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Ultrafast acoustic imaging experiment is a powerful tool to investigate, at the nanometer scale, the
cell mechanical properties such as stiffness, viscosity and adhesion, properties that play some roles
in the life and death of cells. However, due to cell complex structures, the ultrafast acoustic signal
analysis is quite intricate and depends on multiple parameters. Complex data analysis with poorly
known parameters can be handled by data clustering method as already shown in particle physics
and biology. In this work, ultrafast acoustic data analysis is tackled by a spectral clustering method
followed by a hierarchical agglomerating method. Coupled to conventional microscopy performed
on the very same cell, the clustered data can be assigned to inner cell features such as the nucleus,
the cytoplasm and the cytoskeleton. The signal dependency on the cell thickness and stiffness is
highlighted. Moreover, thanks to the improvement of the signal to noise ratio, the nature of the
adhesion is also assessed through observation and characterization of a polymer-like layer as thin as
few nanometers.

I. INTRODUCTION

It is known that the external forces exerted on cells
can have a strong influence on physiological processes
through the mechanotransduction processes[1]. They
may drive the cell differentiation into osteocytes or neu-
ron, for example. Among all the techniques which can
be used to probe the cell mechanical properties[2], this
work is based on a scanning ultrafast acoustic microscope
(SUAM) to investigate the cell stiffness, viscosity and ad-
hesion. SUAM is a pump probe technique which samples
the acoustic response in time (t) at different locations
(x,y). It can be performed in transmission where the
cell optical properties are measured while a short acous-
tic pulse is propagating through the cell. Transmission
signal is typically composed of oscillations resulting from
the interaction between the light and the acoustic pulse
propagating into the cell and usually called the Brillouin
oscillations (BO). Scanning the BO properties (ampli-
tude, frequency, lifetime and phase) allows to map bulk
elasticity in biological cells[3]. In-plane or in-depth in-
vestigations [4–8] can reveal nucleus or cytoskeleton elas-
ticity and thickness of the cell. This optical technique is
very convenient for designing a specific environment to
study living cells [9, 10].
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SUAM can also be performed in reflection where an
acoustic echo is bouncing back and forth on the trans-
ducer/cell interface. The echo’s temporal shape can re-
veal the spatial and dynamical properties of the cell
adhesion[11–13]. Ultimately, as previously shown[14, 15],
both measurements can be combined to get correlated in-
formation on the cell mechanical properties. SUAM ex-
periments are facing two challenges: improving the signal
to noise ratio (SNR) and easing the data analysis. The
total data acquisition time is given by Nδ where N is
the number of data sampling point and δ is the acquisi-
tion time of a single data point. A trade-off has then to
be found between SNR (which is proportional to δ−1/2)
and spatio-temporal resolution in order to catch cell’s in-
ner features while keeping the total data acquisition time
manageable. Moreover, due to the inhomogeneity of the
cell, the transient acoustic signal is highly dependent on
the investigated spot. Mapping cell mechanical proper-
ties may then require cumbersome spot-by-spot analy-
sis with multi-parameter fit functions. We have shown
in a previous work that it is possible to alleviate the
constraints of the mapping by sorting the different spots
according to the likeness (i.e. the similarity) of the tem-
poral shape of the signal[7]. For example, the nucleus
can be spatially resolved and its corresponding averaged
signal can be computed, simplifying the subsequent data
analysis. Such procedure requires some prior knowledge
of the cell structure in order to find the sample spots with
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good similarity with all the nucleus spots.
Data clustering (or cluster analysis) aims at sorting a

large dataset into smaller datasets (i.e. clusters) such
that data within a given cluster are more similar to each
other than to those in other clusters. Data clustering is a
powerful tool used in almost every aspect of science and
is at the core of deep learning techniques. In physics,
data clustering is vastly used in particle physics and cos-
mology for event detection as small as Higgs boson or as
large as gravitational waves. In biology, data clustering
is also widely applied to achieve sequencing as well as di-
agnostics. Since there are many data clustering methods,
the clustering algorithm (with its similarity criteria) has
to be chosen carefully depending on the dataset proper-
ties and the expected clusters. In this paper we propose
to make use of data clustering techniques in order to sort
the experimental data in order to map the cell properties
without prior knowledge of the cell structure. Indeed,
using a single fit function to map the whole cell acous-
tic properties requires several fitting parameters. Such fit
function must arise from a complex model of the intrinsic
cell inhomogeneity based on prior knowledge. Therefore,
small structures or unexpected ones can be missed during
the analysis.
In the following, after a short description of the sam-

ple and the SUAM apparatus, the choice of the clus-
tering method is detailed. The proposed clustering
method occurs in two successive steps: a spectral cluster-
ing method[16] followed by a hierarchical agglomerative
method. The results are then discussed and compared
to other imaging techniques, providing a fast identifica-
tion of the different cluster features. In particular, the
clustered acoustic map is analyzed in the light of atomic
force and fluorescence microscope images, strengthening
the consistency of the data clustering analysis in SUAM
experiments.

