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Mechanical waves propagating in soft materials play an important role in physiology.

They can be natural such as the cochlear wave in the inner ear of mammalians, or controlled such as in elastography in the context of medical imaging. In a recent study 1 , we implemented an experimental tabletop platform that allows direct observation of in-plane guided waves in a soft strip. Here, a detailed description of the set-up and signal processing steps are presented as well as the theoretical framework supporting them. One motivation is to propose a tutorial experiment for visualizing the propagation of guided elastic waves. Last, the versatility of the experimental platform is exploited to illustrate experimentally original features of wave physics such as backward modes, stationary modes and Dirac cones.

I. INTRODUCTION

The mechanical behaviour of soft materials plays a crucial role in various physiological processes [START_REF] Levental | Soft biological materials and their impact on cell function[END_REF] . For example, the impact of the local stiffness of tissues during their development [START_REF] Wozniak | Mechanotransduction in development: a growing role for contractility[END_REF] , the stiffening of a tumor cell [START_REF] Kumar | Mechanics, malignancy, and metastasis: the force journey of a tumor cell[END_REF] or the non-linear softening of arteria [START_REF] Kalita | Mechanical models of artery walls[END_REF] are customary mechanisms still under investigation. Most biological tissues are soft and nearly incompressible. Mimicking them requires to fulfil these two mechanical properties. In that regard, elastomers are interesting candidates. Indeed, they cover a wide range of mechanical properties and they can be molded into an infinite variety of shapes. In plastic surgery, silicone rubber have been adopted to reproduce the shapes and mechanical properties of breasts, lips or noses. In the cinema industry, they have become a standard to conceive skin-masks.

Nowadays, silicone elastomers seem to be promising materials to build artificial organs (such as vocal folds 6 or hearts [START_REF] Vannelli | Dynamic heart phantom with functional mitral and aortic valves[END_REF] ), soft robots [START_REF] Gossweiler | ward a common framework and database of materials for soft robotics[END_REF]9 or even baromorph materials [START_REF] Siéfert | Bio-inspired pneumatic shape-morphing elastomers[END_REF][START_REF] Kim | Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae[END_REF] .

Due to their nearly-incompressible nature, these soft materials present interesting dynamical properties involved in the propagation of elastic waves: the longitudinal waves are several orders of magnitude faster than their transverse counterpart (V L V T ). This specificity has enabled the development of transient elastography [START_REF] Sandrin | Shear elasticity probe for soft tissues with 1-d transient elastography[END_REF] which is now clinically used for liver cirrhosis [START_REF] Foucher | Diagnosis of cirrhosis by transient elastography (fibroscan): a prospective study[END_REF] or tumor detection [START_REF] Gennisson | Ultrasound elastography: principles and techniques[END_REF] . However, elastography is not quantitative when it deals with narrow targets such as artery walls [START_REF] Couade | Quantitative assessment of arterial wall biomechanical properties using shear wave imaging[END_REF][16][START_REF] Maksuti | Influence of wall thickness and diameter on arterial shear wave elastography: a phantom and finite element study[END_REF] , the myocardium [START_REF] Nenadic | Lamb wave dispersion ultrasound vibrometry (lduv) method for quantifying mechanical properties of viscoelastic solids[END_REF][START_REF] Nenadic | On lamb and rayleigh wave convergence in viscoelastic tissues[END_REF] , Achilles' tendon [START_REF] Brum | In vivo evaluation of the elastic anisotropy of the human achilles tendon using shear wave dispersion analysis[END_REF] or even biofilms [START_REF] Liou | Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography[END_REF] . In these geometries, the edges induce guiding phenomena, thus resulting in a different apparent wave velocity. Guided elastic waves are also naturally involved in physiological processes. At the cellular scale, pressure pulses are observed in lipid FIG. 1. Ecoflex ® sample preparation -At time t = 0, the monomer and its cross-linking agent are mixed in equal proportions and a first layer is poured in the sample mould. At t = 10 min, the sample is sprinkled with black carbon grains dedicated to the displacement tracking. At t = 2 hours, a second layer is poured and cures for 6 hours until complete cross-linking.

monolayers [START_REF] Griesbauer | Propagation of 2d pressure pulses in lipid monolayers and its possible implications for biology[END_REF] , and at the macroscopic scale the vocal cords are the support of stationary waves [START_REF] Hirano | Morphological structure of the vocal cord as a vibrator and its variations[END_REF] . Another compelling example is the sound transduction operated by the inner ear of mammalians: the cochlear wave is a guided mechanical wave that travels along the basilar membrane 24,[START_REF] Reichenbach | The physics of hearing: fluid mechanics and the active process of the inner ear[END_REF] .

Although, guiding is a universal wave phenomenon, the case of elastic waves is particularly fascinating: up to three different polarizations can couple at each reflection [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] and at least two distinct wave velocities are involved. Even in a geometry as simple as a plate, elastic guided waves present original properties. These waves have been extensively studied, especially for non-destructive testing applications [START_REF] Alleyne | The interaction of lamb waves with defects[END_REF][START_REF] Su | Guided lamb waves for identification of damage in composite structures: A review[END_REF] . Under certain conditions, they display unique features such as negative phase velocities [START_REF] Bramhavar | Negative refraction and focusing of elastic lamb waves at an interface[END_REF][START_REF] Philippe | Focusing on plates: controlling guided waves using negative refraction[END_REF] or zero group velocity (ZGV) [START_REF] Tolstoy | Wave propagation in elastic plates: low and high mode dispersion[END_REF][START_REF] Holland | Air-coupled acoustic imaging with zero-group-velocity lamb modes[END_REF][START_REF] Prada | Laser-based ultrasonic generation and detection of zero-group velocity lamb waves in thin plates[END_REF][START_REF] Prada | Local vibration of an elastic plate and zero-group velocity lamb modes[END_REF] . This article presents a detailed experimental and theoretical framework for the investigation of the in-plane motion in soft waveguides. First, an experimental platform designed to track the in-plane displacement of a thin plate is proposed. The corresponding theoretical background (Rayleigh-Lamb equation) is exposed. Then, an equivalence between Lamb gated experimentally as well. Unique wave features such as a backward mode, a zero group velocity point (ZGV) and a Dirac cone in the k → 0 limit are reported [START_REF] Lanoy | Dirac cones and chiral selection of elastic waves in a soft strip[END_REF] . As such, the soft strip appears as an appropriate tutorial configuration to expose the richness of linear elastodynamics. Finally, it is demonstrated how the mode chirality can be exploited to perform selective excitation.

