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Purpose: The effective transverse relaxation rate (R∗2) is influenced by bio-
logical features that make it a useful means of probing brain microstruc-
ture. However, confounding factors such as dependence on flip angle (α)
and fiber orientation with respect to the main field (θ) complicate inter-
pretation. The α- and θ-dependence stem from the existence of multiple
sub-voxel micro-environments (e.g., myelin and non-myelin water compart-
ments). Ordinarily, it is challenging to quantify these sub-compartments; there-
fore, neuroscientific studies commonly make the simplifying assumption of a
mono-exponential decay obtaining a single R∗2 estimate per voxel. In this work,
we investigated how the multi-compartment nature of tissue microstructure
affects single compartment R∗2 estimates.
Methods: We used 2-pool (myelin and non-myelin water) simulations to char-
acterize the bias in single compartment R∗2 estimates. Based on our numeric
observations, we introduced a linear model that partitions R∗2 into α-dependent
and α-independent components and validated this in vivo at 7T. We investigated
the dependence of both components on the sub-compartment properties and
assessed their robustness, orientation dependence, and reproducibility empiri-
cally.
Results: R∗2 increased with myelin water fraction and residency time leading to a
linear dependence on α. We observed excellent agreement between our numeric
and empirical results. Furthermore, the α-independent component of the pro-
posed linear model was robust to the choice of α and reduced dependence on
fiber orientation, although it suffered from marginally higher noise sensitivity.
Conclusion: We have demonstrated and validated a simple approach that
mitigates flip angle and orientation biases in single-compartment R∗2 estimates.
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1 INTRODUCTION

Quantitative relaxometry offers great potential for char-
acterizing brain microstructure.1,2 The relaxation rates
of water protons depend on the physical and chemi-
cal composition of the tissue,3 as well as on the rate
at which the water molecules move between different
micro-environments4 making relaxometry sensitive to tis-
sue microstructure on multiple spatiotemporal scales. For
example, the effective transverse relaxation rate (R∗2) is
influenced by biologically-relevant features such as iron
content5 and myelination,5,6 facilitating in vivo investi-
gation of age-related differences7 as well as pathological
change.8–12

Neuroscientific studies commonly make the simpli-
fying assumption of a mono-exponential decay to obtain
a single R∗2 estimate per voxel. In reality the underlying
microstructure is comprised of multiple distinct compart-
ments. However, this simplification offers robustness to
measurement noise, particularly when it is difficult to
distinguish between the different compartments owing to
rapid exchange between them, low SNR, or limited sam-
pling of the fast relaxing component because of the choice
or number of TEs. In this case, only an aggregate relax-
ation rate is apparent13,14 making single compartment
fitting appropriate. However, the apparent relaxation rate
of this single compartment would depend on the size
and specific relaxation rates of the multiple underlying
compartments. It would also depend on the flip angle
(α) of the measurement because this, together with the
compartment-specific relaxation rates and TR, would
dictate the amplitude of the sub-voxel contributions to
the overall measured signal from the voxel.4,15–18 As the
exchange rate lowers, multi-exponential behavior, with
distinct compartment-specific relaxation rates, can be
observed.4 Each compartment may also have distinct fre-
quency shifts that alter the net signal originating from the
voxel.19 In white matter (WM), this phenomenon can be
modeled by the hollow cylinder fiber model,20–23 which
approximates myelinated axons as infinitely long hol-
low cylinders of myelin, surrounded by and containing
non-myelin water and oriented at a certain angle (θ) with
respect to the main magnetic field, B0. The difference
in isotropic and anisotropic susceptibility of the myelin
sheath with respect to the water compartments generates
quadratic frequency offsets in the water compartments
that depend on θ. With this model, Wharton and Bowtell21

derived an approximation predicting a sin4(θ) depen-
dence of R∗2 on orientation. Although multi-compartment
models are highly appealing for their microstructural
specificity, they can have limited validity and/or require a
rich array of data for reliable estimation and meaningful
precision.16,24–26

In this work, we used simulation and experiment to
investigate the impact that the true multi-compartment
nature of tissue microstructure has on mono-exponential
R∗2 estimates obtained in vivo in the human brain at
7T. Bloch-McConnell equations were used to simulate
exchanging myelin and non-myelin water compartments.
The impact of myelin water fraction (MWF) and resi-
dency time on single compartment R∗2 estimates, under
both ideal and realistic SNR conditions, was quantified.
Based on these simulations, we introduced a heuristic lin-
ear model of flip angle dependence that partitions the
R∗2 estimates into α-dependent and α-independent compo-
nents. We empirically verify the suitability of this model
by applying it to in vivo multi-parameter mapping (MPM)
data. The MPM protocol consists of multi-echo acquisi-
tions obtained at multiple flip angles and is popular in
neuroscientific studies because it can provide a compre-
hensive set of quantitative MRI parameters with whole
brain coverage and high resolution in clinically feasible
scan times.27–29 Within this MPM context, we compared
the relative robustness of single compartment R∗2 esti-
mates, the derived α-independent component of R∗2 and
a previously established single compartment R∗2 estimate
that pools across multiple flips angles (ESTATICS).15 The
relative robustness of these estimates to the choice of flip
angles, WM fiber orientation, and across measurement
sessions was assessed.

