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Abstract This paper introduces the concept of information with a
foreseeable lifespan and explains who to achieve this primitive via a new
method for encoding and storing information in DNA-RNA sequences.
The storage process can be divided into three time-frames. Within the first
(life), we can easily read out the stored data with high probability. The
second time-frame (agony) is a parameter-dependent state of uncertainty;
the data is not easily accessible, but still cannot be guaranteed to be
inaccessible. During the third (death), the data can with high probability
not be recovered without a large computational effort which can be
controlled via a security parameter. The quality of such a system, in
terms of a foreseeable lifespan, depends on the brevity of the agony
time-frame, and we show how to optimise this.
In the present paper, we analyse the use of synthetic DNA and RNA
as a storage medium since it is a suitable information carrier and we
can manipulate the RNA nucleotide degradation rate to help control the
lifespan of the message embedded in the synthesized DNA/RNA molecules.
Other media such as Bisphenol A thermal fax paper or unstable nonvolatile
memory technologies can be used to implement the same principle but
the decay models of each of those phenomena should be re-analysed and
the formulae given in this paper adapted correspondingly.

Keywords: Cryptography, Information with foreseeable lifespan, Data Storage,
Information theory, DNA, RNA.

1 Introduction

Over time, the physical media on which we store information degrades. Tradi-
tionally, much effort has been put into protecting media against degradation to
achieve more robust and durable storage mechanisms.



In this paper, instead of resisting the time’s unavoidable effects, we try to
exploit them: rather than allowing information to slowly and progressively get
destroyed, we aim at a swift and complete erasure. Just as a thermal fax machine
paper that fades with time, we propose to synthesize DNA and RNA molecules
whose lifetime can be approximately tuned. Such a “time fuse” can guarantee,
for instance, that a cryptographic secret (typically a plaintext encrypted under a
hash of the DNA information) cannot be used or recovered beyond some expiry
date.

Since DNA is a reasonably stable molecule, we assume in this paper that
DNA does not degrade at all. By contrast, RNA nucleotides quickly decay over
time. We hence propose to synthetically incorporate RNA nucleotides in DNA
molecules. The DNA nucleotides will store the cryptographic secret whereas RNA
will serve as a natural countdown mechanism. This technique guarantees that,
with high probability, the whole secret will be recoverable before some target time
ttarget 1, but will not be reconstructible after ttarget 2. A mathematical analysis
allows tuning the ti as a function of the molecules’ molecular decay probability
distribution and the storage environment parameters such as temperature and
exposure to radiation.

Structure of the paper. We start (Section 2) by a general overview of the
biochemical notions necessary to understand the concept. The method itself is
presented in Section 3. In Section 4, we introduce a probabilistic model and
mathematically determine bounds on the tis. We analyse our method’s efficiency
and explain how to tune the tis in Section 5. Appendix A provides proofs and
Appendix B, lists numerical values.

2 Biochemical Preliminaries

For the article to be understandable, it is necessary to present a few biochemical
notions about DNA and RNA [16]. The following sections will deal with DNA
and RNA composition and degradation. The acronym “NA” (Nucleic Acid) will
denote both DNA and/or RNA.

2.1 NA Composition

DNA and RNA belong to the category of NAs, which are bio-macro-molecules;
both are chains of nucleotides. A nucleotide is composed of a nucleobase, a
pentose sugar and one phosphate group. In nature, there exist five different
nucleotides: adenine (A), thymine (T), uracil (U), cytosine (C) and guanine (G).
DNA contains A,T,C,G, whereas RNA contains A,U,C,G. Figure 1 shows the
structures of NAs, while Figure 2 details the four DNA nucleotides.

A fundamental difference between DNA and RNA is their pentose composition.
DNA pentose has a deoxyribose sugar which has no substituent at position C2’,
whereas the RNA sugar is a ribose which contains a 2’-hydroxyl (OH) moiety
as shown in Figure 3. Another chemical difference between DNA and RNA
appears when considering hydrolysis of RNA in buffer: cleavage can occur by
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Figure 2: Closeup structure of DNA with
the four nucleotides represented: Adenine,
Thymine, Cytosine, and Guanine.

Figure 3: RNA and DNA pentose.

an intramolecular attack of the 2’-OH unit which is on the sugar moiety on
the phosphorous center of the phosphodiester unit. Since DNA lacks a 2’-OH
and RNA has a 2’-OH such a reaction is favored in RNA as displayed by the
differences in the rates of uncatalyzed hydrolysis [15] (see Section 2.2).