II. LOW FREQUENCY IN-PLANE GUIDED WAVES IN A SOFT PLATE

This section examines the vibration of a thin plate made of a nearly incompressible material. The experimental procedure is detailed and the measured in-plane fields are presented.

Then, the theory supporting these measurements is provided, recalling how the reflections of bulk elastic waves at a free interface lead to the emergence of shear-horizontal guided waves and Lamb waves.

A. Experiments

The soft plate preparation and the experimental platform is described. Then, the stroboscopic image acquisition and post-processing operations are explained and the resulting in-plane wave-fields are discussed.

Sample preparation

All along this article, the selected soft elastomer is the silicone rubber Smooth-On Ecoflex ® 00-30, a material that has been widely used in academics in the last few years.

As illustrated in figure 1, the rubber is obtained by mixing a monomer (A) and its crosslinking agent (B). The liquid can optionally be vacuumed for air bubbles removal. Next, the mix is poured onto a mould, here consisting of a flat surface with rigid walls forming a 60-centimeter-side square. For a 3-millimeter-thick Ecoflex ® plate, one roughly needs 500 mL of each liquid. The mixture is then left for curing at room temperature for several hours until a translucent soft material is obtained. Here, the monomer and its cross-linking agent are mixed in equal quantities. Finally, the shear modulus µ of the obtained elastomer is approximately 25 kPa.

Anticipating ulterior image processing operations, dark pigments are seeded on the polymer during the curing stage. A good contrast is obtained by using small black carbon powder from a local art shop. The seeding operation can be performed after pouring half of the total volume (t = 10 minutes) and before pouring the other half (Fig. 1). In the end, one gets a single layer of pigment located halfway through the plate. In this study, the grain density is approximately of one grain per square millimeter.

Experimental setup

The experiment consists in shaking the plate and imaging its in-plane motion. To this end, the soft plate is clamped at its top and bottom extremities into a metallic structure 60 cm 3 0 0 c m FIG. 2. Experimental set-up using a line source -A thin plate of Ecoflex ® with dimensions 60 cm x 60 cm x 3 mm is clamped to an adjustable frame on its top and bottom edges, and held in a vertical position. Vibrations are generated by a shaker driven monochromatically. Both the vibration direction and the source orientation can be adjusted in order to excite different polarizations. The experiment is recorded using a CCD camera located 3 m away from the plate.

(Fig. 2) which dimensions can be adjusted in order to avoid static tension, except from gravity.

The excitation is performed by a shaker (Tira Vib 51120), driven by an external arbitrary wave generator (Keysight AWG 33220) which is itself connected to a power amplifier (Tira Analog Amplifier BAA 500). Typical excitation frequencies span from 1 to 300 Hz. The shaker is connected to a plastic clamp holding a pair of aluminum rods placed on both sides of the soft plate. The two bars pinch the plate over a 30 cm length ensuring the generation of plane-like waves. The shaker and the pinching rods can be rotated to promote specific polarizations. The set-up essentially captures displacements parallel to the plate surface. As a consequence, it is crucial to carefully align the vibration axis of the shaker with the plate to avoid spurious out-of-plane contributions. The motion is captured by a CCD camera (Basler acA4112-20um) with a 4112x3008-pixels sensor (Fig. 2). Note that it is necessary to use a global shutter: all pixels are exposed simultaneously and capture a full snapshot of the scene. A 85-mm zoom lens mounted on the camera and placed 3 meters away from the object provides a clean field of view of roughly 30 centimeters wide square. Narrow angle lenses drastically reduce optical distortions. For an optimal contrast, the system is back-lighted thanks to a wide LED panel placed behind the plate.

Monochromatic excitation and stroboscopy

Given the chosen region of interest, the maximum acquisition frame rate of the camera is of roughly 130 Hz. This means that Shannon's criterion is not fulfilled for frequencies higher than 65 Hz. However, in the linear regime, there is no need for a higher speed camera since stroboscopic effect can be exploited. To that end, the acquisition period of the camera T cam is set slightly greater than the excitation period T excitation , i.e. T cam = T excitation + δt.

Between two successive snapshots, the field undergoes more than a full oscillation period.

Yet, the accumulated phase shift 2πδt/T excitation remains small. The final movie provides the FIG. 3. Principle of the stroboscopic imaging -As the recording framerate is lower than the excitation frequency, one full cycle is reconstructed from the measurements, depicted by the red crosses, taken over several cycles of excitation. The sampling rate has to be precisely defined with respect to the driving frequency.

illusion than the successive snapshots belong to a single wave period (sketch on figure 3).

We refer to this quantity as the pseudo-period.

For the following post-processing steps, it is preferable to work with a given amount of images per movie. The measurements are performed setting this quantity to N = 60 frames over one pseudo-period. This means that the acquisition frame rate has to be determined for each different excitation frequency. If the maximum frame rate of the camera is too low, one can always reduce the sampling frequency by waiting for several excitation periods between successive camera triggers. For example, at 100 Hz, an acquisition sampling rate of precisely 24.8963 Hz would yield to 60 frames regularly spaced within one pseudo-period (the 61st should be the same as the first image), and successive shots occur roughly every 4 periods. Note that the exposure time of the camera should always remain much smaller than the excitation period. The image would be blurred otherwise. Our measurements are Special Issue: Education in Acoustics performed with a typical exposure time of 150 µs. The image quality is seriously hampered above approximately 300 Hz.