2 METHODS

2.1 Simulating the sensitivity of R∗
2

to multiple compartments

Two compartments,30 assumed to be a fast relaxing
myelin-water (MW) compartment (T1,MW = 280 ms, T2,MW
= 8 ms)16,31,32 and a slower relaxing non-myelin com-
partment (i.e., intra- and extra-cellular [IE]; T1,IE =
1450 ms, T2,IE = 36 ms),30,21 were simulated using the
Bloch-McConnell equations implemented using the
EPG-X formalism.33 A spoiled gradient recalled (SPGR)
signal was simulated by including diffusion-driven spoil-
ing, a net dephasing of 6 ππ per TR, and RF spoiling
with an increment of 144◦.34 Magnetization transfer (MT)
effects were not included in the simulations. The net
SPGR signal (Snet) was calculated as:

Snet(t) = abs
(

SMW e−t R∗2,MW + SIE e−t R∗2,IE

)
. (1)

Where SMW and SIE are the signals of the myelin and non-
myelin water compartments at t = 0, respectively, obtained
from the EPG-X simulations, whereas R∗2,MW and R∗2,IE
were approximated as 1∕T2,MW and 1∕T2,IE respectively.
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130 MILOTTA et al.

Net SPGR signals were simulated with a TR of 19.50 ms
and different flip angles (𝛼= [6 9 12 15 19 26 31 36 42]◦) and
for a range of MWF between 0.02 and 0.20 with a step size
of 0.02 representing different tissue conditions (encom-
passing WM at MWFWM = 0.16 and gray matter [GM]
at MWFGM = 0.06).30 Different exchange regimes were
investigated by varying a directional (MW to IE) residency
time between 100 and 500 ms in steps of 100 ms. A sin-
gle compartment R∗2 was computed, with log-linear fitting
across TE = (2.56:2.38:14.46) ms of Snet(t), for every simu-
lated tissue condition (i.e., each MWF and residency time
combination). Simulation parameters are summarized in
Supporting Information Table S1. Noisy simulated signals
were generated by computing 10 000 instantiations of com-
plex random noise added to the simulated signal with SNR
(TE= 0) of 50 to investigate the variance of the R∗2 estimate.

To investigate the effects of compartment-specific fre-
quency offsets as described by the hollow cylinder fiber
model,20,21 we carried out additional simulations taking
into account different fiber orientations (θ) with respect to
B0, ranging from 0◦ to 90◦ (with 10◦ intervals), for each of
the 9 flip angles.

2.2 Linear model describing R∗
2

dependence on 𝛂

The effective single compartment R∗2 increases with α
for different residency time and MWF. A linear model
was applied to the simulated R∗2 values to partition the
α-independent (̂R∗2 ) and 𝛼-dependent

(
dR∗2
d𝛼

)
components,

that is:

R∗2(𝛼) = ̂R
∗
2 +

dR∗2
d𝛼

𝛼 + 𝜀, (2)

where ε is the model error, which was computed for every
simulated tissue property (Figure 1). The model parame-
ters (̂R∗2 and dR∗2

d𝛼
)were estimated by minimizing the model

error via least squares estimation. RMSE and RMS percent-
age error of R∗2 were calculated for each α across tissues
conditions (indexed by c, e.g., myelin water fraction and
residency time), as:

RMSE R∗2 =

√∑C
c=1𝜀

2
c

C
(3a)

and

RMS percentage error R∗2 =

√√√√√
∑C

c=1

(
𝜀c

R∗2simuc
∗ 100

)2

C
.

(3b)

The robustness of the linear model to the available flip
angles was investigated by estimating the RMSE and
RMS percentage error of R∗2 from numerical simulations
(R∗2simu) and in vivo data (Figure 2). In simulations the
RMSE and RMS percentage error were calculated between
the R∗2 estimated on a per flip angle basis via log-linear fit-
ting of the simulated data across TE, and the per flip angle
R∗2 estimated following application of the proposed linear
model of the flip angle dependence. In keeping with the
simulations, the in vivo RMS error was calculated from
the residuals of the linear model of R∗2 dependence on flip
angle, that is, the difference between the mean measured
R∗2 and the mean R∗2 estimated with the linear model for a
given flip angle.

Different α sets were chosen to encompass a wide range
of α (6◦- 42◦), but also to explore the effect of reducing
the amount of data available for the fitting of the linear
model (decreasing number of α from set 1 to 5). Set 5
is typical of an MPM protocol where the flip angles are
chosen to maximize the precision of the subsequently com-
puted R1 estimates.29,35 Using the fitted ̂R∗2 and dR∗2

d𝛼
values,

an approximated R∗2 was estimated for each of the 9 flip
angles and model residuals were calculated in vivo for
comparison with the simulation results.

• α set 1 = [6, 9, 12, 15, 19, 26, 31, 36, 42]◦

• α set 2 = [6, 9, 15, 26, 31, 42]◦

• α set 3 = [6, 9, 2,6 42]◦

• α set 4 = [6, 26, 42]◦

• α set 5 = [6, 26]◦

Finally, the sensitivity of ̂R∗2 and dR∗2
d𝛼

to different tissue
conditions was investigated and summarized as the maxi-
mum variation over the mean of ̂R∗2 and dR∗2

d𝛼
, respectively

(Figure 3).