2.2 NA Bonds Degradation Over Time

NAs degrade over time. The main degradation reaction of RNA nucleotides
is called transesterification, while the main degradation phenomena for DNA
are phosphodiester hydrolysis, oxidative cleavage, and cleavage as a result of
depurination. Whilst we will not dive deeper into the particularities of those
biochemical processes, the reader may wonder why the same degradation reactions
do not apply to both DNA and RNA. This results from the fact that the difference
in the pentose has a considerable influence on the reactions leading to degradation.
Briefly, in DNA a hydroxide ion (OH - ) will attack the phosphorous center which
eventually will lead to hydrolysis of the phosphodiester bond. Such a mechanism
can also occur in RNA but since RNA displays a 2’-OH moiety, this hydroxyl
group can be activated (by deprotonation under basic conditions or by metal
coordination) and attack the phosphorous center in an intramolecular rather than
in an intermolecular manner [12,18]. In particular, there is a big difference between
the two degradation speeds: under representative physiological conditions, RNA
hydrolysis is 105 times faster than DNA hydrolysis. DNA degradation speed is
hence almost negligible compared to the RNA degradation. In what follows, we



are chiefly interested in considering the RNA degradation in our mathematical
analysis. Figure 4 illustrates the way in which RNA degrades.

Figure 4: RNA degradation through transesterification

2.3 On the Synthesis of RNA-DNA Chimeric Oligonucleotides

Oligonucleotides in general can be synthesized by two main approaches: chemical
synthesis based on solid-phase methods and enzymatic synthesis. In this section,
we will briefly describe both methods and then highlight how DNA-RNA chimeric
oligonucleotides required for our purposes could be made.

Chemical synthesis The main synthetic access to RNA and DNA oligonuc-
leotides is granted by automated DNA and RNA solid-phase synthesis. In this
approach, activated nucleoside units called phosphoramidites are sequentially
added on a first nucleoside bound to a solid support. Each cycle encompasses a
coupling step (where the incoming phosphoramidite is reacted with a free 5’-OH
unit of a solid support bound nucleoside) followed by a capping step (to avoid
reaction of unreacted hydroxyl moieties in subsequent steps). The coupling and
capping steps are followed by oxidation of the newly created linkages (P(III) to
P(V)) and removal of the next protecting group to enable continuation of the
synthesis (the interested reader is directed to more comprehensive review articles
dedicated to this topic [8,11]). Such syntheses are usually carried out on synthes-
izers (Figure 5) on scales ranging from µmoles to moles. This method is routinely
used to synthesize DNA and RNA oligonucleotides either based on standard chem-
istry or encompassing chemical modifications required for in vivo applications.
However, this method is restricted to rather short (i.e. around 100-150 nucleotides
for DNA and around 100 nucleotides for RNA [2,8,11] oligonucleotides due to
low yields for fragments exceeding 100 nucleotides because of folding on solid
support during synthesis and due to the inherent nature of the coupling yields
(even with a 99% coupling efficiency, the maximum theoretical yield that can be



obtained for 100 nucleotide long sequence would be 0.99100 37%). Hence, this
approach is ideal for synthesizing short DNA-RNA chimeric oligonucleotides but
is unlikely to be applicable to longer sequences.

Figure 5: DNA synthesizer used for solid-phase synthesis of DNA and RNA oligonuc-
leotides.

Enzymatic Methods The most popular enzymatic methods for the synthesis
of oligonucleotides include polymerase-assisted synthesis using nucleoside triphos-
phates and ligation of shorter fragments into long oligonucleotides. In the first
strategy, nucleoside triphosphates are recognized by enzymes called polymerases
which add these nucleotides onto a growing chain of DNA or RNA. For DNA
synthesis, the presence of a primer and a template are strictly required since the
polymerase will add nucleotides at the 3’-end of the primer while the sequence
composition of the template will dictate the polymerase which nucleotide needs
to be incorporated. On the other hand, RNA polymerases are primer independent
and only require the presence of a DNA template to mediate transcription of
DNA into RNA. Such a method can be coupled with chemical modifications to
generate mRNA vaccines [4, 13] and other functional nucleic acids [1, 7]. This
method is not restricted to any size limitation and is compatible with numerous
chemical modifications. On the other hand, the sequence specific incorporation of
distinct RNA nucleotides in long DNA oligonucleotides will be difficult to achieve
by this method.

In the second method, DNA or RNA ligases mediate the formation of phos-
phodiester linkages between the terminal 3’-OH residue of an oligonucleotide with
the 5’-end (usually phosphorylated) of a second oligonucleotide [17] . Often a
“splint” oligonucleotide is required as a template since this guide oligonucleotide
is partially complementary to the termini of both oligonucleotides that need



to be ligated together. This method is compatible with the synthesis of longer
oligonucleotides [14] as well as with different chemistries in oligonucleotides [5,10],
and hence is deemed as the method of choice for this project.

Synthesis of RNA-DNA Chimeric Oligonucleotides To synthesize long
DNA oligonucleotides containing RNA nucleotides at distinct and specific posi-
tions in the future we propose to synthesize short DNA-RNA sequences using solid
phase synthesis and combine these fragments by (repeated) ligation reactions as
highlighted in Figure 6. This protocol will circumvent the drawbacks associated
with all the different methods and should yield the desired oligonucleotides.

Figure 6: Schematic representation of the synthesis of long DNA oligonucleotides con-
taining RNA nucleotides (star symbols) using a combination of solid-phase synthesis
(short blue fragments) and DNA ligation reactions.