In addition to these N frames, a reference image should be captured as the sample is at rest for image processing purposes. horizontal) displacement maps.

Extraction of the complex displacement maps

Next, each of the N frames is compared to the reference thanks to an open source Digital Image Correlation (DIC) algorithm [START_REF] Wildeman | Real-time quantitative schlieren imaging by fast fourier demodulation of a checkered backdrop[END_REF]36 which provides the instantaneous displacement (Fig. 4). The correlation is computed on small image regions, called macropixels. Each macropixel yields one displacement vector (u 1 ,u 2 ). By repeating the operation for all the macropixels of a single frame, two displacement maps are obtained (Fig. 4e andf). The macropixel size is set manually. It should be large enough to contain several seeds while remaining smaller than the wavelength. Here, macro-pixels extending over 25 pixels × 25 pixels of the original image are chosen. Sometimes, the algorithm fails to find a realistic solution for a given macropixel. In that case, one can always spatially interpolate the missing information or apply spatial convolution filter to smooth the displacement maps. Note that the DIC algorithm enables sub-pixel resolution. complex monochromatic displacement is computed as following:

u(r, ω) = 1 N N -1 n=0 u (n) (r)e 2inπ N (1) 
The data contained in 60 memory-consuming frames of thousands of pixels has been reduced

to the knowledge of a single complex matrix of a few hundreds points.

Measured in-plane modes

With the set-up of figure 2, field maps are acquired in an area of 17 cm × 2.4 cm below the clamp (dashed area in the same figure). The vertically polarized mode propagates twice faster than the horizontally polarized one.

(vertical, horizontal and 45°) are investigated while the 30-cm-wide clamp is maintained horizontal.

In the left part of the figure 5, for which the vibration is vertical, u 2 cancels everywhere in the measured area: the motion is purely vertical (ie. aligned with x 1 ). Also, u 1 exhibits a periodic pattern along the x 1 direction and a flat profile along x 2 , and the phase travels toward the bottom (not shown here). This measurement corresponds to a plane wave-like pattern (with a wavelength λ of roughly 10 cm) with both the displacement and the wavevector being parallel to x 1 . The plate thus supports an in-plane guided elastic wave that we can qualify as longitudinal. Similarly, the horizontal excitation along x 2 of the clamp (middle column in figure 5) generates a plane wave-like propagation with a polarization parallel to

x 2 , that can be qualified as a transverse wave. Interestingly, its wavelength is exactly half the wavelength of its longitudinal counterpart. The versatility of this experimental platform is highlighted in the right panel of figure 5. Indeed, instead of selectively exciting each type of plane wave, a motion of the clamp along a 45°tilted direction excites simultaneously the two waves: with one measurement several modes can be retrieved.

Finally, a systematic extraction of the two aforementioned plane waves for frequencies ranging from 50 to roughly 300 Hz is performed. For each frequency, the maps are averaged along x 2 , meaning projected unto a plane wave. Then, for each solution a wavenumber (an inverse measure of the wavelength) along the x 1 direction is obtained by keeping the maximum of the spatial Fourier transform of the profile along x 1 . This way, a dispersion diagram (i.e. frequency as a function of wavenumber) is constructed for the two polarizations in figure 6. Both the dispersion curves appear to be straight lines passing through the origin.

It corresponds to a non-dispersive propagation, that is to say a propagation at a constant phase velocity. The factor 2 between the wavelengths here manifests as a factor 2 between the two slopes: the longitudinal mode travels twice faster than the transverse one.

In the higher part of the measured frequency range the experimental points slightly move off the linear behaviour. The rheology of the polymer is at the origin of this deviation, as explained in section III C, but it remains anecdotal at this stage.

B. Theoretical background

These observations can be explained thanks to a simple theoretical description. The propagation of elastic waves in isotropic solids is a well documented topic. Comprehensive developments can be found in the following textbooks [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF][START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF] .

Bulk waves

The elastodynamics of a homogeneous isotropic solid requires the knowledge of, at least, two elastic moduli. For historical reasons, people usually refer to the Lamé constants λ and µ 1 . But, these two constants can be substituted by any other couple of elastic coefficients such as the Young modulus E, the bulk modulus K or the Poisson's ratio ν. The case of nearly incompressible media corresponds to the limit when ν → 1 2 . Knowing that ν = λ 2(λ+µ) , this amounts to λ µ in terms of the Lamé constants.

By combining the Newton's law of motion and the Hooke's law applied to an infinitesimal volume, one finds that the local displacement field u(r, t) obeys the following vector wave equation:

ρ ∂ 2 u ∂t 2 = (λ + µ)∇(∇.u) + µ∆u (2) 
where ρ stands for the mass density of the solid and ∇ is the gradient operator. In this equation the three components of the displacement field are coupled. In order to decouple the equations it is common to introduce the scalar potential φ and the vector potential Ψ as:

u = ∇φ + ∇ × Ψ (3) 
The component ∇φ corresponds to an irrotational vector field while the component ∇ × Ψ is associated to a divergence free field, that is a deformation without any volume change.

These two potentials are independent and satisfy the following decoupled wave equations:

∂ 2 φ ∂t 2 - λ + 2µ ρ ∆φ = 0 (4) ∂ 2 Ψ ∂t 2 - µ ρ ∆Ψ = 0 (5) 
These d'Alembert equations confirm the propagation of two different types of waves with distinct polarizations and velocities. On the one hand, equation ( 4) corresponds to a longitudinal wave propagating at velocity V L = (λ + 2µ)/ρ and with a displacement parallel to the propagation direction. On the other hand, equation ( 5) stands for transverse (or shear) waves propagating at the velocity V T = µ/ρ with displacements perpendicular to the propagation direction. Ecoflex ® 00-30 has a measured longitudinal velocity of approximately 1000 m/s while the shear wave velocity is about 5 m/s. This high contrast between the two velocities (V L V T ) confirms its incompressible nature as:

ν = V L 2 -2V T 2 2 V L 2 -V T 2 ≈ 1 2 (6) 

Reflection at a free interface

The problem of reflection at an interface reveals the richness of the elastodynamics.