2.3 Acquisitions

2.3.1 MPM protocol

Data were acquired on a Siemens 7T Terra (Siemens
Healthcare, Erlangen, Germany) using a head coil with 8
transmit and 32 receive channels (Nova Medical, Wilm-
ington, Massachusetts, USA). The MPM protocol29 closely
matched the settings used in the simulations. It com-
prised 3 multi-echo 3D SPGR scans acquired with T1
(𝛼T1w = 26◦), proton density (PD) (𝛼PDw = 6◦) or magneti-
sation transfer (MT) (𝛼MTw = 6◦) weighting. Six echoes
were acquired with TE ranging from 2.56 to 14.46 ms in
steps of 2.38 ms using a TR of 19.5 ms. Only the first 4
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MILOTTA et al. 131

F I G U R E 1 R∗2 computed via simulations for different residency time, MWF, and flip angles for the case of a fiber oriented parallel to B0

(i.e., θ of 0◦). (A) Increasing R∗2 as function of α is observed. (B) A linear model fits the simulated data well as evidenced by model errors<1 s−1.

echoes were acquired for the MT-weighted scan to allow
time for the pre-pulse (Gaussian-shaped RF pre-pulse
with 4 ms duration, 180◦ nominal flip angle, 2 kHz fre-
quency offset from water resonance). Imaging parameters
included FOV of 192× 192× 160 mm3 with 1 mm isotropic
resolution, spoiler gradient moment of 6π per TR, RF
spoiling increment of 144◦.36 Partial Fourier (6/8) in both
phase-encoding directions and elliptical sampling were
used to achieve a single scan duration of 5 min. This core
MPM protocol was extended for the acquisition of addi-
tional multi-echo 3D SPGR scans with flip angles of 9◦,
12◦, 15◦, 19◦, 31◦, 36◦, and 42◦, for a total of 10 acquired 3D
datasets (9 α and 1 MTw).

An in-house sequence exploiting the Bloch-Siegert
shift was used to map the effective transmitting

field (B+1 eff).
37 Relevant parameters included: single

echo, TE/TR = 6.77/40 ms, 14◦ flip angle, FOV of
256× 256× 192 mm3 with 4 mm isotropic resolution,
using a Fermi pulse with an off-resonance frequency of
±2 kHz and 4-ms duration to impart the Bloch-Siegert
phase that encodes B+1 eff.

2.3.2 In vivo R∗2 and ̂R∗2 estimation
for correction of the flip angle bias

The hMRI toolbox28 was used to process each variable flip
angle (VFA) MPM dataset. R∗2 maps for each nominal α
(for a total of 9 maps) were estimated with a voxel-wise
log-linear fit across TE.
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132 MILOTTA et al.

F I G U R E 2 (A) Simulated R2* RMSE and RMS percentage error as a function of different α sets with and without noise. Each α set used
a different number of flip angles (ranging from 9◦ to 42◦) to estimate the first order model parameters. The points in the bar plot represent the
mean error across tissue conditions (MWF and residency time) for each of the 9 flip angles. In the simulations with added noise RMS error
was calculated for 10 000 instantiations of noise, therefore, the error bars represent the standard deviation across noise instantiations. (B)
RMSE and RMS percentage error from experimental in vivo data at 7T. The same flip angle sets were used in the experiments and simulations.

Three additional R∗2 maps were reconstructed with the
ESTATICS15 approach by combining flip angle pairs: [6◦,
26◦], [9◦, 42◦] and [9◦, 26◦]. ESTATICS pools multi-echo
data from each α acquisition and performs a single
log-linear fit assuming a common decay, resulting in
R∗2 maps with enhanced SNR (Supporting Information
Figure S1). ̂R∗2 maps were also generated for each of the α
pairs used to estimate ESTATICS R∗2 maps.15

̂R∗2 and dR∗2
d𝛼

maps were generated by fitting the linear
model in Equation (2) voxel-wise, incorporating transmit
field inhomogeneity (B+1 eff), such that:

R∗2(r) = ̂R
∗
2(r) +

dR∗2
d𝛼

(r)𝛼 B+1 eff(r) + 𝜀(r). (4)

Where r indicates the spatial location of each voxel.

2.3.3 DWI

To investigate the R∗2, ̂R∗2, and dR∗2
d𝛼

dependence on differ-
ent WM fiber orientations, we used DWI to determine
the first eigenvector of the diffusion tensor (representing

local fiber orientation). DWI were acquired at 3T (Siemens
Prisma, Siemens Healthcare, Erlangen, Germany) using
an EPI acquisition with multi-band factor of 2 and 151 dif-
fusion encoded directions with 4 interleaved b-values of 0,
500, 1000, and 2300 s/mm2. Imaging parameters were as
follows: FOV of 220× 220× 144 mm3 with 2 mm isotropic
resolution, TE/TR = 60/3320 ms and flip angle = 88◦.
Additional data were acquired with no diffusion encoding
but reversed polarity of the phase-encoding gradients to
facilitate correction of susceptibility-induced distortions.
The ACID toolbox (http://diffusiontools.com/) was used to
process the diffusion data. Pre-processing of the diffusion
data included 3 steps:

1. Affine registration of the diffusion dataset to correct
for the misalignment caused by motion and eddy cur-
rents.38

2. Multi-shell position-orientation adaptive smoothing,
which reduces the noise of the acquired data without
blurring tissue boundaries.39

3. Hyperelastic susceptibility artifact correction, which
exploits the reversed gradient-based acquisition
scheme to remove distortion artifacts.40
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MILOTTA et al. 133

F I G U R E 3 ̂R∗2 and dR∗2
d𝛼

dependence on MWF and residency time. The α-independent component, ̂R∗2 , had a sensitivity of 12.6% to

MWF, but only 0.74% sensitivity to residency time. The α-dependent component dR∗2
d𝛼

had a sensitivity of 13% to residency time and 55%
sensitivity to MWF.

The pre-processed data were fitted with a non-linear
least squares diffusion kurtosis model to obtain a fractional
anisotropy map, and an angle map describing the WM
fiber orientation with respect to B0.