2.4 RNA Degradation in Further Detail

RNA nucleotide degradation probability follows an exponential distribution of
parameter λ. λ depends on numerous factors such as temperature, pH and the
concentration of some ions5. Degradation also depends on the sequence context
and the 3D structure of the RNA oligonucleotide. We will use Equation (1) of [9]
to model λ:

λ = λ0 · 10e · cK · [K+]dK · cMg · [ Mg2+]dMg (1)

where
e = apH(pH− bpH) + aK([K+]− bK) + aT (T − bT )

λ0 = 1.3 · 10−9 min−1 and the constants are indicated in Table 4 in Appendix B
with their corresponding units.

Note that Equation (1) is an approximation and λ0 needs to be updated
depending on the considered range of physical parameters. See [9] for more details.
We give in Table 7 in Appendix B several λ values under different conditions
5 [K+], [Mg2+]



and the corresponding λ0 values. The expected time for one RNA nucleotide
to degrade (which is 1/λ) is given in the table to get an idea of the order of
magnitude of time. This will prove helpful in the rest of the paper for determining
which λ to work with when tuning the information’s lifetime. The chemical
parameters mentioned in this table are taken from Table 1 and using Equation
(e) from [9].

3 The Proposed Method

This section presents our new method for encoding and storing information
using DNA and RNA nucleotide. We propose a way on how to synthesize a new
DNA/RNA molecule, and we show that we can reach a good security level with
our method.

3.1 Description of the Method

The idea is to incorporate RNA fragments into DNA oligonucleotides using
standard solid-phase synthesis and produce DNA-RNA chimeric sequences to form
a new DNA/RNA chimeric oligonucleotide. A DNA fragment can be composed of
one nucleotide base (A,C, T,G) or by a juxtaposition of several nucleotides bases
linked to each other (AA,CC, TT,GG,AC,AT,GT,ACT, · · · etc). The chain’s
length depends on the size of the key that we want to encode and store. This
DNA/RNA chimeric oligonucleotide will contain k RNA nucleotides and k + 1
DNA fragments. We synthesize n copies of this molecule and keep it in a fluid.

To understand the insertion/encoding mechanism, we refer the reader to
Figure 7 which illustrates the insertion of the key SECRET. In this example, we
have 5 RNA nucleotides and 6 DNA fragments and an alphabetic substitution
for each letter in which we arbitrarily assigned different fragments to different
letters of the English alphabet.

Note that below we will actually use distinct DNA molecule fragments and
encode the stored information into the permutation of these.

S=CAT E=ACA C=AAT R=CAC E=ACT T=CAG

Figure 7: An explanatory illustration of one copy of the DNA/RNA oligonucleotide
encoding the key SECRET. Beads represent DNA fragments and inter-bead links are RNA
nucleotides.

3.2 Encrypting Information

Encrypt the information to be time-protected using some symmetric cipher (e.g.
AES [3]) and encode the key as an DNA/RNA oligonucleotide using a permutation
of pairwise distinct DNA fragments.



Erase the plaintext and the electronic version of the key and assume that the
ciphertext is accessible by the opponent. Hence, as long as we can reconstruct
the key from the DNA/RNA oligonucleotide the plaintext is recoverable.

We will now focus our attention on the recovery of the key from the DNA/RNA
oligonucleotide, as long as this molecule is physically reconstructible.

3.3 Key Reconstruction

We assume that the DNA fragments are pairwise distinct by construction. Call the
DNA/RNA oligonucleotide w and remember that it contains k RNA nucleotides.
Remember as well that there are n copies of w floating in a liquid. Suppose that
all the copies of w were cut randomly in pieces. We are given the set of these
pieces, and we seek to restore the initial oligonucleotide w if such a reconstruction
is still possible. Figure 8 represents the evolution of 3 copies of a key made of 9
DNA fragments.

Initial secret

A B C D E F G H I
A B C D E F G H I
A B C D E F G H I

Degraded secret
E F G A B H I H I
B C D E F D C D A
G H I E F G A B C

Reconstructed secret

A B C D E F G H I
A B C D E F G H I
A B C D E F G H I

Figure 8: An evolution of a secret with 3 copies and 9 fragments in each copy

The following algorithm outlines how we can recover the information after it
has begun degrading if such a reconstruction is possible at all.

– 1 First, we can easily obtain all fragments of w by analysing the pieces we
are given. For each fragment x, we will try to find the “next” fragment next[x]
(the one which follows x in the molecule w). If for all fragments except one
(which is w’s last fragment) the next fragment is found, we can restore w.

– 2 For any two fragments x and y, if there exists a third piece where y follows
x, then in the initial molecule w, y also follows x, and thus next[x] = y.
Therefore, we have just to treat each piece as follows: for every fragment x
except the last, define next[x] as the fragment following x inside that piece.
Since all fragments of w were distinct, there is at most one possible value of
next[x] for all fragments x. Figure 9 represents this relation in a graph.