Consider an incident plane wave propagating in the plane (x 1 , x 3 ) impinging on a medium interface at x 3 = 0 (Fig. 7a). As elastic waves have three polarizations, the reflection at the interface gives rise to three different plane waves. However, the so-called shear horizontal (SH) wave with displacement along x 2 (u 1 = u 3 = 0) can only be generated as a reflection of a shear horizontal wave as sketched in figure 7a. On the contrary, longitudinal and shear vertical waves (by opposition to the shear horizontal ones) with displacements in the plane (x 1 , x 3 ) are coupled through reflections at the interface.

Reflection at one interface is the entrance door to more complicated wave phenomena, and notably waveguiding which occurs as a second interface, parallel to the first one, is added. As sketched in figure 7b, the separation between the SH waves and the two others remains valid in this configuration. The two following sections describe the two families of modes that can propagate in a soft plate of thickness 2h.

The case of shear-horizontal guided waves is relatively simple because its dispersion curves map those of the well known acoustic waveguides. Indeed, as all displacements occur along the x 2 direction, the problem becomes a scalar wave problem. Applying the translational invariance along the x 1 direction one seeks for monochromatic solutions of the form:

u(r, ω) =            0 u 2 (x 3 , ω) 0            e ikx 1 (7) 
Assuming that the interfaces at x 3 = ±h are free to move, the stress component T 23 at these interfaces vanishes:

T 23 (x 3 = ±h) = µ ∂u 2 ∂x 3 x 3 =±h = 0 (8)
Solving the wave equation ( 2) for shear waves together with these boundary conditions provides the solutions for the guided shear horizontal waves inside the plate:

u 2 (x 3 , ω) = C cos nπ 2h (x 3 -h) (9)
where C is a scalar constant. And the dispersion relation simply writes:

k 2 = ω V T 2 - nπ 2h 2 (10) 
Such a dispersion relation (figure 8) exhibits a non-dispersive mode, denoted SH 0 , propagating at all frequencies at the shear velocity V T , as well as dispersive propagating modes above their respective cut-off frequencies of f cn = nV T /4h. For a thickness of 3 mm and 8. Theoretical dispersion curves of SH waves -The SH 0 mode is non dispersive with a velocity V T while higher modes appear at cut-off frequencies corresponding to every multiple of

V T 4h .
a shear velocity of roughly 5 m/s, the first cut-off frequency is at 833 Hz, far above the measured frequencies in the experimental part. Thus, the displacement field displayed in figure 5 polarized along x 2 corresponds to this SH 0 mode. This transverse mode has already experimentally demonstrated its non-dispersive nature in figure 6 (green line).

Lamb waves

Due to the coupling at each reflection, the case of longitudinal waves and shear vertical ones is more complicated. However, the calculation steps to establish the dispersion relation and the solutions remain similar. Here, it is preferable to start back from the scalar and vector potentials φ and Ψ. Applying some geometrical arguments, their expressions can be simplified. First, the invariance by translation along x 1 implies the dependence on x 1 to be on the form e ikx 1 . Second, the component of the displacement u 2 is zero and the other components should not depend on x 2 . Third, the plane x 3 = 0 is a symmetry plane, so the solutions should either be symmetric or anti-symmetric. Considering all of these simplifications and solving the wave equations ( 4) and ( 5), their analytical formulations write:

           φ(r, ω) = φ 0 cos(px 3 +α)e ikx 1 Ψ(r, ω) = ψ 2 sin(qx 3 +α)e ikx 1 x 2 (11) with p 2 = (ω/V L ) 2 -k 2 and q 2 = (ω/V T ) 2 -k 2 .
Symmetrical solutions correspond to α = 0 and anti-symmetrical ones to α = π/2. From these potentials, the displacements now write:

u(r, ω) =            u 1 (x 3 , ω) 0 u 3 (x 3 , ω)            e ikx 1 (12) 
with the two non-zero components being:

           u 1 (x 3 , ω) = ikφ 0 cos(px 3 +α) -qψ 2 cos(qx 3 +α) u 3 (x 3 , ω) = -pφ 0 sin(px 3 +α) + ikψ 2 sin(qx 3 +α) (13) 
The dispersion relation of these modes is deduced from the boundary conditions. Assuming free boundaries at both interfaces x 3 = ±h the stresses T 13 and T 33 must cancel, which imply:

           (k 2 -q 2 )φ 0 cos(ph+α) = 2ikqψ 2 cos(qh+α) (k 2 -q 2 )ψ 2 sin(qh+α) = 2ikpφ 0 sin(ph+α) (14) 
Non-trivial solutions for φ 0 and ψ 2 are found when the determinant of this system vanishes.

Under these circumstances, u 1 and u 3 write with a single scalar coefficient C as:

                               u 1 (x 3 , ω) = Cq 2ik k 2 -q 2 cos(qh+α) cos(px 3 +α)
+ cos(ph+α) cos(qx 3 +α)

u 3 (x 3 , ω) = iCk 2ip k 2 -q 2 cos(qh+α) sin(px 3 +α) + cos(ph+α) sin(qx 3 +α) (15) 
And the dispersion relation, known as the "Rayleigh-Lamb equation", writes:

(k 2 -q 2 ) 2 sin(qh+α) cos(ph+α) = 4k 2 pq sin(ph+α) cos(qh+α) (16) 
Unfortunately the Rayleigh-Lamb equation ( 16) does not have general analytical solutions and it must be solved numerically. A Muller algorithm 39 is used to find the roots of this equation for the nearly-incompressible soft plate considered here. The dispersion curves displayed in figure 9 highlight the families of symmetric and anti-symmetric modes. Below the first cut-off frequency of V T /4h ≈ 833 Hz, only two modes exist: the anti-symmetric A 0 and the symmetric S 0 modes. While A 0 dispersion curve is parabolic in the low frequency limit, the S 0 mode is non-dispersive.