41,42

2.3.4 Imaging sessions

Three healthy volunteers (female, 42 year-old [partici-
pant 1], male, 40 year-old [participant 2] and female, 34
year-old [participant 3]) were scanned at 7T (Siemens
Terra) across a total of 6 imaging sessions, which are sum-
marized in Supporting Information Table S2. Approval
was obtained from the local research ethics committee
and written informed consent was obtained from each
participant before scanning.

To evaluate the effects of different 𝛼 on R∗2 in vivo, the
extended VFA MPM data were acquired.

Long-term and short-term reproducibility was ana-
lyzed by acquiring data at 7T in 3 scan sessions on par-
ticipant 1, after 1 year (session 1: 11/02/2020; session 2:

10/02/2021) and 1 week (session 3: 17/02/2021), respec-
tively.

The DWI data were acquired in a separate session on
participant 1 to assess R∗2, ̂R∗2, and dR∗2

d𝛼
dependence on WM

fiber orientation.

2.4 Data analysis

All images were analyzed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/, Wellcome Centre for
Human Neuroimaging, London, UK).

The T1-weighted images, with α = 26◦, for each par-
ticipant and each session were co-registered to session 1
and segmented. Participant and session specific WM and
GM masks were defined by those voxels with a proba-
bility of belonging to the respective tissue class >0.9. A
single participant-specific WM or GM mask was obtained
by combining the WM or GM masks across sessions via
logical conjunction. To ensure equivalent processing, each
R∗2, ̂R∗2, and dR∗2

d𝛼
map was co-registered to the T1-weighted
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134 MILOTTA et al.

image acquired with α = 26◦ in session 1 for each partici-
pant.

Reproducibility of R∗2 quantification was evaluated
for each participant for: single α R∗2, ESTATICS and ̂R∗2
approaches. Single α: 6◦, 26◦, or 42◦ and α-pairs: [6◦, 26◦],
[9◦, 42◦], or [9◦, 26◦] were used to compute the R∗2 esti-
mates for this analysis. R∗2 reproducibility among different
α (or α pairs for ESTATICS and ̂R∗2 approaches) was quan-
tified by the coefficient of variation (COV). COVFA was
defined as the R∗2 standard deviation across α relative to the
mean, in percent. This was computed separately for GM
and WM and summarized per tissue by taking the median
across voxels (Equation [5], where V = voxels).

COVFA = medianV

(
std(FA datasets)

mean(FA datasets)
100

)
. (5)

R∗2 repeatability across 2 sessions was assessed for par-
ticipant 1 (session 2 and 3). Bias was defined as the
mean across voxels (V) of the median across α pairs,
of the voxel-wise difference between sessions (Equation
[6a]). 95% confidential intervals (CI) were defined as 1.96
times the standard deviation across voxels of the median
across α pairs of the per-voxel difference between sessions
(Equation [6b]):

bias session = meanV (medianFApairs

(difference between sessions)) (6a)

and

CI session = 1.96 stdV (medianFA pairs

(difference between sessions)). (6b)

Bland Altman plots of the voxel-wise differences across
sessions against the mean are shown in Figure 6.

Finally, the per-α R∗2, R∗2 from ESTATICS, ̂R∗2 and dR∗2
d𝛼

dependence on fiber orientation with respect to B0 was
analyzed using data from participant 1 from imaging ses-
sions 2 and 3 (acquired at 7T) and are shown in Figure 7.

In the space of the diffusion data, the angle between
the fibers and B0 is defined as:

𝜃(r) = arcos
(|vz(r)|
|v⃗(r)|

)
. (7)

Where r represents voxel location, v⃗ is the fiber orienta-
tion in the diffusion data space and vz is the orientation
component aligned with B0.

21

The R∗2 maps for each scanning session were first
resliced into the diffusion space (accounting for differ-
ences in FOV positioning and angulation). Subsequently,
an affine transformation between the diffusion data and

the maps was determined via co-registration to account
for any head rotation between the different scanning ses-
sions. The resulting transformation was applied to the
primary fiber orientation directions (vx, vy, and vz) in dif-
fusion space and a new angle map, which represents the
angle between the fiber orientation and B0 at each head
position (different scanning sessions), was computed with
Equation (7).

R∗2(r), ̂R∗2(r),
dR∗2
d𝛼
(r), and θ(r) measurements were

extracted in WM voxels with a WM probability >0.9 and
a fractional anisotropy >0.6. The fiber angles θ(r) were
segregated into bins containing 200 voxels to have a suffi-
cient number for calculation of reliable summary statistics.
For each bin, mean R∗2(r), ̂R

∗
2(r), and dR∗2

d𝛼
(r) were calcu-

lated and plotted against θ(r). The function R∗2(θ) = R∗2,Iso +
R∗2,Aniso sin4(θ), predicted by the hollow cylinder fiber
model,20,43 was fit to the data to extract the isotropic com-
ponent of R∗2 (R∗2,Iso) and the proportional θ-dependence
via R∗2,Aniso∕R∗2,Iso. Per single-αR∗2 was computed for α= 26◦

whereas ESTATICS, ̂R∗2, and dR∗2
d𝛼

were computed for the α
pair = [6, 26]◦.

