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Abstract

A general and unified theory is formulated to investigate static and time-harmonic field solutions induced by dislocation
loops and dislocation arrays in three-dimensional multilayered structures. Each homogeneous plate consists of an orthotropic
magneto-electro-elastic material including nonlocal effects. While the nonlocal constitutive relations with multi-phase coupling
are treated by means of the original Eringen model using a Helmholtz-type operator, the field expressions are based on the math-
ematically elegant and computationally powerful Stroh formalism in matrix form, consistently combined with double Fourier
series expansions and the dual variable and position technique to propagate the extended solutions among the different layers
of the multilayered systems. The time-harmonic dislocation loops are represented by a discontinuity in the prescribed elastic
displacement, electric potential, and magnetic potential on arbitrarily-located rectangular and elliptical surfaces in the multilay-
ered structures, while the dislocation arrays are composed of infinitely long, straight and uniformly spaced parallel dislocations
with the same local Burgers vectors. The new field solutions are first validated against existing frameworks limited to static
and local elasticity theory of these two types of extrinsic and intrinsic dislocations, and subsequently applied to analyze several
unexplored effects on the dislocation-induced magneto-electro-elastic fields, namely the material anisotropy, interaction with
internal heterophase interfaces, multi-phase coupling, nonlocal core-spreading parameter, finite-valued driving forces, vibration
frequency, and stacking sequences. The numerical outcomes indicate that each effect is significant and neglecting any one of
them lead to an erroneous prediction on the extrinsic and intrinsic dislocation-induced response, thus providing a suitable route
for the design of advanced magneto-electro-elastic fabrication devices for energy harvesting applications.

Keywords: Anisotropic elasticity theory, dislocation loops and arrays, multilayered plates, multiferroics, nonlocal effects,
time-harmonic field solutions

1. Introduction

Within the broad class of materials available today, multi-functional ferromagnetic and ferroelectric materials are widely
used in a large range of intelligent and adaptative systems in aerospace, defense, automobile, medical, and electronic industries.
In particular, a strong electromagnetic coupling effect can be realized by combining piezomagnetic and piezoelectric phases,
thus providing the attractive ability of storing and converting different forms of energy among magnetic, electric and mechanical
energies (vanSuchtelen, 1972, van den Boomgaard et al., 1974, van Run et al., 1974). In recent years, the opportunity to
investigate novel components and device designs leads to an increasing amount of theoretical and numerical studies on the
response and stability of magneto-electro-elastic (MEE) multilayered composites (Alshits et al., 1992, Harshe et al., 1993,
Chung and Ting, 1995, Liu et al., 2001, Pan, 2001, 2002, Wang and Shen, 2002, Bichurin et al., 2003, Pan and Han, 2005,
Challagulla and Georgiades, 2011, Zhang et al., 2017, Ghobadi et al., 2019, Ngak et al., 2019, Ren et al., 2020, Bustamante et
al., 2021, Tang et al., 2021, Vinyas, 2021, Yu and Kang, 2021). Due to the beneficial cumulative effects and facile layer-by-
layer fabrication processes, multilayered sequences with different faults are preferably arranged in plates. Because real MEE
materials are, however, never perfectly manufactured, internal defects always exist, such as dislocation loops and dislocation
arrays, which play a significant role in controlling the electromagnetic coupling performances (Nagarajan et al., 2005). An
in-depth understanding of the influence of these imperfections on advanced self-sensing, self-diagnosing, self-adapting, and
self-repairing properties, is also motivated by providing insights and predictions from general and fundamental frameworks
dedicated to dislocated MEE heterostructures. The present work contributes to this current effort by introducing nonlocal and
time-harmonic field solutions of dislocations in anisotropic multilayered and free-standing MEE plates in three dimensions,
consistently obtained by use of the extended Stroh formalism combined with double Fourier series expansions.

In contrast to the considerable attention paid to the fundamental crack problems (Liu et al., 2001, Gao et al., 2003, Wang and
Mai, 2003, Rao and Kuna, 2008, Li and Lee et al., 2010, Wan et al., 2013, Hu and Chen, 2015, Bagheri et al., 2015, Mousavi,
2015, Zhao et al., 2015, Bagheri et al., 2017, Zhao et al., 2019, Nourazar and Ayatollahi, 2020, Wu et al., 2021, Hsu and Hwu,
2022) as well the modeling of imperfectly bounded interfaces in MEE solids (Nan et al., 2003, Wang and Pan, 2007, Pan et
al., 2009, Huang and Li, 2010, Espinosa et al., 2011, Kuo, 2013, Wang, 2015, Espinosa et al., 2017, Kuo et al., 2018, Jiang et
al., 2019, Kuo et al., 2019, Pang et al., 2019, Yang and Li, 2019), the corresponding dislocation boundary-value problem has
received little consideration in the literature for MEE bimaterials (Fang et al., 2005, Hao and Liu, 2006, Zheng et al., 2007, Han
and Pan, 2013, Chu et al., 2013), and even less for free-standing MEE multilayers until recently (Moshtagh et al., 2019, Vattré
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and Pan, 2019, Yuan et al., 2019). This circumstance is closely related to the difficulties in determining explicit expressions
for the generalized MEE point-source Green’s functions in inhomogeneous solids. In purely elastic media, localized dislocation
loops and periodic dislocation arrays as well as their three-dimensional interactions are important topological defects with strong
influences on the mechanical properties, such as ductility, hardness and yield strength (Bulatov and Cai, 2006, Kubin, 2013, Cai
and Nix, 2016). In particular, dislocation networks are intrinsically part of grain boundaries, namely symmetric tilt and twist
grain boundaries, as well as semicoherent heterophase interfaces between two adjoining solids, which in turn, can act as barriers
to extrinsic dislocation motion (Hirth and Lothe, 1992) as well as sinks for point defects (Sutton and Balluffi, 1995, Vattré et
al., 2016). The static dislocation-induced field solutions in anisotropic elastic materials (Eshelby et al., 1953, Stroh, 1958, 1962,
Willis, 1970, Gavazza and Barnett, 1976, Ting, 1996, Wang, 1996, Ohsawa et al., 2009, Lazar and Kirchner, 2013, Pan, 2019),
bimaterials (Pan, 2019, Chu and Pan, 2014, Wu et al., 2016, Vattré, 2017a,b, Vattré and Pan, 2018) and multimaterials (Vattré
and Pan, 2019, Ghoniem and Han, 2005, Gao and Larson, 2015) have been extensively formulated, mainly within the framework
of the classical continuum mechanics.

Nonlocal elasticity theories have been employed to determine adequately the non-singular dislocation field solutions by
regularizing the standard singularities close to dislocation core regions (Vattré and Pan, 2019, Lazar and Agiasofitou, 2011,
Lazar and Po, 2005, Lazar et al., 2020), which therefore leads univocally to the evaluation of the finite-valued driving forces on
dislocations. In advanced topological crystalline insulators, lattice and misfit dislocations induce intriguing transport phenomena
such as abnormal conductance and chiral magnetic effects (Ran et al., 2009, Tang and Fu, 2014, Sumiyoshi and Fujimoto, 2016,
Chernodub and Zubkov, 2017, Hamasaki et al., 2017), which suggest a new route to optimizing MEE properties by controlling the
extended field states in the vicinity of dislocations. These challenging applications necessitate the development of a unified three-
dimensional MEE formalism to describe the different structural types of dislocation loops and dislocation arrays in multilayered
anisotropic solids with multi-field MEE couplings. On the other hand, small-scale piezoelectric devices can be subjected to
external excitations for energy harvesting purposes by means of vibration-to-electrical conversion mechanisms (Yang et al.,
2017). In the quasi-static deformation regime, the long-range strain fields generated by the presence of dislocations lead to highly
localized polarization gradients in nanoscale ferroelectric heterostructures (Nagarajan et al., 2005, Chu et al., 2004, Jia et al.,
2009, Evans et al., 2021), while the corresponding role of dislocations on the time-harmonic stability of ferroelectric multilayers
has not investigated yet, which therefore supports the proposed framework for free vibration responses of multilayered MEE
composites.

