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Abstract

High level expression of the transcription factor T-bet characterizes a phenotypically distinct 

murine B-cell population known as ‘age-associated B cells’ (ABCs). T-bet-deficient mice have 

reduced ABCs and impaired humoral immunity. We describe a patient with inherited T-bet 

deficiency and largely normal humoral immunity including intact somatic hypermutation, affinity 

maturation and memory B-cell formation in vivo, and B-cell differentiation into Ig-producing 

plasmablasts in vitro. Nevertheless, the patient exhibited skewed class switching to IgG1, IgG4 

and IgE, along with reduced IgG2, both in vivo and in vitro. Moreover, T-bet was required for the 

in vivo and in vitro development of a distinct subset of human B cells characterized by reduced 

expression of CD21, and the concomitantly high expression of CD19, CD20, CD11c, FCRL5, 

and T-bet, a phenotype which shares many features with murine ABCs. Mechanistically, human 
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T-bet governed CD21loCD11chi B cell differentiation by controlling chromatin accessibility of 

lineage-defining genes in these cells: FAS, IL21R, SEC61B, DUSP4, DAPP1, SOX5, CD79B and 

CXCR4. Thus, human T-bet is largely redundant for long-lived protective humoral immunity but is 

essential for the development of a distinct subset of human CD11chi CD21lo B cells.

One sentence summary:

Germline mutation of TBX21 reveals a requirement for T-bet in the generation of a distinct subset 

of CD11chiCD21lo human B cells.

Introduction

T-bet was originally discovered as a T helper 1 (TH1) cell-specific lineage-determining 

transcription factor in mice (1, 2). Its pleiotropic role in innate and adaptive immunity has 

been extended to include regulation of the development and function of murine dendritic 

cells (DCs), NK, NKT, B, and γδ T cells (3). T-bet is expressed by murine NK and T cells 

(3), as well as a small subset of murine B cells phenotypically defined as CD23−CD21/35lo 

or CD11c+CD11b+. These cells have been referred to as “age-associated” B cells (ABCs), 

as their frequency increases in lymphoid tissues of aging mice (4-9). T-bet expression is 

induced in murine B cells in response to activation via Toll-like receptors (TLR4, 7, 9), 

CD40, and cytokines including IFN-γ, IL-12, IL-18, IL-21, and IL-27 (1, 7, 8, 10-14). 

Studies of Tbx21−/− mice showed that T-bet functions intrinsically in B cells to modulate 

class-switch recombination (CSR) to and production of IgG subclasses, including IgG2a/c 

(10, 11, 15-17). A non-redundant role for T-bet in IgG2a/c CSR has been validated in 

mouse models of viral and parasitic infections (18-22) and NP-KLH immunization (16). 

B cell-intrinsic T-bet can also orchestrate IFN-γ-induced formation of long-lived antibody-

secreting cells in mouse models of viral infection (17). Together, these studies revealed a key 

B-cell intrinsic role for T-bet in regulating the quality of murine humoral immune responses.

T-bet has also been implicated in fate decisions for murine B-cell subsets. ABC, as a subset 

of T-bet+ B cells, has been the focus of growing interest over the last decade (4, 6, 9, 23). 

In mice, numbers of these cells increase in lymphoid tissues with age (4, 23, 24), as well 

as following infection with certain viruses (6, 25), bacteria (26, 27), parasites (28), and in 

the context of autoimmunity (29-31). Depletion of ABCs in mouse models of systemic lupus 

erythematosus (SLE) decreases anti-chromatin IgG levels (32) and disease severity (30), but 

the non-redundant function of ABCs remains much less well understood than the conditions 

in which this B-cell subset expands in mice. Moreover, T-bet expression in murine B cell 

subsets has yet to be clearly defined, as it is detected in only ~50% of all ABCs (8, 9). 

It is unclear whether this heterogeneity results from the presence of distinct subsets of 

ABCs, or simply the existence of numerous differentiation stages of the same ABC lineage. 

Furthermore, the requirement for T-bet in the development of murine ABCs in vivo is a 

matter of debate, as some studies indicated T-bet is indispensable for ABC formation (6, 30), 

whereas others showed ABCs are generated normally from T-bet deficient B cells (33, 34). It 

is thus unclear if T-bet is essential or redundant for generating ABCs or a subset of ABCs.
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In humans, numerous subsets of B cells resembling murine ABCs have been identified. 

These include CD21loT-bet+ B cells that were first discovered to be increased in some 

individuals with common variable immunodeficiency (CVID) (35). Subsequent studies 

identified similar populations that have been termed “activated naïve-like B cells”, “atypical 

memory”, or “IgD−CD27− double-negative” B cells that are significantly expanded in as 

chronic viral (HIV, HCV) and malaria infections (36-42), and autoimmune conditions 

including SLE and rheumatoid arthritis (9, 31, 43-49). CD21loT-bet+ B cells are also 

detected at increased frequencies following influenza vaccination (50, 51) and SARS-CoV-2 

infection causing severe COVID19 (52, 53). Thus, depending on the condition, human 

CD21loT-bet+ B cells might be pathogenic, protective, or both. In contrast to mice, CD21loT-

bet+ B cells only mildly increase until 30 years of age but do not increase afterwards (54). 

Moreover, the role of T-bet in the development, maintenance, and function of human B cells, 

including CD21loT-bet+ B cells, and humoral immunity in response to pathogen infections, 

is completely unknown.

We recently reported the first patient with autosomal recessive (AR) complete T-bet 

deficiency (55, 56). This patient carries a homozygous in-del mutation in TBX21 that 

abolishes DNA-binding activity without abrogating protein expression (55). By disrupting 

the development of IFN-γ-producing innate or innate-like adaptive lymphocytes, human 

T-bet deficiency causes Mendelian susceptibility to mycobacterial disease (55). The patient 

also developed upper airway inflammation and peripheral eosinophilia due to TH2-skewing 

of T-bet-deficient CD4+ T cells (56). However, the development and function of B 

cells in this patient have not been studied. Human T-bet deficiency therefore provides a 

unique opportunity to determine the physiological requirement for T-bet in the induction 

and maintenance of humoral immunity, and the development and homeostasis of T-bet-

expressing B cells. By thoroughly assessing B cells in inherited T-bet deficiency, we 

delineated the essential and redundant roles of human T-bet in humoral immunity and 

serological memory.

Results

Altered class switch recombination and production of polyclonal antibodies in human 
T-bet deficiency

To investigate the impact of T-bet deficiency on human B cells, we first performed flow 

cytometric immunophenotyping of the patient (P or M/M – referring to genotype Mutant/

Mutant)’s peripheral blood mononuclear cells (PBMCs). Frequencies of total B cells in P 

was greater than in healthy donors (aged 16 – 65 years), but similar to age-matched healthy 

donors (n=5-8, range 1-7 yrs, mean age 3.7 yrs) (Fig. 1A). This is consistent with the decline 

in B cell frequency in peripheral blood during the first decade of life (57, 58). Proportions of 

transitional, naïve, and memory B-cell subsets, as well as of IgG+ and IgA+ memory B cells, 

were also similar between P, healthy donors, and age-matched controls (Fig. 1B and C). We 

investigated whether T-bet regulated production of different classes of Ig by human B cells 

in vivo, as observed for mice (15). Plasma IgA and IgM levels in P were normal, while IgE 

was elevated (Fig. 1D). Plasma total IgG levels were also higher in P, predominantly due to 

increased IgG1, and a modest increase in IgG4 (Fig. 1D). By contrast, IgG2 was reduced 
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(Fig. 1D). Consistent with these serological findings, which reflect constitutive production 

of Ig isotypes by plasma cells, memory B cells in the T-bet-deficient patient contained 

markedly increased proportions of IgG1+ and fewer IgG2+ cells than healthy donors (Fig. 

S1A). We also investigated antigen-specific antibody (Ab) responses of the T-bet deficient 

patient by determining levels of IgG specific for tetanus toxoid, diphtheria toxoid, and 

Haemophilus influenzae b, which P had been vaccinated against. P had IgG levels against 

these three vaccines in the normal range of healthy donors (Table S1). In addition, his 

antibody titer against pneumococcal antigen was also normal (Table S1). Thus, while human 

T-bet deficiency does not impact the generation of antigen-specific Ab or differentiation of 

human naïve B cells into memory or plasma cells per se, it does skew Ig class switching 

towards IgG1, IgG4 and IgE, and away from IgG2.

Altered B-cell receptor repertoire in inherited human T-bet deficiency

We further investigated the consequences of inherited human T-bet deficiency on humoral 

immunity by analyzing the B cell receptor (BCR) repertoire in P and comparing it to healthy 

donors. This confirmed the flow cytometric analysis of memory B cells (Fig. 1C), and 

serum Ig levels (Fig. 1D), which suggested CSR was generally intact in P, however with 

some differences (Fig. 1E). Specifically, we detected fewer clones expressing IgG2 and 

more expressing IgG4 in P (Fig. 1E). This difference was particularly marked in comparison 

with age-matched healthy children and is consistent with the lower levels of serum IgG2 

and higher serum levels of IgG4 in P relative to healthy donors. Somatic hypermutation 

(SHM) was also intact (Fig. 1F). The targeting and nature of SHM within complementarity-

determining regions of the Ig H and L chains of human T-bet-deficient total B cells were 

consistent with B cells from healthy donors. The repertoire of IGHM-expressing B cells 

from P was slightly less diverse than that of healthy donors (Fig. S1B), probably due to 

the presence of more expanded clones within the IgM repertoire (Fig. S1C). Diversity was 

also lower for IGK and IGL in P (Fig. S1B). This may also be due to the presence of 

some larger clones, based on D20 metrics (Fig. S1D). By contrast, the diversity of IgG 

and IgA expressed by T-bet-deficient B cells was similar to healthy donors (Fig. S1D). 