The reproducibility of the R∗2, ESTATICS, and ̂R∗2
isotropic components and θ-dependence

(
R∗2,Aniso∕R∗2,Iso

)

across α and α-pairs (for ESTATICS and ̂R∗2 approaches)
was computed as COV

𝛼
defined as:

COV
𝛼
= std(𝛼 datasets)

mean(𝛼 datasets)
100. (8)

The single α and α-pairs considered in the analysis
were: 6◦, 26◦, 42◦ (for R∗2 estimates), and [6, 26]◦, [9, 42]◦,
and [9, 26]◦ (pairs suitable for R1 mapping) for the esti-
mates obtained with ESTATICS and ̂R∗2.

Reproducibility of R∗2,Iso and R∗2,Aniso∕R∗2,Iso across 2 ses-
sions (session 2 and 3) was measured as bias±CI. Bias and
95% CI were respectively quantified as the mean and stan-
dard deviation (scaled by 1.96) across α or α-pairs of the
difference of estimates between sessions.

3 RESULTS

3.1 Simulation results

Simulating R∗2 for 9 different α and for tissues prop-
erties spanning MWF = 0.02:0.02:0.20 and residency
time= 100:100:500 ms revealed an increase in R∗2 as a func-
tion of α for every tissue condition, as shown in Figure 1A
for 4 representative flip angles. The linear model shown in
Equation (2) was used to fit the data. Good agreement was
observed between the simulated data and the linear model
fit, as evidenced by model errors <1 s−1 (Figure 1B).
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MILOTTA et al. 135

Simulations investigating the effects of the
compartment-specific frequency offsets showed that the
linear model (Equation [2]) approximated the data well
for every simulated fiber orientation. Supporting Informa-
tion Figure S2 shows the R∗2 computed for each θ and α via
log-linear fitting across TE (solid lines with diamonds),
̂R∗2 computed via linear fitting pooling all flip angles for a
given θ (turquoise solid line with circles) and R∗2 estimated
following application of the proposed linear model of the
flip angle dependence (dashed lines). Good agreement
was observed between the simulated data and the linear
model fit for every flip angle (solid and dashed lines).

Simulations probing the dependence of the flip angle
dependent

(
dR∗2
d𝛼

)
and flip angle independent (̂R∗2) compo-

nents of R∗2 on MWF and residency times were repeated
for θ = 90◦. These results are shown in Supporting Infor-
mation Figure S3, and are in keeping with those of
Figure 1, which depicts the equivalent results for θ = 0◦.
R∗2 increased with MWF and residency time. Furthermore,
the proposed linear model continues to fit the data well,
evidenced by residuals <2 Hz. R∗2 also increased with θ,
an effect that was accentuated at higher flip angles (Sup-
porting Information Figure S2), whereas ̂R∗2 had a greatly
reduced dependence on θ.

RMSE and RMS percentage error of R∗2 were com-
puted for each α and collapsed across tissue conditions
(Figure 2). This was done for 5 different α sets, contain-
ing variable numbers of flip angles, and used to estimate
the linear model parameters. In the noise-free case, RMSE
<0.6 s−1 and RMS percentage error <1.5% were observed
for each α set. The variability of the error, across tissue
conditions, increased as the number of α used to fit the
linear model decreased. The same trend was observed
when noise was added to the simulations. In this case,
RMSE increased and ranged from 2.1 to 3.2 s−1 going from
α set 1 (9 flip angles) to α set 5 (only 2 flip angles), respec-
tively, whereas RMS percentage error increased to 6.2%
and 9.1%, respectively. In agreement with simulation, the
error in the experimental case for participant 1 (Figure 2B)
increased as the number of flip angles included in the
computation decreased. Consistent results were obtained
for participant 2.

The dependence of the linear model coefficients (̂R∗2
and dR∗2

d𝛼
) on different tissue conditions is shown in

Figure 3. The α-independent component, ̂R∗2, showed a
high sensitivity of 12.6% to MWF as it ranged from 0.02 to
0.20. However, it was effectively independent of the resi-
dency time (0.74% maximal sensitivity). dR∗2

d𝛼
depended on

both MWF and residency time. It had a maximal sensitivity
of 13% to residency time, and a larger maximal sensitivity
of 55% to MWF. The latter dependence was approximately
quadratic.

3.2 In vivo results

R∗2 maps were computed for 9 nominal α. Four representa-
tive R∗2 maps, obtained with α = [6, 9, 26, 42]◦, are shown
in Figure 4A. An increase in R∗2 is visually apparent with
increasing flip angle, most notably in the corpus callo-
sum (zoomed view). ̂R∗2 and dR∗2

d𝛼
components obtained

by fitting the linear model in Equation (4) are shown in
Figure 4B. Consistent results were obtained for all the
participants.

Figure 4C shows the mean measured R∗2 in WM (red
solid line), GM (blue solid line), and WM and GM com-
bined (green solid line) obtained across the 9 nominal
α. The dashed lines (with colors indicating tissue type
as before) show the corresponding mean R∗2 obtained
by fitting the linear model (Equation [4]) in WM, GM,
and WM+GM. The mean model residuals were <1 s−1

across all α, showing good agreement with simulation
results.

Figure 5 shows various R∗2 maps computed using the
multi-echo data obtained with α = 6◦, 26◦ and 42◦. These
were either fit individually (blue), and subsequently used
to derive the α-independent component (̂R∗2 ) of the lin-
ear model (green) using two α, or the data from two α
were combined at the point of fitting R∗2 using the ESTAT-
ICS approach (red). Histograms of values were consistent
for ̂R∗2, but variable for R∗2, particularly in WM, when
estimated on a per-α basis instead of using ESTATICS
(Figure 5A). The reproducibility analysis, for each of the 3
participants, revealed ̂R∗2 to be most robust to α variation
in both WM and GM (Table 1, median COV of 0.98% and
1.42%, respectively), whereas the per-α R∗2 estimates were
least robust regardless of tissue type (Table 1, median COV
of 9.61% and 11.98%, respectively). The robustness of the
ESTATICS approach was intermediate (Table 1, median
COV of 5.98% and 6.14%, respectively).