In light of the above, the main objective is to self-consistently derive novel nonlocal and time-harmonic field solutions for
dislocation loops and dislocation arrays in three-dimensional multilayered MEE systems. The unified approach is based on the
mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier series transforms for
dislocation loops and arrays in nonlocal MEE multilayers. Extended singularity-free field solutions for both types of dislocations
are formulated in the context of the original nonlocal Eringen theory including a Helmholtz-type operator (Eringen, 2002). The
time-harmonic dislocation loop is represented by a discontinuity in the elastic displacement, electric potential, and magnetic
potential prescribed on rectangular or elliptical surfaces located arbitrarily in the multilayered structures, while the dislocation
arrays are composed of infinitely long, straight and uniformly spaced parallel dislocations with the same characters. The stable
and efficient implementation based on the dual variable and position procedure (Vattré and Pan, 2019, Pan, 2019, Liu et al., 2018)
combined with the Stroh formalism is used to propagate the extended field solutions among different layers of the multilayered
systems, in place of the standard transfer matrix method (Thomson, 1950) that can inevitably lead to numerical instabilities. The
general and versatile framework can obviously be reduced to application problems of multiple dislocations in MEE full-space,
half-space, bimaterial or layered half-space made of pure-elastic, piezoelectric or piezomagnetic solids.

This paper is outlined as follows. Section 2 describes the extended boundary-value problem of dislocation loops and disloca-
tion arrays in MEE multilayers as well as the general time-harmonic solutions by means of double Fourier series expansion for
each homogeneous and Eringen-type nonlocal plate. The recursive technique using the dual variable and position procedure is
formulated in Section 3 by transferring multi-field matrices with respect to specific intrinsic boundary conditions for both types
of dislocations. Section 4 deals with several application examples, especially the nonlocal MEE interaction between a dislocation
loop and a dislocation network is investigated in a three-dimensional multiferroic BaTiO3–CoFe2O4 composite structure.

2. Description and formulation of the extended boundary-value problem

Figure (1) illustrates the time-harmonic interaction between a dislocation loop and a dislocation array in the ideal three-
dimensional MEE multilayered heterostructures, with parallel perfectly-bounded interfaces normal to n ‖ z ‖ x3. In a Cartesian
coordinate system (x,y,z) = (x1,x2,x3), the complete system is composed of an arbitrary number of N -bonded orthotropic,
dissimilar, nonlocal, and linearly MEE solids with perfectly connected internal interfaces, and the finite thickness for each λth

plate is defined by hλ = zλ−zλ−1 with λ= 1, . . . ,N . Both types of dislocations have their own extended characters, arbitrarily
represented by a specific extended displacement jump at z = zL and z = zA, respectively, including the intrinsic Burgers vectors.
Futhermore, extended free-traction boundary conditions are assumed at the bottom and top surfaces, i.e. at z = z0 = 0 and
zN = H , respectively, with H being the total thickness of the multilayers. In the following, summation over repeated Roman
subscripts is implied, with the lowercase subscripts k running from 1 to 3, while the uppercase subscripts K from 1 to 5.
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Figure 1: Time-harmonic interaction between a dislocation loop and a dislocation array embedded in a three-dimensional multilayered magneto-electro-elastic
heterostructure. The multilayer is described in the global and fixed Cartesian coordinate system (O, x ‖ x1, y ‖ x2, z ‖ x3), and is composed of N -bonded
orthotropic, dissimilar, nonlocal, and magneto-electro-elastic plates with perfectly connected internal interfaces. Without loss of generality, extended free-
traction boundary conditions are assumed at the bottom and top surfaces, i.e. at z = z0 and zN , respectively, while the extended displacement jumps for the
dislocation loop and array, including their intrinsic Burgers vectors, are arbitrarily defined at z = zL and z = zA, respectively.

2.1. Nonlocal constitutive and governing equations
For each linear and homogeneous Eringen nonlocal plate, the extended displacement field uK is defined by

uK =

uk K = k = 1,2,3
φ K = 4
ψ K = 5 ,

(1)

where uk, φ, and ψ are the standard elastic displacement (in m), the electric potential (in V), and the magnetic potential (in A),
respectively. The extended strain γKj is given by

γKj =

γkj =
1
2 (uk,j+uj,k) K = k = 1,2,3

Ej =−φ,j K = 4
Hj =−ψ,j K = 5 ,

(2)

for which the comma followed by lowercase subscript k denotes partial differentiation with respect to the position xk, while γkj
is the elastic strain (dimensionless), Ej is the electric field (in V/m), Hj is the magnetic field (in A/m). On the other hand, the
the extended stress field σiJ is defined by

σkJ =

σkj J = j = 1,2,3
Dk J = 4
Bk J = 5 ,

(3)

with σkj the components of the elastic stress (in N/m2), Dk the electric displacement (in C/m2), and Bk the magnetic induction
(in N/A.m), and the extended traction vector is therefore given by

tJ = σkJ nk , (4)

with normal nk. For time-harmonic deformation state with the given frequency of excitation ω in rad/s, and without body forces,
thermal effects, electric current densities, electric and magnetic charge densities, the governing partial differential equation of
vibration motion and the extended constitutive relations for each Eringen nonlocal plate read

σiJ,i+ρω
2δjJ uJ = 0 , (5a)(

1− l2E∇
2)σiJ = ciJKl γKl , (5b)

where ρ is the mass density (in kg/m3), lE is the nonlocal parameter (in m), ∇2 is the three-dimensional Laplacian operator, and
the extended stiffness tensor is defined for each orthotropic MEE layer by

ciJKl =



cijkl J, K = j, k = 1,2,3
elij J = j = 1,2,3, K = 4
eikl J = 4, K = k = 1,2,3
qlij J = j = 1,2,3, K = 5
qikl J = 5, K = k = 1,2,3
−αil J = 4, K = 5, or, K = 4, J = 5
−εil J, K = 4
−µil J, K = 5 ,

(6)
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where cijlm, ekij , qkij , αij , εil, µil are the elastic moduli (in N/m2), piezoelectric (in C/m2), piezomagnetic (in N/A.m),
magnetoelectric (in C/A.m), dielectric permittivity (in C2/N.m2) and magnetic permeability (in N.s2/C2) coefficients, respec-
tively, which satisfy the following symmetries: cijlm = cjilm = cijml = clmij , ekij = ekji, qkij = qkji, αij = αji, εij = εji, and
µij = µji. In terms of the extended displacements, eqs. (5) are rewritten as follows

−
(
1− l2E∇

2)ρω2δjJ uJ = ciJKluK,li , (7)

which becomes the main time-harmonic differential equation to be solved. To distinguish the general field solution for each
plate from the global solution for the multilayered systems, a convenient local coordinate system (x1,x2,z

′) is attached to the
individual λth layer, with origin at the point where the global x3 ‖ z axis intersects the bottom interface of the λth plate. In the
local Cartesian coordinate system, the five-dimensional field solution of the extended displacement vector uK in eq. (7) is sought
in the complex standard form and is expressed as a product of a function of position and a separate function of time, as follows

uK = eiωt ûK(x1,x2,z
′) , (8)

where the time-independent nonlocal displacement vector ûK is expressed using the two-dimensional Fourier series expansion
ansatz (Srinivas and Rao, 1970, Dobyns, 1981), as follows

uK =


u1
u2
u3
φ
ψ

= eiωt
∞

∑
m=1

∞

∑
n=1


ū1(z

′)cos(pmx1) sin(qnx2)
ū2(z

′)sin(pmx1) cos(qnx2)
ū3(z

′)sin(pmx1) sin(qnx2)
φ̄(z′)sin(pmx1) sin(qnx2)
ψ̄(z′)sin(pmx1) sin(qnx2)