The displacements of these modes given by equations ( 15) can also be simplified in the limit kh → 0. For A 0 , one finds:

           u 1 (x 3 , ω) = iC kx 3 + o(k) u 3 (x 3 , ω) = C + o(k) (17) 
where the new constant C has been introduced without losing generality. The displacement u 3 is homogeneous across the thickness, and the displacement u 1 is relatively negligible (kx 3 → 0). This mode, generally called flexural mode, is therefore mostly a transverse vertical mode. It is not measured in the previous experiment since the shaker is aligned in order to avoid out-of-plane displacements.

Taking the limit for the S 0 mode gives:

           u 1 (x 3 , ω) = C + o(k) u 3 (x 3 , ω) = iC kx 3 + o(k) (18) 
This time, the displacement u 1 is homogeneous across the plate and is far greater than the displacement u 3 . In a sense, in this low frequency limit and long wavelength approximation (compared to the thickness) the S 0 mode is seen as a longitudinal mode. Its phase velocity,

V P = 2V T 1 - V T V L 2 = 2 1 -ν V T (19) 
The surprising feature is that, in the incompressible limit, the phase velocity of S 0 simplifies to V P = 2V T . It is thus independent of the longitudinal velocity V L despite its apparent longitudinal polarization. This mode corresponds to the measured displacement u 1 presented in figure 5, which has twice the wavelength of the SH 0 mode. This analytical derivation now explains the ratio of 2 observed in the experimental dispersion curves in figure 6.

III. IN-PLANE GUIDED WAVES IN A SOFT STRIP

In this section, a different geometry is considered: a thin rectangular waveguide made of the same nearly incompressible material. It is made by a parallel cutting of the previous plate. First, an analogy is made between this geometry and the plate geometry already described. Notably, the dispersion of in-plane modes propagating in this strip is shown to be similar to the one of Lamb waves propagating in an isotropic plate with a longitudinal wave velocity being exactly twice the shear wave velocity. Then, the experimental results already reported in Lanoy et al. [START_REF] Lanoy | Dirac cones and chiral selection of elastic waves in a soft strip[END_REF] are presented. The procedure used to separate the modes in order to obtain their profiles as well as their phase velocities is thoroughly described.

A. Theoretical framework

The theory of elastic modes propagating in rectangular waveguide is not straightforward.

As this geometry involves three coupled polarizations, obtaining the full dispersion diagram can be challenging [START_REF] Krushynska | Normal waves in elastic bars of rectangular cross section[END_REF] . Thanks to the Rayleigh-Lamb approximation [START_REF] Cross | Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems[END_REF][START_REF] Laurent | In-plane backward and zero-group-velocity guided modes in rigid and soft strips[END_REF] , the problem drastically simplifies as one deals with the in-plane modes of a strip with a large aspect ratio.

This part treats this problem in the specific case of a soft solid.

Analogy with Lamb waves in a plate

As explained in the previous section, at low frequencies, only three modes propagate in a plate: the first shear horizontal mode SH 0 (Fig. 8), and the symmetric S 0 and anti-symmetric A 0 Lamb modes (Fig. 9). They have uniform profiles across the plate and can roughly be considered as linearly polarized. In particular, S 0 can be seen as a pseudo-longitudinal wave propagating at the constant "plate" velocity V P . Besides, as shown in equation ( 13), for nearly incompressible materials the plate velocity is V P = 2V T .

These observations enable to build an analogy between Lamb waves in a plate and in-plane guided waves in a thin strip as sketched in figure 10. The polarization of A 0 is essentially parallel to the strip edge. As a consequence, adding a second edge to form a ribbon of width 2h (figure 10b), SH 0 and S 0 give rise to guided waves whose displacements stay in the main plane of the ribbon. They are called in-plane guided modes. As shown in the section III of reference [START_REF] Cross | Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems[END_REF] , this coupling is similar to the one of shear and compression bulk waves in a plate.

In other words, the low frequency dispersion diagram for in-plane guided waves in a strip is equivalent to the one for guided waves in a plate. In the following descriptions, the symbol " " will be added to the notations when dealing with the strip configuration. Typically, the plate thickness 2h is replaced by the strip width 2h , the longitudinal wave propagating at V L is replaced by the linearly polarized in-plane wave S 0 propagating at velocity V P (that is V L = V P ), and the SV wave propagating at V T is replaced by the transversely polarized in-plane wave SH 0 propagating at V T (that is V T = V T ). This amounts to solving the Lamb problem for a material of equivalent Poisson's ratio:

ν = ν 1 + ν ( 20 
)
where ν is the Poisson's ratio of the strip material. For incompressible materials, the equivalent Poisson's ratio is ν = 1/3, and the knowledge of V T is sufficient to obtain the full dispersion diagram of the in-plane guided waves in the low frequency range.

Dispersion relation: key physical features

The dispersion curves of the in-plane modes propagating in a soft strip are thus obtained by finding the roots of the Rayleigh-Lamb equations ( 16). The solutions are displayed in figure 11 in normalized units. Several interesting properties deserve to be highlighted. From these curves, one can extract the bar velocity (mode S 0 at low frequencies), evidence a Zero Group Velocity point (S 1 ) and a backward branch, as well as a Dirac cone with a finite group velocity at k = 0 (at f = V T /2h ) a. Bar velocity. The first symmetrical mode, denoted S 0 , is non dispersive for frequencies below the first cut-off frequency. Similarly, to the first symmetric S 0 Lamb mode, S 0 can be seen as a longitudinally polarized mode since it corresponds to a pure compression mode of the ribbon. Its phase velocity can be calculated as a pseudo-plate velocity V P . This velocity deduced from equation ( 19) has a remarkably simple formulation:

V P = 2 1 -ν V T = 2(1 + ν)V T (21) 
In the incompressible limit, it simplifies to V P = √ 3V T . As a consequence, S 0 roughly travels at the transverse velocity, despite being longitudinally polarized mode. This is all the more striking as, in the incompressible limit, the transverse velocity happens to be several orders of magnitude smaller than the longitudinal velocity.

