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Singularity-free theory and adaptive finite element computations of arbitrarily-shaped
dislocation loop dynamics in 3D heterogeneous material structures

A. Vattré∗, V. Chiaruttini

Onera, Université Paris-Saclay, Materials and Structures Department, 29 av. Division Leclerc, 92320 Châtillon, France

Abstract

The long-standing problem of arbitrarily-shaped discrete dislocation loops in three-dimensional heterogeneous material
structures is addressed by introducing novel singularity-free elastic field solutions as well as developing adaptive finite ele-
ment computations for dislocation dynamics simulations. The first framework uses the Stroh formalism in combination with the
biperiodic Fourier-transform and dual variable and position techniques to determine the finite-valued Peach-Koehler force acting
on curved dislocation loops. On the other hand, the second versatile mixed-element method proposes to capture the driving
forces through dissipative energy considerations with domain integrals by means of the virtual extension principle of the sur-
facial discontinuities. Excellent agreement between theoretical and numerical analyses is illustrated from simple circular shear
dislocation loops to prismatic dislocations with complicated simply-connected contours in linear homogeneous isotropic solids
and anisotropic elastic multimaterials, which also serves as improved benchmarks for dealing with more realistic boundary-value
problems with evolving dislocations. Examples of sophisticated dislocation applications include the short-range core reaction
between intersecting dislocation loops in interaction with a spherical cavity, as well as the Orowan dislocation-precipitate bypass
mechanism in a compressed micropillar of polycrystalline copper. The latter multiscale investigation spans three orders of mag-
nitude in size scale, and is thus enabled by computationally efficient and robust adaptive mesh generation procedures for explicit
dislocation propagation, interaction, and coalescence in three-dimensional materials and material structures.

Keywords: Anisotropic elasticity theory, adaptive finite element method, heterogeneity, dislocation loops, dislocation
shrinkage and propagation, short-range core reaction, dislocation-precipitate interaction, polycrystalline micropillar

1. Introduction

In crystalline materials, most mechanical properties, such as ductility, hardening and strengthening mechanisms, and fracture,
are governed by the arrangement and the stress-driven motion of individual dislocations and their collective dynamics (Kubin,
2013, Cai and Nix, 2016, Bulatov et al., 2006). The fundamentals of dislocations are mainly studied top-down and bottom-up
to describe plastic deformation processes as well as dislocation-mediated relaxation mechanisms in three-dimensional material
structures. As topological defects that arise from translational lattice incompatibility in real solids, the closed dislocations are
discrete Volterra dislocation loops (Volterra, 1907), for which the short- and long-range interactions with solute atoms and va-
cancies, free surfaces, grain boundaries and heterophase interfaces, cracks, inclusions and voids are characterized by continuous
elastic distortion fields. The prediction of the internal dislocation-induced stresses within a complex full-scale environment is
also ranged over a large portion of solid-state physics and continuum mechanics, which steadily require further in-depth treatment
of various theoretical and numerical developments.

The present contribution is part of the long-standing problems, namely the continuum representation of discrete dislocation
loops interacting with various strain-induced microstructural features in three-dimensional multimaterial and polycrystalline
samples subjected to complex loading conditions. This offers i) novel singularity-free solutions for arbitrarily-shaped disloca-
tion loops within the frame of the anisotropic elasticity theory in heterogeneous systems, and ii) a finite element methodology
using adaptive remeshing techniques to treat more complicated configurations with large-scale computations whose the previous
solutions are not yet determined, and certainly never will be for the most realistic industrial situations. The former therefore
serves as a basis for comparison and validation for the numerical finite-element field solutions as well as the configurational
forces for arbitrarily-shaped dislocation loops, while the latter proposes to handle computational dislocations dynamics in more
advanced microstructures and sophisticated structures.

In recent decades, modern high-performance structures made of interface-dominated materials are used in a wide range of
engineering applications from the aerospace and aviation industry with thermal barrier coatings on nickel-base superalloy sub-
strates for turbine blades to micro-electrics with insulating films on semiconductor devices, through nuclear energy systems
with radiation resistant metallic multilayers. At the microscopic scale, the presence of dislocation loops is also of paramount
significance as elementary sources of internal stresses, while their motion and interaction are influenced by the elastic modulus
mismatch and crystallographic misorientation across the internal interfaces. When the average radius of the dislocation loops
is on the order of the representative length of the internal heterogeneities, the discrete distribution of dislocations cannot be de-
scribed by constitutive relations. At this scale of observation, the complicated and important problem of dislocation interactions
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embedded in three-dimensional macroscopic structures is multiscale in nature, where the dislocation properties are inherited
from the microscopic scale. At the dislocation scale, however, these lattice imperfections in real crystals are fraught with an-
alytical challenges that currently require further attention, in order to improve the insight into the behaviors of dislocations in
interface-dominated materials from the nano- to the macro-scales. The continuum description of dislocation loops in heterostruc-
tures is challenged by various theoretical complexities, thus rendering the fundamental aspects of the theory of dislocations still
incomplete:

- Heterogeneous elastic solids with arbitrarily-oriented interfaces: The heterogeneous anisotropic elasticity with mismatch
and lattice misorientation leads to elegant mathematical formalisms with exact solutions for specific dislocation-based problems
(Willis, 1971, Barnett and Lothe, 1974, Suo, 1990, Ting and Barnett, 1993, Gosling and Willis, 1994, Ting, 1996, Choi and
Earmme, 2002, Han and Ghoniem, 2005, Chu et al., 2012, Chu and Pan, 2014, Pan and Chen, 2015, Wu et al., 2016, Vattré,
2017a,b, Pan, 2019, Yuan et al., 2019). However, these theories are commonly restricted to simple configurations of planar
interfaces with particular orientations, which usually deviate from the complex arbitrarily-oriented and randomly-distributed
material boundaries in polycrystalline materials and dispersion-strengthened alloys.

- Complex external boundary-value problems in finite-sized domains: Significant challenges arise when considering the
presence of dislocation loops in finite-sized domains of arbitrary geometries and complex boundary conditions partitioned into
standard Dirichlet and Neumann regions. Current analytical solutions are mainly derived by adopting assumptions that cannot
always be accurately constructed with respect to experimental observations. Closed-form solutions for the internal stresses
with high gradient resulting from the action of externally applied loads are complicated in most realistic microstructures and
structures, thus turning the simple representation of elementary volumes with periodic boundary conditions hazardous. These
ambitions are commonly accompanied by additional numerical treatments in discrete dislocation dynamics modeling (El-Azab,
2000, Weygand et al., 2001, Weinberger and Cai, 2007, Deng et al., 2008, El-Awady et al., 2008).

- Arbitrarily-shaped dislocation loops: The general expression for the field solutions using anisotropic elasticity theory are
routinely associated with simple dislocation shapes, namely the planar triangular and hexagonal shapes as well as circular and
elliptical loops (Chu et al., 2012, Yuan et al., 2019, Chou and Eshelby, 1962, Willis, 1965, 1970, Wang, 1996, Gao and Larson,
2015, Vattré and Pan, 2018). The determination of the three-dimensional stress fields caused by arbitrarily-curved Volterra
dislocation loops with glide and sessile components is non-trivial using the standard Stroh sextic and surface-to-line integral
formalisms in anisotropic multimaterials.

- Non-singular dislocation loops in anisotropic elastic materials: The calculation of the finite self-energy without using
the line tension approximation is of great importance to compute the non-divergent configurational driving forces acting on
dislocation loops with explicit local curvature. Specific treatments using dislocation core regularization procedures are also
needed to exclude the singular stress components that arise in the context of classical elasticity (Gavazza and Barnett, 1976,
Cai et al., 2006, Po et al., 2014, Taupin et al., 2017, Lazar and Po, 2018, Po et al., 2018, Vattré and Pan, 2019, Lazar et al.,
2020). The continuum description of dislocations is therefore able to descend to the atomistic scale without resorting to heuristic
assumptions. If attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties, these are needed
to describe hardening induced by close-range elastic interactions among the dislocation loops.

These challenges are of great significance to improve the conventional large-scale discrete dislocation dynamics, within
which the elastic stress fields are the basic premises to obtain insight into physical mechanisms in crystal plasticity (Kubin,
2013, Arsenlis et al., 2007, Devincre et al., 2011, Sills et al., 2016, LeSar and Capolungo, 2020, Sills et al., 2018, Bulatov et
al., 2006). Although these simulations offer the promise of predicting the dislocation microstructure evolutions as well as of
modeling the constitutive behaviors of polycrystalline and multiphase metals (Kubin, 2013, Arsenlis et al., 2007, Kubin et al.,
1992, Verdier et al., 1998, Zbib et al., 1998, Benzerga, 2009, Queyreau et al., 2010, Capolungo et al., 2010, Vattré et al., 2010,
Arsenlis et al., 2012, Davoudi et al., 2014, Gururaj et al., 2015, Fan et al., 2015, Aubry et al., 2016, Papanikolaou et al., 2017,
Sills et al., 2018, Cho et al., 2020), these theoretical requirements are not fully met by the existing discrete dislocation dynamics
codes. Except for a few internationally renowned authorities using advanced numerical treatments based on spherical harmonics
series to compute the elastic Green functions (Aubry and Arsenlis, 2013, Chen et al., 2018), simulations are commonly carried
out within a plane strain framework using isotropic elasticity, standard periodic boundary conditions and simple uniform loading
conditions.

A versatile framework to partly overcome the aforementioned difficulties is based on the eigenstrain formalism (Mura, 1987,
Wang et al., 2001, Koslowski et al., 2002, Rodney et al., 2003), which represents a relatively new branch of the out-of-equilibrium
dynamics of dislocations with many ongoing developments (Bertin and Capolungo, 2015, Cao et al., 2015, Graham et al., 2016,
Ruffini et al., 2017, Zheng et al., 2018, Santos et al., 2018, Bertin, 2019), essentially at the microscopic scale. The discrete
dislocation loops are considered as thin platelet misfitting inclusions with finite thicknesses, thus treated as finite volumes, with
a habit plane that coincides with the slip plane. Instead of enforcing the displacement jump requirement on the dislocation
loops, the surface-to-volume transformation of any surface outlined by the Burgers vectors into a stress-free volume requires
the resolution of the classical equations of equilibrium of forces, where the total strain is additionally decomposed into elastic
and inelastic eigenstrain parts with constitutive relations. The resulting full-scale stress fields are also mathematically equal
to the exact theoretical solutions when the thickness of the plates tends to zero. In the context of heterogeneous materials,
numerical solutions can be formulated by using fast Fourier transform techniques (Rodney et al., 2003, Bertin and Capolungo,
2015, Graham et al., 2016, Bertin, 2019) as well as by coupling the discrete dislocation dynamics simulations with the finite
element method in real space (Lemarchand et al., 2001, Liu et al., 2009, Vattré et al., 2014, Cui et al., 2015, Huang and Li,
2015, Jamond et al., 2016, Lu et al., 2019, Zhou et al., 2021). For both computational approaches, the eigenstrain formalism
facilitates the integration of coupled multiphysics problem, such as a dislocation ensemble interacting with cracks and phase
transformations, but the simulation setups (dimensions, boundary conditions and structured meshes) are, however, constrained
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by the magnitude of the Burgers vectors.
Without the need to postulate the additive decomposition of the total solution fields into elastic and inelastic parts, the

extended finite element method (Belytschko and Black, 1999, Möes et al., 1999) has been developed for dislocation loops
(Belytschko and Gracie, 2007, Gracie et al., 2007, 2008, Oswald et al., 2009, Huang et al., 2020). This computational method
explicitly describes the dislocation loops as interior discontinuities with tangential enrichments (Belytschko et al., 2001). The
corresponding slip is therefore prescribed on internal surfaces in terms of specific displacement boundary conditions, similar
to the classical theory of dislocations. The non-singular elastic field solutions are also accurately captured with finite energy
measures due to regularization functions at the dislocation cores, thus without assuming the discrete defects as platelet misfitting
inclusions. The driving forces acting the dislocation loops are computed by a contour integral of the Eshelby energy-momentum
tensor (Eshelby, 1975), which corresponds to the well-known J -integral (Rice, 1985, Weertman, 1996, Kirchner, 1999, Lubarda,
2019). The configurational force is the Peach-Koehler force in linear elasticity of dislocations (Peach and Koehler, 1950).
Without remeshing techniques, the applicability and the capability of the extended finite element method with relatively simple
topological configurations have been illustrated to interaction problems of dislocation loops with free surfaces as well as internal
heterophase interfaces (Belytschko and Gracie, 2007, Gracie et al., 2007, 2008, Oswald et al., 2009). However, the J -integral
requires very fine meshes to resolve the configurational forces for dislocation propagation, which yields a notable limitation in
numerical simulations using structured meshes of bilinear elements (Gracie et al., 2008), so that the application calculations are
commonly limited to two-dimensional problems.