Further analysis indicated that IGH, IGK and IGL gene usage in B cells of P was not 

different to B cells from healthy donors. However, within IgM-expressing T-bet-deficient 

B cells, usage of IGHV3-15, IGHV3-43 and IGHV7-4-1 genes was higher than in healthy 

donors (Fig. S1E). Interestingly, IgG+ memory B cells of P also displayed higher usage of 

IGHV4-34 (20.2% of IgG1 clones) than those from healthy donors (8.5% of clones) (Fig. 

S1F). Although IGHV4-34 genes are expressed by autoreactive B cells, the significance 

of an enriched population of T-bet-deficient IgG+ B cells expressing putative self-reactive 

BCRs is unknown, as there was no clinical or serological evidence of autoantibodies in 

the patient. Overall, analysis of the BCR repertoire revealed that inherited human T-bet 

deficiency increased and decreased CSR to IgG4 and IgG2 respectively, but otherwise had 

no major impact on the generation of diverse polyclonal antibodies or affinity maturation.

T-bet-deficient B cells differentiate normally into Ig-secreting plasmablasts in vitro

We then investigated intrinsic consequences of T-bet deficiency on the differentiation of 

human B cells into Ig-secreting plasmablasts in vitro. Naïve and memory B cells were 

stimulated with CD40 ligand (CD40L) alone, or together with CpG (CD40L/CpG), different 
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cytokines (59). CD40L/CpG induced marked IgM secretion by naïve B cells, at similar 

levels for P and healthy donors (Fig. 1G). Stimulation with CD40L/IL-21 resulted in 

similarly high levels of IgM, and induction of the class-switched isotypes IgG and IgA, in 

cultures of naïve B cells from healthy donors and from P (Fig. 1H - J). T-bet-deficiency also 

had no effect on the ability of memory B cells to differentiate into plasmablasts secreting 

IgM or IgG, regardless of the nature of the stimulus: CD40L/CpG (Fig. 1K), CD40L/IL-10 

(60, 61) (Fig. 1L), or CD40L/IL-21 (Fig. 1M). T-bet deficiency slightly increased IgA 

production by memory B cells stimulated with CD40L/IL-10 (Fig. 1L). Interestingly, T-bet-

deficient memory B cells tended to produce larger amounts of IgG than memory B cells 

from most healthy donors (Fig. 1M). Quantification of IgG subclasses revealed increases in 

secretion of IgG1 and IgG4 (Fig 1N and O). IgE secretion by memory B cells in response 

to CD40L/IL-4/IL-21 (62) was also unaffected by inherited T-bet deficiency (Fig. 1P). Thus, 

human T-bet deficiency does not affect CSR and B-cell differentiation in vitro in response 

to stimulation with cytokines (IL-4, IL-10, IL21), CD40L or TLR agonists. However, 

similar to findings for serum IgG subclasses, these in vitro functional analyses revealed 

that T-bet deficiency intrinsically alters the capacity of human B cells to differentiate into 

IgG subclass-specific plasma cells.

CD21lo B cells are reduced in human T-bet deficiency

We then investigated whether CD19hiCD21lo B cells, corresponding to murine ABCs, were 

affected by inherited human T-bet deficiency. Conventional flow cytometry established 

that these cells represent ~2.5% of peripheral blood B cells in healthy aged-matched and 

adult donors but only ~0.5% in T-bet-deficient patient (Fig. S2A). Phenotypic analysis 

of CD19hiCD21lo B cells in healthy donors revealed downregulation of CCR7, CXCR4, 

CXCR5, and increased expression of CD11c, CXCR3, FCRL5, CD86, CD95, and T-bet 

relative to CD21+ B cells (Fig. S2B). Notably, expression of CXCR3, FCRL5 and T-bet 

by the residual CD19hiCD21lo B cells detected in the T-bet-deficient patient were not 

upregulated, and CCR7 was not down-regulated, relative to expression levels on CD21+ B 

cells (Fig. S2B).

T-bet deficiency disrupts generation of the CD11c+ subset of CD21lo B cells

We extended these findings by performing in-depth analysis of B-cell subsets with a 29-

color spectral flow cytometry panel. We focused on expression of CD21 and CD11c on 

circulating CD3−CD56−CD19+CD20+ B cells as CD21loCD11chi is a common phenotype 

of murine ABCs and human CD21lo and atypical memory B cells (9, 63-65). CD21lo B 

cells in healthy donors were heterogeneous, expressing various levels of CD11c (Fig. 2A) 

(9, 43, 66). CD21loCD11c+ B cells from healthy donors expressed higher levels of CD19 

and T-bet than corresponding CD21loCD11c− B cells, which mostly lacked T-bet (Fig. 

2A - C). CD21loCD11c+ B cells were markedly lower in P than in healthy donors (Fig. 

2A and B). The residual CD21loCD11c+ B cells in peripheral blood of P displayed no 

detectable expression of T-bet and did not upregulate CD19 (Fig. 2A). CD11c+T-bet+ B-cells 

are reduced in IFN-γ deficient mice (34). By contrast, frequencies of CD21loCD11c+ B 

cells in patients with inherited IFN-γR1 deficiency were similar to healthy donors (Fig. 

2A and B). However, proportions of CD21loCD11c+ B cells with the highest expression of 

T-bet and CD19 were reduced in patients with IFN-γR1 complete deficiency compared 
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to healthy donors (Fig. 2A and C). This suggests that while IFN-γ signaling, which 

can induce T-bet in human and murine B cells (6, 7), is not required for the in vivo 
development of CD21loCD11c+ B cells in humans, IFN-γ does modulate differentiation 

of these cells, evidenced by lower expression of CD19 and T-bet on CD21lo B cells from 

IFNGR1-deficient individuals (67).

IFN-γ, STAT1 and T-bet cooperate to induce the generation of human CD11chiCD21lo B 
cells in vivo

We investigated this aspect further by studying B cells from patients with AR complete 

STAT1 deficiency, which abolishes signaling via IFN-γ and other STAT1-dependent 

cytokines (68). Proportions of CD21loCD11c+ B cells in AR STAT1-deficient patients 

were also similar to healthy donors (Fig. 2D and E). Interestingly, STAT1-deficient 

CD21loCD11c+ B cells expressed high levels of CD19, but only intermediate levels of 

CD11c (CD11cint), whereas most of the CD21loCD11c+ B cells of healthy donors were 

CD11chi (Fig. 2D and F). Similarly, IFN-γR1-deficient CD21loCD11c+ B cells expressed 

lower levels of CD11c compared to CD21loCD11c+ B cells from most age-matched controls 

(Fig. S2C). Interestingly, frequencies of CD21loCD11c+ B cells expressing the highest levels 

of CD11c and T-bet (i.e. CD11chiT-bethi) in AR STAT1 or IFN-γR1 deficiencies were lower 

than in age-matched and most adult controls (Fig. S2D and E). Strikingly, CD11chiT-bethi 

B cells were completely absent in T-bet deficiency (Fig. S2E). Thus, CD21lo cells can be 

generated in the absence of T-bet, STAT1 or IFN-γR. However, T-bet is strictly required to 

induce the canonical CD21loCD11c+T-bethi phenotype of this B-cell subset, while STAT1 or 

IFN-γR are only required to generate the CD11chiT-bethi subset of human CD21loCD11c+ B 

cells.

Comprehensive characterization of CD21loCD11c+ B cells

Based on spectral flow cytometry, CD21loCD19hiCD11c+ B cells constitute only a 

subset of human CD21lo B cells (Fig. 2A). We therefore further explored the nature 

of human B cell subsets defined by T-bet, CD21, and CD11c expression. In healthy 

donors, CD21loCD11c+ B cells expressed T-bet more strongly than CD21+ B cells, but 

this expression was also heterogeneous, as most CD21loCD11c+ B cells lacked T-bet 

(Fig. S2F). We overlaid CD21loCD11c+T-bethi B cells with their CD21loCD11c+T-betlo 

counterparts and CD21hiCD11c− B cells (Fig. S2F). CD21loCD11c+T-bethi B cells had 

the highest levels of CD19 and CD20 (Fig. 2G, H; Fig. S2F). We further defined the 

phenotype of CD21loCD11c+T-bethi B cells relative to CD21hiCD11c−, CD21loCD11c−, and 

CD21loCD11c+T-betlo B cells. In addition to CD19 and CD20, HLA-DR and FCRL5 were 

expressed at the highest levels by CD21loCD11c+T-bethi B cells, and at intermediate levels 

on CD21loCD11c+T-betlo B cells of adult and age-matched healthy donors (Fig. 2I, Fig. 