II. SAMPLE PREPARATION, EXPERIMENTAL

SET UP AND DATA PROCESSING

A. Cell culture and fixation

The motoneurons used in this study are immortal-
ized mouse motoneurons called MN1. They are cul-
tured on biocompatible titanium layer sputtered on sap-
phire substrate 3 days before fixation. A grid of num-
bers has been laid out in gold by lithography and chem-
ical etching on top of the titanium layer (300 nm-thick)
for labelling purpose. Thanks to the grid, each cell
can be labelled and then studied with different tech-
niques. Fixation was performed with glutaraldehyde
[2%in phosphate-buffered saline (PBS)] at room temper-
ature during 15∼20 min. Cells were washed twice with
PBS for 5 min, quickly rinsed with deionized water to
remove salts and then dried under a moderate stream of
nitrogen. The motoneurons studied were fixed, which
means the cells are not active anymore but retained

most of their morphological characteristics. This pro-
tocol makes it possible to carry out studies in the open
air without degradation or motion of the cell during the
SUAM acquisition. The effect of cell fixation on the me-
chanical properties of the cell is not perfectly known, but
the cell is supposed to keep the same differential in me-
chanical properties between fixed condition and in-vitro.

B. Conventional cell imaging

With the help of the gold lithographed labels, the same
cells can be characterized with different set-ups. The
optical images of MN1 cells cultured on T i layer have
been realised in an episcopic geometry with white light
and ×20 bright field objectives. As can be seen in figure
1(a), the cell (as well as part of the gold labels) is mapped
but inner structures of the cell are hidden by interference
effect due to cell transparency.
In order to identify the nucleus within the cell body,

MN1 cells were labeled using immunohistochemistry[17].
Cells were incubated overnight at 4oC with a rabbit poly-
clonal anti-beta actin (1 µg.mL−1); Three 10 min washes
were carried out with PBS tween 0.1%. Cells were then
incubated 1 h at room temperature with a secondary
antibody coupled to alexa fluor 488goat anti rabbit at
dilution 1/500 (thermo fisher scientific:10729174). Nu-
clei were labelled with DAPI. Thanks to the fluorescent
markers, the cell body and the nucleus are readily local-
ized altogether by fluorescent imaging as shown in fig.1
(b) and (c).
Moreover, the cell topography has been characterized

with the help of atomic force microscope. MN1 cells cul-
tured on T i layer were imaged using a Digital Instru-
ments AFM (Veeco). Contact mode was operated with
Veeco RTESP tip cantilevers spring constant: 4 N ·m−1

and 256 lines 512 pixels images were acquired at a scan-
ning frequency of 1 Hz. The system includes an inte-
grated optical microscope, allowing prepositioning of the
AFM tip over the cells. The topography of cell labelled
658 is shown in fig. 1 (d), illustrating how the fixed cell
thickness is quite constant at the nucleus location and
decreases away from the nucleus.

C. Scanning ultrafast acoustic experiment

A Ti:Sapphire femtosecond laser beam operating à 800
nm and 80 MHz (MaiTai ®) is split into two beams.
The pump beam is focused down to 2 µm on the Ti
layer through the sapphire substrate and is modulated
at 1.8 MHz. Since the pump beam is absorbed within
the first few tens of nanometers of the Ti layer in ∼100
fs, it induces a sudden thermal expansion which will give
rise to a transient acoustic pulse about 6 ps-long. The
acoustic pulse is then propagating through the Ti layer
and is partially reflected at the Ti-layer/cell interface or
totally reflected if there is no cell. The acoustic pulse
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FIG. 1. Motoneuron cell imaged with four different techniques. Inserted bars are 10 µm wide for all maps. (a) Bright field
image of motoneuron cell close to gold label 658 (partially visible). (b) and (c) Fluorescence images of the same cell as (a).
The green fluorescence points out the cytoskeleton rich in actin. The blue fluorescence image highlights the nucleus material
(d) Cell topography measured by an Atomic Force Microscope in contact mode. (e) Cell optical reflectivity measured at 400
nm as measured by SUAM experiments. (f) Thermal response due to the accumulated heat induced by the pump modulated
at 1.8 MHz during SUAM experiments. Spatial resolution of maps (a), (b), (c) and (d) have been numerically lowered to
match the SUAM maps resolution. (g) Sketch of the scanning ultrafast acoustic microscope to map mechanical cell properties
in transmission (top) or reflection (bottom) configuration. Sample position is controlled along x and y axis while the pump
beam (red) is incident on the Ti Layer and the probe beam (blue) is focused through the cell (top) or through the substrate
(bottom).