The remarkable versatility of the finite element method for heterogeneous multiscale and multiphysics problems motivates
the present computationally efficient framework. In contrast to the previous extended finite element method, the present alterna-
tive approach is based on the finite element formulation using advanced and flexible adaptive remeshing strategies for fine mesh
resolution close to arbitrarily-curved dislocation topologies and for dislocation loop dynamics in realistic materials and struc-
tures. The numerical framework is capable of computing the stress fields and the driving forces acting on dislocation loops with
a high degree of accuracy and with significant precision, as compared to the novel theoretical elastic solutions for dislocation
loops in the context of anisotropic hetero-elasticity theory in three dimensions. In what follows, a sign convention is adopted
to define the positive and negative magnitude of the forces. The signed magnitude of the driving forces in the Peach-Koehler
expression as well as of the configurational formulation is positive to describe the expansion of the dislocation loops, while the
magnitude is reported as negative for dislocation shrinkage.

The content of the paper is organized as follows. Section 2 continues beyond previous contributions in the research area by
treated dislocation loops in ideal hetereostructures formed by elastically anisotropic crystals using the Stroh formalism combining
with biperiodic Fourier-transform and dual variable and position techniques. A single arbitrarily-shaped dislocation loop is
embedded in multilayered systems made of dissimilar, linear and anisotropic plates with perfectly bounded internal interfaces.
The standard stress singularity from the classical continuum theory is removed by spreading the Burgers vectors isotropically
over a finite width on the glide planes. Extensions of this theoretical work by use of a monolithic finite element method with
adaptive remeshing techniques are described in section 3. In this computational context, the fundamental Peach-Koehler force
that governs the motion of the discrete dislocation loops is therefore captured by dissipative energy considerations. Section 4
illustrates an excellent agreement between the theoretical and numerical solutions in terms of non-singular stresses and driving
forces. Thus, the finite element approach is used to explore more sophisticated microstructural situations, offering more realistic
boundary-value description of dislocation dynamics in heterogenous materials and advanced multimaterial structures in presence
of external and internal interfaces with arbitrary orientations.

2. Singularity-free theory of arbitrarily-shaped dislocation loops in multilayered structures

Figure (1a) shows the ideal three-dimensional multilayered materials in Cartesian coordinates (x,y,z) = (x1,x2,x3), for
theoretical considerations. The complete system is composed of an arbitrary number of N -bonded orthotropic, dissimilar,
rectangular, and linearly anisotropic elastic solids with perfectly connected internal interfaces. A singularity-free and arbitrarily-
shaped dislocation loop is described by the Burgers vector over a horizontal planar cut surface S within a single layer, as displayed
by the gray area in Fig. (1a). The individual and finite thickness is hλ = zλ−zλ−1 for the λth layer, with λ= 1, . . . ,N , while the
origin O is located at one of the four corners on the bottom surface and all plates are defined in the positive z-region. The lower
and upper interfaces of layer λ are also defined as zλ−1 and zλ, respectively, and the in-plane x ‖ x1- and y ‖ x2- directions are
aligned along the horizontal edges of the plate boundaries. It follows that z0 = 0 and zN =H at the bottom and top traction-free
surfaces, respectively, with H the total thickness of the multilayers.

In the following, the general expressions for the displacements and tractions for each homogeneous plate are derived, and
then propagated over the entire multilayered structures in presence of perfectly bonded interfaces. The prescribed displacement
jump at the dislocation loops is consistently defined in the Fourier-transformed space, while the regularization treatment at
the dislocation cores is able to determine the non-singular Peach-Koehler force for general curvilinear geometries, without
introducing artificial cutoff distances to avoid the standard singularities.

2.1. Displacement and stress field solutions for each anisotropic elastic layer

In the absence of body forces and thermal effects, the classical stress equilibrium equation of anisotropic linear solids is
fulfilled at any point x = [x1,x2,x3]

t of the multilayered structures, as follows

σλkj,k (x) = 0 , (1)

3



(a)                             (b)Theoretical analysis

Ideal multilayered materials

Discrete dislocation loop with arbitrary 

shapes and characters at z = zs 

Dislocation

loop dynamics

Internal grain boundaries

Finite element analysis

Realistic polycristalline samples

Precipitate

Finite element meshes
h1

hλ = zλ 
– zλ – 1

hN

z = z0 = 0

z = zN 
= H

Layer 1

Layer λ

Layer N

External boundary conditions
x || x1

y || x2

z || x3

O

Figure 1: (a) Ideal multilayered materials embedded by a single horizontal dislocation loop of arbitrary shape and character. Within linear elasticity theory in
heterogeneous systems, the layers are treated as dissimilar and anisotropic elastic plates, defined by arbitrary thicknesses and parallel perfectly bounded internal
interfaces. (b) Polycrystalline samples with arbitrary-oriented grains subjected to complex loading conditions, within which a discrete dislocation loop interacts
with the internal grain boundaries as well as a heterogeneous precipitate. In such a realistic material configuration, the dislocation dynamics are treated by use
of the finite element method combined with adaptive remeshing procedures.

where a comma stands for differentiation, with repeated indices denoting summation convention ranging from 1 to 3, unless
stipulated otherwise. In eq. (1), the three-dimensional stress field σkj(x) is related to the displacement field uk(x) by

σλkj (x) = cλkjmlu
λ
m,l (x) , (2)

where the anisotropic elastic constants cλkjml are independently defined with respect to the local crystallographic orientation of
each layer λ, and are fully symmetric, i.e., ckjml = cjkml = ckjlm = cmlkj . Here and in the following, the superscript λ is
omitted to avoid notational complexity, unless needed. As proposed in various dislocation-related problems for intrinsic and
extrinsic defects (Wu et al., 2016, Vattré, 2017a,b, Gao and Larson, 2015, Vattré and Pan, 2019), a biperiodic Fourier series
formulation of the displacement vector is written as a linear superposition of harmonic plane-wave functions by

uk (x1,x2,x3 = z) = Re∑
η1

∑
η2

e−i2π(η1x1+η2x2) ũk (η1,η2,z) = Re∑
ηα

e−i2πηαxα ũk (ηα,z) , (3)

where i2 = −1, and Re stands for the real part of a complex quantity, while α takes the value 1 or 2. Due to the mathematical
completeness of Fourier series, the general field solutions are analyzed using plane waves e−i2πηαxα in eq. (3), where the
unknown complex Fourier coefficients ũk(ηα,z) are defined in the reciprocal space for each Fourier mode (η1,η2) parallel to the
perfectly bounded interface planes. Substituting eq. (3) to eq. (2) and then to eq. (1), three second-order differential equations
for each layer are obtained in the Fourier-transformed domain, i.e.

4π2cjαkβ ηαηβ ũk(ηα,z)+ i2π (cjαk3 + cj3kα)ηα ũk,3(ηα,z)− cj3k3 ũk,33(ηα,z) = 0 , (4)

with β = {1, 2}. Following the algebraic manipulation from Pan (1989), eq. (4) can be converted and cast into the following
linear system of first-order differential equations (Vattré and Pan, 2019, Liu et al., 2018), i.e.,

d

dz

[
ũ(ηα,z)
t̃(ηα,z)

]
=

[
i2πη T−1Rt T−1

−4π2η2
(
−Q+RT−1Rt) i2πη RT−t

][
ũ(ηα,z)
t̃(ηα,z)

]
, (5)

leading to six convenient relations between the expansion coefficients of the Fourier-transformed displacement and traction
vectors, for which the latter is defined by t̃k(ηα,z) = σ̃kj(ηα,z)nj = σ̃k3(ηα,z), with unit normal nj ‖ x3. Equation (5) is met
for each homogeneous layer, individually, within which the involved stiffness matrices Q, R, and T are given by

[Q]kj = clkjsmlms , [R]kj = clkjsmlns , and, [T]kj = clkjsnlns , (6)

while the components of the wave vector η are given by

η = [η1,η2,0]
t = ηm =

√
η2

1 +η
2
2 m , (7)

where the corresponding magnitude η and direction m of the wavenumber vector are defined in the oblique plane basis spanned
by (m(θ), n), i.e.,

m(θ) = m = [cos θ,sin θ,0]t , and, n = [0,0,1]t , (8)
4



as commonly sought in the form of surface waves propagating in the direction m parallel to the internal and external surfaces,
with m ·n = 0 and |m|= |n|= 1. The general expression of the primary elastic solutions of eq. (5) is expressed as follows

ũk (ηα,z) = e−i2πpηz ak

t̃k (ηα,z) =−i2πη e−i2πpηz bk ,
(9)

where p, ak = [a1, a2, a3]
t, and bk = [b1, b2, b3]

t are complex-valued unknowns. Substituting eq. (9) into eq. (5), these unknowns
are determined by solving the eigenvalues and the corresponding complex eigenvectors of the Stroh eigenproblem (Ting, 1996,
Stroh, 1958, 1962), i.e.,[

−T−1Rt T−1

−Q+RT−1Rt −RT−t

][
a
b

]
= p

[
a
b

]
, (10)

recast into a classical linear eigensystem. The Stroh eigenvalues of eq. (10) as well as the eigenvectors are conveniently arranged
such that Impk > 0, and pk+3 = p̄k, since these complex quantities appear in complex conjugate pairs (Eshelby et al., 1953).
Im stands for the imaginary part of a complex quantity, while the overbar denotes the complex conjugate. Superposing the six
eigensolutions, the general expressions of the displacements and tractions in the Fourier-transformed domain are expressed in
terms of the Stroh formalism, as follows[

−i2πη ũ(ηα,z)
t̃(ηα,z)

]
=

[
A Ā
B B̄

][〈
e−i2πp†η(z−zλ)

〉
0 3×3

0 3×3

〈
e−i2πp̄†η(z−zλ−1)

〉][K1
K2

]
, (11)

which are defined in any given layer λ bonded by the lower and upper interfaces at z = zλ−1 and z = zλ, respectively. In eq. (11),
A and B are 3×3 eigenvector matrices defined by

A =
[
a1, a2, a3

]
B =

[
b1, b2, b3

]
= RtA+TA

〈
ei2πp†η(z−zλ)

〉
,

(12)

within which the z-dependent diagonal and exponential matrix is represented by〈
ei2πp†η(z−zλ)

〉
= diag

[
ei2πp1η(z−zλ), ei2πp2η(z−zλ), ei2πp3η(z−zλ)

]
, (13)

while K1 and K2 are two 3× 1 complex and constant unknown matrices to be determined by the specific boundary-value
conditions related to the presence of arbitrarily-shaped dislocation loops embedded in elastic multilayered structures.

2.2. Exact expression of the primary field solutions between two adjacent layers
The recent dual variable and position technique (Pan, 2019, Vattré and Pan, 2019, Liu et al., 2018) is adopted in the present

dislocation theory, in lieu of the conventional transfer matrix method for laminated systems (Pan, 1989, Thomson, 1950, Haskell,
1953, Singh, 1970) that might arise numerical instability issues, such as spurious oscillations for large amplitudes of frequencies
or half-wave numbers (Pan, 2019, Vattré and Pan, 2021, Vattré et al., 2021). Substituting z by zλ−1 into the linear system in
eq. (11), the general solutions in terms of displacements and tractions read[

−i2πη ũ(ηα,zλ−1)
t̃(ηα,zλ−1)

]
=

[
A Ā
B B̄

][〈
ei2πp†ηhλ

〉
0 3×3

0 3×3 I 3×3

][
K1
K2

]
, (14)

while similarly substituting z = zλ into eq. (11), analogous relations are obtained, i.e.,[
−i2πη ũ(ηα,zλ)

t̃(ηα,zλ)

]
=

[
A Ā
B B̄

][
I 3×3 0 3×3

0 3×3

〈
e−i2πp̄†ηhλ

〉][K1
K2

]
, (15)

such that both unknown complex vectors K1 and K2 in eqs. (14) and (15) can be removed to meet cross field relations (Vattré
and Pan, 2019, Liu et al., 2018) at z = zλ−1 and z = zλ. Thus, it follows[

−i2πη ũ(ηα,zλ−1)
t̃(ηα,zλ)

]
= Sλ6×6

[
−i2πη ũ(ηα,zλ)

t̃(ηα,zλ−1)

]
=

[
Sλ11 Sλ12
Sλ21 Sλ22

][
−i2πη ũ(ηα,zλ)

t̃(ηα,zλ−1)

]
, (16)

where the relevant submatrices of the six-dimensional matrix Sλ6×6 are defined by

Sλ6×6 =

[
Sλ11 Sλ12
Sλ21 Sλ22

]
=

[
A
〈
ei2πp†ηhλ

〉
Ā

B B̄
〈
e−i2π p̄†ηhλ

〉][ A Ā
〈
e−i2π p̄†ηhλ

〉
B
〈
ei2πp†ηhλ

〉
B̄

]−1

, (17)

for which the inverse of the 2× 2 block matrices over the field of complex quantities in the right-hand side can be explicitly
written using the Banachiewicz-Schur form, since the matrix Sλ6×6 contains real-valued elements (Baksalary and Styan, 2002).
On the other hand, the propagation relations of the expansion coefficient solutions at both interfaces zλ and zλ+1 for the adjacent
layer λ+1 are specified by[

−i2πη ũ(ηα,zλ)
t̃(ηα,zλ+1)

]
= Sλ+1

6×6

[
−i2πη ũ(ηα,zλ+1)

t̃(ηα,zλ)

]
=

[
Sλ+1

11 Sλ+1
12

Sλ+1
21 Sλ+1

22

][
−i2πη ũ(ηα,zλ+1)

t̃(ηα,zλ)