– 3 After this procedure, we have to find a fragment which follows nothing,
and if it’s unique, we set it as the first and then add next fragments one by
one until there is nothing to add. This allows us to reconstruct w. If there are
several such fragments, w cannot be recovered without brute-force guessing.

If we got several fragments following nothing at the end of the algorithm, it is
impossible to recover the initial molecule having no information except the input.
We can only obtain separated pieces of w applying the last step of the algorithm
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Figure 9: The graph representing the next[x] relation in the algorithm

to each of the “first” fragments. This situation happens if and only if at least
one cut occurred during degradation, i.e. in all molecules, the RNA nucleotides
at the same specific location in all the molecule broke. The probability of this
happening will be investigated in the next section.

3.4 Security

We now turn to measure our method’s security, but before doing so, let us define
what the term cut means.

Definition 1. A cut happens at the ith position if for all 1 ≤ i ≤ k, the ith bond
of each of the n copies is broken.

Assume that the secret contains cuts. For each cut, the next fragment after
this cut follows nothing according to the reconstruction algorithm. Simultaneously,
for all other fragments except the first one of the initial molecule, there is at
least one piece where this fragment follows another one. This means that the
only pieces which can be recovered are any piece delimited by two cuts or the
pieces delimited by one cut and an endpoint of the initial molecule.

Since no link can be guessed between two described pieces, the only strategy
to recover the whole initial molecule is to test all reconstructed pieces’ per-
mutations. If there are k cuts, then (k + 1)! possibilities need to be browsed.
This fact defines security: a given number of cuts guarantees a security of ≈
80, 100, 128, 256 bits. Table 3 (a trivial log2(k + 1)! lookup table given in
Appendix B for the ease of quick reference) gives the correspondence between
the number of security bits versus the number of cuts and DNA fragments.
The number of security bits, which is called the security parameter and that we
denote a, is simply: a = log2(nD!), where nD is the number of the DNA fragments.

Current biological limitations. It is currently technically feasible to have
an NA chain of about 100 nucleobase pairs [2, 8, 11]. Each DNA chunk is linked
by an RNA pair. In the security analysis in this paper we assume that each DNA



chunk is unique, since copies reduce the security (and would makes the following
analysis harder).

Since the security stems directly from the number of RNA fragments, we
should construct chains containing the maximal number of RNA bonds while
observing distinctness of the DNA fragments.

Hence, we start by generating all 1-digit integers in base 4 (there are u1 = 4
of them), then all two digit integers in base 4 (there are u2 = 42 = 16 of them)
and finally we will fill in with 3-digit integers in base 4.

Linking the u1 + u2 = 20 1- and 2-digit pairs requires u1 + u2 − 1 = 19 RNA
nucleobase pairs. Hence, all in all we are already at a molecule comprising:

u1 + 2u2 + u1 + u2 − 1 = 4 + 2× 16 + 4 + 16− 1 = 55 pairs

To proceed, the 45 remaining pairs, permitted by the current technological
synthesis capacity, must be constructed using 3-digit integers linked with 1 RNA
bond.

We can hence solve 45 ≥ 3u3 + u3 to get u3 = 11 (we need one RNA bond
for each 3-digit fragment and one RNA to bind to the rest of the string).

The security level of the resulting scheme is log2((u1 +u2 +u3)!) = log2 31! '
113 bits.

Note that it is possible to artificially construct new types of DNA molecules,
see [6] where two new types have been constructed. Assuming that we have 6
different types of DNA molecules at hand the analysis above can be repeated.
First we have 6 1-digit integers in base 6. We now have 6 1-digit integers in
base 6 and 36 2-digit integers in base 6. We first choose u′1 = 6 and solve
100 − (u′1 + u′1 − 1) = 89 molecules left. We then solve 89 ≥ 2u′2 + u′2 to get
u′2 = 29. In this case don’t need 3-integers. In total we now have 34 RNA bonds,
log2((u′1 + u′2)!) = log2 35! ' 133 bits.

4 Controlling the Information Lifetime

In order to understand and control the lifetime of the information embedded in
the DNA/RNA molecules, we introduce a probabilistic model and mathematically
determine the bounds on the information lifetime.

4.1 Probabilistic Model

Recall that k denotes the number of RNA nucleotides in each of the n identical
copies of the initial molecule w. Denote by Li,j the random variable giving the
degradation time of the jth RNA nucleotide of the ith copy. Our main assumption
is that the Li,j , for all i, j, are independent and identically distributed random
variables following the exponential distribution of parameter λ. Denote by Tj
the random variable representing the time for the cut at the jth position to
appear and by tx the random variable giving the xth cut time to appear. tx is
the xth order statistic of (Tj)1≤j≤k, i.e. the xth smallest element of {T1, · · ·Tk}.
By definition, Tj = max

1≤i≤n
Li,j and in compactified notation, tx = T(x).