which is propagating in the cell may bounce back at
the cell surface. The probe beam is frequency-doubled
through a BBO crystal and is focused down to 2 µm and
overlapped with the pump spot. The probe beam is ei-
ther co-propagating with the pump (referred as reflection
set-up) or counter-propagating (referred as the transmis-
sion set-up), as illustrated in fig. 1 (g) and is used to
measure the sample reflectivity R. The pump-induced
change of reflectivity (∆R(t = tProbe–tPump, x, y)) of
the sample is then measured with the help of a lock-
in amplifier either in the reflection (the sapphire sub-
strate side) or the transmission configuration (the cell
side) respectively. In reflection configuration, the probe
is also absorbed within the few tens of nanometers there-
fore the probe is mainly sensitive to the acoustic pulse
which has been totally or partially reflected at the tita-
nium surface. Reflected acoustic pulses are commonly
mentioned as acoustic echos. In transmission configu-
ration, the probe is weakly absorbed through the cell
and is reflected by the Ti layer as well. In this case
the probe is diffracted by the acoustic pulse propagating
through the cell leading to the so-called Brillouin oscil-
lation. The delay t = tProbe–tPump is controlled with a
translation stage and the sample is mounted on a 2-axis

(x, y) translation stage to spatially resolve ∆R. Two sets
of 60 µm × 60 µm experimental data have been recorded
for the cell 658 in transmission and reflection geometry
every 4 ps or 1 ps respectively (i.e. time resolution of
t = tProbe–tPump).

Figure 1 (e) shows the reflectivity R measured by the
SUAM set-up with a 400 nm probe and figure 1(f) dis-
plays a photo-thermal map of the cell

〈

∆R
R

〉

(t<0)
(x, y)

obtained by averaging the relative change of reflectivity
just before the pump excitation. Like the bright field im-
age, the cell is precisely localized by optical reflectivity
in the transmission scheme but the inner cell features are
not resolved due to several factors affecting the cell reflec-
tivity (surface roughness, orientation, surface impurities,
etc. . . ). The thermal mapping is possible because the
absorption of the pump pulses induce a steady heating
of the sample which modifies locally the optical index.
According to the thermal map, the photo-thermal signal
is larger at the edge of the cell where the probe is less re-
flected. This may be explained by heat accumulation in
the thinner part of the cell due to reduced diffusivity and
increased optical absorption (enhancing the sensitivity to
changes of optical index).
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FIG. 2. Acoustic mapping of the cell with correlation tech-
nique (see ref. [7]). a) Correlation map obtained for a spot
chosen on the gold label. b) Corresponding correlation co-
efficients colored according to their value. c) Acoustic map
given by the three correlation coefficient distributions. d)
Corresponding acoustic signal depending on pump-probe de-
lay tprobe − tpump and averaged within each cluster.

D. Data processing

It is known that the acoustic signal, measured in trans-
mission geometry, can be used to catch the inner cell
structures[4–14]. As illustrated in our previous work
[7, 15] the nucleus can be resolved for example by sort-
ing the cell signal according to the cross-correlation map.
Such maps are obtained by computing for all the mea-
sured spots the Paerson correlation coefficient with the
pump-probe signal measured at a well chosen spot (the
reference signal). When looking at the correlation map
obtained for a reference signalchosen in the gold label,
the cell, the bare transducer and the gold label can be
mapped right away, as shown by the cross-correlation
map in fig. 2(a). Indeed, computing the cross-correlation
of the pump-probe signal allows to evaluate the acoustic
likeness of all the points with the reference point. By
inspecting the distribution of the cross correlation coeffi-
cient displayed in fig. 2(b), three clusters can be identi-
fied and attributed to the cell, the bare Ti and the gold
label as illustrated in fig. 2 (c)).