S2G). By contrast, CD23, CD24, CD38 and CD40 levels were lowest on CD21loCD11c+T-

bethi B cells, intermediate on CD21loCD11c+T-betlo B cells, and highest on CD21hiCD11c− 

B cells (Fig. S2H - K). CD95 was strongly expressed on all CD21loCD11c+ B cells, with 

expression on CD21loCD11c+T-betlo B cells being slightly higher than on CD21loCD11c+T-

bethi cells (Fig. S2L). CXCR3 and CD86 were strongly expressed, whereas CXCR4 was 

only weakly expressed, on CD21loCD11c+ cells, but the level of expression of these 

molecules on CD21loCD11c+T-bethi cells was similar or lower than on CD21loCD11c+T-
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betlo B cells (Fig. S2M - O). CD21loCD11c+T-betlo B cells also had unusually high levels 

CD11b, FCRL4, CD10, CD269, CD5, and CD80 generally not observed on their T-bethi 

counterparts (Fig. S2P - T). Thus, CD21loCD11c+CD19hiCD20hi T-bet+ B cells constitute a 

distinct subset of human B cells, with expression of most signature markers being consistent 

across different age groups, and being T-bet dependent. In contrast, CD21loCD11c+T-betlo B 

cells appear to be an intermediate precursor of CD21loCD11c+T-bethi B cells or represent a 

distinct effector B-cell subset.

Unsupervised analysis confirms the depletion of CD21loCD11c+ B cells in T-bet deficiency

To prevent bias introduced by manual gating, and identify other B-cell 

perturbations in inherited T-bet deficiency, we performed an unsupervised analysis 

of CD3−CD56−CD19+CD20+ B cells with FlowSOM (69, 70). We excluded T-bet 

from the initial clustering because T-bet-deficient B cells had lower basal levels of 

T-bet. When B-cell data for all individuals – including healthy donors, IFN-γR1-, 

STAT1-, and T-bet-deficient patients – were combined, 30 self-organizing clusters were 

identified (Fig. S3A, S3B; Fig. 3A). Notably, five B-cell clusters were enriched or 

diminished in the T-bet-deficient patient relative to healthy donors. The percentage of B 

cells corresponding to cluster 25 (CD21hiCD24hiCD40hiCD23−CD11c−CD38int), probably 

representing a subset of immature B cells, was higher in P than in adult and age-

matched healthy donors but lower in a patient with AR complete STAT1 deficiency 

(Fig. 3A and 3B). By contrast, four clusters were depleted in P: clusters 13 and 14 

(CD19hiCD20hiCD21loCD23−CD24−CD11cintCD27−CD38−CD40lo) and clusters 9 and 10 

(CD19hiCD20hiCD21loCD23−CD24−CD11chiCD27+/−CD38−CD40lo) (Fig. 3A, C and D). 

CD21loCD11c+ B cells, including both CD11cint and CD11chi, were therefore the only 

B-cell subset strictly dependent on T-bet (Fig. 3E). These four clusters (Clusters 9, 10, 

13, 14) all expressed high levels of intracellular T-bet (Fig. S3), and the frequencies 

of each was lowest in the T-bet deficient patient (Fig. 3C - E). Remarkably, these 

subsets had different developmental requirements. Depletion of clusters 9 and 10, but 

not clusters 13 or 14, was observed in patients with inherited AR STAT1 deficiency 

(Fig. 3A, C and D). However, IFN-γR is redundant for the development of cluster 

9 (CD19hiCD20hiCD21loCD23−CD11chiCD95hiFCRL4hiCXCR3hi), whereas cluster 10 

(CD19hiCD20hiCD21loCD23−CD11chiCD95int CD27lo) seemingly required both STAT1 

and IFN-γR for their proper development (Fig. 3C). Although signaling via T-bet was 

indispensable, intact signaling via IFN-γR or STAT1 was not required for the generation of 

CD21loCD11cint B cells corresponding to clusters 13 and 14 (Fig. 3D). This is consistent 

with our earlier observation that most CD21loCD11c+ B cells in STAT1-deficient individuals 

expressed intermediate levels of CD11c (Fig. 2F).

IgA- and IgG-expressing B cells are enriched in CD21loCD11c+ B cells, which correlates 
strongly with high T-bet expression

To evaluate expression of Ig isotypes by CD21loCD11c+ and other B cell subsets, we 

integrated the surface expression of BCRs into a 30-color spectral flow phenotyping 

panel. Frequencies of CD21loCD11c+ B cells in inherited human T-bet deficiency were 

significantly lower than in adult and age-matched controls (Fig. S4A). Frequencies of 

unswitched IgM+IgD+ B cells were significantly reduced in CD21loCD11c+ B cells from 
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adult, age-matched healthy donors and T-bet deficiency compared to CD21hiCD11c− and 

CD21loCD11c− B cell subsets (Fig. 3F - H). By contrast, frequencies of IgG+ or IgA+ 

switched B cells were significantly increased in CD21loCD11c+ B cells among healthy 

donors, but not T-bet deficient P, relative to these other B-cell subsets (Fig. 3F, 3G, 

3I and 3J). These IgG+ or IgA+ switched CD21loCD11c+ B cells did not express the 

surface memory marker CD27 (Fig. S4B). This was in striking contrast to IgG+ or 

IgA+ CD21hiCD11c− B cells that were mostly CD27hi (Fig. S4B). Most IgG+ or IgA+ 

CD21loCD11c+ B cells from healthy donors displayed the highest expression of T-bet 

amongst all B-cell subsets examined (Fig. S4C - E and Fig. 3K). CD71 can delineate 

early activated CD20hi B cells from resting naïve B cells (71). CD71+CD20hi B cells share 

some phenotypic similarity with CD21hiCD11c− cells and CD21loCD11c+ B cells such as 

high CD80 expression (Fig. S4F). Interestingly, frequencies of CD71hiCD80hi cells were 

slightly enriched in CD21loCD11c+ B cells and drastically increased in the remaining few 

CD21loCD11c+ B cells in T-bet deficiency (Fig. S4F and G). Therefore, IgG+ or IgA+ B 

cells are enriched in CD21loCD11c+ B cells in healthy donors but not T-bet deficiency. 

Expression of IgA and IgG on these CD21loCD11c+ B cells correlate strongly with high 

T-bet expression, collectively suggesting a critical role of T-bet in the development of this 

distinct subset of B cells.

Single-cell proteotranscriptomics of CD21lo B cells reveals the complete depletion of a 
distinct subset of human CD21lo B cells in inherited T-bet deficiency

To test if the apparent absence of the CD21loCD11c+CD23loCD24loCD38lo B-cell subset 

in T-bet deficiency may result from the lack of surface markers potentially regulated 

by T-bet, we performed single-cell (sc) proteotranscriptomic profiling of CD21lo B cells. 

PBMCs from age-matched healthy donors, IFN-γR1-deficient and T-bet-deficient patients 

were labeled individually with oligonucleotide (OGN)-barcoded Hashtag Abs and OGN-

conjugated TotalSeq Abs against CD21, CD11c, CD95, CXCR3, and FCRL5. To avoid 

epitope competition, different clones of anti-CD21 and CD11c Abs that recognize unique 

epitopes, were used for flow and TotalSeq purposes (Fig. S5A and B). Cells were pooled, 

FACS-sorted as live CD20+CD21lo B cells, followed by CITE-seq (cellular indexing of 

transcriptomes and epitopes by sequencing) and sc-VDJ sequencing (Fig. 4A and B, Fig. 

S5C). We analyzed 328 and 273 CD21lo cells from two age-matched controls, 913 CD21lo 

cells from the IFN-γR1-deficient patient, and 937 CD21lo cells from P. Based on unbiased 

automated clustering, CD21lo B cells from these four individuals formed five distinct 

clusters - 0, 2, 3, and 4 (Fig. S5D, Fig. 4C and Data file S1) - each with a unique 

transcriptomic signature (Fig. S5D). Cluster 0 corresponded to memory B cells, with high 

levels of CD27, CD99, LTB, and CD53; cluster 1 corresponded to transitional B cells with 

high levels of IGHM, IGHD, ISG20, IL4R and CCR7; cluster 2 had the highest levels of 

CXCR5 and SOCS3; cluster 3 corresponded to CD21loCD11chiT-bet+ B cells, defined by 

spectral flow cytometry, as shown by high expression of CD19, MS4A1 (CD20), ITGAX 
(CD11c), FCRL2, FCRL3, and FCRL5; cluster 4 corresponded to cells with high levels 

of AP-1 subunits as well as CD69, CD9, CD38 and CD55 (Fig. S5D). Strikingly, the T-bet-

deficient patient was completely devoid of cluster 3, which was present in age-matched 

controls (Fig. 4D and E). Consistent with cytometric data, cluster 3 B cells were reduced – 

but still detectable – in IFN-γR1-deficient patients (Fig. 4E). Therefore, CD21loCD11c+ B 
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cells form a distinct T-bet-dependent B-cell subset with a distinguishable pattern of signature 

gene expression that is consistent with the unique pattern of surface marker expression.