4.2 The Information Lifetime Bounds

We consider that the information stored in the NA molecule goes through three
different periods that we call: life, agony and death. In this section, we describe
each period separately, and give the mathematical model allowing us to determine
the bounds of each one of them. Figure 10 shows the different periods represented
on a time axis:

Life Agony Death

0 Tmin = t1 Tmax = ta
time

Figure 10: The information lifespan

Life: The information embedded in the NA molecule is fully accessible during
the first phase. This happens when no cut has occurred, i.e. for t ∈ [0, t1[. Let
Tmin = min

j≤k
Tj be the random variable giving the time at which the first cut to

occur. We have t1 = Tmin and :

P(Tmin > t) = (1− (1− exp(−λt))n)k (2)

Agony: Agony starts after the first cut has appeared. We can only recover the
information by at least brute-force guessing. For each guess, the probability p
that a guess gives the correct secret is equal to 1

(x+1)! , where x is the number of
cuts at the time t. Agony ends when the ath cut appears, i.e. we have t ∈ [t1, ta].

Death: After the ath cut, we consider the information to be dead – it is no
longer feasible to brute-force a recovery of the information. We have ta = Tmax
and:

P(Tmax ≤ t) = 1−
a−1∑
i=0

(
k

i

)
p(t)i(1− p(t))k−i (3)

with p(t) = (1− exp(−λt))n. In this case t ∈]ta,∞[ and it is computationally
infeasible within the chosen security parameter to recover the secret information.

Proof. See Appendix A for the derivations of Equation (2) and Equation (3).

We note that P(Tmin > t) is increasing in n and decreasing in k, t and λ, and
P(Tmax ≤ t) is increasing in k, in p(t) and thus in t and λ, but decreasing in n.

Lemma 1 (Evolution of the number of cuts over time). Let C(t) denote
the number of cuts at the time t. C is a random variable and we have:

E[C(t)] = k × (1− exp(−λt))n
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Figure 11: Probabilities as functions of the number of copies n, with a fixed number of
RNA bonds k = 80 (left), and as functions of the number of RNA bonds k with a fixed
number of copies n = 60 (right). Here a = 24 and λ = 0.001 min−1.

Proof. See Appendix A

The following Lemma allows us to calculate the expected life spans and their
variance.

Lemma 2 (The average time and the variance for the xth cut to ap-
pear). The average time when the xth cut appears, E(tx), and the corresponding
variance, V (tx), are given by the following formulas:

E(tx) = 1
λ

kn∑
s=1

Cx(k, n, s),V(tx) = 1
λ2

2
kn∑
s=1

Cx(k, n, s)
s

−

(
kn∑
s=1

Cx(k, n, s)
)2

where:

Cx(k, n, s) = (−1)s+1

s

k∑
m=x

s∑
p=0

k−m∑
i=0

(−1)i
(
k

m

)(
mn

p

)(
k −m
i

)(
ni

s− p

)
Proof. See Appendix A

E(tx) is increasing in n under fixed k and it is decreasing in k under fixed n.

5 Parameter Choice and Efficiency Analysis

This section presents three different methods on how to tune the lifetime of
the information embedded in the NA molecule. The first method consists of
determining the best (n, k) pair to choose. We want the data to still be accessible
before some given time t and destroyed after some given time t′, both with a
chosen tolerance level for the probability. The second method seeks the optimal
(n, k) pair yielding the shortest agony time phase compared to the total life time,
i.e. being able to determine the lifespan as clearly as possible. Finally, in the
third method, we describe how to find the best (n, k) pair, such that the expected
value E(n, k, ta) is very close to some target time ttarget with minimal variance,
giving the best guarantee that the data will be destroyed after this time.
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5.1 Finding (n, k) for Target Times t and t′

For specific t and t′ values, we want our data to still be accessible up to t and
completely destroyed after t′; what is the (n, k) pair to consider? To answer this
question, n and k should satisfy the following criteria:

P(Tmin > t) ' 1 and P(Tmax ≤ t′) ' 1

To this end, we fix a tolerance level, ∆, and require:

P(Tmin > t) ≥ 1− ε∆ and P(Tmax ≤ t′) ≥ 1− ε∆

with ε∆ = ∆ · 10−2.
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Figure 13: Domains bounds of existing solutions satisfying P(Tmin > 3000) ≥ 96% (blue
indicates lower bound) and P(Tmax ≤ 5000) ≥ 96% (orange indicates upper bound).
Here ∆ = 4 and λ = 0.001 min−1. The time is in min.

Figure 13 shows that a solution exists at the intersection point of the two
curves. For the example in Figure 13, the solution for t = 3000 min and t′ =



5000 min is: (n, k) = (150, 86). This means that if we manufacture 150 NA copies
containing 86 RNA nucleotides in each, there is a chance of 96% that the secret is
still accessible before 3000 minutes and completely destroyed after 5000 minutes.
Other solutions for other target t and t′ are given in Table 1.

t \ t′ 2000 3000 4000 5000
1000 (22, 819) (17, 74) (15, 38) (15, 30)
2000 - (71, 1243) (53, 83) (48, 40)
3000 - - (206, 1492) (150, 86)
4000 - - - (572, 1584)

Table 1: (n, k) solutions for different values of target t and t′ (in minutes). Here
λ = 0.001 min−1 and ∆ = 4.