The pump-probe signal averaged within each cluster
is shown in fig. 2(d). At 0 ps the acoustic pulse arrival
at the Ti surface is clearly visible when probing the Ti
layer only (bottom curve). When probing through the
cell (top curve), the acoustic pulse signature is hidden by
the onset of the Brillouin oscillation which is visible up
to 100 ps. After 200 ps all three signals display the same
features which are related to slow laser power drifting
during the acquisition and may overshadow signal related
to cell features. Only the acoustic signal associated to
the cell (top curve) presents Brillouin oscillations and

provides information on the elastic properties of the cell
through its period which is proportional to cell sound
velocity and through its damping which is related to the
cell viscosity.
Since this work is focusing on resolving inner cell acous-

tic features, the mean acoustic response
〈

∆R
R

〉

(x,y)∈Ti
(t)

arising from the Ti transducer alone (see fig. 2(d) green
curve) is subtracted to the whole set of ∆R

R (x, y, t). It
is then possible to chose a new reference signal within
the cell in order to identify some clusters of Paerson cor-
relation coefficients within the cell and to get a more
detailed map. However, the reference signal can not be
chosen randomly as many reference signal produce noisy
map. Is it, then, possible to compute the best reference
signal? In fact, is a reference signal even required? An-
swers are yes and no respectively. Indeed all the correla-
tion maps, obtained when each spot is chosen to provide
the reference signal, bare their own information. Thanks
to data clusters analysis, it is possible to make use of all
the correlation maps to sort all the pump-probe signal
according to their correlation likeness. From now on, the
3D Nx ×Ny ×Nt SUAM data, free of the Ti transducer
response, are re-organised as a 2D data set which can be
understood as a collection of N = Nx ∗ Ny independent
observations (measured at different spot), each observa-
tion being characterized by its Nt measurements (i.e. the
pump-probe signal).

III. DATA CLUSTERING

In the following the N observations (or pump-probe
signals) which have been recorded at different spots
are clustered according to their temporal variation (i.e.
the Nt measurements) by applying a spectral clustering
method[16]. Spectral clustering methods have been cho-
sen because they are known to produce high quality clus-
tering on small data sets (at a cost of its computational
complexity which is not well-suited for large scale prob-
lem). It requires a choice of pairwise distance in order to
evaluate how close observations are between each others.
Following our previous work[7, 15], the pairwise distance
of this work is based on the Paerson correlation coeffi-
cient. It requires also to fix the number of clusters k to
look for, which is unknown at first but which can be han-
dle in a smart way thanks to a hierarchical agglomerative
clustering. The main idea is to start with a large num-
ber of clusters obtained by the spectral clustering method
and reduced this number by merging the two closest clus-
ters hierarchically. The hierarchy of the merged cluster
maps obtained with this method is shown in fig. 3 and
is discussed in the following.

A. Spectral clustering method

The first step of the clustering is based on the approach
of Meilä et al. (ref. [18]) categorized as a spectral cluster-
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ing method. In brief, this method is looking for the first
largest k eigenvalues and eigenvectors of a graph Lapla-
cian matrix L = D− S, where S is the similarity matrix
and D =

∑

i Sijδij (0 ≤ Sij ≤ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ N).
The Lij coefficients can then be interpreted as the prob-
ability to “jump” from i to j in a random walk process.
The k clusters are then found by applying a k-means
algorithm to the set of k calculated eigenvectors. This
spectral clustering only requires a choice of similarity
function and the number of clusters k. A similarity coef-
ficient Sij = 1 means perfect matching between i and j
while Sij = 0 means i and j are totally different. Among
all the possibilities to calculate a similarity matrix, this
work uses the one based on the Paerson correlation be-
tween the pump-probe signals recorded at spots i and j
such that Sij = 0.5 ∗ (xcorr(i, j) + 1). Since the perti-
nent number of clusters is not known, k must be chosen
as large as possible while keeping the number of observa-
tions clustered together large enough to provide a mean-
ingful averaged observation. That is why we propose to
set it as the ratio between the total number of pixels over
the number of pixels of the smallest feature which is ex-
pected to be clustered. For example, in order to find a
cluster associated with the gold label partially scanned
by the SUAM experiment, the number of clusters can be
chosen around k = 30.
The result of the spectral clustering method[19], shown

in fig. 3 (e), does provide some inner cell structures.
However it fails to catch the bare part of the sample (Ti-
tanium only) as a single cluster and provides more than
10 clusters instead. Indeed, spectral clustering method
tends to produce clusters of roughly equal size when all
the data share some similarities with all the others (i.e.
clustering a fully connected graph). It appears that the
spectral method has clustered the data also according to
noisy features or experimental biases. However, a quick
inspection of the averaged signal associated to each clus-
ter shows that some of those clusters should be merged
into a single larger cluster.