Characterization of CD21loCD11c+ B cells by single cell proteotranscriptomics

Transcripts of TBX21, encoding T-bet, were barely detectable by CITE-seq. However, most 

cells containing TBX21 mRNA belonged to cluster 3 corresponding to CD21loCD11c+ B 

cells (Fig. 4F). These B cells had the highest levels of CD11c protein and mRNA (ITGAX, 

Fig. 4F). ENC1, ITGB2 (encoding CD18), TNFRSF1B (encoding TNFR2), FCRL5, CD72, 

FCRL2 and FCRL3 mRNA, and FCRL5 protein were also highest in this subset (Fig. 4G, 

4H, Fig. S5E - H). Of note, CXCR3 mRNA expression was low in all clusters suggesting 

high mRNA expression of CXCR3 may precede the differentiation of these B cell subsets 

(Fig. S5E). Importantly, higher expression of ENC1 in CD21lo B cells was confirmed by 

quantitative PCR (Fig. S5I). By contrast, CD21loCD11c+ B cells had low levels of FCER2 
(CD23a, low-affinity IgE receptor), CD24, CD27, ITGAM (CD11b), SELL (CD62L) and 

LTB (Fig. S5J). TFRC or CD71, the mRNA expression of which is elevated in human early 

activated B cells (71), was not increased in CD21loCD11c+ B cells (Fig. S5K). The pattern 

of expression of these genes by CD21loCD11c+ B cells in healthy donors was consistent 

with the levels of the corresponding proteins in the T-bet-dependent subsets identified by 

flow cytometry (Fig. 3 and Fig. S2). We identified additional genes differentially expressed 

between CD21loCD11c+ B- and other CD21lo B-cell clusters. MS4A7, CD22, CD72, CD74, 

CD79A, CD81, CD164, FCGR2B, FCMR, FCRLA, IL21R, ITGB2, ITGB7, NFATC3, 

NR4A1, NR4A2, and NR4A3, and the HLA class II genes including HLA-DRB1, HLA-
DPB1, HLA-DPA1 and HLA-DQA1, were significantly higher, while CD44, CD53, CD69, 

CD70, CXCR4, CXCR5, NFKBIA, and RELB were significantly lower, in CD21loCD11c+ 

B cells (cluster 3) compared to the other clusters (Fig. 4I, Fig. S5L, Data file S1). 

Higher levels of FcR, complement receptor 4, NR4A family, and HLA class II genes in 

CD21loCD11c+ B cells suggest these cells function in antigen-presentation (72), cognate 

T-B cell interactions, and peripheral tolerance (73).

Normal CSR and SHM in CD21loCD11c+ B cells

We then analyzed sc-VDJ sequencing data. A few B cells expressed >1 Ig H or L chain 

gene, consistent with recent reports (74, 75). The frequencies of cells with 3-4 consensus 

Ig chains were similar in P and age-matched controls (Fig. 5A). The frequencies of cells 

expressing >1 Ig H or L chain gene were similar for CD21loCD11c+ B cells and other cells 

(Fig. 5B). We then assessed the clonality of each sample. Cells with identical sequences 

for the junctional region, the CDR3 region, or both IgH or IgL chains were considered 

to be of the same clonotype. Most B cells were unique. However, 1-10% of clonotypes 

were common to >1 CD21lo B cell. The frequency of expanded clonotypes among 

CD21loCD11c+ B cells did not differ between the T-bet-deficient patient and healthy donors 

(Fig. 5C). Frequencies of expanded clonotypes were similar among CD21loCD11c+ B cells 

from healthy donors and IFN-γR1-deficient patients (Fig. 5D). Consistent with enriched 

IgG- and IgA-expressing B cells in CD21loCD11c+ B cells (Fig. 4), single-cell studies 

showed that the frequencies of IgG- and IgA1/2-switched B cells among CD21loCD11c+ B 

cells of most healthy donors were higher than those among other CD21lo B-cell counterparts 

(Fig. 5E). We also assessed SHM frequency in a 280-nucleotide (nt) region upstream 
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from the CDR3 site at single-cell level, by comparing the assembled sequences with their 

predicted germline sequences (76, 77) (Fig. 5F). SHM frequencies ranged from 0 to 10%. 

CD21lo B cells from T-bet-deficient or IFN-γR1-deficient patients displayed similar levels 

of SHM to CD21lo B cells of age-matched controls (Fig. 5G). CD21loCD11c+ B cells from 

healthy donors and IFN-γR1-deficient patients had SHM rates similar to those in other 

CD21lo B-cell counterparts (Fig. 5H). Thus, CD21loCD11c+ B cells had levels of clonal 

expansion, CSR and SHM similar to those of other CD21lo B cells. However, IgG- and 

IgA-enriched B cells appear accumulate in CD21loCD11c+ B cells.

Signaling via TLR, BCR and IFN-γ or IL-27 induce T-bethiCD19hiCXCR3+ B cells in vitro

The lack of CD21loCD11c+ B cells in P demonstrates an indispensable role for T-bet in 

generating and/or maintaining these cells in vivo, but it remains unknown whether the 

requirement for T-bet in this process is B cell intrinsic or extrinsic. We addressed this 

by investigating the ability of naïve B cells from healthy donors to differentiate into T-bet-

expressing B cells in vitro. CpG stimulation induced expression of T-bet in, and increased 

CD19 on, human naïve B cells (Fig. 6A) (6, 7, 78). The proportion of T-bethiCD19hi B 

cells was further enhanced by costimulation with anti-Ig (αIg). Addition of IFN-γ or IL-27 

modestly increased expression of T-bet and/or CD19 by CpG/αIg-primed naïve B cells (Fig. 

6A-C). Extended phenotypic analysis of in vitro-derived T-bethiCD19hi B cells revealed 

that CpG/αIg-stimulation induced stronger FCRL5, CD95, and CD19 expression than CpG 

alone (Fig. 6B - D). Notably, addition of IFN-γ or IL-27 to CpG/αIg-stimulated naïve B 

cells led to further increases in expression of FCRL5, CD95, and CD19 (Fig. 6A, D, E). 

Furthermore, CXCR3 was induced on 30 to 65% of T-bethiCD19hi B cells following culture 

with CpG/αIg and either IFN-γ or IL-27, but on fewer than <10% of cells in response to 

CpG/αIg alone in vitro (Fig. 6F, G). Thus, these in vitro culture conditions provide a model 

to determine the intrinsic molecular requirements for generating T-bethiCD19hi B cells from 

naïve B cell precursors.

T-bet functions in a B cell-intrinsic manner to induce the generation of CD21loCD11c+ B 
cells

We then subjected naïve B cells from P, and patients with autosomal dominant (AD) 

partial IFN-γR1 deficiency (79-81), dominant negative (DN) STAT3 deficiency (82), AD 

or AR STAT1 deficiency (82-84), AR complete IL-27R deficiency (unpublished), partial 

recessive JAK1 deficiency (unpublished), or AR IRAK4 deficiency (67, 85) to these culture 

conditions. As expected, IRAK4 deficiency completely abolished induction of T-bet in B 

cells stimulated with CpG alone or together with other stimuli, establishing a requirement 

for TLR signaling in generating T-bet-expressing B cells in vitro (Fig. 6H). In contrast, T-bet 

was induced in T-bet-, AD STAT1, AR STAT1, AR IL27R- and AD IFN-γR1-deficient 

naïve B cells stimulated with CpG/αIg, CpG/αIg/IFN-γ or CpG/αIg/IL-27 (Fig. 6H). 

However, T-bet-deficient B cells had lower levels of T-bet than naïve B cells from most 

healthy donors (Fig. 6H), suggesting T-bet promotes its own expression. Neither IFN-γ 
nor IL-27 induced CXCR3 expression on naïve B cells from patients with AD IFN-γR1 

deficiency or AR complete IL-27R-deficiency, respectively (Fig. 6H- K). The ability of these 

cytokines to induce CXCR3 on CpG/αIg-stimulated naïve B cells was also reduced by AD 

STAT1 deficiency and completely abolished by AR STAT1 deficiency but was unaffected 
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by DN mutations in STAT3 (Fig. 6H - K). Similar results were obtained for upregulation 

of CD19 and FCRL5 expression mediated by IFN-γ, inasmuch that this was abolished 

by bi-allelic mutations in TBX21, STAT1, and impaired by DN mutations in IFNGR1 or 

STAT1 (Fig. 6H - K). The role for STAT1 in this process was also revealed by the ability 

of JAK inhibitors to prevent the generation of T-bethiCXCR3+ B cells from naïve B cells 

from healthy donors in vitro (67). These results establish that signals mediated by TLRs 

and the BCR in the presence of cytokine inputs initiate the differentiation of naïve B cells 

into T-bet+CD19hi B cells independently of T-bet. However, T-bet is strictly required for the 

generation of T-bet+CD19hiCXCR3+FCRL5hi B cells in vitro.

Chromatin accessibility of B cells is altered in inherited T-bet deficiency

To explore mechanisms by which T-bet controls the lineage determination of T-bet-

expressing B cells in humans, naive B cells from healthy donors and P were stimulated 

with CpG/αIg in the presence of IFN-γ or IL-27. Cells were subjected to Omni-ATAC-

seq for the genome-wide investigation of chromatin accessibility (86). In the absence of 

stimuli, chromatin accessibility differed between B cells from healthy donors and P for 

only 33 loci (Fig. S6A). Only five of these loci also presented differences in chromatin 

accessibility between naïve B cells from healthy donors and P in response to stimulation 

with CpG/αIg/IFN-γ or CpG/αIg/IL-27 (Fig. 7A). Three of these were encompassed by 

the CCL3L1 locus, and their chromatin was in the closed configuration in T-bet deficiency, 

with another proximal locus within CCL4L1 following the same trend (Fig. 7A and Fig. 