= eiωt
∞

∑
m=1

∞

∑
n=1

esz
′


a1 cos(pmx1) sin(qnx2)
a2 sin(pmx1) cos(qnx2)
a3 sin(pmx1) sin(qnx2)
a4 sin(pmx1) sin(qnx2)
a5 sin(pmx1) sin(qnx2)

 , (9)

where the half-wave numbers are given by pm =mπ/Lx and qn = nπ/Ly , with m and n being two positive integers, and Lx
and Ly the dimensions in the x ‖ x1- and y ‖ x2- directions of the multilayered structures. The extended traction vector tK is
also written as

tK =


σ31
σ32
σ33
D3
B3

= eiωt
∞

∑
m=1

∞

∑
n=1


σ̄31(z

′)cos(pmx1) sin(qnx2)
σ̄32(z

′)sin(pmx1) cos(qnx2)
σ̄33(z

′)sin(pmx1) sin(qnx2)
D̄3(z

′)sin(pmx1) sin(qnx2)
B̄3(z

′)sin(pmx1) sin(qnx2)

= eiωt
∞

∑
m=1

∞

∑
n=1

esz
′


b1 cos(pmx1) sin(qnx2)
b2 sin(pmx1) cos(qnx2)
b3 sin(pmx1) sin(qnx2)
b4 sin(pmx1) sin(qnx2)
b5 sin(pmx1) sin(qnx2)

 , (10)

where both superscripts over pm and qn are omitted to avoid notational complexity, unless stipulated. Both vectors aK and bK
in eqs. (9) and (10) are written as follows

a=
[
a1, a2, a3, a4, a5

]t
b=

[
b1, b2, b3, b4, b5

]t
,

(11)

respectively, for which nonlocal relations between the expansion coefficients of the displacement and traction vectors can be
derived by substituting eqs. (9) and (10) into the constitutive eq. (5b), such that(

1− l2E
(
s2−p2− q2))b= [−Rt +sT

]
a=−s−1 [Q+ρω2 (1− l2E (s2−p2− q2))I 5×5 +sR

]
a , (12)

where the three involved 5×5 matrices R, T and Q are given by

R =


0 0 pc13 pe31 pq31
0 0 qc23 qe32 qq32

−pc55 −qc44 0 0 0
−pe15 −qe24 0 0 0
−pq15 −qq24 0 0 0

 , (13a)

T =


c55 0 0 0 0

c44 0 0 0
c33 e33 q33

sym −ε33 −α33
−µ33

= Tt , (13b)

Q =−


p2c11 + q

2c66 pq(c12 + c66) 0 0 0
p2c66 + q

2c22 0 0 0
p2c55 + q

2c44 p2e15 + q
2e24 p2q15 + q

2q24
sym −p2ε11− q2ε22 −p2α11− q2α22

−p2µ11− q2µ22

= Qt , (13c)

while I 5×5 is the identity matrix. Furthermore, substituting eqs. (9) and (10) into the constitutive eq. (7) lead to a quadratic
eigenequation, as follows[

Q+ρω2 (1+ l2E (p2 + q2))I 5×5 +s
(
R−Rt)+s2 (T−ρω2l2E I 5×5

)]
a= 0 , (14)
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which, combined with eq. (12), can be recast by the following linear eigensystem of equations, i.e.[
T̃−1Rt T̃−1

−Q̃−RT̃−1Rt −RT̃−t

][
a
d

]
= s

[
a
d

]
(15)

where the 5×5 time-harmonic T̃ and Q̃ matrices are given by

Q̃ = Q+ρω2 (1+ l2E (p2 + q2))I 5×5 = Q̃t , (16a)

T̃ = T−ρω2l2E I 5×5 = T̃t , (16b)

while the 5×1 constant column matrix d is defined by

d=
[
−Rt +s

(
T−ρω2l2E I 5×5

)]
a=−s−1 [Q+ρω2 (1+ l2E (p2 + q2))I 5×5 +sR

]
a , (17)

with respect to R, T and Q from eqs. (13).

2.2. General displacement and stress field solutions for each homogeneous plate
The eigenequation (15) is the extended Stroh sextic formalism that provides a general solution for the time-harmonic defor-

mation state in each linear anisotropic plate, within which the eigenvalues s and eigenvectors a depend on ω, lE,m, and n, as well
as the material properties listed in eq. (6). These complex eigenvalues are conveniently arranged such that Res1 ≥ . . .≥ Res10,
and pK+5 = p∗K , where the asterisk indicates complex conjugates of solutions, due to the positive definiteness of the magnetic,
electric, and elastic strain energy densities. Without the proportional sine and cosine terms as well as the time-dependent factor
eiωt in eqs. (9) and (10) for clarity, the general z′-dependent displacement and traction solutions in the Fourier-transformed
domain can be expressed in terms of the Stroh formalism in any given layer λ bonded by the lower and upper interfaces at zλ−1
and zλ, respectively, as follows[

ū(z′)
t̄(z′)

]
=

[
A† A††
B† B††

][〈
es† (z−zλ)

〉
0 5×5

0 5×5

〈
es†† (z−zλ−1)

〉][K†
K††

]
, (18)

with A† and A†† being the primary eigenvector matrices defined by

A† =
[
a1, a2, a3, a4, a5

]
, A†† =

[
a6, a7, a8, a9, a10

]
, (19)

while the elements bK of secondary eigenvector matrices B† = [b1, b2, b3, b4, b5] and B†† = [b6, b7, b8, b9, b10] are deduced
from aK , as follows

bK =
(
1− l2E(s2

K −p2− q2)
)−1 [−Rt +sKT

]
aK =

(
1− l2E(s2

K −p2− q2)
)−1 (

dK +ρω2l2E sK I 5×5 aK
)
, (20)

by virtue of eq. (17). Both matrices A† and B† are also the collections of eigenvectors associated with the first five eigenvalues
s†, while A†† and B†† are related to the eigenvectors of the eigenvalues s††, given by

s† =
[
s1, s2, s3, s4, s5

]t
, s†† =

[
s6, s7, s8, s9, s10

]t
, (21)

which are defined in the z′-dependent diagonal and exponential matrices in eq. (18), as follows

〈es†z
′〉= diag

[
es1z

′
, es2z

′
, es3z

′
, es4z

′
, es5z

′]
, 〈es††z

′〉= diag
[
es6z

′
, es7z

′
, es8z

′
, es9z

′
, es10z

′]
, (22)

while K† and K†† are 5×1 constant column matrices to be determined from the internal and external boundary conditions. For
each pair of integers m and n, the general solutions of eqs. (9) and (10) for the extended displacement and traction field vectors
in each homogenous nonlocal plate are also obtained at any material point and any time in each plate by introducing the sine
and cosine terms as well as the time-dependent factor eiωt in eq. (18) and by solving the eigensystem in eq. (15) based on the
extended Stroh formalism. Furthermore, the remaining in-plane stresses τK are organized as follows

τK =



σ11
σ12
σ22
D1
D2
B1
B2


= eiωt

∞

∑
m=1

∞

∑
n=1

esz
′



c1 sin(pmx1) sin(qnx2)
c2 cos(pmx1) cos(qnx2)
c3 sin(pmx1) sin(qnx2)
c4 cos(pmx1) sin(qnx2)
c5 sin(pmx1) cos(qnx2)
c6 cos(pmx1) sin(qnx2)
c7 sin(pmx1) cos(qnx2)