B. Hierarchical agglomerating clustering method

The main idea of this second clustering step is to merge
clusters with similar averaged signals. This merging can
be achieved with a hierarchical agglomerating clustering
method which compares all the mean signals pairwise
and finds the two closest ones to merge them and, then,
which repeats this process using a mean signal for the
newly merged clusters. Since each iteration merges two
clusters, this process is repeated until all the clusters are
merged in a single cluster. To visualize how and when
the clusters are merged one can produce a dendrogram,
as shown in fig. 3 (a). With the help of the dendrogram,
it is possible to choose the number of relevant clusters
by looking at the cluster map obtained at a given depth
ka of the dendrogram. At ka = 16 clusters depth (see
fig. 3 (d)), most of the spectral clusters associate with

FIG. 3. (a) Dendrogram corresponding to the agglomerative
hierarchical clustering of 30 clusters obtained by spectral clus-
tering. The agglomerated clusters map corresponding to the
cuts at ka = 4, 7, 16 and 30 clusters in the dendrogram are
displayed around and labeled respectively (b), (c), (d) and
(e). Map (e) displays the clustering as obtained from the
spectral clustering method. The colorbars provide the corre-
spondences between the cluster colors used in the maps and
the cluster labels used in the text.

bare Ti signal have been merged into three agglomer-
ated clusters. At the depth of ka = 7 clusters (fig. 3
(c)), the bare Ti layer and the gold label appear as single
clusters and some cell inner structures are clearly identi-
fied such as the nucleus (agglomerated cluster number 1)
as well as the cell thin periphery (agglomerated cluster
number 7). At the depth of ka = 4 agglomerated clusters
(fig. 3 (a)), most of the cell features disappear provid-
ing acoustic map comparable to what was obtained from
cross-correlationmaps (3 (b)). This figure illustrates how
the final choice of the number of agglomerated clusters
ka can be set with a very small amount of knowledge of
the sample.

IV. ANALYSIS AND DISCUSSION

A. Brillouin oscillation analysis as measured in

transmission

Let us fix the numbers of agglomerated clusters ka such
that: (1) the bare Ti area appears as a single cluster; (2)
the number of cell clusters is minimum; (3) the nucleus is
still given by two distinct clusters. These conditions lead
to a number of ka = 10 agglomerated clusters and the
resulting cluster map is shown in fig. 4 (inset). At the
depth of ka = 9 clusters, the two nucleus clusters merged
while at ka = 11 an inner cell cluster splits into two spa-
tially entangled clusters. At first glance, the clusters map
shows a good qualitative agreement with the fluorescence
map and the AFM map. However, it is important to
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TABLE I. Cluster properties deduced from comparisons with fluorescent images (in %) and by averaging the height measured
by AFM (in nm), the optical reflectivity R or the photo-thermal signal

〈

∆R

R

〉

t<0
measured by the SUAM (both in arb. units).

Cluster sizes are given in number of pixels. Each cluster is labeled accordingly : Nucleus, cytoplasm, edge of the cell (Edge),
gold label (Gold), bare Titanium (Titanium) or outliers.

Cluster Nb 1 2 3 4 5 6 7 8 9 10

Size 121 103 151 229 73 133 89 2385 70 246
Blue fluo. (%) 99 92 27 22 0 0 0 0 1 0
Green fluo. (%) 1 8 72 76 16 2 94 3 97 48
No fluo. (%) 0 0 1 2 84 98 6 97 1 52
Heigth (nm) 746 825 561 471 241 282 194 33 241 149
Thermal signal 0.74 0.78 0.7 0.64 0.00 −0.21 0.31 0.01 0.53 0.90
Reflectivity 0.44 0.42 0.41 0.39 0.42 0.39 0.43 0.61 0.42 0.47

Assignment Nucleus Nucleus Cytoplasm Cytoplasm outliers Gold Edge Titanium Cytoplasm Edge

check if the clusters can be associated to specific proper-
ties of the cell and if the noise or the experimental biases
have influenced in some way the clustering.