Furthermore, V P also corresponds to the well known bar velocity, associated to the propagation of compression waves along any bar or rod regardless of their cross-section. It can be obtained from an intuitive reasoning. As it corresponds to a longitudinal extension of the waveguide, the relevant elastic modulus is the Young's modulus E and the associated velocity is E/ρ. After injecting the expression E = 2 (1 + ν) µ, one immediately gets equation (21). For a soft material, the Young's modulus simplifies to E = 3µ and the bar velocity again appears independent of V L .

b. Zero Group Velocity and Negative Phase Velocity. Like for Lamb modes, the second symmetrical mode S 1 has a remarkable behavior. Indeed, the corresponding branch exhibits a local minimum for a finite wavenumber. At this specific location, the group velocity V g = dω/dk vanishes. This is the signature of a Zero Group Velocity (ZGV) point. For small wave numbers, the S 1 branch has a negative slope. This indicates that the group velocity is opposite to the phase velocity. Causality imposes that the energy travels from the source to the receiver. As a consequence the group velocity should always remain positive. In practice, this negative slope section cannot be measured. The experimentalist rather accesses its symmetric with respect to the k = 0 axis. This is further discussed in the following sections.

c. Dirac cones: finite group velocity at k → 0. In the small wavenumber limit (k → 0), the branches of the dispersion curve become horizontal (for example the Lamb modes in the plate of figure 9). The dispersion relation ω(k) is quadratic around the cut-off pulsation ω c . As shown by Mindlin 43 , this expansion does not hold for Lamb modes when there is a coincidence between a shear and a longitudinal cut-off frequency of the same symmetry. In these particular cases, the dispersion law is linear in the limit k → 0 and writes to the first order in k as:

ω(k) = ω c + V g k + o(k) (22) 
Such coincidences occur for symmetrical modes S 2m+1 and S 2n , when the bulk velocity ratio V L /V T is equal to 2n/(2m + 1), and for anti-symmetrical modes A 2m+1 and A 2n when V L /V T = (2m + 1)/2n. For example, recent experiments conducted in a cooled aluminum plate (V L /V T = 2) by Stobbe and Murray 44 illustrate this linear dispersion near k = 0.

For modes S 1 and S 2 , the linear slopes of the curve ω(k) can be derived by developing equation ( 16) to the first order and it was found 43 to be V g = ±2V T /π.

The Lamb wave approximation for in-plane modes in a thin soft strip (ie. ν = 1/3) reveals a coincidence frequency for the symmetrical modes S 1 , S 2 . As a result these two modes cross linearly at the normalized frequency f 2h /V T = 1 in figure 11. This linear crossing is also referred to as a Dirac cone [START_REF] Maznev | Dirac cone dispersion of acoustic waves in plates without phononic crystals[END_REF][START_REF] Huang | Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[END_REF] .

d. Displacement near the Dirac cone. From equations ( 15) one can determine the displacements close to the cut off frequencies. For the strip configuration, index 3 must be replaced by 2, h by h and p by p such that p 2 = (ω/V P ) 2 -k 2 . The Taylor expansion of coefficients p and q near the value k = 0 are:

           p = π 2h + Vg 2V T k + o(k) q = π h + Vg V T k + o(k) (23) 
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           u 1 (x 2 , ω) = C π h cos π h x 2 + O(k) u 2 (x 2 , ω) = -isC π h sin π 2h x 2 + O(k)
For ordinary cut-offs, the displacement is either purely longitudinal or purely transverse.

Instead, when there is a coincidence, both polarizations are involved. The factor i between the two components denotes an elliptical polarization. At the specific location x 2 = ±h , the polarization becomes purely circular. The factor s indicates that modes of opposite group velocities are associated to opposite rotation directions.

B. Measurements in a soft strip

The soft plate is now replaced with a soft strip. The edges are cut using a laser cutter (Trotec Engraver Speedy 100). The final strip is 60 cm long, 3 mm thick and its width is h = 4 cm. The wide source is replaced with a point-like clamp, obtained by putting two half spheres in contact. The clamp is slightly off-centered and vibrated vertically in order to feed the system in a non-selective manner. A picture of the setup 1 is reported in figure 12.

Here again, the strip is shaken monochromatically for frequencies ranging from 1 to 200 Hz. The camera captures the motion by following the stroboscopic sketch pictured in figure 3. Finally, the displacement field is extracted by applying the DIC algorithm to the successive snapshots. For example, the obtained field maps at 110 Hz are represented in figure 13. The wave pattern is rather different from the one obtained in the plate experiment. This comes from a superposition between several modes with different propagation constants and spatial profiles.

Separating and identifying them requires two additional post-processing steps schematized in figure 13. First, the symmetrical and anti-symmetrical parts are extracted by respectively summing or subtracting the displacement map with its flipped (along the x 2 direction) counterpart. The concatenation of these field maps yields to the construction of two bigger matrices U (top of Fig. 13), one for each type of symmetry. Then, a Singular

Value Decomposition (SVD) is performed on each matrix. This amounts to the following matrix decomposition: two symmetrical modes and one anti-symmetrical. Since W gives the displacement along the propagation direction, its Fourier transform yields the wavenumbers of the contributing modes.

U = VΣW (24) 
These steps are repeated for all frequencies and the dispersion curves represented as symbols in figure 14 are constructed. As stated earlier, in the experiments, one measures negative phase velocities rather than negative group velocities. This is the reason why the horizontal axis covers negative values.