, (23)

within which the coefficient cM , with M = 1, . . . ,7, are related to aK by

c1
c2
c3
c4
c5
c6
c7


=
(
1− l2E(s2−p2− q2)

)−1



−pc11 −qc12 sc13 se31 sq31
qc66 pc66 0 0 0
−pc12 −qc22 sc23 se32 sq32
se15 0 pe15 −pε11 −pα11

0 se24 qe24 −qε22 −qα22
−sq15 0 pq15 −pα11 −pµ11

0 sq24 qq24 −qα22 −qµ22




a1
a2
a3
a4
a5

 , (24)

which is obtained by substituting the displacement expansion eq. (9) and the in-plane stress eq. (23) into eq. (5b).
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3. Nonlocal and time-harmonic recursive field solutions in MEE multilayered systems

Instead of using higher-order finite element ressources for multilayered plates, various semi-analytical layered matrix meth-
ods have been proposed in the literature, as reviewed by Pan (2019), such as the transfer matrix method (Thomson, 1950, Haskell,
1953, Singh, 1970, Pan, 1989), the delta matrix method (Castaings and Hosten, 1993, Hosten and Castaings, 1993), the stiff-
ness matrix method (Nayfeh, 1991, Wang and Rokhlin, 2001, Rokhlin and Wang, 2002), the hybrid compliance-stiffness matrix
method (Tan, 2006, 2007, 2011), the reverberation ray matrix method (Yuan et al., 2019, Howard and Pao, 1998, Su et al., 2002,
Pao et al., 2007), the precise integration method (Zhong, 2004, Gao et al., 2013, Ai and Cheng, 2014). While the standard
transfer matrix method leads numerical instability at high frequency-thickness products, the latter precise integration method
has inspired the recent dual variable and position technique (Vattré and Pan, 2019, Pan, 2019, Liu et al., 2018) for the present
nonlocal and time-harmonic field solutions for dislocations in multilayered structures, which is unconditionally stable with high
accuracy (Vattré and Pan, 2019, Pan, 2019, Zhou et al., 2019). The technique is also used to propagate the Fourier expansion
solutions among different layers from the bottom to the upper free surfaces, through the different types of dislocations.

3.1. Recursive field relations using the dual variable and position technique

In the context of the dual variable and position technique in the Fourier-transformed domain, the location z′ is substituted by
z′λ−1 into the linear system in eq. (18), so that the general solutions in terms of displacements and tractions lead to[

ū
(
z′λ−1

)
t̄
(
z′λ−1

)]= [A† A††
B† B††

][〈
es†hλ

〉
0 5×5

0 5×5 I 5×5

][
K†
K††

]
, (25)

while similarly substituting z′λ into eq. (18), and combining the resultant relation with eq. (25), both unknown complex vectors
K† and K†† can be removed to meet cross relations between field solutions at z′ = z′λ−1 and z′ = z′λ, as follows[

ū
(
z′λ−1

)
t̄(z′λ)

]
=

[
Sλ11 Sλ12
Sλ21 Sλ22

][
ū(z′λ)
t̄
(
z′λ−1

)]= [A†
〈
e−s†hλ

〉
A††

B† B††
〈
es††hλ

〉][ A† A††
〈
es††hλ

〉
B†
〈
e−s†hλ

〉
B††

]−1 [
ū(z′λ)
t̄
(
z′λ−1

)] , (26)

where the 2× 2 five-dimensional block matrices contains real-valued elements. Furthermore, the propagation relations of the
expansion coefficient solutions at both interfaces zλ and zλ+1 for the upper adjacent layer are similarly defined by[

ū(z′λ)
t̄
(
z′λ+1

)]= [Sλ+1
11 Sλ+1

12
Sλ+1

21 Sλ+1
22

][
ū
(
z′λ+1

)
t̄(z′λ)

]
, (27)

for which the in-built elements are written in terms of the corresponding Stroh eigensolutions to the plate λ+ 1 and thickness
hλ+1. Because the internal interface at zλ between both adjacent λ and λ+1 layers is perfectly bonded, the Fourier-transformed
displacement and traction vectors at z = zλ are continuous, which leads to important recursive relations between interfaces zλ−1
and zλ+1 by combining eqs. (26) and (27) together, as follows[

ū
(
z′λ−1

)
t̄
(
z′λ+1

)]= [Sλ:λ+1
11 Sλ:λ+1

12
Sλ:λ+1

21 Sλ:λ+1
22

][
ū
(
z′λ+1

)
t̄
(
z′λ−1

)] , (28)

where the superscript λ:λ+1 means the resulting propagation matrix from layer λ to layer λ+1, and the five-dimensional layer-
to-layer submatrices are expressed as

Sλ:λ+1
11 =

[
Sλ11Sλ+1

11
]
+
[
Sλ11Sλ+1

12
][

I 5×5−Sλ21Sλ+1
12
]−1[Sλ21Sλ+1

11
]

Sλ:λ+1
12 =

[
Sλ12
]
+
[
Sλ11Sλ+1

12
][

I 5×5−Sλ21Sλ+1
12
]−1[Sλ22

]
Sλ:λ+1

21 =
[
Sλ+1

21
]
+
[
Sλ+1

22
][

I 5×5−Sλ21Sλ+1
12
]−1[Sλ21Sλ+1

11
]

Sλ:λ+1
22 =

[
Sλ+1

22
][

I 5×5−Sλ21Sλ+1
12
]−1[Sλ22

]
,

(29)

as proposed in recent multilayered problems under surface loadings (Liu et al., 2018) and specific dislocated-multilayers with
internal semicoherent interfaces (Vattré and Pan, 2019).

3.2. Extended boundary conditions for dislocation loops and dislocation arrays

In contrast with the perfectly bonded interfacial conditions, the introduction of finite dislocation loops L and infinitely long,
straight and uniformly spaced parallel dislocation arrays A need specific boundary conditions, specified by{

tK (x1,x2,zS+, t)− tK (x1,x2,zS−, t) = 0

uK (x1,x2,zS+, t)−uK (x1,x2,zS−, t) = eiωt ûpK (x1,x2) ,

(30a)

(30b)

where z = zS− and z = zS+ denote the lower and upper sides of the dislocation surface S = {L, A} at z = zS , for which the
traction field remains continuous. The prescribed time-independent displacement jump ûpK (x1,x2) in the physical domain is
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defined in eq. (30b) with respect to the corresponding constant Burgers vector bSK and is therefore expressed using analogous
two-dimensional Fourier series, as follows

ûpK (x1,x2) =



∞

∑
m=1

∞

∑
n=1


b̄xmn cos(pmx1) sin(qnx2)
b̄ymn sin(pmx1) cos(qnx2)
b̄zmn sin(pmx1) sin(qnx2)
b̄φmn sin(pmx1) sin(qnx2)
b̄ψmn sin(pmx1) sin(qnx2)

χL (x1,x2) , χL (x1,x2) =

{
1 , ∀(x1,x2) ∈ L
0 , otherwise

∞

∑
m=1


b̄xm sin(wmx1)
b̄ym sin(wmx1)
b̄zm sin(wmx1)
b̄φm sin(wmx1)
b̄ψm sin(wmx1)

 ,

(31a)

(31b)

for dislocation loops and dislocation arrays, respectively. In eq. (31a), χS (x1,x2) is the two-dimensional indicator function
for dislocation loops, while wm = 2πm/Λ with Λ = 2Lx in eq. (31b) is the inter-dislocation spacing for one-dimensional
dislocation network (Bonnet, 1996, Vattré, 2015, 2016). Without the time-dependent, sine and cosine proportional factors the
expansion coefficients of the extended displacement discontinuity JūpSK K for the dislocation loops and arrays are defined by

JūpSK K =

b̄
L
mn =

[
b̄xmn, b̄

y
mn, b̄

z
mn, b̄

φ
mn, b̄

ψ
mn

]t
, for dislocation loops

b̄
A
m =−(πm)−1 [bA1 , bA2 , bA3 , bA4 , bA5 ]t , for dislocation arrays ,

(32a)

(32b)

for which the latter physical MEE Burgers vector components bAK are crystallographically prescribed by constant components,
related to either the bulk crystals for homophase interfaces (Hirth and Lothe, 1992, Sutton and Balluffi, 1995) or to the specific
crystallographic characters for heterophase interfaces (Sutton and Balluffi, 1995, Vattré and Demkowicz, 2013). Especially, the
components of the expansion coefficients in eqs. (32a) must also be determined with respect to the closed dislocation contours,
such as the rectangular dislocation loops R of finite dimension `x× `y with center [x0 = Lx/2,y0 = Ly/2,zS ]

t as well as the
elliptical dislocation loops E with major and minor semi-axes r1 and r2 centered about [x0,y0,zS ]

t, which accounts for the
particular case of circular dislocation loops C of radius r = r1 = r2.