The 10 clusters can be compared between them ac-
cording to their different physical properties which have
been gathered in table I. Thanks to the fluorescence,
each pixel can be assigned to the nucleus (blue fluores-
cence), the cell (green fluorescence) or the bare titanium
(no fluorescence) such that each fluorescent component
can be weighted for the clusters as shown in table I.
Clusters 1 and 2 nicely match the blue fluorescent area
(> 92%) while clusters 6 and 8 match the non fluores-
cent area up to 97% making their respective assignment
pretty straightforward. Assignment of clusters 3, 4, 7, 8
and 9 to ”cytoplasm” and ”edge” is possible thanks to
the averaged heights and averaged SUAM photothermal
signal gathered in table I as well (see fig. 1 for the cor-
responding maps). Averaged optical reflectivity is also
computed to confirm its weak influence on the clustering
results (except for clustering the bare Ti area). Cluster
5 is labelled as outliers since it is mainly non fluorescent
while associated to a 240 nm-thick cell and, therefore,
can not be assigned strictly to the cell or the bare Ti.

The labeling of the clusters is further enforced by
analysing the acoustic signal averaged within each ag-
glomerated clusters. The result is plotted in fig. 4 where
the line colors match the cluster colors of the inset map.
A slow varying background (2nd order polynomial) has
been subtracted to emphasize the Brillouin oscillations,
typical of acoustic cell signal. Signals have been verti-
cally shifted for better clarity. The signals found by the
clustering are consistent with what were found previously
with the cross-correlation clustering[7, 15]. The nucleus
(clusters 1 and 2) is associated to higher BO frequen-
cies and longer BO lifetime compared to dried cytoplasm
(clusters 3, 4 and 9) which are associated to lower fre-
quencies and shorter lifetime. The cell edge (clusters 7
and 10) is characterized by a partial BO. Clusters 6 (av-
eraged signal not shown) and 8 correspond to the gold
label and the bare Ti, respectively. Cluster 5, not shown,
is associated to a low amplitude signal such that the clus-
tering seems more based on noise structure rather than

FIG. 4. Acoustic signals averaged within each clusters associ-
ated to cell structures when ka = 10. The dashed vertical line
mark the arrival time of the pulse echo having done an addi-
tional round trip within the metallic transducer. The small
vertical dotted lines mark the estimated arrival time of the
acoustic pulse at the cell surface according to the AFM topog-
raphy. The surrounded shaded areas stand for the plus/minus
root mean square uncertainty when averaging the cell height.
Inset: ka = 10 clusters map. Averaged signals from non cell
clusters 5 and 6 are not shown (see text).

signal.

The vertical dashed lines mark the arrival time of the
acoustic pulse and its echo generated within the trans-
ducer. Both acoustic pulses generate signals which are
overlapping in time. Both signals can be in phase lead-
ing to an increase of BO amplitude (as for the nucleus
signal) or out of phase leading to a decrease of the BO
amplitude (as for the cytoplasm). The reflection at the
cell surface is also known to produce a phase change in
the BO which can be used to monitor the cell thickness.
Thanks to the AFM cell map and the labeling of the
clusters done in table I, the averaged signals are well
understood. It is also known that the BO frequency is
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FIG. 5. Cell mapping in the reflectivity configuration (pump
and probe incident on the transducer on the opposite side of
the cell). a) Optical reflectivity map. b) Thermal map. c)
Acoustic mapping with spectral clustering. d) Acoustic map
after cluster agglomeration down to 6 clusters.

expected to be different between the nucleus and the cy-
toplasm. Accordingly, the cytoplasm clusters 3 and 4
exhibit low BO frequencies around 23 GHz whereas the
nucleus clusters 1 and 2 exhibits a frequency around 25.5
GHz and 24.5 Ghz respectively. BO frequencies of clus-
ters 7, 9 and 10 are harder to measure precisely since the
phase change due to the reflection occurs before a full BO
period, but the value is getting back around 25 GHz. A
better fit of the BO frequency would require an analyti-
cal model like in ref. [20] which takes into account all the
reflections (acoustical and optical) in a bilayer system on
semi-infinite substrate (Ti + cell on sapphire).