]
, (18)
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similarly constructed as eq. (16), including the associated built-in elements in terms of the Stroh eigensolutions and thicknesses.
Furthermore, assuming that the interface at zλ between the two adjacent layers is perfectly bonded, the continuous Fourier-
transformed displacement and traction vectors at z = zλ read{

J ũ(ηα,z = zλ)K
+

− = ũ(ηα,zλ+)− ũ(ηα,zλ−) = 0 3×1

J t̃(ηα,z = zλ)K
+

− = t̃(ηα,zλ+)− t̃(ηα,zλ−) = 0 3×1 ,
(19)

which lead to important recursive relations between interfaces zλ−1 and zλ+1 by combining eqs. (16) and (18) together, i.e.,[
−i2πη ũ(ηα,zλ−1)

t̃(ηα,zλ+1)

]
= Sλ:λ+1

6×6

[
−i2πη ũ(ηα,zλ+1)

t̃(ηα,zλ−1)

]
=

[
Sλ:λ+1

11 Sλ:λ+1
12

Sλ:λ+1
21 Sλ:λ+1

22

][
−i2πη ũ(ηα,zλ+1)

t̃(ηα,zλ−1)

]
, (20)

where the superscript λ:λ+1 means the resulting propagation matrix from layer λ to layer λ+1, and the layer-to-layer submatrices
Sλ:λ+1
γδ of the six-dimensional block matrix Sλ:λ+1

6×6 are expressed as

[
Sλ:λ+1

11
]
=
[
Sλ11Sλ+1

11
]
+
[
Sλ11Sλ+1

12
][

I 3×3−Sλ21Sλ+1
12
]−1[Sλ21Sλ+1

11
]

[
Sλ:λ+1

12
]
=
[
Sλ12
]
+
[
Sλ11Sλ+1

12
][

I 3×3−Sλ21Sλ+1
12
]−1[Sλ22

]
[
Sλ:λ+1

21
]
=
[
Sλ+1

21
]
+
[
Sλ+1

22
][

I 3×3−Sλ21Sλ+1
12
]−1[Sλ21Sλ+1

11
]

[
Sλ:λ+1

22
]
=
[
Sλ+1

22
][

I 3×3−Sλ21Sλ+1
12
]−1[Sλ22

]
,

(21)

as analogously proposed in recent multilayered problems under multiple surface loadings (Liu et al., 2018) and specific internal
conditions for semicoherent interfaces (Vattré and Pan, 2019).

2.3. Recursive relations in presence of a dislocation loop embedded in multilayered structures

In contrast with the perfectly bonded interfacial conditions expressed in eq. (19), the horizontal and finite dislocation loop is
characterized by considering specific boundary conditions in terms of continuous tractions and displacement discontinuity with
respect to the given Burgers vector bk = [b1, b2, b3]

t. Assuming that the layer λ is the source layer that encompasses the closed
dislocation loop at z = zs, the standard condition in the three-dimensional physical domain reads{

uk (x1,x2,x3 = zs+)−uk (x1,x2,x3 = zs−) = bkχS (x1,x2)
tk (x1,x2,x3 = zs+)− tk (x1,x2,x3 = zs−) = 0 , (22)

where the indicator function χS(x1,x2) of the set S yields χS(x1,x2) = 1 if (x1,x2) ∈ S, and χS(x1,x2) = 0, otherwise. The
corresponding boundary conditions in the Fourier-transformed domain are written as follows{

ũk (ηα,z = zs+)− ũk (ηα,z = zs−) = ũpk (ηα, bk)
t̃k (ηα,z = zs+)− t̃k (ηα,z = zs−) = 0 , (23)

where ũpk(ηα, bk) is the complex-valued function related to the prescribed displacement discontinuity of arbitrary Burger vector
in the reciprocal space.

In the context of dislocation loops embedded in multilayered structures, the global propagation submatrices in eq. (21) from
the bottom surface at z = z0 = 0 to the top surface to z = zN =H can be partitioned to explicitly determine the displacement and
traction solutions at any z-level including the conditions for the dislocation loop and the perfectly bonded interfaces. Thus, the
solutions in the Fourier-transformed domain at zf in layer λ can be obtained from eq. (20) by propagating first the transformed
displacement and traction vectors from the bottom surface z = 0 to the lower side of the dislocation loop at z = zs−, as follows[

−i2πη ũ(ηα,z = 0)
t̃(ηα,z = zs−)

]
=

[
S1:λ

11 S1:λ
12

S1:λ
21 S1:λ

22

][
−i2πη ũ(ηα,z = zs−)

t̃(ηα,z = 0)

]
, (24)

and then, propagating the solution from the upper side at zs+ of the dislocation loop to the top surface z =H to similarly obtain
the subsequent relations[

−i2πη ũ(ηα,z = zs+)
t̃(ηα,z =H)

]
=

[
Sλ:N

11 Sλ:N
12

Sλ:N
21 Sλ:N

22

][
−i2πη ũ(ηα,z =H)

t̃(ηα,z = zs+)

]
=

[
−i2πη ũ(ηα,z = zs−)− i2πη ũp (ηα, bk)

t̃(ηα,z =H)

]
, (25)

for which the dislocation boundary condition in terms of displacement in eq. (23) is incorporated in the right-hand side. Both
eqs. (24) and (25) can be conveniently recast into the following linear system, i.e.,

0 3×3 −I 3×3 Sλ:N
11 Sλ:N

12
0 3×3 0 3×3 Sλ:N

21 Sλ:N
22

−I 3×3 S1:λ
11 0 3×3 0 3×3

0 3×3 S1:λ
21 0 3×3 −I 3×3



−i2πη ũ(ηα,z = 0)
−i2πη ũ(ηα,z = zs−)
−i2πη ũ(ηα,z =H)

t̃(ηα,z = zs−)

=


−i2πη ũp (ηα, bk)

t̃(ηα,z =H)

−S1:λ
12 t̃(ηα,z = 0)

−S1:λ
22 t̃(ηα,z = 0)

 , (26)
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where the submatrices S1:λ
γδ and Sλ+1:N

γδ are defined in eq. (21). The system in eq. (26) is therefore solved for each Fourier mode
(η1,η2) to determine the displacement fields at the three involved locations, i.e., ũ(ηα,z = 0), ũ(ηα,zs−) and ũ(ηα,z =H), as
well as the internal traction, i.e., t̃(ηα,z = zs) at z = zs− = zs, with respect to the given boundary conditions at the external
surfaces, i.e., t̃(ηα,z = 0), t̃(ηα,z =H) as well as the planar dislocated interface, i.e., ũp (ηα, bk) at z = zs.

Importantly, for any field point zf below the location of the dislocation loop embedded in the layer λf , i.e., 0 < zf < zs−,
the recursive relations in eq. (20) are conveniently split as follows

[
−i2πη ũ(ηα,z = 0)

t̃(ηα,z = zf )

]
=

[
S1:λf

11 S1:λf
12

S1:λf
21 S1:λf

22

][
−i2πη ũ(ηα,z = zf )

t̃(ηα,z = 0)

]
[
−i2πη ũ(ηα,z = zf )

t̃(ηα,z = zs)

]
=

[
Sλf :s

11 Sλf :s
12

Sλf :s
21 Sλf :s

22

][
−i2πη ũ(ηα,z = zs−)

t̃(ηα,z = zf )

]
,

(27)

which can also be recast into the following linear system of equations, i.e.,
S1:λf

11 0 3×3 −I 3×3 0 3×3

S1:λf
21 −I 3×3 0 3×3 0 3×3

I 3×3 Sλf :s
12 0 3×3 0 3×3

0 3×3 Sλf :s
22 0 3×3 −I 3×3



−i2πη ũ(z = zf )

t̃(z = zf )
−i2πη ũ(z = 0)

t̃(z = zs)

=


−S1:λf

12 t̃(z = 0)
−S1:λf

22 t̃(z = 0)
−2πη Sλf :s

11 ũ(ηα,z = zs−)

−2πη Sλf :s
21 ũ(ηα,z = zs−)

 , (28)

and be solved to determine the displacement and traction fields at z= zf , using the known displacement field solutions ũ(ηα,zs−)
at z= zs−= zs in the right-hand side, previously obtained from the resolution of eq. (26). On the other hand, for any field solution
at point zf such that zs+ < zf <H in the layer λf , a similar system as eq. (28) leads to

Ss:λf
11 0 3×3 0 3×3 Ss:λf

12

Ss:λf
21 −I 3×3 0 3×3 Ss:λf

22

−I 3×3 Sλf :N
12 Sλf :N

11 0 3×3

0 3×3 Sλf :N
22 Sλf :N

21 0 3×3



−i2πη ũ(ηα,z = zf )

t̃(ηα,z = zf )
−i2πη ũ(ηα,z =H)

t̃(ηα,z = zs)

=


−i2πη ũ(ηα,z = zs−)− i2πη ũp (ηα, bk)

0 3×1

0 3×1

t̃(ηα,z =H)

 , (29)

within which the known displacement field solutions ũ(ηα,zs−) is analogously introduced. For the present particular case of
free-standing multilayered structures, the traction-free boundary conditions at the bottom and top surfaces, i.e., t̃(ηα,z = 0) =
t̃(ηα,z =H) = 0, are imposed in eqs. (26), (28), and (29), without loss of generality, while the singularity-free displacement
discontinuity ũp (ηα, bk) is formulated in the next section.

2.4. Prescribed displacement discontinuity for core-spreading dislocation loops
The displacement discontinuity represented by the Burgers vectors of the closed dislocation loops in the Fourier reciprocal

space is analytically derived for two shapes, namely the rectangular and the elliptical Volterra dislocation loops in sections 2.4.1
and 2.4.2, respectively. The closed-form solutions are obtained using an isotropic core-spreading procedure to expand the com-
pact planar dislocation cores over a finite area, characterizing the Burgers vector distribution within the physical dislocation
cores. The general arbitrarily-shaped dislocation loops with simply-connected contours, which can be characterized by para-
metric equations, are treated using a univariate Gauss-Legendre cubature based on the Green integration formula, as detailed in
section 2.4.3.

2.4.1. Rectangular dislocation loops
For a given dislocation loop with rectangular shapes R that is composed of four straight segments located at x3 = z = zs,

x1 =±R1, and x2 =±R2, with the Burgers vector bk and the center at [x0,y0,zs]
t, the displacement discontinuity in the Fourier-

transformed domain is given by the following surface integral, i.e.

ũpk (ηα, bk) =

ˆ
R
b∗k (x1,x2) ei2πη1x1 ei2πη2x2 dx1 dx2 =

ˆ R1+x0

−R1+x0

ˆ R2+y0

−R2+y0

b∗k (x1,x2) ei2πη1x1 ei2πη2x2 dx1 dx2 , (30)

where b∗k is the core-spreading Burgers vector associated with the compact vector bk. Such compact dislocation cores can there-
fore be spread out by convoluting the discontinuity displacement conditions with specific two-dimensional weighted function $
on the dislocation plane (Vattré and Pan, 2019). The isotropic Gaussian function $ is used to introduce a continuous distribution
of the Burgers vectors as defined by

$ (x1,x2) =
1
πr2

0
e−(x

2
1+x

2
2)/r

2
0 , with :

ˆ
∞

−∞

ˆ
∞

−∞

$ (x1,x2) dx1 dx2 = 1 , (31)

with r0 ≥ 0 the core-spreading dislocation parameter, so that convolution term in eq. (30) with respect to $(x1,x2) leads to

ũpk (ηα, bk) = bk

ˆ R1+x0

−R1+x0

ˆ R2+y0

−R2+y0

ei2πη1x1 ei2πη2x2 ∗ $ (x1,x2)dx1 dx2 , (32)
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where ∗ is the convolution product. By use of standard tables of integrals, the integral over the rectangle can be explicitly
determined by the following analytical closed form, i.e.

ũpk (ηα, bk) = 4R1R2 bk sinc(2πη1R1) sinc(2πη2R2)ei2πη1x0−π2η2
1r

2
0 ei2πη2y0−π2η2

2r
2
0 , (33)

which is also substituted into eqs. (26) and (29), as stated therefore as internal boundary conditions. For physical reasons, a
multivariate anisotropic Gaussian distribution, consequently including more core-spreading parameters, can be convoluted in the
same straightforward manner, without subsequent mathematical difficulties, as recently proposed by Lazar, Po, and co-authors
(Po et al., 2018, Lazar et al., 2020, Lazar and Po, 2015). The calibration of these additional length-dependent parameters,
however, requires ad-hoc simulations from the first principles or atomistics, which is beyond the scope of the present work.

2.4.2. Elliptical dislocation loops
Following the line integration derivation of dislocation fields for parametric dislocation curves using polar coordinates by Han

and Pan (2013), the two-dimensional Fourier-transformed displacement discontinuity is similarly formulated for a horizontally-
oriented elliptical loop E with major and minor semi-axes a1 and a2 centered about [x0,y0,zs]

t, as follows

ũpk (ηα, bk) = bk

ˆ
E

ei2πη1x1−π2η2
1r

2
0 ei2πη2x2−π2η2

2r
2
0 dx1 dx2 =

2πRE
ηE

J1(ηE RE)bk ei2πη1x0−π2η2
1r

2
0 ei2πη2y0−π2η2

2r
2
0 , (34)

where J1 is the Bessel function of the first kind and order 1, while ηE = 2π
RE

√
(η1a1)

2 +(η2a2)
2, and RE =

√
a1 a2.