The first component b̄xmn of b̄Lmn in eq. (32a) is expressed by the finite integral transform technique, as follows

b̄xmn =
4

LxLy

ˆ Lx

0

ˆ Ly

0
bL1 cos(pmx1) sin(qnx2) χL (x1,x2)dx1 dx2 , (33)

which is reduced for a rectangular dislocation loop to

b̄xmn = 4
bR1
LxLy

ˆ Lx/2+`x/2

Lx/2−`x/2

ˆ Ly/2+`y/2

Ly/2−`y/2
cos(pmx1) sin(qnx2)dx1 dx2 , (34)

where the integrand satisfies the Helmholtz equation, such that the expansion coefficients of the displacement components can
be constructed in a specific system of vector functions, while the double integrals over rectangular regions lead to the following
exact-closed form expression, as

b̄xmn =


(−1)(n+1)/2+1 4`x

πnLx
sin
(nπ`y

2Ly

)
bR1 , m= 0 , n= 1, 3, 5, . . .

(−1)m/2(−1)(n+1)/2+1 16
π2mn

sin
(mπ`x

2Lx

)
sin
(nπ`y

2Ly

)
bR1 , m= 2, 4, 6, . . . , n= 1, 3, 5, . . . ,

(35)

with Lx� `x and Ly� `y . The determination of b̄ymn is straightforwardly formulated by changing the physical Burgers vector
component bR1 with bR2 , the expansion term m with n, the subscript x with y, and vice versa, while the remaining components
b̄ηmn, with superscripts η = {z, φ, ψ} equivalent to subscripts η = {3, 4, 5}, are given by

b̄ηmn = (−1)(m+1)/2+1(−1)(n+1)/2+1 16
π2mn

sin
(mπ`x

2Lx

)
sin
(nπ`y

2Ly

)
bRη , m= 1, 3, 5, . . . , n= 1, 3, 5, . . . (36)

which completes the expansion coefficients of the extended displacement discontinuity for dislocation loops in eq. (32a). On the
other hand, eq. (33) for elliptical dislocation loops E becomes

b̄xmn = 4
bE1
LxLy

ˆ 2π

0

ˆ rθ

0
cos
(
pm(r′cosθ+x0)

)
sin
(
qn(r

′sinθ+y0)
)
r′dr′dθ , (37)

with rθ = r1r2/
√

(r2 cosθ)2 +(r1 sinθ)2, which can be carried out with respect to r′, as follows

b̄xmn = 2
bE1
LxLy

ˆ 2π

0

[
a−2

3 (sin(rθa3 +a4)− sina4− rθa3cos(rθa3 +a4))−a−2
1 (sin(rθa1 +a2)− sina2− rθa1cos(rθa1 +a2))

]
dθ ,

m= 0, 2, 4, . . . , n= 1, 3, 5, . . . ,
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(38)

where the Fourier mode-dependent parameters are given by

a1 = pmcosθ− qnsinθ , a2 = pmx0− qny0

a3 = pmcosθ+ qnsinθ , a4 = pmx0 + qny0 ,
(39)

with m = 0, 2, 4, . . . , and, n = 1, 3, 5, . . . for both wave numbers pm and qn, respectively. Equation (38) leads therefore to a
line-integral expression that is numerically computed for elliptical dislocation loops by use of standard Gauss quadrature rules.
A similar line-integral expression is obtained for b̄ymn, apart from m and n that run odd and even integers, respectively, while the
remaining Fourier coefficients b̄ηmn read

b̄ηmn = 2
bCη
LxLy

ˆ 2π

0

[
a−2

1 (cos(rθa1 +a2)− cosa2− rθa1sin(rθa1 +a2))−a−2
3 (cos(rθa3 +a4)− cosa4− rθa3sin(rθa3 +a4))

]
dθ ,

m= 1, 3, 5, . . . , n= 1, 3, 5, . . . ,
(40)

with η= {z, φ, ψ}≡ {3, 4, 5}. Furthermore, the global propagation submatrices in eq. (29) from the bottom surface at z= z0 = 0
to the top surface to z = zN =H can be partitioned to explicitly determine the displacement and traction solutions at any z-level
including the conditions for the perfectly bonded interfaces as well as for the dislocation loops and arrays. The field solutions in
the Fourier-transformed domain at zf in layer λ can be obtained from eq. (28) by propagating first the transformed displacement
and traction vectors from the bottom surface z = 0 to the lower side of the dislocation loop at z = zS−, as follows[

ū(z = 0)
t̄(z = zS−)

]
=

[
S1:λ

11 S1:λ
12

S1:λ
21 S1:λ

22

][
ū(z = zS−)
t̄(z = 0)

]
, (41)

and then, propagating the solution from the upper side at zS+ of the dislocation loop to the top surface z =H to similarly obtain
the subsequent relations[

ū(z = zS+) = JūpSK K+ ū(z = zS−)
t̄(z =H)

]
=

[
Sλ:N

11 Sλ:N
12

Sλ:N
21 Sλ:N

22

][
ū(z =H)
t̄(z = zS+)

]
, (42)

for which the displacement jump condition in the reciprocal domain is incorporated. Both eqs. (41) and (42) can be conveniently
recast into the following linear system, i.e.,

0 5×5 −I 5×5 Sλ:N
11 Sλ:N

12
0 5×5 0 5×5 Sλ:N

21 Sλ:N
22

−I 5×5 S1:λ
11 0 5×5 0 5×5

0 5×5 S1:λ
21 0 5×5 −I 5×5




ū(z = 0)
ū(z = zS−)
ū(z =H)
t̄(z = zS−)

=


JūpSK K

t̄(z =H) = 0 5×1

−S1:λ
12 t̄(z = 0) = 0 5×1

−S1:λ
22 t̄(z = 0) = 0 5×1

 , (43)

where the submatrices on the left-hand side are defined in eq. (29). The system in eq. (43) is therefore solved for each Fourier
mode to determine the displacement fields at the three involved locations, i.e., ū(z = 0), ū(zS−) and ū(z =H), as well as the
internal traction, i.e., t̄(z = zS) at z = zS− = zS , with respect to the free-surface boundary conditions at the external surfaces,
i.e., t̄(z = 0) = t̄(z =H) = 0, without loss of generality, as well as the prescribed dislocation-induced displacement jump JūpSK K
from eq. (32) with eqs. (35) and (36) for rectangular dislocation loops, and eqs. (38) and (40) for elliptical loops. For any field
point zf in the layer λf below the location of the defect embedded in λS , thus with 0 < zf < zS−, the recursive relations in
eq. (28) are conveniently split as

[
ū(z = 0)
t̄(z = zf )