Given a sound velocity of 3.4 µm.ns−1 for the cyto-
plasm clusters and 3.7 µm.ns−1 for the other clusters,
deduced from the Brillouin frequencies, the acoustic re-
flection at the cell surface is computed and indicated by
the individual short vertical dotted lines. It is quite re-
markable how the changes in amplitude or phase in the
BO matched the estimated arrival time of the acoustic
echo at the cell surface demonstrating how thickness-
dependent is the clustering result. Assuming that the
edge signal is dominated by the cytoskeleton of the cell,
one can argue that the nucleus and the cytoskeleton have
comparable acoustic properties while the thick cytoplas-
mic part of the cell (clusters 3 and 4) is less dense or less
rigid. Moreover, the differences between clusters 1 and
2 (see table I and fig. 4), which imply different acous-
tic properties, suggest that the cell has been fixed while
starting mitosis.

B. Echo analysis as measured in reflection

In ultrafast acoustic experiments performed in a re-
flection configuration, the acoustic echo which reflects
at the transducer/cell interface is investigated[21]. Such
a configuration is quite attractive since the cell is not
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FIG. 6. Cell acoustic differential reflectivity averaged for each
cell cluster. The cell clusters, numbered 1, 2 and 5, are shown
on the inset map. The dotted black curve shows the bare Ti
reflectivity (× 1

4
) obtained after averaging the signal of clus-

ter 3 and used as reference signal to measure the differential
acoustic reflectivity.

perturbed by the laser, making this kind of experiment
suitable for studying living cell. However, investigating
cells in vitro is quite challenging because of the nutri-
tive environment which is surrounding the cells. Indeed,
it decreases the acoustic impedance mismatch between
the cells and its environment. Here, the clustering data
treatment is applied to the reflection configuration in or-
der to test the signal to noise ratio in such imaging tech-
nique. The optical reflectivity in reflection configuration,
shown in fig. 5 (a), is featureless as expected. However,
by integrating the signal 40 ps prior to the echo arrival
(i.e. during the thermal decay of the transducer after
pump excitation), the cell can be spotted as illustrated
on the thermal map in fig. 5 (b). The observation origi-
nates from the modification of the thermal boundary at
the transducer free surface wherever there is a cell or
not.While weak, the thermal signature is still measur-
able in reflection configuration. Note that the thermal
image of the cell looks saturated due to the strong ther-
mal response of the gold label. As in the transmission
configuration, the bare Ti signal is obtained from cross-
correlation imaging and then subtracted to the data set
before spectral clustering. As demonstrated by the 30
clusters result, as plotted in fig. 5 (c), the acoustic signa-
ture of the cell is caught by the spectral clustering as well
as in transmission. The agglomerative clustering down to
6 clusters, shown in fig. 5 (d), provides a clear picture
of the cell with a core cell cluster (cluster 1) surrounded
by two concentric peripheral clusters (clusters 2 and 5).
The gold label and the bare Ti layer are retrieved as well
(clusters 6 and 4 respectively). The cluster 3 arises from
some experimental artifact as indicated by the bottom
of the raw optical reflectivity and the thermal maps. It
illustrates how data clustering can help to handle noisy
data.

In order to investigate the origin of the clusters, the
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acoustic signal is averaged within each cluster and is then
compared to the reference acoustic signal which is the
signal measured within the bare Ti cluster. The differ-
ences between the cell signals (clusters 1, 2 and 5) and
the reference signal (cluster 4) are shown in fig. 6 along
with the reference signal (black dotted curve, re-scaled
and vertically shifted). Up to 10 ps, the acoustic signals
for clusters 1 and 2 are quite similar while the cluster 5
is half in amplitude. At longer pump probe delay, sig-
nals from clusters 2 and 5 converge to 0, i.e. there is no
difference between the acoustic signal of clusters 2 and 5
and the reference signal. However, the difference between
cluster 1 signal and the reference signal remains constant
at longer delay. It is shown in the following that those
observations are consistent with the presence of a very
thin and soft adhesion layer between the transducer and
the cell.
When the acoustic pulse reflects at the transducer sur-