2.4.3. Arbitrarily-shaped dislocation loops with simply-connected contours
For the general integration domain D over arbitrarily-shaped dislocation loops, closed simply-connected contours with con-

vex and nonconvex geometrical regions are characterized by simply-connected polygons and described by parametric curves
in closed-form or represented using B-splines and non-uniform rational B-splines. In practice, the surface integral over D can
be achieved using efficient and suitable cubature formulas for planar regions, as commonly derived for polynomials over reg-
ular polygons (Nooijen et al., 1990) and complex polygons (Sommariva and Vianello, 2007). Based on the Green integration
theorem, i.e., Stokes’s theorem in two dimensions, Gauss-related cubatures over polygons are exact for bivariate polynomials
of degree at most 2MD using ∼M2

D nodes, reducing the integral over the polygons to a sum of edge integrations. Thus, the
boundary ∂D is considered as a Jordan curve and is also described counterclockwise by the sequence of vertices Vi = {xi1,xi2},
with i= 1, . . . ,ND, such that

∂D =
ND⋃
i=1

[Vi, Vi+1] =
ND⋃
i=1

νi , with : V1 = VND , (35)

so thatND is the total number of edges on the boundary of a simply-connected polygonal domain. By virtue of the Green formula
in the context of cubature rules, the surface integral of the prescribed displacement discontinuity ũp (ηα, bk) in the reciprocal
space is transformed into a one-dimensional problem, as follows

ũpk (ηα, bk) = bk

ˆ
D
g (x1,x2)dx1 dx2 = bk

L

∑
νi∈∂D

ˆ
[Vl,Vl+1]

G (x1,x2)dx2 ≈ bk ∑
νi∈∂D

MD+1

∑
j=1

MD

∑
m=1

$ijm g
(
xi1 (τj , τm) ,xi2 (τj)

)
,

(36)

where G(x1,x2) is any fixed x1-primitive of g(x1,x2), i.e.,

G (x1,x2) =

ˆ x1

%

g (w1,x2) dw1 , (37)

where % , xi1 is a fixed convex combination of the xi1 coordinates. The second discrete sum over j in the right-hand side of
eq. (36) is performed for MD + 1 points along a base-edge, whose intersection is the connected with the domain D, while the
sum over m is associated with MD-oriented orthogonal lines to the base-edge (Sommariva and Vianello, 2007). A minimum
decomposition of a given simple polygon into convex subpolygons is usually carried out for nonconvex and multiply-connected
polygons (Gerdjikov and Wolff, 2008).

When the integrand g(x1,x2) is a bivariate polynomial of degree at most 2MD−1, the quadrature in the right-hand side of
eq. (36) is exact with MD nodes and gives a polynomial of degree at most 2MD. According to the present dislocation-based
problem, the integrand is a non-polynomial and complex-valued function, defined by

g (x1,x2) = ei2πη1x1−π2η2
1r

2
0 ei2πη2x2−π2η2

2r
2
0 = g1(ηα) eig2(ηα,xα) with :

{
g1(ηα) = e−π

2η2
αr

2
0

g2(ηα,xα) = 2πηαxα ,
(38)

where g(x1,x2) is absolutely continuous on a domain D with smooth boundary described counterclockwise due to the core-
spreading procedures from eq. (31) at the dislocation contours, for each Fourier mode ηα > 0 and r0 , 0. In eq. (38), the
pre-exponential function g1(ηα) decays rapidly, while g2(ηα,xα) is a bivariate function with respect to xα. For the case of
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compact dislocation cores, i.e., with r0 = 0 in eq. (38), the corresponding integral is ordinarily highly oscillatory because of
the presence of the exponential terms of imaginary arguments. In such problems where the multivariate integrand is oscillatory
close to the dislocation cores, the numerical evaluation can be difficult for large amplitudes of frequencies or half-wave numbers,
where a prohibitive number of points is needed in standard quadratures based on high order Gauss-Legendre integration rules
(Hamming, 1973, Laghrouche and Bettess, 2000). Nevertheless, for spreading dislocation cores, the prescribed displacement
field becomes infinitely differentiable over D, without oscillatory regimes, as illustrated for interfacial dislocations (Vattré and
Pan, 2019) and heterogeneously distributed loads at the external surfaces (Vattré and Pan, 2021). With an excellent cubature
convergence, the singularity-free property of the present displacement boundary conditions lead tractable the Gauss-Legendre
quadrature rules enriched by the Green integral formula for the present theory of arbitrarily-shaped and curved dislocation loops.

The nodes {τj}MD
j=1 and the corresponding weights {µj}MD

j=1 are also associated with the Gauss-Legendre quadrature rules,
for which the elements in eq. (38) are defined by

xi1 (τj , τm) = 1
2

(
xi1 (τj)−%

)
τm+ 1

2

(
xi1 (τj)+%

)
with :

{
xi1 (τj) =

1
2

(
xi+1

1 −xi1
)
τj+

1
2

(
xi+1

1 +xi1
)

xi2 (τj) =
1
2

(
xi+1

2 −xi2
)
τj+

1
2

(
xi+1

2 +xi2
)
,

$ijm = 1
4

(
xi+1

2 −xi2
)(
xi1 (τj)−%

)
µjµm ,

(39)

such that the overall number of quadrature nodes is bounded by (MD +1)2ND. The Gauss-Legendre quadrature rules enriched
by the Green formula avoid explicit partition of the polygonal domain D into triangles or quadrangles, as used in the finite
element approaches in section 3, reducing intensively the computational time for the numerical integrations in ideal multilayered
structures.

2.5. General expression for the non-singular Peach-Koehler force

The driving Peach-Koehler force per unit length Fk(x∂D) at any point x∂D =
[
x1∂D ,x2∂D ,zs

]t on the boundary ∂D of the a
dislocation loop embedded in the layer λ is related to the three-dimensional and non-singular stress field for r0 , 0, as follows

Fk (x∂D) = εkilbjξl(x∂D)σij (x∂D) , (40)

where εkil is the alternating tensor, and ξl(x∂D) is the unit tangent vector of the dislocation at x∂D. Solving eq. (29) with respect
to the prescribed displacement discontinuity given by eq. (36) for the general case of simply-connected dislocation loops, the
primary traction field t̃k(ηα,zf ) at any zf in the reciprocal space is completed by the in-plane stress components σ̃s

ij(ηα,zf ) to
compute by Fourier inversion the Peach-Koehler force in eq. (40) at zf = zs. In the Fourier-transformed domain, the in-plane
stress solutions are deduced from eq. (1) written in the reciprocal space, i.e.,

σ̃s
ij (ηα,zf ) =−i2πη cijklmlũk (ηα,zf )+ cijklnlũk,3 (ηα,zf ) = [σ̃s

11 (ηα,zf ) , σ̃
s
12 (ηα,zf ) , σ̃

s
22 (ηα,zf )]

t , (41)

with i = {1, 2}, j = {1, 2}, and i ≤ j. Thus, eq. (41) depends on the primary displacement field ũk(ηα,zf ) that is determined
by eq. (29), only, for which the derivative with respect to x3 is given by

ũk,3 (ηα,zf ) = [cijklnlni]
−1 (t̃j (ηα,zf )+ i2πη cijklmlniũk (ηα,zf )) , (42)

so that eq. (41) reads in vector-tensor form as

σ̃s (ηα,zf ) =−i2πηM1 ũ(ηα,zf )+M2 T−1 (t̃(ηα,zf )+ i2πηRt ũ(ηα,zf )
)
, (43)

where both matrices M1 and M2 are explicitly defined by

M1 =

c11m1 + c16m2 c16m1 + c12m2 c15m1 + c14m2
c61m1 + c66m2 c66m1 + c62m2 c65m1 + c64m2
c21m1 + c26m2 c26m1 + c22m2 c25m1 + c24m2


M2 =

c15 c14 c13
c65 c64 c63
c25 c24 c23

 ,
(44)

which completes the total stress field σ̃ij(ηα,zf ) generated by a dislocation loop in the Fourier-transformed space. The latter
non-singular stress components are therefore determined into the physical domain by inverse Fourier transforms, similarly to
eq. (3), as follows

σij (x1,x2,x3 = zf ) = Re∑
ηα

e−i2πηαxα σ̃ij (ηα,zf ) = Re∑
ηα

e−i2πηαxα

σ̃s
11 (ηα,zf ) σ̃s

12 (ηα,zf ) t̃1 (ηα,zf )
σ̃s

12 (ηα,zf ) σ̃s
22 (ηα,zf ) t̃2 (ηα,zf )

t̃1 (ηα,zf ) t̃2 (ηα,zf ) t̃3 (ηα,zf )

 , (45)

so that the non-singular Peach-Koehler force can be evaluated at x∂D =
[
x1∂D ,x2∂D ,zs

]t, by substituting the solutions from
eqs. (29) and (43) as well as eq. (45) in eq. (40).
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2.6. Comment on the limitations encountered with the preliminary theoretical analysis

Although the novel singularity-free field solutions for arbitrarily-shaped planar dislocation loops in multilayered anisotropic
solids are relatively general in contrast with the elastic elements in standard dislocation dynamics simulations, the present
work suffers from some basic limitations, namely the absence of motion and interaction of these dislocation loops with other
dislocations (Arsenlis et al., 2007, Bulatov et al., 2006), precipitates (Queyreau et al., 2010, Vattré et al., 2010, Gao et al., 2015b)
and solutes (Aubry et al., 2015b), free surfaces (Khraishi and Zbib, 2002, Weinberger and Cai, 2008) and grain boundaries (Fan
et al., 2015, Cho et al., 2020). These features are important ingredients in gaining insights concerning the mechanical properties
of materials, including work hardening in bulk solids as well as strain dislocation-mediated relaxation in polycrystalline metals
under complex loading conditions.

In the next section, an advanced finite element framework using adaptive remeshing strategies is therefore developed to focus
on more realistic boundary-value problems of dislocation loops in bounded crystals with complex internal microstructures, e.g.,
with randomly-oriented grains in presence of voids and heterophase inclusions. The numerical approach is implemented in the
Z-set finite element platform (Besson and Foerch, 1997), and is strongly inspired from the fracture mechanics, which offers
accurate solutions for crack propagation with explicit topological changes embedded in three-dimensional materials. Thus, the
development for crack propagation, adaptive remeshing, as well as domain integral post-processing have been adapted for the
present boundary-value problems with evolving dislocation loops. The excellent accuracy is evaluated by comparing the numeri-
cal stresses and driving forces with the previous theoretical solutions, reflecting i) the importance to formulate sophisticated field
solutions to strengthen the numerical finite element techniques with various complex dislocation-related situations, as well as ii)
the relevance to discontinuously track the discrete dislocation movements by efficient remeshing algorithms with a sequence of
triangular meshes. Without resorting to the eigenstrain formalism or to the extended finite element method for dislocation loops,
the numerical part is considered as the most comprehensive extension with respect to the preliminary and companion theoretical
part as well as to the robust workhorse tool for future computational studies, thus providing new perspectives and enriching
incomplete roadmaps recently addressed (van der Giessen et al., 2020).

3. Finite element analysis of discrete dislocation dynamics using adaptive remeshing

As illustrated in Fig. (1b), the linear elasticity problem consists of a bounded polycrystalline microsample with randomly-
oriented grains in presence of a dislocation loop interacting with a heterophase inclusion in three dimensions. The fundamental
Orowan mechanism leaving a dislocation loop around the bypassed particle in such a complex microstructural situation can also
be modeled by the following finite element methodology using adaptive remeshing procedures. In contrast with Fig. (1a), the
entire domain Ω is occupied by N grains Ωλ, with λ = 1, . . . ,N , including internal grain boundaries with different shapes and
characters. The grain boundaries as well as the material particles embedded in Ωλ are treated as impenetrable to the dislocation
loops, so that the dislocation motion is confined inside the local grains. The solid Ω is also surrounded by a closed external
boundary ∂Ω, where surface tractions and displacements are applied on disjoint portions, while the interior of the Ωλ th grain
incorporates Kλ discrete dislocation loops Sλκ , with κ = 1, . . . ,Kλ. The versatility of the conforming finite element analysis
leads the first problem of Fig. (1a) to a particular case for the numerical methodology pictured in Fig. (1b). In the absence of body
forces and thermal effects, the numerical approach is also capable of handling the same equilibrium equations of heterogeneous
materials as in the previous section, also limited to quasi-static loads in the present work.

In the following, the variational formulation of the present boundary-value problem in presence of planar dislocation loops is
presented in the context of the conventional finite element method, within which the meshes conform to the individual topological
discontinuities. The calculation procedure of the driving Peach-Koehler forces exerted on the dislocation loops is then formulated
by energetic arguments, while the discrete solution scheme is introduced using advanced and fully automatic remeshing tech-
niques, specifically derived to investigate the three-dimensional interaction, propagation and coalescence of arbitrarily-shaped
dislocation loops.