Overall experimental dispersion curves in figure 14 relatively resembles the theoretical one in figure 11 and most of the discussed key features are visible. Indeed, the bar velocity of the strip (mode S 0 at low frequency) matches the expected value of √ 3V T (where V T is deduced from the SH 0 velocity measured in the plate of figure 5). At 150 Hz, S 2 crosses the axis k = 0 with a linear slope: this is a Dirac cone. Note that, below the Dirac frequency, the measured points have negative wave-numbers : this is a signature of a negative phase velocity. The continuity in the measured points naturally leads to label this backward branch S 2b ("b" for backward). This may appear in contradiction with the dispersion curves for lossless material shown in Fig. 11 where the backward mode belongs to the S 1 branch. However, when the complex wave numbers are displayed as done by Mindlin for Lamb modes [START_REF] Mindlin | Extensional Vibrations of Elastic Plates[END_REF] , it clearly appears that the backward branch is connected to S 2 mode even when the cone does not exist 43 , thus this notation is adopted in several papers [START_REF] Philippe | Focusing on plates: controlling guided waves using negative refraction[END_REF][START_REF] Prada | Laser-based ultrasonic generation and detection of zero-group velocity lamb waves in thin plates[END_REF][START_REF] Laurent | In-plane backward and zero-group-velocity guided modes in rigid and soft strips[END_REF][START_REF] Gérardin | Negative reflection of lamb waves at a free edge: Tunable focusing and mimicking phase conjugation[END_REF] .

However, there are two main differences between the theory in figure 11 and the experiment. First, the Dirac cone should be at exactly 2h /V T but it does not match the value found from the bar velocity neither the value deduced from the asymptotic behaviour at high frequencies of A 0 and S 0 . Second, the ZGV point is not visible in the experiment.

These two differences both originate from the complex rheology of the elastomer 2 .

It is independently measured with a conventional rheometer (Anton-Paar MCR501) which operates in the plate-plate configuration. To this end, a different sample of Ecoflex ® 00-30 is cured in the rheometer itself. Both the real and the imaginary parts of the measured shear is ran with several sets of parameters of the rheological model until a satisfying agreement between theory and experiment is reached. The final set of parameters is µ 0 = 26 kPa, τ = 260 µs and n = 0.33. It almost corresponds to the measured rheology (Fig. 15) but slightly overestimates (µ). This discrepancy can be attributed to temperature changes [START_REF] Wan | Temperature dependent dynamic mechanical properties of magnetorheological elastomers: Experiment and modeling[END_REF] or to differences (preparation or ageing) between the two samples.

The theoretical curves in figure 14 are calculated with these parameters. The wavenumber is complex and its imaginary part is rendered by the transparency of the theoretical lines.

The frequency dependence of (µ) induces a frequency dependence of the velocity V T which allows to fit the entire S 0 , A 0 and A 1 branches. Adding the imaginary part of the shear modulus also explains the lowered Dirac frequency. As for the absence of ZGV points, it is solely due to the viscous damping. While for a lossless material, the S 1 branch and the S * 2b (symmetrical to S 2b with respect to the k = 0 axis) connect at the ZGV point, here, the losses separate those two branches.

IV. GOING FURTHER

The fundamental aspects of the system have now been identified. In this section, the experiment is altered in order to investigate the role of the boundary conditions. In the Dirichlet configuration, the dispersion is found to simplify. After examining the modes polarization, selective excitation are performed by designing specific chiral sources. 

Neumann boundary conditions

Dirichlet

A. Investigating Dirichlet boundary conditions

In section II B 4, the analytical Lamb problem is derived assuming free boundary conditions (Neumann configuration). Here, the case of fixed boundaries (Dirichlet configuration) is investigated. In practice, these conditions can be implemented by clamping the strip in a rigid frame (Fig. 16). by a displacement cancellation condition as follows:

           ikφ 0 cos(p h +α) + qψ 2 cos(qh +α) = 0 -p φ 0 sin(p h +α) + ikψ 2 sin(qh +α) = 0 (26) 
The equivalent of the Rayleigh-Lamb equation for rigid boundaries is then:

k 2 sin(qh +α) cos(p h +α) + qp sin(p h +α) cos(qh +α) = 0 (27) 
The dispersion curves (figure 17) are obtained by searching for the roots of this equation.

Compared to the Neumann case (figure 11), one important feature is the absence of propagation at low frequency (A 0 and S 0 have disappeared). Indeed, the rigid walls imply that no static in-plane deformation can be solution to the problem. However, the cut-off modes (A 1 , S 1 , A 2 etc) still exist. Note that the negative sloped branch, the Dirac cone and the ZGV are still visible but for anti-symmetric modes rather than symmetric ones.

Finally, the displacements can be obtained by eliminating the coefficients φ 0 and ψ 2 in the boundary conditions of equation 26:

                               u 1 (x 2 , ω) = Cq cos(p h +α) cos(qx 2 +α)
+ cos(qh +α) cos(p x 2 +α)

u 3 (x 2 , ω) = -iC k cos(p h +α) sin(qx 2 +α) +p q cos(qh +α) sin(p x 2 +α) (28) 
Here again, the π/2 phase shift between the two components implies that the motion is elliptically polarized.

b. Dirac cone. The Dirac cone appears here for the anti-symmetric modes at the same frequency f c = V T /2h as for the Neumann configuration. At this frequency, the Taylor expansion of p and q are also given by the equation (23). These expressions are substituted into the dispersion relation ( 27):

k 2 - π h π 2h V g h 2V T k V g h V T k = 0 (29) 
Leading to the same expression for the group velocity

V g = ± 2 π V T .
Also, equation ( 28) provides the Taylor expansion of the displacements:

           u 1 (x 2 , ω) = -π h C sin π h x 2 u 2 (x 2 , ω) = is π h C cos π 2h x 2 (30) 
where s indicates the sign of the group velocity. As cos(π/6) = sin(π/3), a circular polarization occurs for x 2 = ±h /3 while it appears at x 2 = ±h in the Neumann configuration. 17). This part of the curve is thus referred to as A 2b .