7B). This suggests that T-bet-deficient B cells are less poised to secrete chemokines 

required for T-cell recruitment and are therefore less likely to receive sufficient T-cell help 

(87). Following in vitro stimulation with CpG/αIg/IFN-γ, chromatin accessibility differed 

significantly between B cells from healthy donors and P for 2391 loci. For 139 loci, 

chromatin accessibility differed significantly between B cells from healthy donors and those 

of P following CpG/αIg/IL-27 stimulation, and 50 of these loci overlapped with those 

displaying differential chromatin accessibility after CpG/αIg/IFN-γ stimulation (Fig. S6A). 

This finding suggests that IFN-γ and IL-27 stimulate B cells through a common mechanism, 

probably involving T-bet, but that IFN-γ is the more potent stimulus, consistent with larger 

proportions of T-bet+CXCR3+FCRL5+ cells induced by IFN-γ from CpG/αIg-stimulated 

naïve B cells (Figure 6E and F). Thus, inherited human T-bet deficiency leads to changes in 

chromatin accessibilities of targets common to stimuli known to induce T-bet in B cells.

Changes in the epigenetic landscape determined by T-bet program B cell differentiation in 
vitro

We analyzed epigenetic changes governed by T-bet in B cells by first studying changes in 

chromatin accessibility in activated B cells from healthy donors. Chromatin accessibility 

was upregulated at 2017 loci and downregulated at 461 loci in response to CpG/αIg/

IFN-γ in B cells from healthy donors relative to unstimulated B cells. 89% (2208) of 

these 2478 differentially regulated loci remained unaltered in CpG/αIg/IFN-γ-stimulated 

T-bet-deficient B cells (Fig. S6B). Chromatin accessibilities of 1184 loci were upregulated, 

and those of 352 loci were downregulated in B cells from healthy donors in response 

to CpG/αIg/IL-27. As for CpG/αIg/IFN-γ stimulation, most (89%) remained unaltered 

by CpG/αIg/IL-27 in T-bet-deficient B cells (Fig. S6B). Thus, the majority of epigenetic 
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changes caused by stimuli that induce T-bet in human B cells were T-bet-dependent. 

These 2208 (CpG/αIg/IFN-γ) and 1363 (CpG/αIg/IL-27) loci therefore represent the 

landscape of a T-bet-dependent chromatin signature driving lineage determination in T-bet-

expressing B cells (Fig. S6C). Notably, 902 loci (66% of T-bet-dependent targets induced 

by CpG/αIg/IL-27) overlapped with those induced by CpG/αIg/IFN-γ stimulation (Fig. 

7C, Fig. S6C, and Data file S2). DNA binding motifs for IRF1, JUNB, and RUNX1 were 

most significantly enriched in these 902 shared loci (Fig. 7D and Data file S2). Notably, 

enrichment in DNA binding motifs of IRF1, a crucial transcription factor downstream 

of IFN-γ-dependent response in humans (88, 89), suggests T-bet provides permissive 

environment for binding of IRF1 to IFN-γ- and IL-27-dependent targets in human B cells. 

Chromatin at the FAS, IL21R, SEC61B, DUSP4, DAPP1, and SOX5 loci, which are all 

were strongly expressed by CD21loCD11c+ B cells, was in an open configuration, whereas 

that at the CD79B and CXCR4 loci, which are weakly expressed in CD21loCD11c+ B 

cells, was closed by both stimuli in a T-bet-dependent manner (Fig. 7E - G, Fig. S6D). 

These investigations revealed many new T-bet-dependent epigenetic targets. For example, 

chromatin was in an open configuration at three loci within IRF4 and three within GFI1 
in B cells from healthy donors, but not in those of P; chromatin accessibility at these loci 

was increased by CpG/αIg/IFN-γ and CpG/αIg/IL-27, whereas it was decreased at the 

SEMA4B, CCR6, and CD37 loci, by both stimuli, in a T-bet-dependent manner (Fig. 7G 

and Fig. S6E). These findings suggest that T-bet poises the cells for differentiation into 

T-bet-expressing B cells by creating a permissive chromatin environment facilitating the 

efficient differentiation of human CD21loCD11c+ B cells (90).

Discussion

We report that while T-bet is largely redundant for in vivo functions of human B cells and 

humoral immunity, it has a nuanced role in regulating Ig CSR, evidenced by increased serum 

levels of IgG1, IgG4 and IgE, reduced serum IgG2 levels, and increased proportions of 

IgG1+ and IgG4+ memory B cells, in a patient with complete T-bet deficiency. The alteration 

to IgG subclasses and serology is unlikely to reflect infectious history of the patient as 

he has been in remission and free of mycobacterial infection for several years. These 

perturbations to Ig levels are likely results from B-cell intrinsic and/or extrinsic mechanisms. 

On one hand, T-bet may directly regulate IgG subclasses in human B cells. On the other 

hand, increased serum IgG1, IgG4 and IgE in T-bet deficiency are consistent with skewing 

of T-bet deficient CD4+ T cells to a TH2-type effector function, evidenced by increased 

production of IL-4, IL-5 and IL-13 (56), and the well-established role of these cytokines in 

inducing human B-cell class switching to IgG1, IgG4 and IgE (59). Thus, dysregulated TH2 

cytokine production by T-bet deficient CD4+ T cells may contribute to altered levels of some 

serum Ig classes in the patient.

These findings from human T-bet deficiency are similar to those from mice which 

established that T-bet is required for CSR to IgG2a/c in vitro and in vivo (10, 11, 15, 16). 

Interestingly, B-cell intrinsic T-bet-dependent IgG2a/c production appears to be important in 

mice in vivo for long-lived humoral immunity following immunization (16) or during viral 

and parasitic infections (17-20), and in the pathogenesis of autoimmune disease models (30, 

45, 91). Despite altered serum Ig levels in the human T-bet deficient patient, he has not 
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presented any clinical disease due to infections with, for example, S. pneumoniae, to which 

he has been exposed and can be life-threatening in patients with B-cell immunodeficiency 

disorders (92, 93). This is also consistent with our findings of intact SHM, affinity 

maturation, memory B-cell formation in the patient, as well as intact differentiation of his 

naïve and memory B cells into Ig-secreting cells in response to polyclonal stimulation in 
vitro. Thus, these clinical and immunological features suggest T-bet constrains CSR to IgG1, 

IgG2, and IgG4, but is largely redundant for clinically meaningful B cell-mediated humoral 

immunity against most common infections in humans, at least for the functions tested to 

date.

Whilst humoral immunity was essentially unaffected by T-bet deficiency, a major discovery 

from our study was that T-bet is essential for the generation of the CD11chiCXCR3+ 

subset of human CD21loCD19hi B cells in vivo and in vitro. We also identified pathways 

upstream of T-bet fundamental for generating human CD11chiCXCR3+CD21loCD19hi B 

cells. In vitro co-stimulation of human naïve B cells with TLR9, BCR, and either IFN-γ 
or IL-27 induced high level co-expression of T-bet, CXCR3, FCRL5 and CD19. Despite 

this, neither IFN-γ nor IL-27 were uniquely required to generate human T-bet+ B cells 

in vivo, as frequencies of these cells were intact in patients with IFN-γR or IL-27R-

deficiencies. However, CD21loCD11chiCD19hiCD20hiCXCX3+ B cells were reduced in 

peripheral blood of patients with complete AR STAT1 deficiency, which impairs IFN-γ and 

IL-27 signaling, or IFN-γR1 deficiency, which abolishes IFN-γ signaling. These findings 

indicate that T-bet and STAT1, downstream of IFN-γ or IL-27, co-operate to induce the 

transcriptomic and epigenetic imprinting necessary to generate CD21loCD11c+ B cells in 
vivo. Furthermore, these cytokines compensate for each another in individuals with defective 

signaling due to loss-of-function mutations in IFNGR1 or IL27R. As CD21loT-bet+ B cells 

are overrepresented in several human immune dysregulatory diseases, these findings indicate 

that a selective JAK1/STAT1 inhibitor, or directly targeting T-bet, may yield beneficial 

clinical outcomes by preventing or controlling expansion of pathogenic CD21loT-bet+ B 

cells. Indeed, JAK inhibitors can suppress the in vitro generation of T-bet+ B cells from 

naïve B cells from healthy donors (67).

The physiological or pathogenic roles of CD21loCD11c+ B cells remain enigmatic. First, 

although frequencies of CD21loCD11c+ B cells increases in peripheral blood following 

vaccination, chronic infections and in autoimmune disorders (9, 31, 47, 50-52, 39-46), 

the predominance of these cells in these conditions is largely correlative. Furthermore, 

it remains unclear how they contribute to immunopathology. Similarly, it is unclear 

whether the expansion of these cells is a cause or consequence of the immune stimulatory 

environment of infection or autoimmunity. Second, despite lacking CD21loCD11c+ B 

cells, the T-bet deficient patient has largely normal humoral immunity in vivo and B-cell 

function in vitro, despite skewing of IgG subclasses. It is thus possible that CD21loCD11c+ 

B cells play roles in processes other than humoral immunity. Indeed, spectral flow 

cytometry and CITE-seq revealed an enrichment in expression of genes encoding proteins 

involved in antigen presentation, cognate T-B cell interactions, and peripheral tolerance in 

CD21loCD11c+ B cells. As the T-bet-deficient patient is young, long-term follow up may 

reveal whether he is protected from or prone to certain conditions. The identification of 

additional T-bet-deficient patients is required to draw firm conclusions. Overall, findings 
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from our study establish a framework to investigate CD21loCD11c+ B cells in human health 

and disease, particularly other patients with known or newly discovered genetic defects. 

These future studies will shed more light on the molecular requirements for the development 

and function of this intriguing B-cell subset.