]
=

[
S1:λf

11 S1:λf
12

S1:λf
21 S1:λf

22

][
ū(z = zf )
t̄(z = 0)

]
[
ū(z = zf )
t̄(z = zS)

]
=

[
Sλf :λS

11 Sλf :λS
12

Sλf :λS
21 Sλf :λS

22

][
ū(z = zS−)
t̄(z = zf )

]
,

(44)

which can also be recast into the following linear system of equations, i.e.,
S1:λf

11 0 5×5 −I 5×5 0 5×5

S1:λf
21 −I 5×5 0 5×5 0 5×5

I 5×5 Sλf :λS
12 0 5×5 0 5×5

0 5×5 Sλf :λS
22 0 5×5 −I 5×5



ū(z = zf )
t̄(z = zf )
ū(z = 0)
t̄(z = zS)

=−


S1:λf

12 t̄(z = 0)
S1:λf

22 t̄(z = 0)
Sλf :λS

11 ū(z = zS−)

Sλf :λS
21 ū(z = zS−)

 , (45)

and be solved to determine the expansion coefficients of the extended displacement ū(z = zf ) and traction t̄(z = zf ) fields,
using the known displacement field solutions ū(z = zS−) in the right-hand side, previously obtained from the resolution of
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eq. (43). On the other hand, for any field solution at point zf such that zS+ < zf <H in the layer λf , a similar system as eq. (45)
leads to

SλS :λf
11 0 5×5 0 5×5 SλS :λf

12

SλS :λf
21 −I 5×5 0 5×5 SλS :λf

22

−I 5×5 Sλf :N
12 Sλf :N

11 0 5×5

0 5×5 Sλf :N
22 Sλf :N

21 0 5×5



ū(z = zf )
t̄(z = zf )
ū(z =H)
t̄(z = zS)

=


−JūpSK K− ū(z = zS−)

0 5×1

0 5×1

t̄(z =H) = 0 5×1

 , (46)

for which the displacement and traction expansion coefficients at z = zf are similarly solved in the Fourier-transformed domain
with respect to ū(z = zS−) from eq. (43).

By virtue of the appropriate displacement jump JūpSK K in eq. (32) for the considered multilayered boundary-value problem,
the extended dislocation-induced displacement and stress fields are finally obtained in the physical domain by introducing the
time-dependent eiωt as well as the sine and cosine terms in the solutions from eqs. (45) and (46), as formulated in eqs. (9) and
(10), while completed with the in-plane stress components in eq. (23), respectively.

4. Example applications

Illustrative examples of the general and unified theory for nonlocal and time-harmonic dislocation loops and arrays in mul-
tilayered are presented in applications to nanoscale MEE multilayered structures. The present field solutions are first validated
against existing results from three standard approaches limited to static and local elastic theory of both types of defects in ho-
mogeneous copper (Cu) and copper/niobium (Cu/Nb) bimaterials. The corresponding boundary-value problems as well as the
materials properties are those of the cited references. The proposed framework is further applied at the nanoscale to analyze the
specific effect of material anisotropy, MEE mismatch, multi-phase coupling, nonlocal parameter, vibration frequency, stacking
sequences, on the dislocation-induced elastic, electric, and magnetic fields in homogeneous and heterogenous structures made
of CoFe2O4 (magnetostrictive cobalt ferrite, CFO) and BaTiO3 (piezoelectric barium titanate, BTO), for which the materials
properties are listed in Ref. (Vattré and Pan, 2019). Without loss of generality, the x1-, x2- and x3- axes are parallel to [100],
[010] and [001], respectively, while the dimensions of the following defects are characterized by `x = `y = 2r = 10 nm, unless
stipulated otherwise.

4.1. Validation with existing analytical solutions
Static and local field solutions in terms of displacements and stresses produced by dislocation loops and arrays (solid lines)

are compared with existing analytical results (symbols) for validation purposes. In these examples, the Burgers vectors for all
dislocation configurations are defined along the vertical z-direction, without loss of generality. Figure (2a) shows the non-zero
stress field components generated by a rectangular loop in a homogeneous and isotropic Cu material, while the existing results
are determined from Hirth and Lothe (1992). Figure (2b) depicts the continuous components of the displacement field solutions
on the heterophase interface of the anisotropic elastic Nb/Cu bimaterial induced by a circular loop within the middle of the lower
Cu layer, which are compared with the results of Yuan et al. (2019). In comparison with the closed-form relations Chu and
Pan (2014), Fig. (2c) presents the stress fields along the interface of the Cu/Nb bimaterial space, produced by a symmetric tilt
grain boundary that is described as a network of uniformly spaced edge dislocations. For these two types of dislocations in the
reduced application problems, namely the rectangular and circular shaped dislocation loops as well as the dislocation arrays in
heterophase structures, the present field solutions are in very good agreement with the static and local analytical benchmarks,
which partially validates the accuracy of the novel unified framework for subsequent prediction analysis in more general and
advanced boundary-value problems in anisotropic MEE multilayers. In particular, Fig. (3) shows the strong effect of material
anisotropy on static and local elastic stresses induced by a rectangular loop in a homogeneous Cu full-space (red lines based on
cubic Cu), compared to the isotropic approximation of the elastic properties from Fig. (2a). The discrepancies caused by the
isotropic elasticity, which are significant in the vicinity of the dislocation edges, have also important consequences on the driving
forces for plastic activity as well as for the short-range interaction of the dislocations with further topological defects. Offering
a crucial route to understanding the plasticity behind macroscropic phenomena, discrete dislocation dynamics cannot leave such
effect of material anisotropy unexamined, which the most three-dimensional recent codes tend to incorporate to account for
realistic calculations.

4.2. Glide components of the generalized Peach-Koehler forces on shear dislocation loops
The determination of the finite self-energy is of great importance to compute the non-singular driving forces acting on

shear dislocation loops, without resorting to heuristic assumptions as the dislocation line tension approximation. For lE , 0,
the nonlocal core-spreading operation is also able to regularize the pure elastic as well as the MEE fields produced by discrete
dislocation loops with explicit local curvature, which are, in turn, used to calculate the finite-valued and generalized Peach-
Koehler force at any point x∂L =

[
x∂L1 ,x∂L2 ,zS

]t on the boundary ∂L of the dislocation loop. Without considering prescribed
electric and magnetic charge densities on the dislocations, the Peach-Koehler force per unit length fk(x∂L) reads

fk(x∂L) = εkil b
L
j ξl(x

∂L)σij(x∂L) , (47)

with lowercase subscripts, where εkil is the alternating tensor, and ξl(x∂L) is the unit tangent vector of the dislocation at x∂L,
while the free-singularity self-stress σij(x∂L) is obtained by solving eqs. (45) and (46) with respect to the prescribed displace-
ment jump in eq. (32) for the tractions, completed by the in-plane stress components from eq. (23). The glide component fg of
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a)

c)

Figure 2: Comparison of static, local, and purely elastic field profiles obtained by the present theoretical solutions (solid lines) with analytics (symbols) for three
different dislocated material configurations. For the three cases, the directions of the Burgers vectors are identical, and defined along b ‖ z ‖ x3. (a) A rectangular
prismatic dislocation loop is located at zL in the homogeneous and isotropic Cu material, and both stress components are displayed at z = zL+ 2b along x1,
with x2 = Ly/2. (b) A circular prismatic dislocation loop in the free-standing anisotropic Nb/Cu bimaterial is located in the center of the lower Cu plate at
zL = hCu/2, while the displacement components are plotted along the heterophase interface x1-axis at z = hCu =H/2. (c) A low-angle tilt grain boundary
located at z = 8b in the Cu side from the heterophase interface of the semi-infinite anisotropic Cu/Nb bimaterial, for which the continuous stress components
are displayed along the heterophase interface x1-axis. The crosses in (a), (b) and (c) are obtained by the analytical solutions from Hirth and Lothe (1992), Yuan
et al. (2019), and Chu and Pan (2014), respectively.
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Figure 3: Static local isotropic (black lines) versus anisotropic (red lines) elastic stress field components produced by the specific configuration of rectangular
and prismatic dislocation loop in Fig. (2a).

the dislocation force is also given by the projection of fk onto mk(x∂L), where the latter is the unit and local outward-pointing
direction vector in the plane, orthogonal to the loop. The magnitude of the Peach-Koehler forces is also signed, such that positive
values describe the expansion of the dislocation loops, while the magnitude is reported as negative for dislocation shrinkage.