3.1. Variational formulation for the dislocation boundary-value problem

In three dimensions, the elastic boundary-value problem for a dislocated solid Ω =
⋃N
λ=1 Ωλ, with closure ∂Ω, is formulated

by the governing equations and boundary conditions for each subdomain Ωλ, as follows

σλkj,k (x) = cλkjmlu
λ
m,lk (x) = 0 , ∀x ∈Ω

λ

σλkj (x) n
ext
j (x) = tN

k (x) , ∀x ∈ ∂Ω
λ∩∂Ωt

uλk (x) = uD
k (x) , ∀x ∈ ∂Ω

λ∩∂Ωu

Jσλkj (x) n
λκ
j K

+

− = 0 , ∀x ∈ Sλκ

Juλk (x)K
+

− = bλκk χ∗ (x) , ∀x ∈ Sλκ ,

(46)

for which the first equation is defined by eq. (1), while the second and third equations are related to the prescribed Neumann and
Dirichlet boundary conditions on the subsets ∂Ωλ∩∂Ωt and ∂Ωλ∩∂Ωu, respectively, with next(x) the outer normal vector at any
point x that belongs to ∂Ω. In eq. (46), the two last boundary conditions are associated with the local traction and displacement
requirements on each discrete dislocation loop Sλκ , which are described by the corresponding unit vector normal nλκ to the local
crystallographic planes and the Burgers vector bλκ of Sλκ , as specified in a more general manner than in eq. (22). The variety
of Burgers vectors in crystal types of body-centered cubic, face-centered cubic and hexagonal close-packed grains can also be
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incorporated adequately into the numerical calculations if required. In the finite element framework, the regularization linear
function for dislocation cores in eq. (46) is parametrized by

χ∗ (x) = min(D(x,x∂D)/r0,1) , (47)

whereD(x,x∂D) is the Euclidean distance between x and the position of the dislocation fronts ∂Sλκ at x∂D, using the dislocation
core parameter r0 ≥ 0. Compared to the previous non-singular field theory, where the core-spreading procedure is obtained by
convoluting the discontinuity displacement conditions with the Gaussian function in eq. (31) for straightforward mathematical
operations into the reciprocal space, a much simpler linear function is conveniently used by eq. (47) in the present finite element
formulation. Apart from the dislocation loops Sλκ , the traction stress and displacement fields are continuous across all internal
surfaces, although physically motivated interface conditions (Vattré and Demkowicz, 2013, Vattré, 2015, 2016) could be included
in the boundary-value problem.

The numerical computation of the strong form of the linear system in eq. (46) needs to agglomerate the equations upon a
weak-form displacement integral equation for three-dimensional dislocation field analysis. Using the boundary conditions on
dislocation loops as well as the Dirichlet boundary conditions, the trial function space of the kinematically admissible displace-
ment fields U, with sufficient regularity, is introduced, i.e.

U =
{
uλk (x)

∣∣ uλk (x) = uD
k (x) , ∀x ∈ ∂Ω

λ∩∂Ωu ∧ Juλk (x)K
+

− = bλκk χ∗ (x) , ∀x ∈ Sλκ
}
, (48)

such that eq. (46) is formally equivalent to a single integral equation of the boundary-value problem of discrete dislocation loops,
suitable for domain discretization techniques, as follows

N

∑
λ=1

ˆ
Ωλ

cλkjmlu
λ
m,l(x)v

λ
k,j(x)dΩ =

N

∑
λ=1

ˆ
∂Ωλ∩∂Ωt

tN
k (x)v

λ
k (x)dΣ , ∀vλk (x) ∈ U0 , (49)

where U0 is the associated space for the test functions.

3.2. Domain integral evaluation of the configurational Peach-Koehler force
In the context of finite element analysis based on the previous variational formulation, the evaluation of the driving forces

on the dislocation loop fronts is intended to be performed by path-independent integrals, as originally derived by Rice (1985)
for crack problems in fracture mechanics, and then applied to dislocation growth (Belytschko and Gracie, 2007, Gracie et al.,
2007, 2008, Oswald et al., 2009, Huang et al., 2020). The configurational Peach-Koehler force for dislocations in eq. (40) is also
related to the dislocation energy release rate with respect to the newly formed loops due to a local and virtual perturbation of the
dislocation fronts. According to the configurational mechanics from Eshelby (1975, 1951, 1956), the total potential energy Π of
the externally loaded domain Ω containing a collection of dislocation loops Sλκ is defined as the difference of the strain energy
W stored in the solid and the external load potential Wext, i.e.

Π =W −Wext =Wbulk +Wdis−Wext

=
1
2

N

∑
λ=1

ˆ
Ωλ
cλkjmlu

λ
m,l(x)u

λ
k,j(x)dΩ+

N

∑
λ=1

Kλ

∑
κ=1

ˆ
Sλκ

σλkj(x)n
λκ
j bλκk χ∗(x)dΣ−

N

∑
λ=1

ˆ
∂Ωλ∩∂Ωt

tN
k (x)u

λ
k(x)dΣ ,

(50)

for which W is decomposed into the bulk energy Wbulk and the interfacial dislocation-related energy Wdis, by virtue of the
superposition principle. The total potential energy Π in eq. (50) is defined similarly as the Griffith functional for cracks in
the variational theory of fracture (Francfort and Marigo, 1998, Bourdin et al., 2000, Karma et al., 2001, Sargado et al., 2018),
which depends on the material fracture properties and the surface Hausdorff measure. In contrast with the standard phase-field
approaches to fracture, however, the discrete functional term Wdis on Sλκ is not fully regularized over the subdomains Ωλ, so
that the second integral in eq. (50) over Sλκ persists in the present formulation.

The energy release rate with respect to the shape perturbation of the dislocation loops is also formulated with respect to the
variation of the potential energy Π̂ , as follows

Π̂ = Ŵbulk +Ŵdis−Ŵext , (51)

which also requires the rates of integrals defined on varying volume and surface domains, according to eq. (50). Using the
formalism developed by Destuynder and Djaoua (1981) for crack shape sensitivity and used here to compute the driving forces
on dislocation loops, the shape of the body Ω is assumed to depend on a fictitious time τ through a continuum kinematics-type
Lagrangian description. The unperturbed reference configuration Ω is also associated with τ = 0, while the motion of the body
from Ω to Ωτ is represented by the following transformation mapping Φ(x, τ), i.e.

∀x ∈Ω 7→ xτ =Φ(x, τ) ∈Ωτ , (52)

where x and xτ are the position vectors of a material point in the reference and perturbed configurations, respectively, and
Φ(x,0) = x. In the neighborhood of the initial time, all time derivatives are determined at τ = 0, such that the first-order
effect of infinitesimal perturbations of Ω ≡ Ωτ is considered only, thus ignoring higher-order terms. The corresponding initial
transformation velocity θ(x) is also defined by

θ(x) =
∂Φ(x, τ)
∂τ

∣∣∣∣
τ=0

, (53)
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while the dislocation shape sensitivity leads to specific requirements for both the morphing transformation Φ(x, τ) and the initial
velocity θ(x), as follows

(i) Ωτ ⊂Ω ,

(ii) For τ ≥ 0, the Jacobian of Φ(x, τ) must be strictly positive ,

(iii) The support of θ(x) is compact and localized closely to each dislocation front ∂Sλκ , so that θ(x)≡ θλκ(x) ,

(iv) The prescribed tractions tN(x) are fixed and defined outside of the support of θλκ(x) ,

(54)

such that θλκ(x) represents the virtual growth of the dislocation loops Sλκ in the present infinitesimal extension approach. The
Lagrangian derivative of a given field quantity f(x, τ) is also defined by

f̂ (x, τ) =
df (x, τ)

dτ

∣∣∣∣
τ=0

= lim
τ→0

f (xτ , τ)−f (x,0)
τ

=
∂f (x, τ)
∂τ

∣∣∣∣
τ=0

+f,i (x, τ) θi (x) , (55)

and the corresponding material gradient of f(x, τ) is given by

̂f,i (x, τ) = f̂,i (x, τ)−f,j (x, τ) θj,i (x) , (56)

with i= {1,2,3}. Furthermore, the derivatives of a generic volume and surface integrals read

F̂Ω =
d

dτ

ˆ
Ωτ

f (x, τ) dΩ =

ˆ
Ω

{
f̂ (x, τ)+f (x, τ) θi,i (x)

}
dΩ =

ˆ
Ω

f̂ (x, τ) dΩ+

ˆ
Σ

f (x, τ) θn (x) dΩ

F̂Σ =
d

dτ

ˆ
Στ

f (x, τ) dΣ =

ˆ
Σ

{
f̂ (x, τ)+f (x, τ) θi,j (x)

(
δij−nΣ

i n
Σ
j

)}
dΣ ,

(57)

respectively, as derived by Petryk and Mróz (1986), where δij is the Kronecker symbol, and θn (x) = θk (x)nΣ
k, with nΣ

k the unit
normal to the surface differential element dΣ. By postulating the stationarity of Π , the variational relation in eq. (51) yields

Π̂ = 0 ⇒ Ŵdis =−Ŵbulk +Ŵext , (58)

as a result of the present quasi-static morphing transformation Φ(x, τ). On the other hand, the local Peach-Koehler force is
defined by the line-integral requirement of the work on the displacement along the curved dislocation loop fronts ∂Sλκ , so that

N

∑
λ=1

Kλ

∑
κ=1

ˆ
∂Sλκ
Fλκk (x)θλκk (x)dl =−Ŵdis , (59)

exhibiting the fundamental relation between the driving forces on the dislocation loops and the corresponding energy release
rate. According to eqs. (55), (56) and (57), the derivative of the elastic energy term Wbulk with respect to τ in eq. (58) is given
by

Ŵbulk =
N

∑
λ=1

Kλ

∑
κ=1

ˆ
Ωλ

{
1
2c
λ
kjmlu

λ
m,l(x)u

λ
k,j(x)θ

λκ
i,i (x)− c

λ
kjmlu

λ
m,l(x)u

λ
k,i(x)θ

λκ
i,j (x)+ c

λ
kjmlu

λ
m,l(x) û

λ
k,j(x)

}
dΩ , (60)

while the corresponding derivative of the external work term Wext reads

Ŵext =
N

∑
λ=1

Kλ

∑
κ=1

ˆ
∂Ωλ∩∂Ωt

{
tN
k (x) û

λ
k(x)+ tN

k (x)u
λ
k(x)

(
θλκi,i (x)−θ

λκ
i,j (x)n

ext
j next

i

)}
dΣ , (61)

which completes the right-hand side of eq. (58). Since the derivative of the displacement field ûλk(x) belongs to U0, the variational
formulation of the present boundary-value problem in eq. (49) yields

N

∑
λ=1

ˆ
Ωλ
cλkjmlu

λ
m,l(x) û

λ
k,j(x)dΩ =

N

∑
λ=1

ˆ
∂Ωλ∩∂Ωt

tN
k (x) û

λ
k(x)dΣ , (62)

so that, substituting eqs. (59), (60) and (61) in eq. (58) with eq. (62) and using (iv) in eq. (54), the total energy conservation law
becomes

−
N

∑
λ=1

Kλ

∑
κ=1

ˆ
∂Sλκ
Fλκk (x)θλκk (x)dl=

N

∑
λ=1

Kλ

∑
κ=1

ˆ
Ωλ

{
− 1

2c
λ
kjmlu

λ
m,l(x)u

λ
k,j(x)θ

λκ
i,i (x)+c

λ
kjmlu

λ
m,l(x)u

λ
k,i(x)θ

λκ
i,j (x)

}
dΩ , (63)

which is widely used to compute the energy release rate for moving discontinuities, particularly successful in linear elastic
fracture mechanics. Because eq. (63) is defined for any initial velocity field θλκ(x) that satisfies the four properties listed in
eqs. (54), the standard finite element method enriched by specific adaptive remeshing techniques can be applied to compute the
Peach-Koehler force per line length.
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3.3. Finite element approximation of the non-singular elastic field solutions
This section deals with the discretization strategy adopted for the resolution of the variational relation in eqs. (49) and

(63). The singularity of the elastic fields introduced by the local displacement jumps across the dislocation loops requires
the use of a suitable approximation space (Rajaram et al., 2000, Wang et al., 2017). Instead of employing the extended finite
element method for dislocation loops (Belytschko and Gracie, 2007, Gracie et al., 2007, 2008), the proposed technique based on
adaptive meshing procedures becomes efficient for three-dimensional calculations of dislocation growth and allows i) to quasi-
continuously describe general arbitrarily-shaped dislocation fronts by mixed-element meshes with a high accuracy with respect
to the required boundary conditions as well as ii) to provide precise numerical elastic solutions of the mechanical equilibrium
problem. In the following sections, the finite element nodes are denoted by the capital letters and are attached either to the
superscripts or to the subscripts of the corresponding nodal quantities to avoid cumbersome notation.