MATERIALS AND METHODS

Study design

We investigated the B cell and antibody phenotypes in a patient with autosomal recessive 

T-bet deficiency. We also enrolled his relatives and healthy controls in the study as controls. 

We performed ex vivo and in vitro experiments using peripheral blood mononuclear 

cells derived from the patient and controls. We also obtained DNA, plasma, and other 

biospecimens from the patient and controls to analyze their in vivo phenotypes. Both 

biological and technical replicates were used to validate the findings. Experiments were 

performed at least twice with appropriate replications. Conclusions were drawn from 

analyzing the results from aforementioned approaches collectively.

Human subjects

The T-bet-deficient patient and the relatives studied here were living in and followed up in 

Morocco. The case report has already been published (55, 56). The study was approved by 

and performed in accordance with the requirements of the institutional ethics committees 

of Necker Hospital for Sick Children, Paris, France, and the Rockefeller University, New 

York, USA. Informed consent was obtained from the patient, his relatives, and the healthy 

control volunteers enrolled in the study. This study was also approved by the Sydney Local 

Health District RPAH Zone Human Research Ethics Committee and Research Governance 

Office, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia (protocol 

X16-0210/LNR/16/RPAH/257). Experiments using samples from human subjects were 

conducted in the United States, France, Australia and Sweden, in accordance with local 

regulations and with the approval of the IRBs of corresponding institutions.

Bulk sequencing and analysis of immunoglobulin transcripts from PBMCs

Immunoglobulin heavy chain (IGH), kappa chain (IGK) and lambda chain (IGL) repertoires 

were sequenced from PBMCs from the T-bet-deficient patient (4 years of age at the time of 

sampling) and five healthy donors aged 11 months, 24 months, 16 years, 45 years and 66 

years. Independent amplifications for each isotype (IgM, IgG, IgA and IgE) were performed 

for the heavy chain, and IGK and IGL were amplified in separate reactions, as previously 

described, with the addition of IgA and IgE reverse primers (94); IgA: 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGGTCACACTGAGTGGCTCC, 

IgE: 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAGGCAGCCCAGAGTCACGG

. Samples were indexed and pooled for sequencing on an Illumina NextSeq with 2x300 PE.

Sample datasets were demultiplexed during FASTQ generation on the basis of sample 

indices. Paired-end reads were merged with FLASH (95) and the merged sequences were 

quality-filtered with FilterSeq from the presto (v0.5.13 2019.08.29) package (96), with a 
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minimum quality of 20. Forward and reverse primers were trimmed, and constant regions 

were tagged with MaskPrimers (presto package), with a requirement for exact matches 

and the discarding of reads not meeting this requirement. Datasets were deduplicated (only 

unique sequences retained) with CollapseSeq (presto package) and the deduplicated datasets 

were input into stand-alone IgBLAST (v1.14) (97) for alignment against the IMGT human 

germline reference directories (downloaded 16 Jan 2020). IgBLAST results were filtered 

to remove truncated transcripts and transcripts lacking an identifiable CDR3. B-cell clones 

were inferred for each subject for IGH (combining transcripts from all isotypes), IGK and 

IGL. Clones were generated by first subsetting the VDJs from each donor on the basis of V 

gene, J gene and CDR3 length and then clustering CDR3 nucleotide sequences, with a 90% 

threshold, with cd-hit (98). Each cluster was inferred to be a clone of related VDJs stemming 

from a lineage that shared the same progenitor B cell. Median somatic hypermutation 

(SHM) for each clone was calculated per isotype for the V-REGION (percentage of V-

REGION nucleotides mutated, based on IgBLAST alignment), and clone size, as both total 

and unique read numbers were also calculated.

B-cell differentiation

Naïve (CD20+CD10−CD27−IgG−) and memory (CD20+CD10−CD27+IgG+) B cells were 

purified by sorting from the PBMCs of healthy donors or P with a FACSAria III. Purity was 

typically >97%. We assessed the in vitro induction of T-bet+ B cells by culturing naïve B 

cells in media alone (RPMI1640/10% FCS), or with presence of F(ab’)2 goat anti-human 

Ig (0.8 μg/mL) and CpG (0.35 μg/mL) with or without IFN-γ (333 U/mL) or IL-27 (50 

ng/mL). After 3.5 days, the B cells were harvested, and stained for the surface expression 

of CD19, FCRL5 and CXCR3, fixed and permeabilized and then stained for intracellular 

expression of T-bet. Proportions of T-bet+ B cells, and expression of CD19, FCRL5 and 

CXCR3 on T-bet+ and T-bet− B cells present in the cultures, were then determined. B-cell 

viability was determined with the Zombie Aqua Viability dye (BioLegend). We investigated 

in vitro differentiation into Ig-secreting cells, by culturing naïve and memory B cells with 

CD40L (200 ng/mL) cross-linked with anti-HA mAb (50 ng/mL, R&D Systems) alone or 

together with IL-21 (50 ng/mL, PeproTech), IL-10 (100 U/mL; provided by R. de Waal 

Malefyt - DNAX Research Institute, Palo Alto, CA), IL-21 plus IL-4 (100 U/mL; provided 

by R. de Waal Malefyt), or CpG 2006 (1 μg/mL, Sigma-Aldrich). Culture supernatants were 

harvested after 7 days and the amount of IgM, IgG and IgA secreted into the supernatant 

was determined in Ig heavy chain-specific ELISAs (61, 99). Secretion of IgG1, IgG2, 

IgG3, and IgG4 was determined using an IgG subclass ELISA kit (Invitrogen, catalogue # 

99-1000) as per manufacturers’ instructions.

Immunophenotyping of age-associated B cells with spectral flow cytometry

Experiments were performed in two batches. In the first batch, PBMCs were obtained 

from 20 healthy adult donors, four age-matched controls (2, 6, 7, 8 years of age), P 

(4 years of age at the time of sampling), P's healthy brother (8 years of age at the 

time of sampling), who is wild-type for the TBX21 locus, and P’s healthy mother, 

who is heterozygous for the mutation (55, 100-102). In the second batch, PBMCs 

were obtained from 10 healthy adult donors and a patient with complete STAT1 

deficiency (68). We stained 1 x 106 to 2 x 106 PBMCs from each individual with 
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Zombie-NIR live-dead exclusion dye (BioLegend). Cells were then labeled with FcBlock 

(Miltenyi Biotec), and then with antibodies (Abs) against surface antigens, including 

anti-CD10-BUV737 (BD Biosciences), anti-CD23-BUV805 (BD Biosciences), anti-CD80-

FITC (BioLegend), anti-FcRL4-PERCP/Cy5.5 (BioLegend), anti-CD138-PE/Dazzle594 

(BioLegend), anti-FcRL5-APC (BioLegend), anti-CD269-APC/Fire750 (BioLegend), anti-

CXCR3-BUV496 (BD Biosciences), anti-CD20-Alexa532 (Thermo Fisher Scientific), 

anti-CD11b-BUV395 (BD Biosciences), anti-CD38-BUV661 (BD Biosciences), anti-CD24-

BUV563 (BD Biosciences), anti-CD56-V450 (BD Biosciences), anti-CD3-V450 (BD 

Biosciences), anti-CD5-BV480 (BD Biosciences), anti-IgM-BV570 (BioLegend), anti-

CD95-BV605 (BioLegend), anti-HLA-DR-Qdot605 (Thermo Fisher Scientific), anti-CD40-

BV650 (BioLegend), anti-IgD-BV785 (BioLegend), anti-CD21-PE (BD Biosciences), 

anti-CD86-Alexa647 (BioLegend), anti-CD11c-Alexa700 (BioLegend), anti-CD27-BV711 

(BioLegend), anti-CCR7-BV750 (BioLegend), anti-CXCR4-BV421 (BioLegend), anti-

CD19-Spark/NIR685 (BioLegend), and anti-IgG-PE/Cy5 (BD Biosciences) antibodies. The 

cells were then fixed and permeabilized with the FOXP3/Transcription factor staining buffer 

set (eBioscience). Cells were subjected to intracellular staining with anti-T-bet-PE/Cy7 

antibody overnight (BioLegend). Data were acquired by spectral flow cytometry (Cytek). It 

should be noted that IgG-PE/Cy5 signal was found to be masked by a humanized FcBlock 

antibody which was mistakenly used in the study. Due to this technical reason, IgG signal 

was almost undetectable from this immunophenotyping. However, IgG-PE/Cy5 did not 

affect the balance of other 28 markers in this spectral flow experiment.