Bland–Altman analyses of inter-session repeatability
(participant 1, sessions 2 and 3) are shown in Figure 6,
with biases ± CI summarized in Supporting Informa-
tion Table S3. ̂R∗2 showed the smallest bias in WM, R∗2
ESTATICS had the smallest bias in GM, whereas per-α R∗2
showed the highest biases in both GM and WM. However,
the CI was largest for ̂R∗2 indicating poorest cross-session
repeatability.

The R∗2, R∗2 ESTATICS, ̂R∗2, and dR∗2
d𝛼

dependence on
WM fiber orientation with respect to B0, (θ), is shown in
Figure 7 for data acquired in sessions 2 and 3 (orienta-
tion data from session 4). The result of fitting the sin4(θ)
dependence predicted by the hollow cylinder fiber model
is inset. ̂R∗2 (green) had lower θ-dependence than R∗2 esti-
mated with a single α (α = 26◦, blue) or the ESTATICS
approach (red), with the ratio R∗2,Aniso∕R∗2,Iso for (session 2,
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136 MILOTTA et al.

F I G U R E 4 R∗2 maps were computed for 9 nominal α, 4 representative maps are shown in (A). These experimental data show an
increase in R∗2 with increasing α. (B) α-independent ̂R∗2 and α-dependent dR∗2

d𝛼
components were obtained by fitting the linear model (Equation

[4]) to these data. (C) The linear model was used to recompute R∗2 for each α. The measured and estimated R∗2 and the model residuals, 𝜀, are
shown as a function of α.

session 3) being (0.133, 0.181), (0.223, 0.215), and (0.198,
0.205), respectively. dR∗2

d𝛼
showed the highest orientation

dependence with R∗2,Aniso∕R∗2,Iso of 0.5815 and 0.264 in ses-
sions 2 and 3, respectively. This observation agrees with
simulations where the R∗2 θ-dependence is greatly reduced
in ̂R∗2 and therefore must propagate into the dR∗2

d𝛼
compo-

nent. R∗2 depends not only on orientation, but also on
the spatially varying microstructural composition of the

tissue. Despite this, the dependence on fiber orientation
predicted by the hollow cylinder fiber model is apparent
in the data—as is the fact that this dependence increases
with flip angle (Supporting Information Figure S4). Good
agreement, in terms of pattern and effect size, was found
between simulations (Supporting Information Figure S2)
and in vivo results of R∗2 and ̂R∗2 dependence on θ (Support-
ing Information Figure S4).
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MILOTTA et al. 137

F I G U R E 5 R∗2 maps obtained with nominal α of 6◦, 26◦, and 42◦ (blue) or for α pairs of [6◦, 26◦], [9◦, 42◦], and [9◦, 26◦] using ESTATICS
(red) or the α-independent component of the heuristic linear model (green) are shown on the left. Histograms of the R∗2 estimates for each α
or α-pair are shown on the right. The solid lines represent the mean across α or α-pairs, and the shaded area represents the standard deviation.

T A B L E 1 Coefficients of variation (COVs) calculated across
different α or α-pairs within a single imaging session for the
3 participants

R∗
2

R∗
2

ESTATICS ̂R∗
2

Participant 1 Inter α set
COV [%]

GM 11.98 2.75 1.33
WM 9.93 5.98 0.98

Participant 2 Inter α set
COV [%]

GM 11.72 6.63 1.42
WM 9.61 7.24 1.12

Participant 3 Inter α set
COV [%]

GM 12.72 6.14 1.87
WM 8.09 5.69 0.98

Figure 8 summarizes theθθ-dependence of the R∗2
estimates across 2 sessions. R∗2,Iso was most robust,
across both α-pairs and sessions, when derived from ̂R∗2
(Figure 8A ) (Table 2 , COV

𝛼
= 0.74%, Inter-session

bias±CI = −0.006± 0.980). ̂R∗2 was also least θ-dependent
(lowest R∗2,Aniso∕R∗2,Iso) (Figure 8B ) and the most consistent
as α varied (COV

𝛼
= 3.88% versus 5.66% for ESTAT-

ICS and 14.70% for R∗2 per-α). However, the anisotropic

component derived from ̂R∗2 had the lowest cross-session
reproducibility (inter-session bias±CI = 0.041± 0.010).

4 DISCUSSION

In this work, we investigated both numerically and empir-
ically, how the true multi-compartment nature of human
brain tissue manifests in single compartment R∗2 esti-
mates typical of neuroscientific studies. We focused on the
exchanging myelin and intra-extracellular water compart-
ments, which have differential contribution to the mea-
sured signal as α varies causing R∗2 to also depend on α.
Our simulations showed that the α-dependence increased
with MWF and residency time. We introduced an effi-
cient linear model to correct for this R∗2 α-dependence and
demonstrated its robustness in simulations and in vivo
experiments. We assessed, in simulations and empirically,
the orientation dependence of the α-independent compo-
nent of the linear model (̂R∗2) as well as its reproducibility
across sessions in comparison to the per-α or ESTATICS
counterparts.̂R∗2 has appealing robustness to flip angle and
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138 MILOTTA et al.