3.3.1. Numerical discretization of the dislocation boundary-value problem solutions
As depicted in Fig. (2a), each dislocation loop Sλκ is discretized by a surface mesh composed of triangular elements from

a standard Delaunay triangulation in the interiors of the dislocations, while quadrangular elements near the dislocation cores
∂Sλκ are created automatically to reduce the computational cost of the suitable approximation of the elastic field solutions. A
conforming mixed-element mesh that contains tetrahedral, hexahedral, prismatic and pyramidal volume elements is subsequently
built on the triangles and quadrilaterals of the discrete dislocations loops. Thus, a discretization scheme using three-dimensional
isoparametric elements with in practice linear (but possibly quadratic) basis functions is illustrated in Fig. (2a) and is formulated
as follows

(i) The dislocation fronts ∂Sλκ are discretized into a set of ordered segments defined by a sequence ofNλκ vertices, such that
∂Sλκ ≡

{
[PλκI , PλκI+1], 1≤ I <Nλκ

}
, for which Pλκ1 = Pλκ

Nλκ
for closed dislocation loops, or, ∂Sλκ ∩∂Ω= {Pλκ1 , Pλκ

Nλκ
}

are two endpoints that belong to the external boundaries for dislocation loops interesting with the free surfaces;
(ii) The dislocated surfaces Sλκ , which are surrounded by the points {PλκI }, are characterized by double mesh entities formed

by quadrangular and triangular elements with double interior nodes {Mλκ+
J } and {Mλκ−

J } on the upper and lower side
of the dislocated surface, with 1 ≤ J ≤ N̄λκ , respectively. The displacement jump is also prescribed to any couple of
superimposed points, i.e., {Mλκ+

J } ≡ {Mλκ−
J }, such that

uλκk (Mλκ+
J )−uλκk (Mλκ−

J ) = bλκk χ∗(Mλκ+
J ) , (64)

as stipulated by eq. (22). In contrast with the internal grain/heterophase boundaries, if a dislocation loop boundary reaches
the external boundary, thus ∀Mλκ+

J ∈ ∂Ω : χ∗(Mλκ+
J ) = 1 in eq. (64), so that no regularization is applied when a disloca-

tion loop boundary reaches the external boundary in accordance with (i), leaving exactly a surface step of bλκ on the free
surfaces;

(iii) Around the discretized fronts ∂Sλκ , a few regular and concentric rings of elements of constant thickness rh = r0/m̄ are
constructed, where m̄ is a user-specified integer and r0 the regularization radius of the dislocation cores, as displayed by
the spider-web mesh in red in Fig. (2a). The first layer of the spider-web mesh is also described by prismatic elements,
while the last hybrid layer consists of five-node pyramidal and tetrahedral elements that ensure the conforming connection
to the rest of the unstructured tetrahedral mesh domain Ωλ, as shown in blue in Fig. (2a).

In the fully conformal finite element mesh around the dislocation loops as well as the grain boundaries and multiple different
heterophase domains, the displacement field at any point x is approximated by

uk(x) =
Nn

∑
I=1
N I(x)U Ik , (65)

whereNn is the total number of nodes in the computational mesh,N I(x) are the local basis functions associated with the node I ,
and U Ik = uk(xI) are the nodal displacements in each coordinate-direction with respect to the nodal coordinates xI . The external
Dirichlet boundary conditions in eq. (46) as well as the displacement boundary condition in eq. (64) are therefore written with
respect to the discretization form for each dislocation loop Sλκ as follows

UJk = uD
k (x

J) , ∀xJ ∈ ∂Ωu ,

UJk −U Ik = bλκk χ∗(xI) , ∀(xI , xJ) ∈ Sλκ ×Sλκ
∣∣ xI I<J= xJ ,

(66)

respectively, with a global numbering of the mesh vertices ensuring that any node on the lower side of the dislocation loop
surface is ranked lower than the corresponding node on the upper side. The integral equation of the dislocation boundary-value
problem in eq. (49) is transformed into a global linear system of equilibrium equations, i.e.

KIJ
kmU

J
k = F Im with :


F Im =

ˆ
∂Ω

N I(x) tN
m(x)dΣ

KIJ
km =

N

∑
λ=1

ˆ
Ωλ
N I
,j(x) c

λ
kjml N

J
,l (x)dΩ ,

(67)

where F Im represents the vector components of the generalized forces, and KIJ
km are the (3Nn)× (3Nn) components of the

stiffness matrix of the three-dimensional discretized variational formulation of the dislocation boundary-value problem, also
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Figure 2: (a) The finite-element representation of arbitrarily-shaped dislocation loops with simply-connected contours ∂Sλκ in three-dimensional adaptive
mixed-element meshes using flexible conforming refinement. The displacement discontinuity is described by quadrangular and triangular elements with double
nodes to prescribe the Burgers vectors attached to the dislocation loops. A spider-web mesh in red is used to define the regularization operation of the dislocation
core around the fronts that are represented by a set of external vertices connected by structured boundary layers. (b) The finite element approach is capable of
computing the singularity-free Peach-Koehler force at each external node and accordingly modeling the complex dislocation dynamics simulations based on
local remeshing techniques.

modified to take into account the prescribed displacement conditions in eq. (66), while N I
,j(x) is the gradient of the I th nodal

basis function with respect to the jth-direction. The numerical resolution of the system in eq. (67) allows to determine the set of
nodal displacement values UJk and to reveal the corresponding state of stress fields, as commonly carried out in standard finite
element analysis.

3.3.2. Computational Peach-Koeler force using a finite element formulation
According to the properties of the transformation velocity θλκ in eq. (54), specially (iii), the integral equation of energy

conservation in eq. (63) can be split with respect to each dislocation loop Sλκ , such that the discrete approximation of the
individual Peach-Koehler force for each front ∂Sλκ can be derived, thus omitting the sum over κ. By virtue of eq. (54), because
the virtual extension field θλκ(x) is defined on a compact and non-zero support close to the dislocation fronts, a one-to-one
projection P , which maps any point x near enough ∂Sλκ to the corresponding point Pλκ(s) on the dislocation fronts ∂Sλκ , can
be introduced as follows

∀x ∈Ω
λ
∣∣ θλκk (x) , 0 , P : x 7→ (s,r,ψ)∂Sλκ , (68)

whose Euclidean radial distance r between x and Pλκ(s) on ∂Sλκ is the smallest. The latter point is also parametrized in a local
curvilinear coordinate system (s,r,ψ), where s is the curvilinear abscissa, and ψ is the polar angle between x−Pλκ(s) and
mλκ(s) = ξλκ(s)×nλκ , which represents the unit and local outward-pointing direction vector of dislocation front onto the glide
plane, with ξλκ(s) the local tangent vector onto the same plane, as illustrated in Fig. (2a). Thus, an explicit function q(r) that
relates the virtual growth θλκ(x) to θλκ(s) is formally given by

θλκk (x) = q(r) θλκk (s) , with q(r) =


1 , if r ≤ ra ,
0 , if r ≥ rb ,
2
(
(r− ra)/(rb− ra)

)3−3
(
(r− ra)/(rb− ra)

)2
+1 , otherwise ,

(69)
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where ra and rb are two parameters that fulfill the conditions in eq. (54) and are defined with respect to the representative local
size of the mesh elements near the dislocation fronts, with r0 ≤ ra < rb.

In the same fashion than the previous computation of the nodal displacement field in eq. (67), the discrete values of the
Peach-Koehler forces can therefore be evaluated by the finite element equilibrium resolution. Since the mapping transformation
P can be applied in the whole support of the virtual extension field θλκ(x) and because of the in-plane propagation of the
present dislocation loops, the components of both quantities θλκk (x) and Fλκk (x) are therefore in plane and collinear to the vector
mλκ
k (s). Thus, according to eq. (69), it follows that

P(x) = (s,r,ψ)∂Sλκ :

{
∀x ∈ ∂Sλκ : Fλκk (x) = Fλκ(s)mλκ

k (s)

∀x ∈Ω
λ
∣∣ θλκk (x) , 0 : θλκk (x) = q(r)θλκk (s) = q(r)θλκ(s)mλκ

k (s) ,
(70)

where Fλκ(s) and θλκ(s) are the magnitude of the Peach-Koehler force and of the extension field of the dislocation front ∂Sλκ
in the direction mλκ(s), respectively. In the context of the conventional finite element technique, the scalar-valued quantities
θλκ(s) and Fλκ(s) are interpolated along the dislocation fronts ∂Sλκ from the vertices {PλκI }, as follows{

θλκ(s) =Mλκ
I (s)Θ

λκ
I

Fλκ(s) =Mλκ
I (s)FλκI ,

(71)

whereMλκ
I (s) are the linear interpolation functions along ∂Sλκ , chosen for reasons of simplicity and stability, while Θ

λκ
I and

FλκI are the nodal values of the signed magnitude of the virtually extended dislocation loops and of the Peach-Koehler force
along the discretized dislocation fronts, respectively. Since the variational formulation in eq. (63) is valid for any admissible field
θλκk (x) and a fortiori for any nodal restriction Θ

λκ
I , the integral equation can also be discretized to obtain the following linear

system, i.e.

SλκIJ F
λκ
J =RλκI , (72)

where the Nλκ×Nλκ components of the mass matrix SλκIJ and the discretized second member components RλκI are defined by

SλκIJ =

ˆ
∂Sλκ
Mλκ

I (s)Mλκ
J (s) dl

RλκI =
N

∑
λ=1

ˆ
Ωλ

(
− 1

2c
λ
khmlu

λ
m,l(x)u

λ
k,h(x)δij+ c

λ
kjmlu

λ
m,l(x)u

λ
k,i(x)

)
((
q,j(r)Mλκ

I (s)+ q(r)Mλκ
I,j

(s)
)
mλκ
i (s)+ q(r)Mλκ

I (s)mλκ
i,j (s)

)
dΩ ,

(73)

respectively, with 1 ≤ I ≤ Nλκ , 1 ≤ J ≤ Nλκ , and 2,j the gradient of the corresponding explicit function with respect to the
jth-direction. The nodal values of the configurational Peach-Koehler magnitudes FλκJ along the dislocation fronts ∂Sλκ are
therefore determined on all boundary nodes by inverting eq. (72) with eqs. (73) for any arbitrarily-shaped dislocation loops with
arbitrary characters.

3.4. Dislocation propagation and coalescence with adaptive remeshing procedures

From the previous discrete values of the driving forces amplitudes FλκJ applied to the dislocation loops with arbitrary shapes,
the following empirical mobility law is used to describe the relation between force and velocity in the slip planes (Hirth and
Lothe, 1992), i.e.

VλκJ =B−1FλκJ mλκ(sJ) , (74)

where B is a viscous friction coefficient, while sJ is the curvilinear coordinate of the discrete dislocation front node PλκJ , so that
VλκJ is the nodal velocity vector used to describe the corresponding change in the dislocation topologies.

By means of an explicit variable time increment, the mobility law is also applied to each node of all discrete dislocation loops
Sλκ as long as the amplitude of the velocity falls below a given velocity threshold value, so that the dislocation loops can evolve
towards equilibrium states until the convergence is reached.

The dislocation loop topologies are updated through a prescribed time step ∆t, such that each node PλκJ of the dislocation
loop fronts is explicitly moved by a local displacement ∆tVλκJ . In the present finite element framework, the current time step is
chosen in order to provide a maximum propagation of the fastest front node comparable to the local mesh size. Depending on
the sign of the nodal Peach-Koehler magnitude FλκJ , the dislocation loop expands in the direction mλκ(sJ) for positive values
and contracts for negative values, for which mesh-based surface deformation and morphing techniques are used to generate the
newly morphed meshes using appropriate intermediate triangulated sections, as illustrated in Fig. (2b). Because the construction
of the newly morphed triangulated meshes to describe the expansion and shrinkage of dislocation loops can lead to significant
topological modifications, combining with inevitable short-range reactions between multiple dislocation loops as well as between
dislocation loops and external and internal boundaries in realistic microstructures, special precautions are therefore pursued to
capture the propagation and coalescence of multiple dislocation loops. In particular, two subsequent adaptive procedures can be
performed under specific dislocation-based scenarios, as illustrated by the application examples in the next section, i.e.
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(i) Short-range core reaction between intersecting dislocations is required to describe the collinear interactions and annihi-
lation of two dislocation loops with opposite Burgers vector gliding in the intersecting slip planes. The numerical finite
element treatment for the collinear interaction involves local topological criteria for coalescing surface generation that are
based on the adaptive mesh sizes as well as on the element aspect ratio constraints relative to the active crystal slip systems,
while meeting the displacement discontinuities at the double nodes on the dislocation surfaces;

(ii) After the explicit coalescence of planar and non-planar dislocation surfaces, if the newly-triangulated surface intersects
with other dislocation loop surfaces or domain boundaries, an efficient surface-surface intersection algorithm is applied to
generate a conforming surface triangulation with respect to the positions of the discrete dislocations and of sub-domain
boundaries of Ω.

Both procedures (i) and (ii) are fully automated at each propagation step and are topologically consistent with the three-
dimensional discretization scheme defined in section 3.3.1, especially with the three-dimensional conforming mixed-element
mesh procedure that generates tetrahedral, hexahedral, prismatic and pyramidal volume elements on the triangles and quadrilat-
erals of each discrete dislocations loop present in the computational volume.