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)

PBMCs from four age-matched controls (sample codes: #906, #4156, #1093, and #14881 

with ages ranging from 2 to 8 years), three IFN-γR1-deficient patients (sample codes: 

#1114, #13391, #15553), the T-bet-deficient patient (P or M/M – referring to genotype 

Mutant/Mutant), and P's healthy brother (WT/WT) were isolated and frozen on different 

dates (55, 100-102). We stained 3 x 106 PBMCs from each individual with Zombie-

NIR live-dead exclusion dye (BioLegend). Cells were labeled with FcBlock (Miltenyi 

Biotech), and then with an antibody pool containing 1 μg of each BioLegend TotalSeq™ 

Ab, including anti-CD21 (clone Bu32), anti-CD11c (clone S-HCL-3), anti-FcRL5 (clone 

509f6), anti-CXCR3 (clone G025H7), anti-CD95 Abs (clone DX2). Cells from these 

nine individuals were labeled individually with TotalSeq™ anti-human Hashtag Abs, 

including TotalSeq™-C0251 (age-matched control 906), C0252 (age-matched control 4156), 

C0253 (age-matched control 1093), C0254 (age-matched control 14881), C0255 (IFN-γR1-

deficient patient 1114), C0256 (P's healthy brother 15645), C0257 (IFN-γR1-deficient 

patient 13391), C0258 (IFN-γR1-deficient patient 15553), and C0259 (P). Cells were 

washed twice with 2% FBS in PBS, pooled together, and subjected to staining with 

FcBlock (Miltenyi Biotech), anti-CD27-BV711 (BioLegend), anti-CD10-APC (BioLegend), 

anti-CD56-V450 (BD Biosciences), anti-CD3-V450 (BD Biosciences), anti-CD20-FITC 

(BioLegend), anti-CD21-PE (BD Biosciences Clone B-Ly4), and anti-CD11c-Alexa700 

(BioLegend Clone S-HCL-3) Abs. The pooled cells were washed once and subjected to 

FACS. Live CD3−CD56−CD20+CD21lo B cells were sorted and subjected to single-cell 

RNA-seq with the 10 x Genomics platform. It should be noted that anti-CD11c TotalSeq 
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Ab and CD11c-Alexa700 did not compete against each other. CD21-PE FACS Ab and 

anti-CD21-TotalSeq Ab did not compete against each other either.

Single-cell 5' expression and BCR libraries were generated with the Chromium Single 

Cell 5’ Library & Gel Bead kit Version 2 (10x Genomics cat # PN1000265). BCR cDNA 

was amplified from the total cDNA pool with the 10X Chromium Single-Cell Human 

BCR Amplification Kit (PN-1000253) before library construction. Hashtag libraries were 

generated with the Chromium Single Cell 5' Feature Barcode Kit (PN 1000256). Standard 

protocols from 10X Genomics were followed for library generation. The quality of the 

libraries was assessed on an Agilent TapeStation and the three libraries were pooled in the 

following ratio: expression 10:BCR 1:HTO 1. The pooled libraries were sequenced on an 

Illumina NovaSeq 6000 sequencer with a 100-cycle SP flow cell. In total, 800 million paired 

reads were generated (read 1 = 26 bp, read 2 = 90 bp).

Additional materials and methods located in Supplemental Methods

Some detailed materials and methods are provided in a Supplemental Methods section. 

This material includes the methods used for analysis of B cells with conventional flow 

cytometry, immunophenotyping of surface B cell receptors with spectral flow cytometry 

and unsupervised analysis of data from spectral flow cytometry. The Supplemental Methods 

section also describes the methods used for real-time quantitative ENC1 PCR, analysis of 

CITE-seq data, single-cell VDJ sequencing analysis, naïve B-cell differentiation for Omni-

ATAC-seq, and analysis of Omni-ATAC-seq.

Statistical analysis

Student’s t-test, Mann-Whitney test, one-way ANOVA, and two-way ANOVA were used in 

their corresponding datasets to investigate statistical difference. Bar graphs throughout the 

figures represent either the mean and the standard deviation or the mean and the standard 

error of the mean. Dots present individual samples or technical replicates. P values of 0.05 

and below are considered to be statistically significant. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, and ns = not significant (or not marked). Details of the statistical methods 

used in individual experiments are provided in the corresponding figure captions. All raw 

data are provided in Data file S4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. In vivo development and in vitro function of B cells from a patient with inherited 
human T-bet deficiency.
(A) Percentages of B cells among live lymphocytes gated from PBMCs of healthy donors 

(CTL), age-matched healthy donors (Age-CTL) or a patient (P or M/M) with inherited 

complete T-bet deficiency. (B) Percentages of naïve, memory and transitional B-cell subsets 

among B cells as in (A). (C) Percentages of IgG+ or IgA+ B cells among the memory B 

cells of CTL, age-matched CTL or P, measured by conventional flow cytometry (FACS). (D) 
Levels of total IgG, IgG1, IgG2, IgG3, IgG4, and IgE in plasma samples from P (M/M) and 

their normal range in the age-matched group (3 – 6 years of age). (E) Overview of the IGH 

repertoire for P (top row) and control donors aged 24 months (middle row) and 66 years 

(bottom row). Each column displays clones from a different isotype subclass. Each point is 

a B-cell clone, with point size scaled for clone size and colored according to the clone’s 

median SHM rate. Clones are positioned on the basis of V usage (x-axis) and CDR3 length 

(y-axis) with some jitter to prevent overplotting. (F) Points show the donor mean or median 
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SHM for each IGH isotype, IGK and IGL repertoires; box plots summarize the median and 

interquartile ranges for all 6 donors.

(G) Naïve B cells, isolated by FACS, from CTL or P were stimulated with CD40 ligand 

(CD40L) in the presence or absence of CpG2006 oligodeoxynucleotides (CpG) for 7 days. 

IgM levels in culture supernatants were determined by ELISA. (H - J) Naive B cells, as in 

(G), were stimulated with CD40L in the presence or absence of IL-21 for 7 days. Levels 

of IgM (H), IgG (I) or IgA (J) in culture supernatants were determined by ELISA. (K - 
M) Memory B cells, isolated by FACS, were stimulated with CD40L in the presence of 

CpG (K), IL-10 (L), and IL-21 (M) for 7 days. Levels of IgM, IgG and IgA in culture 

supernatants were determined by ELISA. (N and O) Memory B cells, isolated by FACS, 

were stimulated with CD40L in the presence IL-21. Levels of IgG1 (N), IgG2, IgG3, and 

IgG4 (O) in culture supernatants were determined by ELISA. (P) Memory B cells, isolated 

by FACS, were stimulated with CD40L in the presence or absence of IL-4 and IL-21. Levels 

of IgE in culture supernatants were determined by ELISA.

In Fig. 1A, B, D, G - P bars represent the mean and the standard deviation. Dots represent 

individual samples for CTL or Age-CTL and technical replicates for M/M. Two-way 

ANOVA was used in (G – M and P). Mann-Whitney test was used in (N). Student t-test 

was used in (O). In (G - P), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, and ns = not 

significant (or not marked).
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Figure 2. CD21loCD11c+ B-cell levels are low in a patient with inherited T-bet deficiency.
(A) PBMCs from 20 adult controls (CTL), four age-matched controls (Age-CTL), two 

IFN-γR1-deficient patients (IFN-γR1 −/−), P's healthy brother (WT/WT), heterozygous 

mother (WT/M), and P (M/M) were analyzed with a 29-color flow cytometry panel 

focusing on B cells. Surface staining of CD21 and CD11c on CD19+CD20+ B cells from 

different individuals, as indicated, is shown. CD21loCD11c− or CD21loCD11c+ B cells were 

gated from CD19+CD20+ B cells, and their surface expression of CD19 and intracellular 

expression of T-bet were plotted. (B) Percentages of CD21loCD11c− and CD21loCD11c+ B 
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cells, as in (A), are shown. (C) Mean fluorescence intensity of T-bet of CD21hiCD11c−, 

CD21loCD11c−, and CD21loCD11c+ B cells, as in (A), are shown. (D) PBMCs from 

10 adult controls (CTL) and a patient with AR complete STAT1 deficiency (STAT1 −/−) 

were analyzed with the 29-color flow panel as in (A). Surface staining of CD21 and 

CD11c on CD19+CD20+ B cells from different individuals, as indicated. CD21loCD11c− 

or CD21loCD11c+ B cells were gated from CD19+CD20+ B cells, and their surface 

expression of CD19 and intracellular expression of T-bet were plotted. (E) Percentages 

of CD21loCD11c− and CD21loCD11c+ B cells, as in (D). (F) Mean fluorescence intensities 

(MFI) for CD11c expression on CD21loCD11c+ B cells gated as in (D), from CTL or the 

STAT1 −/− patient. (G - I) The expression levels of CD19 (G), CD20 (H), and FcRL5 (I) on 

CD21hiCD11c−, CD21loCD11c−, CD21loCD11c+T-betlo, and CD21loCD11c+T-bethi B cells, 

as indicated by MFI.

In Fig. 2B, C, and E - I, bars represent the mean and the standard deviation. Dots represent 

individual samples. One-way ANOVA test was performed for (B). Mann-Whitney tests were 

performed to compare CD21loCD11c−, CD21loCD11c+T-betlo, and CD21hiCD11c− B cells 

with CD21loCD11c+T-bethi B cells (G - I). In (B, G - I), *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001, and ns = not significant (or not marked).
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Figure 3. Depletion of some unique subsets of CD21lo B cells in the patient with inherited T-bet 
deficiency.
(A) PBMCs from 30 healthy adults (CTL), four age-matched controls (Age-CTL), two 

IFN-γR1-deficient patients (IFN-γR1 −/−), P's healthy brother (WT/WT), P’s heterozygous 

mother (WT/M), and P (M/M) were analyzed with a 29-color flow cytometry panel focusing 

on B cells in two separate experiments. Batch correction was performed with the iMUBAC 

algorithm and FlowSOM unsupervised clustering was performed. These clusters from 

age-matched controls (Age-CTL), IFN-γR1-deficient patients (IFN-γR −/−), P (M/M), P's 

healthy brother (WT/WT), P’s mother (WT/M), and a STAT1-deficient patient (STAT1 
−/−) are shown on UMAP graphs. Clusters increased or reduced in P are highlighted. 

