proposed DPA-LSTM-NN estimator with

subcarrier sampling employs the DPA initial estimation, fol-
lowed by the LSTM unit with P =

Kon+Kp

2 = 28 hidden
states and U = Kon + Kp = 56 inputs, with an additional
NN layer with N0 = N2 = 2Kon = 104 and N1 = 15
neurons. We obtain, thus, the complexity as

CMult
DPA−LSTM−NN = 3Kon

2 + 3Kp
2 + 6Kon Kp

+
159

2
Kon +

3

2
Kp (19)

and

CSum
DPA−LSTM−NN =

157

2
Kon +

21

2
Kp − 8. (20)

Table 7 summarizes the real-valued operations required by
the channel estimation schemes, as a function of the number
of active subcarriers. As we observe, the proposed DPA-
LSTM-NN scheme has the smallest coefficients for the most
significant factors associated to Kon in the operations of mul-
tiplications and divisions, consisting in the most impactful in
the complexity of the considered estimators. This is relevant
in the case, e.g., of a different communication standard em-
ploying a different number of active and pilots subcarriers,
so that our solution would still present a lower complexity
compared to other LSTM-based solutions in the literature. In
addition, Figure 16 illustrates the computational complexity
of the schemes in the case of Kon = 52 subcarriers and
Kp = 4 pilots. We observe that the proposed DPA-LSTM-
NN estimator with subcarrier sampling has at least 49.9%
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FIGURE 16: Computational complexity in terms of real-valued
operations with Kon = 52 subcarriers and Kp = 4 pilots.

less real-valued operations than other LSTM-based solutions,
and 16.7% less real-valued operations than the DPA-DNN
scheme, while also improving the BER at the same time.

C. PRACTICAL ASPECTS

An important remark to the practical usage of DNN-based
estimators is that their performance depends closely on the
training stage of the network. In terms of the robustness of
the training, a few observations arise from our investigation.
First, we observe that there is a generalization aspect of the
methods trained for higher modulation orders when applied
to lower modulation orders. For instance, the QPSK mod-
ulation can be seen as a part of the 16-QAM modulation,
so DNNs trained with 16-QAM work well when QPSK
modulation is employed in the testing stage. In addition,
DNNs trained for high velocity are able to achieve very
good performance in lower velocities. For example, if a DNN
trained for v = 200 km/h is used when v = 48 km/h, the
results are very similar than if the DNN was trained with
v = 48 km/h. However, the opposite is not valid and yields
significant performance degradation.

Furthermore, it is quite useful for the DNN-based so-
lution to be robust against changes in the channel model,
opening opportunities for generalized learning architectures
to estimate vehicular channels under different conditions.
Throughout this paper, we considered the V2V-UC channel
model, while other V2V channel models also exist [31].
One of the existing methods to generalize the solution is the
Ensemble Modeling (EM) [34], which is able to combine
different neural networks, e.g., each for a different vehicle

velocity or power delay profile, to improve prediction in a
general case. A recent approach has been performed by [35],
where EM is used to combine individual LSTM models for
a particular optimization problem. This process is done by
combining distinct models built for specific datasets, in order
to generate a generalized prediction, robust to parameter
variations, using a match of the prediction of each of its com-
ponents. Our choice for the EM solution here is motivated by
the fact that no complexity is added to the operation of the
DNN-based estimator. The EM technique only modifies the
training stage of the DNN; thus, without any impact on the
complexity analysis performed in Section V-B.

As an example, we have implemented EM in our sce-
nario, where we train eight models with datasets de-
ployed in both V2V-UC and V2V Same Direction With
Wall (V2V-SDWW2) [31], with different velocities v =
{48, 100, 150, 200} km/h. Then, we assign equal weights
to the models to obtain the EM in an average approach.
This method integrates the different offline trained models
building a single DNN, which combines the learning of the
different training datasets.

Figure 17 plots the BER as a function of the SNR for v =
100 km/h, QPSK modulation and IBO = 2 dB. Figure 17a
considers the V2V-UC channel, while V2V-SDWW is con-
sidered in Figure 17b. In addition, we compare in each figure
the proposed DPA-LSTM-NN estimator trained specifically
for a given channel model and velocity and its EM version
integrating models trained for v = {48, 100, 150, 200} km/h
and both channel models (denoted as DPA-LSTM-NN EM).
As we observe, the DPA-LSTM-NN trained for one channel
model and tested in a different model exhibits a performance
loss. On the other hand, the EM-based solution works very
well, exhibiting a very similar performance to the case when
DPA-LSTM-NN is trained and tested in the same channel
model.

D. SUMMARY OF THE ANALYSIS
Finally, the diagram illustrated in Figure 18 summarizes
the main analysis of the results, and highlights the most
appropriate application scenarios for each of the receivers
compared in this work. Here, we emphasize the advantages
from our proposed DPA-LSTM-NN as an estimator with low
complexity compared to the benchmark estimators, capable
of dealing with both effects of mobility and nonlinearities of
the HPA, mostly when it is possible to operate in high SNR
regime.

VI. CONCLUSION
In this work, we proposed a novel LSTM-NN-based esti-
mator, with complexity reduction in exploiting the doubly-
selective channel with a nonlinear scenario deployed by the
IEEE 802.11p standard for vehicular communications. The
simulation results evidence that is possible to increase the

2We have considered the V2V-SDWW channel model since it has a bigger
difference in terms of maximum Doppler shift and path delays compared to
the V2V-UC model [31].
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(a) V2V-UC. (b) V2V-SDWW.

FIGURE 17: BER performance of the proposed DPA-LSTM-NN scheme with QPSK modulation, v = 100 km/h and IBO = 2 dB,
using Ensemble Modeling.
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error compensation when comparing our solution to other
LSTM-based estimators from the literature, by considering
the DPA method as input to the LSTM layer, showing that
this strategy presents more correlation aspects to this nonlin-
ear post-procedure, especially in high SNR scenarios. Also,
in sampling the subcarrier information used in the training
and reducing the size from the LSTM layer, we show that
is possible to reduce the complexity of the DPA-LSTM-NN
receiver, recording at least 49.9% less real-valued operations
when compared to the recently proposed LSTM-NN-DPA

and LSTM-DPA-TA schemes. We also explored an example
of a generalized approach, which modifies the training state
of the DNN so that the final solution covers different channel
models and vehicle velocities, providing robustness and gen-
eral learning architectures to the vehicular communication
scenarios. As future works, we aim to extend our studies by
proposing alternatives for the pilots limitation imposed by the
IEEE 802.11p standard, in order to increase the performance
gain in employing the LSTM solutions, mostly when consid-
ering high mobility aspects. In addition, we also highlight
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the opportunity to extend the generalized DNN approach,
applying other methods to design more robust and general
learning architectures to these vehicular scenarios.
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