F I G U R E 6 Bland–Altman plots
showing the voxel-wise difference in R∗2
estimates across sessions as a function of
their mean in GM (left) and WM (right).
The color scale indicates the voxel density
for a certain difference vs mean point. The
red lines show the biases and the green
lines show the confidence intervals.

orientation, but comes with a modest increase in noise
sensitivity.

The two compartment simulations, across a wide range
of MWF and residency times, using the Bloch-McConnell
equations, replicated the α-dependence of R∗2 estimates
observed in vivo. With a linear model of the α-dependence,
we observed excellent agreement between the empiri-
cal observations (Figure 4) and simulations despite the
highly simplifying assumption of just two exchanging
water pools (Figure 1). The fitted offsets predicted by simu-
lation (Figure 1B) were in line with those obtained in vivo
in GM and WM (Figure 4C).

The linear model partitions the effective transverse
relaxation into α-independent (̂R∗2) and α-dependent(

dR∗2
d𝛼

)
components. In agreement with simulations, ̂R∗2

robustly removed the α-dependence in vivo, and as a result
showed higher reproducibility across α sets than R∗2 esti-
mated on a per-α basis or with ESTATICS (Figure 5).
Empirically, the dependence of ̂R∗2 on the WM fiber orien-
tation with respect to B0 was also reduced in comparison
to R∗2 estimated either via a single α or using ESTATICS
(Figures 7 and 8) regardless of which α-pairs were used
(Figure 8 and Supporting Information Figure S4). Any
quantitative imaging protocol comprised of multi-echo
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MILOTTA et al. 139

F I G U R E 7 R∗2 (blue), R∗2
ESTATICS (red) and ̂R∗2 (green) and
dR∗2∕d𝛼 (black) dependence on WM fiber
orientation with respect to the main
field, B0, in sessions 2 and 3.

VFA data, such as the MPM protocol used here,27,28

can capitalize on these benefits without time penalty,
or even use this approach retrospectively with existing
datasets. However, ̂R∗2 was accompanied by moderately
lower cross-session repeatability, particularly when com-
pared to the ESTATICS approach (Figure 6). This noise
enhancement is likely because of the higher number of
model parameters, but can be reduced by including addi-
tional flip angles (Figure 2).

In simulations, ̂R∗2 scaled linearly with MWF, but was
largely insensitive to residency time. It should be noted
that in vivo, even if there is no myelin water compart-
ment, ̂R∗2 will vary spatially because of microstructural
susceptibility differences (e.g., because of iron content).44

̂R∗2 sensitivity to MWF was assessed in vivo in the corpus
callosum by using the MT saturation (MTsat) measure-
ments of the MPM protocol as a proxy given the common
dependence of both MTsat and MWF on myelin volume
fraction45 (Supporting Information Figure S5). Within the
comparatively homogeneous region of interest defined by

the corpus callosum, the relationship between ̂R∗2 and
MTsat closely matched the MWF dependence predicted by
simulations. In particular, there was a monotonic, approx-
imately linear, increase in ̂R∗2 as MTsat increased. Unlike
in simulation, the dependence tended to plateau at high
MTsat, which may be because of residual tissue hetero-
geneity not included in our simulations, or be introduced
by the use of MTsat as a proxy for MWF.

The spatial variability of the flip angle dependent com-
ponent

(
dR∗2
d𝛼

)
will be specifically driven by spatial vari-

ability in myelin water characteristics. This component of
R∗2 had substantial sensitivity to both MWF and residency
time. As would be expected, the flip angle dependence
manifested more clearly (larger dR∗2

d𝛼
) when the MWF was

large and exchange was slow. Simulations showed that dR∗2
d𝛼

depends approximately quadratically on MWF (Figure 3).
The dependence of dR∗2

d𝛼
on our in vivo MWF proxy (MTsat)

was broadly consistent with this (Supporting Information
Figure S5).
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140 MILOTTA et al.

F I G U R E 8 The dependence of R∗2 on fiber orientation was decomposed into orientation independent (R∗2,iso) and dependent (R∗2,Aniso)
components. Reproducibility across sessions and as a function (A) of α for R∗2,iso and (B) proportional fiber orientation dependence quantified
by R∗2,Aniso∕R∗2,Iso obtained with single-α fits, or using α pairs in the ESTATICS and proposed linear modeling approache.

T A B L E 2 COV across different α sets and biases between different imaging sessions for the fiber orientation independent (R∗2,iso) and
dependent (R∗2,Aniso/R∗2 ,iso) components of R∗2

Per contrast ESTATICS ̂R∗
2

R∗
2,Iso

R∗2,Aniso

R∗2,Iso
R∗

2,Iso

R∗2,Aniso

R∗2,Iso
R∗

2,Iso

̂R∗2 ,Iso

̂R∗2 ,Aniso

Inter α set COV [%] 7.78 14.72 2.25 5.66 0.74 3.88

Inter session bias ± CI −0.802± 1.16
[1 s−1]

−0.002± 0.04
[n.a.]

−0.913± 0.34
[1 s−1]

0.003± 0.01
[n.a.]

−0.006± 0.98
[1 s−1]

0.041± 0.01
[n.a.]

A heuristic second order model46 in MWF can describe
this dependence:

dR∗2
d𝛼

= 𝛽1MWF + 𝛽2MWF2
. (9)

If β1 and β2 were known, the second order model could be
inverted to estimate MWF from the dR∗2

d𝛼
component mea-

sured in vivo. The possibility to estimate MWF in vivo via
a simple VFA acquisition would likely be of great interest
because it could in principle be applied retrospectively to
existing datasets, if sufficiently noise-robust. Such a sim-
ple approach to MWF estimation would overcome limita-
tions of existing approaches, such as extended acquisition
time, low spatial resolution or the need for multi-modal
data.16,32,47 This intriguing possibility will be investigated
further in future work.