The effect of anisotropic elastic and time-harmonic field solutions on the Peach-Koehler forces along the elliptical shear
dislocation loops is presented in Fig. (4). The uniform Burgers vector within the loops is oriented along the x1-direction and the
nonlocal parameter is set to lE = 0.15 nm, while three elliptical shapes (i.e., with three different aspect ratios between r1 and
r2) are considered in homogeneous copper. The plots are depicted as a function of the polar angle θ, for which θ ≡ 0 mod 180◦

(θ ≡ 90◦ mod 180◦) corresponds to the part of dislocations with a pure edge (screw) character. Figure (4a) shows the variation
of the static Peach-Koehler forces along the elliptical loops for the anisotropic (solid lines) and isotropic (dashed lines) elastic
field solutions with respect to the three shapes, which are negative with θ for all dislocation configurations. Interestingly, the
negative Peach-Koehler forces have maximum values in absolute amplitude at θ ≡ 90◦ mod 180◦ for the isotropic calculations
for circular and elliptical loops with r1 = r2/2, which on the other hand are minimum using the fully anisotropic elasticity
theory. The schematics on the right-hand side of Fig. (4a) illustrate the distribution of the von Mises stress field as well as of the
Peach-Koehler forces for the circular dislocation loop configuration embedded in anisotropic and isotropic elastic materials. The
von Mises stress field and Peach-Koehler forces are more homogeneously distributed around the circular dislocation loop using
the isotropic elastic approximation than for the anisotropic elastic case, for which the latter surprisingly exhibits the highest von
Mises stress as well as the lowest resolved Peach-Koehler stress concentrations for the local screw characters. These deviations
between isotropic and anisotropic elastic stress predictions are strongly expected to have a significant impact on the motion and
dynamics of dislocation loops. In Fig. (4b), static self-stress field solutions using anisotropic elasticity for the three dislocation
shapes in Fig. (4a) are compared to the time-harmonic dislocation cases with a fixed frequency ω = 3× 1012 rad/s. The main
effect of the time-harmonic condition is to introduce an effective stress contribution to the Peach-Koehler forces for all three
dislocation shapes, which roughly shifts the magnitude between the minimum and maximum values independently of θ, but has
the serious consequence of leading the sign of the driving force to change locally, as illustrated by the grey shaded area. For
illustration, the inset shows the change in sign over the large region of the elliptical dislocation loop with r1 = 2r2 near the screw
characters.
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Figure 4: Effect of the (a) anisotropic (solid lines) versus isotropic (dashed lines) elasticity and of the (b) static (solid lines) versus time-harmonic (dashed lines)
loading conditions on the non-singular magnitude of the glide component of the Peach-Koehler forces on circular, with r1 = r2 (black curves), as well as on two
elliptical shear dislocation loops, with r1 = 2r2 (red curves) and r1 = r2/2 (blue curves), against the polar angle θ. The calculations are performed in copper,
for which the Burgers vector bL1 is oriented along the x1-axis, as illustrated in the schematics, so that θ ≡ 0 mod 180◦ corresponds to the points M on the
dislocation fronts where the local character has a pure edge component. The nonlocal calculations are performed using lE = 0.15 nm, and the magnitude of the
Peach-Koehler forces in (b) are obtained by using the anisotropic elastic solutions and ω = 3×1012 rad/s. The distribution of the von Mises stress field and the
Peach-Koehler forces are displayed on the right-hand side for comparison between dissimilar configurations.

4.3. Nonlocal and time-harmonic dislocation-induced effects in MEE structures

Figure (5) shows the elastic displacements, electric and magnetic potentials, and stresses induced by a rectangular prismatic
dislocation loop in a homogeneous and nonlocal MEE full-space, namely the BTO in Fig. (5a) and CFO in Fig. (5b) solids.
Curves are plotted along the dislocation axis and two nonlocal parameter values are considered, for which the nonlocal field
solutions are compared with the local MEE theory (dotted lines). As expected, the MEE field singularities in the local solids
disappear due to the nonlocal effect, while a larger nonlocal parameter corresponds to a smoother field variation with a remarkable
change in the magnitude and sign of the in-plane displacement u1 as well as the transverse shear stress σ13, especially in the
CFO material. Interestingly, the nonlocal effect is mostly isolated in the vicinity of the dislocation cores, where singularity exists
in the local solution, except for the electric and magnetic potentials where a broad nonlocal effect can be observed.

Figures (6a) and (b) illustrate the static and local MEE field components induced by a rectangular and prismatic dislocation
loop embedded in the midway plane of two free-standing bimaterials made of BTO and CFO materials, namely the BTO/CFO
and CFO/BTO bicrystals, respectively. The position of the dislocation loop is represented by the double-headed arrows, while the
corresponding heterophase interfaces are located in the lower material at four different locations. The field solutions are displayed
along a line in the z-direction that passes through the center of dislocations (as shown by the dotted vertical lines), parallel to
Burgers vectors. As expected, the magnitude of the displacement jumps produced by the dislocation loops are in agreement with
the prescribed Burgers vectors for both BTO/CFO and CFO/BTO bilayers, which approve the accuracy of numerical results. Due
to the mismatch in MEE material properties between the two layers, strong discontinuities in terms of in-plane normal stress
fields are observed at the cut surfaces, the magnitude of which is more pronounced the closer the interfaces are to the dislocation
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Figure 5: Influence of the nonlocal parameter on the static MEE field components produced by a rectangular prismatic dislocation loop embedded in homoge-
neous (a) BTO and (b) CFO solids. Curves are plotted along the dislocation axis.

loops. The stacking sequence has a major and surprising impact on the electric and magnetic potentials in sign, especially in
BTO/CFO and CFO/BTO bimaterials, respectively. When the internal heterophase interface is farthest from the dislocation loop
in the BTO/CFO (CFO/BTO) material system, the magnetic (electric) potential is almost zero, but becomes progressively more
significant with decreasing the distance between the two different surface discontinuities. Such features could be valuable in
understanding the role played by the change in sign of the electric field contribution on both properties of the propagating spin
waves and the magnetoelectric effects for technological applications of magnetoelectric switching.

In addition to the calculations of the field solutions for rectangular and prismastic dislocation loop in Fig. (5a), Fig. (7)
shows the static nonlocal MEE field components in a homogeneous BTO solid, induced by a low-angle tilt grain boundary. The
symmetric boundary is also described by an infinitely long, straight and uniformly spaced parallel dislocations with the same
edge characters for each intrinsic dislocation. Such polarization differs from the closed dislocation loop configuration, resulting
in different displacement, stress and electric potential profiles along the tilt boundary. Dislocation arrays provide a locally weaker
electric potential in magnitude than the dislocation loop by two orders of magnitude. As for the extrinsic defects, no singularities
are obtained within the dislocation core regions due the nonlocal regularization term, in contrast with the local MEE calculations
(dotted lines), so that the free-singularity stress fields lead to finite-valued driving forces for the intrinsic dislocations. For large
values of the nonlocal parameter, camel bumps on the displacement profile appears, as in the case of the dislocation loop, while
the spreading operation of the dislocation cores dramatically influences the component D1 of the electric displacement, causing
an abrupt change of sign and the appearance of a zero displacement plateau between two intrinsic dislocations.