The results of Figure 13 and Table 1 were obtained after running a search
code in Python available from the authors. Note that these (n, k) values represent
the solutions having the lowest cost in terms of n and k.

5.2 Finding (n, k) with Lowest Agony Ratio

What if we want that the data stored in the NA molecule to be fully accessible
before some time t and then gets quickly destroyed after some time t′ ? Depending
on a specified risk level, expressed through α, we want that the time from
E(t1)−αδt1 , where we are confident to have the information fully available, until
time E(ta) + αδta , where we are confident that it is destroyed, is as short as
possible. Here δ is the standard deviation. We thus define the agony ratio as:

f(n, k) = E(ta) + αδta
E(t1)− αδt1

,

and aim to find the (n, k) pair giving the smallest ratio, i.e. being as close to one
as possible.

Note that the agony ratio f does not depend on λ. This is particularly useful
if we can adjust the fluid’s chemical properties to determine the actual life span,
refer to Table 7 in Section 2.4 to have an idea about the order of magnitude of
the time for different values of λ.

We expect, at least for large k and n, that the probabilities p1 = P(E(t1)−
αδt1 < t1) and p2 = P(E(ta) + αδta > ta) are close to the ones derived from a
normal distribution. This is confirmed by Table 6 in Appendix B, which gives
numerical values of p1 and p2 for the cases α = 1 and α = 2.

Table 5 in Appendix B shows that we effectively have lower agony ratios
when n and k are significant, the best (n, k) pair is then the one with the largest
values of n and k. This suggests to go further with more significant values of n
and k, when the resources allow it, and when actual acceptable timings can be
found depending on λ.



As an example, we take (n, k) = (280, 280) and we give in Table 2 numerical
values for (t, t′) = (E(t1)−2δt1 ,E(ta)+2δta) for different values of λ and α = 2. In
this case, f(280, 280) ' 1.41 and (p1, p2) ' (0.96, 0.97). Remember that getting
other values for (t, t′) requires choosing other values for λ and hence adjusting
the chemical properties of the fluid accordingly.

λ(in mins−1) 10−3 4.5 · 10−4 4.06 · 10−5 3.3 · 10−6 1.22 · 10−7

(t, t′) (57.5, 81.5)
hours

(5.3, 7.5)
days

(2, 2.8)
months

(2, 2.8) years (53.3, 75.7)
years

(p1, p2) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97)
agony ratio 1.41 1.41 1.41 1.41 1.41

Table 2: The best (t, t′) solutions in terms of the lowest agony ratio for different values
of λ. Here (n, k) = (280, 280), α = 2 and a = 24.

5.3 Finding (n, k) for Target Time ttarget with the Least Variance
For a target time ttarget we want that the secret data is inaccessible after ttarget,
what is the best (n, k) to consider? To answer this question n and k should satisfy
the following approximation:

E(n, k, ta)− ttarget ' 0

We are therefore looking for (n, k) pairs minimizing the distance between
E(ta) and ttarget. However, we also want to be as confident as possible that this
is the time that the information is destroyed. Hence, we would prefer the (n, k)
pair for which E(ta) has the least variance. Figure 14 represents the optimal
(n, k) solutions verifying E(n, k, ta) ' 2000 min. We see that we have the least
variance when n and k are large. Table 8 gives the corresponding k for each n.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2 • • • • • • • • • • • • • • • • • • • •

• •
• • • • • • • • • • • • • • • • • •

n

E(t24)/103

Figure 14: Optimal Solutions for ttarget = 2000 mins. The blue lines represent the
standard deviation, the red points represent the expected values E(t24), and the green
ones represent E(t1). Here λ = 0.001 min−1.

As seen in the last section, when n and k are significant, we have a lower
agony ratio as well.



Search Algorithm: Our search for finding the optimal solutions consists of
finding the optimal k for each n, which we call kn. The pair (n, kn) ensures:
ttarget ' E(n, kn, ta). We can use the monotonicity properties of E(n, kn, ta) to
proceed efficiently as follows:

– Initialisation: Start with n = 1 and k = a and compute E(n, k, ta). For fixed
n, E(ta) is decreasing with k, and for fixed k, E(ta) is increasing with n.
Hence if E(ta) < ttarget, increase n until E(ta) > ttarget.

– Increasing k: We can now increase k until we find E(n, k, ta) ' ttarget and
we can take kn = k. Since the expectation value is monotonically decreasing
with k this is easily determined and can be accelerated via the bisection
method. For an integer ∆, consider the interval I∆ = [k, k+∆] and compute
c = g(n, k) · g(n, k + ∆), where g(n, k) = E(n, k, ta) − ttarget. If c < 0,
kn+1 ∈ I∆. In this case bisect I∆ and repeat the same operation. If not,
kn > k +∆ and we can choose a new interval from k +∆.