4.1 Limitations

A highly simplified tissue model with only two com-
partments, myelin and non-myelin water, was used to
simulate the SPGR signal. The non-myelin water com-
partments merged the intra- and extra-cellular water such
that compartment-specific frequency offsets caused by the
myelin sheath were also neglected in the simulations and
only characterized experimentally via the dependence on
WM fiber orientation that results. Dephasing because of
other macro- or microscopic field inhomogeneities was
also ignored. Yet, even in this comparatively simple model,
multiple fixed parameters had to be assumed, specifically
the longitudinal and transverse relaxation rates of both the
myelin and non-myelin water compartments.

MT effects are prominent in the human brain,48 par-
ticularly in WM, but have not been included in these
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MILOTTA et al. 141

simulations. Although this is in keeping with previous
works,16,49,50 further insights may be delivered by extend-
ing the EPG-X framework to account for this effect by
modeling 3 exchanging pools. In addition, it has recently
been shown that the excitation can be modified to mini-
mize the effect empirically.51 Despite this confound, high
levels of agreement were observed between our empiri-
cal measurements and our predictions based on two pool
modeling.

It has been shown that combining micro-structural
information, such as fiber orientation from diffusion ten-
sor imaging, with multi-compartment relaxometry mod-
eling can improve the description of the net signal and
permit estimation of the MWF.16 The gains in model accu-
racy and robustness come at the cost of longer acquisition
times, which are required to collect the data necessary
to reduce the degrees of freedom of the model and avoid
overfitting. Here, we instead aimed to characterize the
impact that the true multi-compartment nature of tissue
has on simpler single compartment R∗2 estimates, which
are typical of neuroscientific studies that sacrifice model
complexity to maintain feasible acquisition times.

5 CONCLUSION

In this work, a two compartment model was used to
investigate the impact of tissue microstructure on single
compartment R∗2 relaxation rate estimates, with partic-
ular focus on the flip angle dependence that this pro-
duces. Simulations showed good agreement with in vivo
data illustrating that MWF and residency time both dic-
tate the observed R∗2. The heuristic linear model that we
propose in this work can partition the α-dependent and
α-independent components of the single compartment R∗2.
Ideally, the true multi-compartment nature of the tissue
would be faithfully characterized, but if the data to sup-
port more advanced modeling are not available, the flip
angle independent component may provide a more robust
measure owing to its reduced sensitivity to confounding
factors such as α and fiber orientation. It may, therefore, be
a useful means of reducing spurious variance particularly
in multisite studies.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Table S1. Summary of parameters used in the simulations
of the net SPGR signal.
Table S2. Summary of the data acquired in each of the in
vivo sessions.
Table S3. Across sessions bias±CI values for WM and GM
for participant 1.
Figure S1. Schematic of the per flip angle and ESTATICS
methods used to estimate R∗2. Two signals acquired with
different flip angles are represented. Per-α estimation: R∗2
is estimated via a log-linear fit across echo times for each
flip angle decay. ESTATICS: a single R∗2 per flip angle pair is
estimated assuming common T2* decay across flip angles.
Figure S2. effect of fiber orientation with respect to B0
on R2* estimates for different simulated flip angles. R2*
recomputed from the linear model of R2* dependence on
flip angle (dashed lines) approximates the simulated data
well (solid lines with diamonds). ̂R∗2 (solid turquoise line
with circles) shows the least dependence on fiber orienta-
tion θ.
Figure S3. R∗2 computed via simulations for different res-
idency time, MWF and flip angles for a fiber orientation
with respect to B0 of 90◦. (A) Increasing R∗2 as function of
α is observed. (B) A linear model of flip angle dependence
fit the simulated data well as evidenced by model errors
<2 s−1.
Figure S4. R2* estimated with different flip angle pairs in
different sessions. An increase in R2* is observed as a func-
tion of fiber orientation, θ, especially for high flip angle. ̂R∗2
also increased with θhowever it was robust across different
flip angle pairs.

Figure S5. Dependence of ̂R∗2(r) and dR∗2
d𝛼
(r) on MTsat mea-

surements in the corpus callosum for 3 participants. MTsat
is taken as a proxy for MWF to test the model predictions
in vivo given that both metrics depend on the myelin vol-
ume fraction. To minimize confounding factors, the model
predictions were assessed in the corpus callosum, a com-
paratively homogeneous ROI (e.g., in terms of iron content
or other field perturbers) that has consistent fiber orienta-
tion (∼90◦ with respect to B0). This fiber tract was defined
by the intersection of the “JHU_MNI_1mm” template52

warped to native space and the participant-specific WM
mask defined as those voxels with a WM probability >0.9.
The MTsat values were segregated into bins containing 200
voxels to ensure reliable summary statistics. For each bin,
mean ̂R∗2(r) and dR∗2

d𝛼
(r) were calculated and plotted against

mean MTsat(r). This was repeated for each of the 3 par-
ticipants. Both components of R∗2 increased monotonically
with MTsat values and tended to plateau or decrease at
higher values. Plateauing and decreasing was predicted
for the flip angle dependent component (approximately
quadratic dependence on MWF), but was not expected for
the flip angle independent component. This may reflect
some residual spatial variability in drivers of transverse
relaxation or be driven by the use of MTsat as a proxy for
MWF.
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