Just like for the Neumann configuration, the theory provides a convincing agreement on the condition that the complex rheology of the material is taken into account. The value of (µ) has an effect on the asymptotic slope of the branches. The value of (µ) affects the Dirac frequency. In addition, the ZGV point is accurately defined only when (µ) = 0. In this lossy material, two modes with almost opposite wavenumbers coexist, which corresponds to a quasi ZGV point. The absence of actual ZGV point is evidenced by the disconnection between branches A 1 and A * 2b . This is a direct consequence of the increase in losses near this point as rendered by the transparency of the lines.

b. Tracking the displacement at the Dirac point. Shaking the strip at 129 Hz (Dirac frequency), the in-plane motion over a complete period was extracted for 25 positions regularly spaced across the strip and located at a distance x 1 = 18 cm from the source (far enough to avoid evanescent contributions). After removing the symmetric contribution and specifically selecting the A 2 mode thanks to the SVD algorithm, one can reconstruct the full trajectories as shown in figure 19a. They appear to be essentially elliptical and nearly circular at the location x 2 = ±h /3 (red dashed lines) which is in agreement with equation (30). phase shift between the two components (Equations ( 28)). However, the rotation directions are different on either side of the source. This is consistent with the fact that S 1 and S * 1 are phase-conjugate partners.

In order to exploit this specific polarization, the single vertical source is now replaced by two chiral sources (see figure 19c) which are rotated in a symmetric fashion. The rotating sources are designed by connecting a clamp to two perpendicular speakers, and the phase quadrature excitation is controlled thanks to a 4 channels soundboard (Presonus Audiobox 44VSL). The resulting trajectories (figure 19c) demonstrate that S 1 is fed but not S * 1 : the top part of the strip remains still. Indeed the rotation direction of the source corresponds to that of S 1 ; it demonstrates how chirality can be used to perform selective excitation. One can get a clearer picture of the phenomenon by examining the field maps. The 12 successive snapshots of the strip over a full wave period are represented next to each other in figure 20.

The color scale here only indicates the displacement u 1 . Just like for figure 19b, when the excitation is purely vertical, S 1 and S * 1 are fed and the whole strip is excited (Fig. 20a). As the source becomes chiral, only S 1 is selected: waves travel in the bottom part, while the top part is not excited (Fig. 20b).

physics phenomena. Furthermore, their quasi-incompressible nature enables the observation of original dispersion effects such as a Dirac cone 1 . Starting with simple experiments of linearly polarized plane-waves propagating in a thin plate, it ends with complex chiral mode selection near a quasi zero-group velocity mode in a strip with clamped edges. This allows to go over the simple theory of a scalar field guided by two interfaces, namely SH modes, to more complex waveguides where two waves with different velocities and polarizations are coupled at each reflection, namely Lamb modes.

The work is not over and many other complex guiding geometries can be envisioned.

The nearly incompressible nature of the medium being a property shared with most of the biological tissues, analogies with elastic waves existing in the living world can be made. At least three types of wave guides can be identified in the human body. The cochlear wave inside the inner ear of mammalians is supported by the basilar membrane which resembles the clamped strip studied here. The vocal cords, whose vibrations are responsible of sound control, could be the support of complex stationary fields. Last, arteries or neuronal axons are fluid filled circular soft waveguides also hosting interesting wave phenomena.
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where V and W are unitary matrices providing the displacement profile along x 2 and x 1 respectively and Σ is a diagonal matrix providing the singular values (i.e. the mode prominence in the overall measurement). As a selection criterion, all modes associated with singular values of at least 10% of the maximum singular value are considered as meaningful. The other ones are rejected. At 110 Hz (see figure 13), three modes have a relevant contribution: modulus for frequencies ranging from 0.1 to 100 Hz are displayed as symbols in figure 15.

In such a logarithmic scale the imaginary part of the shear modulus appears linear with a slope of almost 1/3, while the real part seems to increase slowly. Among all the available models, as the slope is not an integer it balances for a fractional derivative model. One of the simplest model which also satisfies the Kramers-Kronig relations is the fractional derivative Kelvin-Voigt model 50-52 which takes the form:

This frequency dependent complex shear modulus is injected in the Rayleigh-Lamb equation (16). Again, solving this transcendental equation is not an easy task and its roots are found with the help of an internally developed numerical Muller's algorithm. The latter b. Mode separation. Chiral selection can also be performed with anti-symmetric modes.

The strip is now shaken horizontally by two clamps driven simultaneously at 102 Hz (near the quasi ZGV frequency) following an anti-symmetric scheme. The field pattern in fig-

ure 20c (which here corresponds to the displacement u 2 ) reveals stationary: the zeroes of displacement remain at the same position over a full excitation period (dashed lines). This is possible only if two waves propagating in opposite directions interfere on both sides of the strip. According to figure 18, at this frequency, there are precisely two coexisting modes on either side of the strip: A 1 and A 2b on the bottom part, and A * 1 and A * 2b on the top part. Near the quasi ZGV point, their wavenumber magnitudes become similar, meaning that their interferences can give birth to a standing wave.

As depicted in figure 20d, when the clamps are rotated in an anti-symmetrical manner, the wavefield returns to propagative on both parts. And notably, the zeroes travel toward the bottom on both sides (dashed lines). On the upper part, the wave-fronts are backward,

i.e. they move toward the source, and therefore corresponds to A * 2b . In the bottom part, only A 1 is fed and the wave-fronts travel away from the source. The chiral excitation has allowed here to separate the two components of a quasi ZGV point.

V. CONCLUSION

This article introduces a new "playground" to study wave guiding of elastic waves. It relies on the use of a commercial silicon elastomer. Soft elastomers enable large displacements and slow propagation, which drastically facilitates the experimental procedure. With a few different configurations, we show how this highly visual tool is adequate to explore wave