4. Application examples to various dislocation problems

Various application examples are studied, from a single circular shear dislocation loop embedded in a homogeneous and
isotropic elastic material for validation purposes, to the propagation of the same dislocation loop in a polycrystalline micropillar
interacting with grain boundaries and an infinitely hard precipitate, to the collinear annihilation of intersecting perfect dislo-
cations in a voided face-centered cubic crystal. The present calculations are performed on copper, unless otherwise stated for
heterophase material components. Copper is moderately anisotropic, where the elastic constants are defined by c11 = 168.4 GPa,
c12 = 121.4 GPa, and c44 = 75.4 GPa, while the magnitude of the Burgers vector is b= 0.25 nm. Special attention is devoted to
determining numerically accurate elastic field solutions and singularity-free Peach-Koehler forces with respect to the theoretical
analysis, without requiring time intensive computations in three dimensions, as quantified in Tab. (1) for the numerical applica-
tion examples with evolving dislocation characteristics. The present finite element simulations are performed using a standard
12 core workstation with 32 GB of memory, for which roughly half of the computational time is dedicated to the meshing events,
the same amount to the finite element solver, while the CPU time of the Peach-Koehler force post-processing is marginal.

Table 1: Computation time for the finite element application examples with evolving dislocation features, where the underlined quantities indicate average
values.

Application examples Remeshing Simulation discrete Degrees of freedom Wall-clock Total computation
steps time step ∆t (10−12 s) number per step time per step wall-clock time

Circular loop shrinkage (section 4.1.3) 39 0.013> 0.0068> 0.0030 126k > 82k > 49k 105s > 38s > 27s 24m30s
Collinear interaction (section 4.1.3) 99 0.00049< 0.0085< 0.15 56k < 159k < 229k 65s < 134s < 171s 3h41m
Polycrystalline micropillar (section 4.1.4) 291 0.018< 0.46< 51.1 193k < 410k < 1007k 83s < 238s < 668s 19h14m

4.1. Validation benchmarks by comparing the isotropic stress fields with existing analytical solutions

Figure (3) shows the non-zero stress components produced by a circular shear dislocation loop in a homogeneous and
isotropic linear elastic material, as illustrated in the schematics, for validation and comparison. The results are obtained by the
present theoretical (solid lines) and numerical finite element (red crosses) solutions, as derived in sections 2 and 3, respectively,
while the blue crosses illustrate the existing closed-form analytical solutions (Hirth and Lothe, 1992). The isotropic material
parameters of copper are determined using the Voigt averaging procedure, and the core-spreading parameter is chosen to be
sufficiently small r0 = b/20, for a consistent comparison with the analytics. In order to reveal the most significant discrepancies
between the theoretical and numerical solutions, the results are plotted in the close vicinity of the dislocation cores at z = zs+ b
and z = zs + 10b, in Fig. (3a) and (b), respectively, for nanoscale shear dislocation loops located at z = zs = H/2, with a
radius R = 40b. The stress profiles, which decrease rapidly with distance ` to the dislocation loop as `−2, are depicted along
the x1- and x2- directions which are parallel and orthogonal to the Burgers vector b = b [100]t, respectively. The dimensions
of the computational domain are L2×H = (320b)3, and the mesh is composed of ∼ 428k degrees of freedom. The present
theoretical solutions are strictly identical to the existing analytical formulas, and are in excellent agreement with the finite
element formulation at very short and long ranges. The oscillating characteristics of the stress fields at the aplomb of the
dislocation cores are also very well reproduced by the numerical approach.

4.1.1. Shear dislocation loops in 3D homogeneous and heterogeneous anisotropic elastic materials
Using the previous calculation setup with the fully anisotropic elastic constants of copper, Fig. (4) shows an equally valuable

comparison between the present theoretical framework and the finite element computations, for all components of the in-plane
and normal stress field. In general, the numerical results are thus able to reproduce the discrepancies induced by the isotropic
approximation of the elastic properties. On the other hand, Fig. (5) illustrates the anisotropic elastic field solutions produced
by an elliptical shear dislocation loop with semi-axis ratio a1/a2 = 2 with 2a1 = 80b, embedded in the lower solid of a free-
standing anisotropic bimaterial of total thickness H = 2a1. The horizontal dislocation loop with b = b [100]t is located in the
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Figure 3: Non-zero stress profiles obtained by the present theoretical (solid lines) and numerical finite element (red crosses) solutions and compared with
analytical solutions (blue crosses) for a circular shear dislocation loop in a linear homogeneous and isotropic elastic material. The dislocation loop is located
at zs, and the stress distributions are displayed at (a) z = zs+ b and (b) z = zs+ 10b, along the x1- and x2- directions that are parallel and orthogonal to the
Burgers vector b = b [100]t, respectively.

center of the heterogeneous structure, as indicated by the red double-headed arrows, while the heterophase interface is placed
in the mid-plane between the upper free surface and the dislocated surface. The elastic constant c11 of the upper solid has been
fictitiously increased by a factor of four, involving a significant asymmetric distribution of the stress state with respect to the
median surface at z = zs =H/2, as shown by the three-dimensional isosurface-type contours of the von Mises equivalent stress
value of σvM = 0.5 GPa for both theoretical and numerical analysis. In particular, the latter is conducted using two coarse and
fine meshes, which consist of ∼ 152k and ∼ 428k degrees of freedom, respectively. Moreover, the corresponding component of
the normal stress field σ33 is plotted on each contour, for further comparison at long distances. The results are in close agreement
and illustrate the presence of a non-zero von Mises stress state at the upper free surface, which is also emphasized by the fine
mixed-element mesh, although the traction-free boundary condition at the upper surface is satisfied by both analyses. The von
Mises stress field discontinuity is fairly consistent in magnitude for both calculations, while the continuity of the normal stress
field across the heterophase interface is also fulfilled, as required by the boundary conditions for both theoretical and numerical
calculations. In addition, the stress concentrations are reasonably well captured by the finite element simulations.

4.1.2. Non-singular Peach-Koehler forces on complex-shaped shear and prismatic dislocation loops
According to the theoretical analysis in section 2, the core-spreading procedure is performed by convoluting the discontinuity

displacement condition at the surface of the dislocation loop with the Gaussian function in eq. (31). As illustrated in Fig. (6a)
for the specific circular shear dislocation case of Figs. (3) and (4) with three values of r0 = {1b, 2b, 5b}, the displacement
jump is spread out and becomes continuously defined over the dislocation cores with different amplitudes, whereas the jump
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Figure 4: Non-zero stress profiles obtained by the present theoretical (solid lines) and numerical finite element (symbols) solutions for a circular shear dislocation
loop in a linear homogeneous and anisotropic elastic material. The dislocation loop is located at zs, and the stress distributions are displayed at (a) z = zs+ b
and (b) z = zs+10b, along the x1- and x2- directions that are parallel and orthogonal to the Burgers vector b = b [100]t, respectively.

is characterized by a piecewise rectangular function in the classical theory of dislocation loops with compact cores , i.e., for
r0 = 0. The corresponding non-singular in-plane σ11(x1,0,zs) and shear σ13(x1,0,zs) stress field components are depicted in
Fig. (6b) and (c), respectively, using the fully anisotropic elasticity theory (solid lines) and the isotropic elastic approximation
(dashed lines). Interestingly, the isotropic elastic solutions illustrate a higher magnitude of in-plane stress than the anisotropic
elastic solutions, while σ13(±R,0,zs) is zero the dislocation fronts. The latter is not defined at the dislocation cores in classical
elasticity.

The associated singularity-free magnitude of the Peach-Koehler forces, which are obtained by the theoretical solutions from
eq. (40) and the numerical finite element analysis by solving eq. (72) with eqs. (73), is plotted against the polar angle θ in
Fig. (7a) for the circular shear dislocation loop. In particular, θ≡ 0 mod 180◦ (θ≡ 90◦ mod 180◦) corresponds to the point on the
dislocation front where the local character has a pure screw (edge) component. In comparison with the fully anisotropic elasticity
calculations (solid lines), the significant deviations produced by the isotropic elastic approximation (dashed lines) are shown.
Theoretical and numerical calculations indicate that the magnitude of the driving force is lowest for the local edge characters,
while the isotropic elasticity predicts maximum values. The excellent agreement between the two approaches extends to the
prediction of the camel hump-shaped force profiles (e.g., black solid lines) on either side of the pure screw component ±30◦

when using anisotropic elasticity with smaller values for the regularization parameter r0. Furthermore, the Peach-Koehler forces
that are associated with the elliptical shear dislocation configuration embedded in the free-standing anisotropic elastic bimaterial
in Fig. (5) are shown in Fig. (7b), exhibiting a very good agreement between the theory (solid lines) and the finite element results
(lines with symbols) in the challenging context of heterogeneous elasticity. The four values of the core dislocation parameters
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Figure 5: Three-dimensional isosurface-type contours of the von Mises equivalent stress value of σvM = 0.5 GPa produced by an elliptical shear dislocation
loop in a free-standing anisotropic bimaterial with a ratio of semi-axes a1/a2 = 2, as illustrated in the schematic in (a). The horizontal dislocation loop with
b = b [100]t is located at the center of the bimaterial, as indicated by the red double-headed arrows, while the heterophase interface is placed in the midway
plane between the upper free surface and the dislocation loop. The stress field component σ33 is plotted on each contour in the (a) (x1, x3), (b) (x2, x3), and
(x1, x2) coordinate planes with respect to the theoretical and numerical finite element solutions. The latter solution is obtained by use of a coarse and fine mesh
for comparison purposes.

show that the local screw components along the major axis experience the largest driving force in magnitude. However, the finite
element results reveal some oscillations around the pure screw characters, which do not appear in the theoretical solutions.

The singularity-free Peach-Koehler magnitudes for prismatic dislocation loops with complex butterfly- and skull-shaped
fronts are presented in Figs. (8a) and (b), respectively, for r0 = 5b. The theoretical (numerical) solutions are shown as solid lines
(with symbols), while the corresponding driving forces are drawn in pink along the contours on the right-hand sides, with and
without the two-dimensional shear stress σ12(x1,x2,zs) maps in the background for further comparison. The signed magnitudes
of the Peach-Koehler forces are plotted against the polar angle θ, for which θ= 0◦ corresponds to the pointsM in the schematics.
In general, the very good agreement in terms of stresses and forces in sign and magnitude is also demonstrated, although slight
deviations in direction are noticeable when the local radius of curvature changes drastically in sign. These discrepancies are
mainly due to the different core-spreading schemes that have been appropriately adopted for mathematical convenience in each
of the theoretical and numerical formulations.
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Figure 6: (a) The core-spreading displacement jump across a circular shear dislocation loop along the x1- direction, with three values of the dislocation core
parameter r0. The corresponding singularity-free in-plane (b) normal σ11(x1,0,zs) and (c) shear σ13(x1,0,zs) stress field components obtained by the fully
anisotropic elasticity theory (solid lines) and the isotropic elastic approximation (dashed lines). The plots are depicted exactly at z = zs.
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Figure 7: (a) Singularity-free magnitude of the Peach-Koehler forces on a circular shear dislocation loop in copper obtained by the theoretical framework and the
numerical finite element approach using three values of the core-spreading dislocation parameter r0. The local pure screw character is associated with θ≡ 0 mod
180◦, while θ ≡ 90◦ mod 180◦ represents the pure edge component. The corresponding legend is the same as in Fig. (4b) and the solutions are computed using
the fully anisotropic elasticity calculations (solid lines) and the isotropic elastic approximation (dashed lines). (b) Peach-Koehler forces of the elliptical shear
dislocation case in Fig. (5) embedded in the free-standing anisotropic elastic bimaterial. Four values of the core dislocation parameters are used to achieve
comparison between the theoretical (solid lines) and numerical finite element analyses (lines with symbols).

4.1.3. Computational dislocation shrinkage, short-range core reaction, propagation and coalescence
Figure (9) illustrates the previous circular shear dislocation loop while shrinking in fully anisotropic copper due to the action

of the self-interaction, without external loads. Thus, the dislocation loop undergoes a self-driving force that is displayed in
Fig. (9a) at different time steps, while the corresponding evolution of the normalized dislocated surface is displayed Fig. (9b) as
a function of time extracted from the empirical mobility law in eq. (74) with B = 10−5 Pa.s. The magnitude of the self-force
is plotted against the curvilinear coordinate s, for which s = 0 corresponds to the points M in the six associated snapshots of
Fig. (9c). In the latter figure, the von Mises equivalent stress field is shown during the dislocation shrinkage, which is computed
numerically with a core-spreading parameter r0 = 1b. According to Tab. (1), the mesh of the computational volume for the initial
configuration #1 is composed of ∼ 126k degrees of freedom, while the number of degrees of freedom is reduced to ∼ 72k for
the configuration #6, and the average discrete time step between each remeshing event is 6.8×10−15 s.

In accordance with the results in Fig. (7a), the negative driving force experiences the smallest magnitude for local edge
characters, such that the computational contour of the loop does not remain circular during collapse, and the evolution of the
dislocated surface becomes nonlinear from configuration #5, as indicated by the deviation from the dotted line and already
described by the phase field approach (Rodney et al., 2003, Ruffini et al., 2017). However, the present plots show more than the
phase field results, as the importance of anisotropic elasticity is emphasized by promoting the appearance of faceted dislocation
contours, as similarly observed with sharp-cornered dislocation configurations in anisotropic iron (Fitzgerald, 2009, Aubry,
2011). Interestingly, the self-force increases in magnitude and tends roughly to constant values from configuration #3 as the
dislocation loop narrows.