– Increasing n: Bearing in mind that ttarget ' E(n, kn, ta) ≤ E(n + 1, kn, ta),
kn+1 is either kn or bigger. Hence, in the next iteration for n, we initialise k
to kn and proceed using last step.

– Finally, the optimal n, kn value is chosen to minimise the variance of E(n, k, ta).

Remark 1. We can get a wide range of values of λ if we can adjust the chemical
parameters such as temperature, PH and the concentration of particular ions.
Since the E(n, k, ta) and its standard deviation are inversely proportional to λ
this can help us to find even better solutions.

Note that we got all of our numerical values using a Python simulation since
it is faster than working with the theoretical formula of E(ta) directly. Table 8 in
Appendix B illustrates our findings of optimal k of n for ttarget = 2000 min.

6 Conclusion and Future Work

This paper presented a new method for encoding and storing information using
synthetic DNA and RNA. We showed that our method allows having information
with a foreseeable lifespan. Moreover, we analyzed its security, discussed parameter
choice and efficiency. We proposed three different algorithms on how to tune the
information lifetime.

Other media supports such as bisphenol A thermal fax paper or unstable
nonvolatile memory technologies can be used to implement the same principle
but the decay models of each of those phenomena should be re-computed and
the formulae given in this paper adapted. For instance, in the case of thermal
paper, for instance, the number of copies can be replaced by pixel size.

Future Work: Being aware of the fact that having very long oligonucleotides is a
synthetic challenge and that it can yield to different rates of hydrolysis compared
to small-length oligonucleotides due to the formation of intra- and inter-molecular
interactions, our theoretical analysis works as a proof of principle and the answer
to these research questions is left for a future work.
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A Proofs

Proof of Equation (2) For time t, the probability that the information is still
accessible at this moment is given by P(Tmin > t) and we have: P(Tmin > t) =
P(∀j ≤ k, Tj > t) =

∏k
j=1 P(Tj > t) = P(T1 > t)k = (1− (1− exp(−λt))n)k,

and this is true by definitions of Ti and Li,j , and by independence and uniform
distribution of {Ti}i≤k and {Li,j}i≤n,j≤k.

Proof of Equation (3) For time t, the probability that the information is
completely destroyed after this time is given by: P(Tmax < t) where: Tmax =
T(a) and a is the security parameter. We introduce the random variable Z =∑n
i=1 1(Ti ≤ t) and we define p(t) = P(Ti ≤ t) = (1− exp(−λt))n. We have then:

P(Tmax ≤ t) = P(#{i | Ti ≤ t} ≥ a) = P(Z ≥ a) and thus 1 − P(Tmax ≤ t) =∑a−1
i=0

(
k
i

)
p(t)i(1− p(t))k−i

Proof of Lemma 1 The number of cuts as a function of the time is a random
process, which we will denote by C(t). We can get the expected number of
cuts at time t as follows: E[C(t)] =

∑k
i=1 E[1Ti≤t] =

∑k
i=1
∏n
j=1 P(Li,j ≤ t) =

k × P(L1,1 ≤ t)n = k × (1− exp(−λt))n which is true using independence and
uniform distribution of random variables {Li,j}j≤n,i≤k.

Proof of Lemma 2 This proof is done by calculating three different elements:
the cumulative distribution function, the density function and the expected value
of tx:

– Cumulative distribution function of tx:

Ftx(t) = P(∃i1, . . . , ix ∈ [1, k] : Ti1 , . . . , Tix ≤ t)

=
k∑

m=x

(
k

m

)
P(T1 ≤ t, . . . , Tm ≤ t, Tm+1 > t, . . . Tk > t)

=
k∑

m=x

(
k

m

)
P(T1 ≤ t)m · (1− P(T1 ≤ t))k−m

=
k∑

m=x

(
k

m

)
(1− e−λt)m·n · (1− (1− e−λt)n)k−m

=
k∑

m=x

(
k

m

)
·

(
m·n∑
p=0

(
m · n
p

)
(−1)pe−λpt

)
·



(
k−m∑
a=0

(
k −m
a

)
(−1)a ·

(
n·a∑
b=0

(
n · a
b

)
(−1)be−λbt

))

=
k∑

m=x

m·n∑
p=0

k−m∑
a=0

n·a∑
b=0

(
k

m

)(
m · n
p

)(
k −m
a

)(
n · a
b

)
(−1)p+a+be−λ(p+b)t

=
k∑

m=x

m·n∑
p=0

k−m∑
a=0

n·a+p∑
s=p

(
k

m

)(
m · n
p

)(
k −m
a

)(
n · a
s− p

)
(−1)s+ae−λst

=
kn∑
s=0

C̃x(k, n, s)e−λst

This result follows from the independence of Ti, for i ∈ [1, k], and using the
Newton binomial formula three times. Here:

C̃x(k, n, s) =
k∑

m=x

m·n∑
p=0

k−m∑
a=0

n·a+p∑
p′′=p

(
k

m

)(
m · n
p

)(
k −m
a

)(
n · a
b− p

)
(−1)b+aδb,s

= (−1)s+1

s

k∑
m=x

s∑
p=0

k−m∑
a=0

(−1)a
(
k

m

)(
mn

p

)(
k −m
a

)(
na

s− p

)
where δs,b is the Kroenecker delta function.