(B) Frequency of cluster 25 among B cells. (C - E) Frequencies of clusters 9, 10, 13, 

14, and combined among B cells. (F) PBMCs from P (M/M), adult controls (CTL), age-

matched controls (Age-CTL) including P's healthy brother (WT/WT), and heterozygous 

mother (WT/M) were analyzed with a flow cytometry panel including IgM, IgG, IgA, 
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IgD, and CD71 staining focusing on B cells. Their surface expression of IgM and IgG 

were plotted. (G) Surface expression of IgM and IgA, as in (F) were plotted. (H – K) 
Percentages of IgM+IgD+ (H), IgM−IgG+ (I), IgM−IgA+ (J), or T-bet+IgG+ (K) cells, as 

in (F), among indicated subsets of B cells were shown. CD21loCD11c+ sub represents 

CD21loCD11c+CD23−CD24−CD38−T-bethi B cells.

In Fig. 3B - E, 3H - K, bars represent the mean and the standard 

deviation. Dots represent individual samples for CTL or Age-CTL and 

technical replicates for M/M. One-way ANOVA with multiple comparison tests 

were performed to compare CD21hiCD11c−, CD21loCD11c−, CD21loCD11c+, and 

CD21loCD11c+CD23−CD24−CD38−T-bethi (CD21loCD11c+ sub) B cells against each other 

in (H – K). In (H - K), *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, and ns = not 

significant (or not marked).
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Figure 4. CITE-seq of CD21− B cells from a patient with inherited human T-bet deficiency.
(A) A schematic diagram of the experimental design. (B) PBMCs from the indicated 

individuals were labeled with hashtag Abs and oligonucleotide-conjugated anti-CD11c, 

anti-CD21, anti-CD95, anti-CXCR3, anti-FcRL5 Abs. CD3−CD56−CD20+CD21lo B cells 

were isolated by FACS. (C) CD3−CD56−CD20+CD21− B cells, as in (B), were subjected 

to CITE-seq. Cells from two Age-CTL, one IFN-γR1 −/− patient, and P, which had similar 

patterns of housekeeping gene expression, were subjected to dimensionality reduction by 

UMAP based on their transcriptome. (D) Four individual samples from the pool, as in (C), 

were split on the basis of their hashtags. (E) Frequencies of each cluster of CD21− B cells 

from two Age-CTLs, one IFN-γR1 −/− patient, and P, as in (C and D). (F) Cells expressing 

CD11c surface protein detected by CITE-seq (ADT_CD11c), and cells expressing ITGAX 
or TBX21 were highlighted in UMAP plots. (G) Cells expressing ENC1, ITGB2, and 

TNFRSF1B were highlighted in UMAP plots. (H) Protein levels for CD11c, CD21, CD95, 
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CXCR3, and FcRL5, as determined by CITE-seq, grouped by transcriptome-defined clusters 

and sample groups. (I) Heat map showing the scaled expression levels of a selection of 

genes differentially regulated in cluster 3 B cells as in (C and D).

In Fig. 4E, bars represent the mean and the standard deviation. Dots represent individual 

samples.
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Figure 5. CSR and somatic hypermutation in T-bet-dependent CD.
(A) Single-cell VDJ sequencing was performed jointly with CITE-seq. Frequencies of 

CD21lo cells with more than one heavy or light chain are shown. (B) Frequencies of 

cells with more than one heavy or light chain within CD11c+ CD21lo B cells (+) or 

CD11c− CD21lo (−) cells. (C) Frequencies of clonotypes common to at least 2 cells in 

each individual CD21lo sample. (D) Frequencies of clonotypes common to at least 2 cells 

within CD11c+ CD21lo B cells (+) or CD11c− CD21lo (−) cells. (E) Frequencies of cells 

that were unswitched or class-switched to IgE (IGHE), IgA1 (IGHA1) or IgA2 (IGHA2, 

combined as IgA1/2), IgG1 (IGHG1), IgG2 (IGHG2), IgG3 (IGHG3), or IgG4 (IGHG4) 

among CD21lo cells. (F) Somatic hypermutation was analyzed as shown in this schematic 

diagram. Briefly, the numbers of mutations relative to the predicted germline sequence 

within a 280-nucleotide region (−21 to −300 bp from the start of CDR3 region) of each 

heavy and light chain were counted. The total number of mutations for both heavy and 

Yang et al. Page 35

Sci Immunol. Author manuscript; available in PMC 2023 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



light chains for each given cell was divided by the total number of nucleotides counted, 

to calculate the mutation frequency. (G) Mutation frequency of each CD21lo B cell from 

the indicated individuals. The frequencies of cells with mutation rates greater than 1% are 

highlighted. (H) Mutation frequency of each CD11c+ CD21lo B cells (+) or CD11c− CD21lo 

(−) B cells from the indicated individuals. The frequencies of cells with mutation rates 

greater than 1% are highlighted.

In Fig. 5A - E, bars represent values of each individual sample. In Fig. 5G and H, dots 

represent values for individual cells.
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Figure 6. T-bet functions in a B cell-intrinsic manner to induce the generation of T-bet+ B cells in 
vitro.
(A) Naïve B cells were purified from the peripheral blood of healthy donors (n=8) 

and cultured in vitro in medium alone (NS: non-stimulated), or with CpG2006, CpG2006 

plus F(ab’)2 fragments of goat anti-IgM/G/A Ab (CpG/aIg), CpG/aIg and IFN-γ 
(CpG/aIg/IFNγ), or CpG/aIg and IL-27 (CpG/aIg/IL-27). After 3.5 days, B cells were 

harvested, stained for the surface expression of CD19, CD95, CXCR3 FCRL5, and then 

for the intracellular expression of T-bet. Expression of T-bet and CD19 in B cells under 

indicated conditions from a healthy donor was plotted. Expression of T-bet, CD19, CXCR3, 

FCRL5, CD11c, and CD95 were shown. (B - G) Viable cells were then analyzed, to 

determine the level of expression (geometric mean fluorescence intensity [gMFI]) as in (A). 

The expression (gMFI) of (B) T-bet, (C) CD19, (D) FCRL5, (E) CD95 and (G) CXCR3 on 

CD19+T-bet+ B cells, and the proportions of T-bet+ B cells co-expressing CXCR3 (F) were 

also determined. (H) Naïve B cells purified from healthy donors or patients with pathogenic 
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variants of IFNGR1, IL27R, JAK1, IRAK4, STAT3 DN, STAT1 (both AR and DN), or 

TBX21 were cultured in vitro with anti-IgM/G/A Ab (CpG/aIg), CpG/aIg and IFN-γ 
(CpG/aIg/IFNγ), or CpG/aIg and IL-27 (CpG/aIg/IL-27) for 3.5 days. Expression of surface 

CXCR3 and intracellular expression of T-bet in B cells from indicated donors were plotted. 

(I and J) The proportions of CD19+T-bet+ B cells expressing (I) CXCR3 or (J) FCRL5 

under anti-IgM/G/A Ab (CpG/aIg) or CpG/aIg and IFN-γ (CpG/aIg/IFNγ) conditions as in 

(H) were determined. (K) The proportions of CD19+T-bet+ B cells expressing CXCR3 under 

anti-IgM/G/A Ab (CpG/aIg) or CpG/aIg and IL-27 (CpG/aIg/IL-27) conditions as in (H) 

were determined.

Fig. 6B - G, I - K show the mean ± standard error. Dots represent individual samples 

for CTL or Age-CTL and technical replicates for M/M. One-way ANOVA was used to 

compare each set of stimulation conditions with non-stimulated (NIL) conditions in (B – 

G). One-way ANOVA was used to compare control cells stimulated with anti-IgM/G/A Ab 

(CpG/aIg) with cells stimulated with CpG/aIg/IFNγ or CpG/aIg/IL-27 (I – K). *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001, and ns = not significant (or not marked). ND: not 

done
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Figure 7. A unique epigenetic landscape determined by T-bet programs B-cell differentiation in 
vitro.
(A) A heat map showing five loci at which chromatin accessibility differed between controls 

(CTL) and P (M/M) in the absence of stimulation and in response to aIg+CpG+IFN-γ and 

aIg+CpG+IL-27. (B) Chromatin accessibility of the CCL3L1 and CCL4L1 loci, at which 

the chromatin accessibilities of three regions differed between controls (CTL) and P (M/M) 

in the absence of stimulation and in response to aIg+CpG+IFN-γ and aIg+CpG+IL-27. (C) 

A heat map showing 902 T-bet-dependent loci, the chromatin accessibilities of which were 

differentially regulated in control cells, but not significantly different in the cells of P, in 

response to both aIg+CpG+IFN-γ and aIg+CpG+IL-27. (D) DNA motifs most significantly 

enriched in the 902 T-bet-dependent loci, the chromatin accessibilities of which were 

differentially regulated in control cells as in (C). (E and F) Chromatin accessibility of FAS 
(E) and DUSP4 loci (F), that were differentially regulated in response to aIg+CpG+IFN-γ 
and aIg+CpG+IL-27 in control B cells but not in T-bet-deficient B cells. (G) A heat map 
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showing a selection of 51 loci from the list, as in (C), the chromatin accessibilities of which 

were differentially regulated in control cells, but not in T-bet-deficient cells, in response to 

both aIg+CpG+IFN-γ and aIg+CpG+IL-27.
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