face, the thin layer starts to “ring”, producing the trailing
oscillation in the signal in fig. 6. The experimental de-
termination of the acoustic properties of the thin layer
are resumed in table 1. The travelling time is given by
the ringing period. The acoustic impedance mismatch
is found by inspecting the amplitude of the ratio of the
Fourier transforms of the cluster signals at low frequency
(below 100 GHz). As can be seen from the table II
the difference in amplitude of the signal between cluster
5 and clusters 1-2 is an indication of different acoustic
impedance. Since the impedance mismatch may be due
to a change of the sound velocity, the mass density or
both, the signals are analyzed depending on two different
assumptions (see table II): (b) layer density is assumed
and (c) sound velocity is assumed. Depending on the as-
sumption, the thin layer sound velocity is more likely to
vary between 1.28 nm.ps−1 and 2.5 nm.ps−1 (i.e. a layer
thickness between 4.53 nm and 8.88 nm) and the mass
density between 0.66 g.cm−3 and 1.3 g.cm−3 which are
typical values for organic polymers.
Another striking feature in fig. 6 is the difference of

signal between cluster 1 and the others at longer time. It
implies that the acoustic transmission between the thin
layer and the cell is greater for cluster 1 than for the
others. In contrast cluster 2 and 5 does not seem to be
associated with the transmission in the cell. This is con-
firmed by the decomposition of the clusters on the clus-
ters measured in transmission as shown in table II 97% of
the point in cluster 1 corresponds nucleus or cytoplasm
clusters, while 91% of the cluster 5 correspond to the Ti
cluster. Cluster 2 corresponds to an intermediate case
with 56% of edge clusters and 31% of the Ti cluster.

V. CONCLUSIONS

The acoustic properties of fixed motoneurons have
been investigated with the help of a scanning ultrafast
acoustic microscopic apparatus where the sample can be
probed on the cell side or on the transducer side, and

TABLE II. Adhesion layer properties depending on the clus-
ter. (a) The impedance layer is calculated with ZTi =
27.38 MRayls. (b) The density ρl = 1.3 g.cm−3 is assumed.
(c) The sound velocity c = 2.5 nm.ps−1 is assumed.

Custer 1 Cluster 2 Cluster 5

Ringing period (ps) 7.1 7.1 7.1
Racoustic 0.83 0.84 0.89
ZLayer

ZTi
(10−2) 9.1 8.6 6.1

ZLayer (MRayls) (a) 2.5 2.36 1.66
Thickness 1 (nm) (b) 6.83 6.45 4.53

Velocity 1 (nm.ps−1) (b) 1.92 1.81 1.28
Thickness 2 (nm) (c) 8.88 8.88 8.88
Density 2 (g.cm−3) (c) 1.00 0.95 0.66

Cluster projection on :

-Nucleus 0.27 0.02 0
-Cytoplasm 0.51 0.07 0.01
-Edge 0.19 0.57 0.07
-Ti 0.03 0.35 0.91

which allow to correlate both measurements. Thanks to
a clustering method of the data which require few prior
knowledge of the cell structure, the inner cell acoustic fea-
tures have been enlightened. After a first clustering with
a correlation method to get the signal coming from the
Ti substrate, the cell data are then clustered by a spec-
tral clustering algorithm which only requires the choice of
similarity between pixels. The number of relevant clus-
ters can then be estimated with the help of a hierarchical
agglomerative clustering method. The clustering method
has been applied on data recorded in transmission con-
figuration (cell side) as well as in reflection configuration
(transducer side). Each clusters has been unambiguously
labelled thanks to conventional microscopy images car-
ried on the very same cell. The acoustic properties of
the inner structures of the cell such as the nucleus (with
partial mitosis) and the cytoplasm are identified. The
outskirt of the cell is composed of several clusters de-
termined by the cell thickness as evidence by correlat-
ing the clusters with AFM data. Data clustering on the
transducer side reveal the existence of a very thin layer
(between 4.5 nm and 8.9 nm) not visible in transmission
configuration which may act as the adhesion layer for
the cell. This thin layer has polymer-like acoustic prop-
erties. The adhesive area is imaged as evidenced by the
acoustic energy loss after reflection at the transducer/cell
interface. The clustering method has been applied to 7
others motoneurons fixed on the same sample. It is note-
worthy that the results discussed here are consistent in
any points with the clustering results on the 7 other mo-
toneurons: Brillouin frequencies , the correlation between
the signal shape and the cell thickness, the detection of
a thin adhesion layer, etc. . . The improvement of sig-
nal to noise ratio thanks to the clustering method is a
strong step towards in vitro experiments. Indeed, while
the investigated data took hours to be acquired, living
cell mechanical properties such as inner stiffness or ad-
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hesion to substrate may change significantly within ten
minutes. From this report, one can conclude that it is
possible to resolved the nucleus position or the adhesion
part of the cell with faster acquisition rate, at the expense
of lower experimental signal to noise ratio.
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