Because the long-range elastic interaction and the short-range core reaction between intersecting dislocations is crucial for
gaining insight into dislocation-based strain hardening mechanisms in materials, the collinear annihilation of two dislocation
loops expanding on intersecting slip planes, is reported in Fig. (10a). Thus, two perfect dislocation shear loops with Burgers
vectors b11 = b/

√
2 [11̄0]t and b12 = b/

√
2 [11̄0]t are introduced into the (111) and (1̄1̄1) slip planes, respectively, under a

macroscopic applied stress σ11 = 0.08c11. In particular, a much more complex configuration than the standard situation is
described herein when the collinear reaction interacts with a spherical cavity in anisotropic copper, as illustrated by #0 with∼ 56k
degrees of freedom under periodic boundary conditions. The finite element formulation is able to account for the completely
infinite contrast between phases, which remains a numerical challenge for traditional fast Fourier transform solvers with an
accurate convergence rate. During the propagation and the collinear annihilation of the two dislocation loops with an average
discrete time step of 8.5× 10−15 s at the nanoscale, the snapshots show the magnitude of the von Mises equivalent stress field
and of the Peach-Koehler forces along the dislocation fronts. Under the external stress state, the two shear dislocation loops
also expand, interact with each other, and annihilate in place where the opposite line directions meet at the intersecting glide
planes. The remarkable versatility of the present conforming mixed-element mesh therefore allows for collinear annihilation
of the mesh edges during the short-range core reaction from the configuration #3, without resulting dislocation lines as well as
residual stress fields when the core reaction between both dislocation loops occurs at the product junction. The cavity is therefore
symmetrically sheared by the individual cut surfaces, leaving two slip steps at the free surfaces of the spherical void, as stipulated
in section 3.3.1, and also illustrated in the deformation configuration space in Fig. (10b). The configuration #8 features ∼ 229k
degrees of freedom, in which the dislocation contour in the (111) glide plane is no longer symmetric about the [1̄ 1̄2]t-axis due
to the influence of the stress field caused by the spherical void on the propagation and coalescence of the dislocation loops.

4.1.4. Dislocation dynamics of the Orowan precipitate bypass mechanism in a polycrystalline micropillar
Figure (11a) illustrates a large-scale three-dimensional finite element computation that cannot, to the knowledge of the

authors, be achieved by existing numerical approaches in the broader literature. An anisotropic copper polycrystalline micropillar
with 80 grains is automatically generated from the intersection of a cubical Voronoi tessellation with a representative pillar
specimen, in which a shear dislocation loop with a Burgers vector b = b/

√
2
[
1̄10

]t glides in the (111) slip plane of a specific
host grain. The latter lies outside the microstructure, so that the outer grain boundary corresponds to the free surface of the
computational sample. A high compressive strain of 7.1% is applied and maintained constant on one external face of the
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Figure 8: Prismatic dislocation loops with complex simply-connected fronts as the (a) butterfly- and (b) skull-shaped contours. The corresponding magnitude
of the singularity-free Peach-Koehler forces are computed at zs and are displayed on the left-hand side with respect to the polar angle θ, for which θ = 0◦

is represented by the point M in the plots of the right-hand side. The direction and amplitude of the driving forces as well as the shear stress component
σ12(x1,x2,zs) are depicted for both theoretical and numerical finite element solutions. For the sake of clarity, the Peach-Koehler forces along both dislocation
contours are also shown in pink without the stress maps in the background.

specimen, while the opposite face is blocked, as displayed in Fig. (11a). At the grain scale, the Orowan bypass mechanism is
described by the presence of the infinitely stiff, also elastically mismatched precipitate of arbitrary shape, for which the elastic
constants are fictitiously multiplied by a factor of ten, with impenetrable boundaries and without consideration of cross-slip
events. The internal grain boundaries are also considered as impenetrable barriers to dislocation motion, so that the dislocation
loop is strictly confined to the host grain. The initial number of degrees of freedom associated with the full mesh of Fig. (11a)
is ∼ 193k, while the multiscale problem exhibits three orders of magnitude between the polycrystalline sample length L and
the representative size l of the precipitate. The snapshots in Fig. (11b) show the elastic dislocation/precipitate interaction,
and especially the dislocation propagation by bowing around the inclusion as well as the self-coalescence of the dislocation
loop once the arms pass the particle in the intermediate configuration #10, giving rise to a complex stress state around the
precipitate. The planar propagation of a dislocation loop completely cuts the host grain and also leaves a surface step of the
Burgers vector magnitude on the free surface of the micropillar sample, while the slip transmission of the dislocation loops
across the neighboring grain boundaries is let for promising future development. The numerical discretization enriched by the
regularization procedure for the Orowan precipitate bypass mechanism is illustrated in the inset #8′ in Fig. (12), which is the
enlarged view of the area framed by red rectangle, namely the configuration #8 in Fig. (11b). The quadrilateral plane elements
of the regular spider-web mesh generated at the shear dislocation core are clearly distinguishable inside the dislocation loop near
the mobile front (in red) that propagates in the (111) glide plane. For the corresponding finite element nodes, the regularization
procedure defined by eq. (64) with eq. (47) is also applied, such that the displacement discontinuity is prescribed from 0 to b by
means of double nodes, as evidenced by the two adaptive meshes in black and white. For the companion nodes that intersect
the impenetrable boundaries of the heterogeneous precipitate, the generation of the regular spider-web mesh is not performed
at the internal interfaces for simplicity, but the set of conforming dislocation nodes along the precipitate is defined by a zero
displacement jump. Thus, an Orowan-like dislocation loop is left around the infinitely strong inclusion, providing a new route in
understanding of the Bauschinger effect in realistic precipitation-strengthened material structures.

Figure (13) summarizes the various stages of the dislocation loop propagation bypassing the inclusion in the polycrystalline

21



copper micropillar, for which the final configuration mesh is composed of ∼ 1007k degrees of freedom. The corresponding
animation of the Orowan precipitate bypass mechanism is referred to as ”Orowan bypass mechanism in a micropillar”,
computed in less than 20 hours with 291 adaptive remeshing events with an average discrete time step of 4.6×10−13 s, according
to Tab. (1).

5. Concluding remarks

The present work achieves a twofold objective by addressing the long-standing problem of arbitrarily-shaped dislocation
loops in three-dimensional heterogeneous materials from a theoretical and numerical perspective. First, elastic field solutions for
shear and prismatic dislocation loops in heterogeneous anisotropic multilayered structures are formulated in terms of the mathe-
matically elegant Stroh formalism combining with the biperiodic Fourier-transform and dual variable and position techniques. A
suitable Gauss-Legendre quadrature enriched by the Green integral formula is employed to cope with the dislocation loops with
complicated simply-connected contours. In particular, the singularity-free Peach-Koehler force is derived using a core-spreading
operation to regularize the prescribed displacement discontinuity, which is considered as a standard boundary condition of the
dislocation boundary-value problem. On the other hand, a monolithic finite element formulation with advanced and flexible
adaptive remeshing procedures is subsequently introduced to capture the configurational driving forces through dissipative en-
ergy considerations and to describe the dynamics of dislocation loops in realistic microstructures and structures. Excellent
agreement between theoretical and numerical analyses is illustrated from simple circular shear dislocation loops to complicated
butterfly-shaped prismatic dislocation loops in linear homogeneous isotropic solids and anisotropic elastic bimaterials. The nu-
merous comparisons on complex configurations of dislocation loops also serve as a validation basis and benchmarks for dealing
with sophisticated problems with evolving dislocation loops in three dimensions. The remarkable versatility and robustness of
the finite element method allows for the consideration of the short-range core reaction between intersecting dislocation loops in
interaction with precipitates (cavity and rigid inclusion), as well as the Orowan dislocation-precipitate bypass mechanism in a
compressed micropillar of polycrystalline copper. The computationally efficient and robust adaptive mesh generation procedures
for dislocation propagation, interaction, and coalescence are also capable of handling multiscale applications. The dislocation
propagation by bowing around the inclusion in the polycrystalline sample exhibits three orders of magnitude in representative
size scale between the micropillar and the nano-precipitate.

At first glance and in the current form, the finite-element framework should be considered as a computational tool to carry
out calculations with several types of discontinuities, such as grain boundaries, free surfaces, dislocation loops and cracks, in
multiphase finite material structures. The main interesting feature of the approach is to unify these discontinuities into a single
finite-element entity to revisit the fundamental problems concerning the interactions between dislocation loops and cracks, in
particular the emission of dislocations from crack fronts in three dimensions, as well as the interactions between dislocations
and stress concentrations at grain boundaries and heterophase interfaces, especially the nucleation and emission of dislocation
loops from the internal material boundaries. Although the computational approach undoubtedly opens many perspectives, also
with close links to experiments, some extensions can be introduced. A current limitation is related to the use of a single
regularization rule at the dislocation fronts, whether the dislocation loops are located in the core of the grains or near the
internal interfaces. A more physics-based rule could be provided to offer a better description of the short-range elastic fields
close to the grain boundaries to analyze the transmission of dislocation loops into neighboring grains, thus overcoming the
current impermeability conditions. Furthermore, although the current simulations are performed on a workstation, the numerical
framework could benefit from the robust iterative and domain decomposition solvers to handle the discretization of several tens of
millions of unknowns (Bovet et al., 2021). By the use of a parallel mesh generation algorithm for robust domain decomposition
techniques, high-performance calculations with a hundred dislocation loops are anticipated to characterize standard dislocation
microstructures with typical densities of 1012/1014 m−2 in the 1-to-100 micrometer mesoscale range. Finite element calculations
with hundreds of millions of degrees of freedom are therefore expected to achieve such numerical experiments for multiple
dislocation loops in three-dimensional material structures. These subsequent boundary-value problems should be accompanied
by consideration of additional dislocation junctions, such as the Lomer–Cottrell lock, the Hirth lock and the glissile junction as
well as the implementation of the dislocation cross-slip mechanism and energetics, which are left for future investigations. In an
extrapolation scenario, computations of several thousand dislocation loops on supercomputers could be carried out with the aim
of better understanding dislocation-based strain hardening mechanisms in realistic structures at the macroscale.
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Applied Sciences, 3, 70-87.
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Figure 9: (a) Evolution of the magnitude of the Peach-Koehler forces on a shear dislocation loop with b = b [100]t at different time steps under the action of
the self-stress contribution, only. The plots are displayed with respect to the curvilinear coordinate s. (b) Normalized surface of the shrinking shear loop as a
function of time. (c) Six snapshots of the dislocation shrinkage with the associated change in the von Mises equivalent stress field, for which M corresponds to
the magnitude where s= 0 in (a).
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Figure 10: (a) Collinear reaction between two dislocation shear loops with Burgers vectors b11 = b/
√

2 [11̄0]t and b12 = b/
√

2 [11̄0]t in the (111) and (1̄1̄1)
slip planes, respectively, in interaction with of a spherical void in copper. The conforming mixed-element mesh allows to account for the collapsing mesh edges
at the collinear annihilation, while the standard finite element is able to model the fully infinite contrast between the phases under the macroscopic applied stress
σ11 = 0.08c11. The snapshots show the corresponding amplitude of the von Mises equivalent stress field as well as the magnitude of the Peach-Koehler forces.
(b) In the strain configuration space, the propagation of the shear dislocation loops produces two slip steps, which are left symmetrically at the free surfaces of
the spherical cavity. Outside the free surfaces, neither resulting dislocation lines nor residual stress fields are created when the core reaction occurs due to the
collinear annihilation of intersecting dislocation loops.
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Figure 11: (a) A shear dislocation loop around the bypassed heterogeneous precipitate in a monotonically deformed copper polycrystalline micropillar. The
internal interfaces, such as the grain boundaries and the heterophase precipitate interfaces, are regarded as impenetrable barriers to the dislocation motion. The
initial mesh consists of ∼ 193k degrees of freedom, within which the dislocation loop with a Burgers vector b1 = b/

√
2
[
11̄0

]t glides into the dense (111) slip
plane, interacts with the long-range internal stresses, and intersects on a long distance the free surface of the sample. (b) The snapshots illustrate the advanced
planar propagation of a dislocation loop in the polycrystalline micropillar by cutting completely the host grain in a realistic three-dimensional microstructure.
The three-dimensional distribution of σ33(x1,x2,x3) is mapped during the planar propagation, dislocation/precipitate interaction and self-coalescence.28
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Figure 12: The enlarged inset #8′ illustrates the regularization procedure on specific finite element nodes along the expanded dislocation front sliding in the host
grain and locally interacting with the internal boundaries of the heterogeneous precipitate. The propagation step corresponds to the configuration #8 in Fig. (11b).
In accordance with the boundary conditions for impenetrable precipitates, the finite element mesh of the shear dislocation loop conforms to the precipitate and
all intersection nodes that belong to the two defects are defined by a zero displacement jump. An Orowan dislocation loop is thus left around the infinitely strong
precipitate.
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Figure 13: From the initial dislocation loop embedded in a given grain of the polycrystalline copper micropillar with ∼ 193k degrees of freedom in (a) to the
various propagation steps followed by the shear dislocation loop in (b), thus leaving residual dislocation edges around the bypassed heterophase precipitate. The
final computational mesh involves ∼ 1007k degrees of freedom.
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