– Density function of tx: ftx(t) = F ′tx(t) =
∑kn
s=0−λsC̃x(k, n, s)e−λst =∑kn

s=1−λsC̃x(k, n, s)e−λst where we start from s = 1 since the constant
term vanishes after differentiation.

– Expected value of tx: E(tx) =
∫ +∞

0 tftx(t)dt =
∑kn
s=1−λsC̃x(k, n, s)

∫ +∞
0 te−λstdt =

1
λ

∑kn
s=1 Cx(k, n, s) where:

∫ +∞
0 te−λstdt = 1

λ2s2 and Cx(k, n, s) = −C̃x(k, n, s)
s

.
This result follows from the fact that we have finite sums.

– Variance of tx: V (tx) = E(t2x)−E(tx)2 =
∫ +∞

0 t2f(tx)dt−
(∫ +∞

0 tf(tx)dt
)2

=∑kn
s=1

−2
λ2s2 C̃x(k, n, s)−

(
1
λ

∑nk
s=1 Cx(k, n, s)

)2
=

1
λ2

[
2
∑kn
s=1

Cx(k, n, s)
s

−
(∑kn

s=1 Cx(k, n, s)
)2
]

B Numerical Values
Security bits

a = log2(k + 1)!
Number of cuts

a = 84 24
a = 103 28
a = 133 34
a = 260 57

Table 3: Number of security bits versus number of cuts and DNA fragments. Note that
the number of DNA fragments needed is always the number of cuts plus one.



constant apH bpH aK bK cK

value 0.983 6 0.24 3.16 3.57
unit none none L.mol−1 mol.L−1 (mol.L−1)−dk

constant dK cMg dMg aT bT

value −0.419 69.3 0.80 0.07 23
unit none (mol.L−1)−dMg none °C−1 °C

Table 4: Values of the constants in Equation (1).

n \ k 120 160 200 240 280
120 1.50 1.46 1.44 1.42 1.41
160 1.46 1.42 1.40 1.38 1.37
200 1.43 1.40 1.37 1.36 1.34
240 1.41 1.38 1.35 1.34 1.33
280 1.40 1.37 1.34 1.33 1.31

n \ k 120 160 200 240 280
120 1.67 1.62 1.58 1.56 1.54
160 1.60 1.56 1.53 1.50 1.49
200 1.56 1.52 1.49 1.47 1.45
240 1.53 1.49 1.46 1.44 1.43
280 1.52 1.48 1.44 1.43 1.41

Table 5: f(n, k) values for different values of n and k. Left α = 1 and right α = 2

n \ k 120 160 200 240 280
120 (0.84, 0.84) (0.84, 0.84) (0.84, 0.82) (0.83, 0.82) (0.84, 0.84)
160 (0.83, 0.83) (0.82, 0.83) (0.82, 0.84) (0.84, 0.84) (0.85, 0.86)
200 (0.84, 0.84) (0.85, 0.86) (0.85, 0.84) (0.82, 0.84) (0.83, 0.82)
240 (0.85, 0.86) (0.84, 0.83) (0.85, 0.82) (0.83, 0.84) (0.84, 0.83)
280 (0.84, 0.83) (0.83, 0.84) (0.84, 0.84) (0.84, 0.83) (0.84, 0.84)

n \ k 120 160 200 240 280
120 (0.97, 0.97) (0.97, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97)
160 (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.95, 0.97)
200 (0.96, 0.97) (0.97, 0.98) (0.96, 0.97) (0.95, 0.97) (0.96, 0.97)
240 (0.97, 0.98) (0.96, 0.97) (0.97, 0.97) (0.96, 0.97) (0.96, 0.97)
280 (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97) (0.96, 0.97)
Table 6: (p1, p2) probabilities. Top α = 1 and bottom α = 2. Here λ = 0.001.

T (°C) pH [K+] [Mg2+] λ0( mins−1) λ( mins−1) 1/λ
23 13 0.1 0 1.3 · 10−9 10−3 1000 minutes
23 12.5 0.03 0 1.3 · 10−9 4, 5 · 10−4 37 hours
37 7.4 0.25 0.005 1.4 · 10−7 4.06 · 10−5 17.1 months
4 10.7 0.25 0.005 1.3 · 10−9 3.3 · 10−6 210.43 days
23 7 0.25 0.005 10−8 1.22 · 10−7 15.5 years

Table 7: Order of magnitude of the time for different values of λ

n 1 2 3 4 5 6 7 8 9 10
Optimal k 27 31 36 42 49 57 65 76 87 101

n 11 12 13 14 15 16 17 18 19 20
Optimal k 118 136 156 182 210 243 280 324 374 435

Table 8: Optimal k for n verifying E(n, k, ta)− ttarget ' 0. λ = 0.001 and a = 24.