Figures (8) shows the 2D contours of nonlocal MEE field solutions induced by a tilt grain boundary located at the center of
the piezoelectric BTO materials and of the CFO/BTO/CFO trilayers, with lE = 0.05 nm, as applied for the following calculations.
The blue (red) color with negative (positive) values indicates the minimum (maximum) magnitude of the associated electric and
magnetic variables, while the zeros are depicted in white. The location of the symmetric tilt grain boundary is represented by the
double-headed arrows in the schematics for clarity. The maps of the electric and magnetic field solutions in the homogeneous
BTO are significantly different from those in the CFO/BTO/CFO sandwich composite. The non-zero in-plane and normal
electric displacement components are produced by the prescribed elastic displacement jumps at the tilt boundary in both systems.
However, the electric displacement field is cut off in the two adjacent magnetostrictive materials of the trilayered structure, while
the corresponding electric potential persists in both CFO plates, marked by a notable change in sign and high concentration near
the internal heterophase interfaces. As expected, no magnetic properties are developed in the homogeneous BTO material, but
the local elastic source in the central BTO plate of the trilayered structure is capable of producing coupling electric and magnetic
fields, for which the latter is predominantly localized at the heterophase interfaces. This unique feature is also the consequence of
the product composition in composites where, by stacking different layers with different couplings and thicknesses, remarkable
coupling effects are experienced. A well-known characteristic is the magnetoelectric coupling coefficient that cannot be produced
in a single BTO or CFO plates, but can be obtained in composite structures composed of both BTO and CFO materials.

Figures (9) shows the effect of the vibration frequencies ω= 0 rad/s (static case), ω= 6×1011 rad/s and ω= 2×1012 rad/s on
the nonlocal elastic fields, induced by the rectangular and prismatic dislocation configuration in homogeneous free-stranding (a)
BTO and (b) CFO materials. In practice, the higher the frequency, the larger the difference between the maximum and minimum
values of the signed displacement and stress magnitudes. In the BTO application case, the high excitation frequency results in a
change in sign of the in-plane displacement field component, which could be particularly beneficial to engineers in developing
self-powered switching designs for piezoelectric energy harvesting. The in-plane and normal stress field components are more
meaningfully altered in magnitude at the center of the dislocation loops than at the dislocation cores with increasing vibration
frequency amplitude. On the other hand, Fig. (10) shows spatially with more details the effect of frequency on the nonlocal MEE
fields induced by a time-harmonic dislocation network of edge dislocations in a sandwich CFO/BTO/CFO trilayered structure.
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Figure 6: Influence of the MEE mismatch on the static MEE field components produced by a rectangular and prismatic dislocation loop embedded in hetere-
geneous (a) BTO/CFO and (b) CFO/BTO bilayers. The dislocation loop is located midway between the top and bottom free surfaces, as represented by the
double-headed arrows, while the heterophase interfaces are situated at four different positions. Curves are plotted along the z-axis from the bottom and top free
surfaces, as depicted by the vertical dotted lines.

The contour plots are presented for ω= 0 rad/s versus ω= 18×1011 rad/s. Again, it is obvious that the field response remarkably
depends on the frequency in the material system, exhibiting significant difference in the MEE solutions. Especially, the elastic
potential is mostly concentrated close to both internal CFO/BTO and BTO/CFO interfaces, while the normal magnetic induction
is the largest at both upper and lower free surfaces. The elastic displacement and stress field components tend to spread over the
entire trilayered structures with possible change in sign near to the free surfaces, while the equivalent von Mises stress leads to
oscillating patterns for larger frequencies with a severe alternation of low and high values.

Finally, Fig. (11a) illustrates the complicated static and nonlocal magneto-electro-elastic interaction between a dislocation
loop and periodically arranged edge dislocations of the tilt grain boundary in a BTO/CFO/BTO trilayered system, arbitrarily
embedded in the piezomagnetic core plate. Without loss of generality, the Burgers vectors of the dislocation loop as well as
the intrinsic dislocations are also identical and aligned with the normal vectors to the internal interfaces. Figure (11b) shows
the isosurfaces of positive and negative magnetic induction values Bz =±0.3 N/A.m induced by the prismatic dislocation loop,
only. As excepted, the magnetic induction is confined in the CFO material, for which the negative in blue and positive values
in red are found inside and outside the loop, respectively. Although the elastic discontinuity is located within the CFO layer,
long-range electric displacements Dz are produced in the two adjacent BTO materials with asymmetric distributions due to the
shifted position of the dislocation loop in the upper side of the core plate, as displayed in dark grey and yellow with magnitude
Dz = ±0.002 C/m2. The equivalent von Mises stress field generated by the superposition of both defects are depicted by the
isosurface in Figs. (11c) and (d), where values of the total electric (φ = ±0.04 V) and the total magnetic (ψ = ±3× 10−5 A)
potentials are mapped, respectively. For the specific configuration where the inter-dislocation distance is equal to the length of the
dislocation loop, the stress state induced by the extrinsic defect has a wider range in the z-direction than the tilt grain boundary.
Interestingly, the total electric potential is found localized at the internal BTO/CFO and CFO/BTO heterophase interfaces, with
a specific electric polarization with respect to the direction of the elastic discontinuity jump, while the total magnetic potential is
predominantly located within the vicinity of the edge dislocation cores of the symmetric tilt grain boundary.

5. Concluding remarks

A general and unified theory is developed to study the time-harmonic field solutions induced by dislocation loops and
dislocation arrays in three-dimensional multiphase and multilayered nonlocal plates. The field expressions are derived in matrix
form using Fourier series transforms, combined with the computationally powerful Stroh formalism and an unconditionally
stable recursive technique to propagate the extended solutions among the different layers of the multilayered systems. For
the first time, nonlocal and time-harmonic responses in orthotropic magneto-electro-elastic composites produced by extrinsic
and intrinsic dislocations are considered in a fully unified framework. Although the present solutions encompass the reduced
static and local elastic responses as special cases, also validated against closed-form solutions from the existing theoretical
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Figure 8: Contour plots of nonlocal electric and magnetic potential and displacement solutions for a tilt grain boundary located at the center of (a) a homoge-
neous BTO material and (b) a free-standing CFO/BTO/CFO trilayered structure. The blue (red) color with negative (positive) values represents the minimum
(maximum) magnitude of the corresponding field components, while zeros are shown in white.

literature, the following important and interesting features observed on various boundary-value problems of dislocations in
general magneto-electro-elastic layered systems are emphasized.

1) The effect of material anisotropy on the static and local elastic stresses induced by a rectangular loop in a homogeneous
cubic Cu solid is significant in the vicinity of the dislocation edges. This feature is expected to have important consequences
on the driving forces for dislocation nucleation, plastic deformation as well as for short-range interactions between extrinsic
dislocations with other topological defects, in particular radiation-induced defects. Thus, to understand the plasticity behind the
macroscropic phenomena using discrete dislocation dynamics, the effect of material anisotropy must be considered.

2) The stacking sequence has a major and surprising impact on the electric and magnetic fields when comparing BTO/CFO
and CFO/BTO bilayers with a dislocation loop arbitrarily located in the bottom layers. The magnitude and especially the sign of
the induced electric and magnetic fields are changed with respect to the distance of the dislocations from the internal heterophase
interfaces. This result highlights the significant role played by the magneto-electro-elastic mismatch in investigating the inter-
action between dislocation loops and hetereophase interfaces. For example, the interesting change in sign of the electric field
from the magneto-electro-elastic mismatch could be useful in designing the magneto-electric coupling for possible technological
applications of reversible magneto-electric switching in three-dimensional multiferroic heterostructures.

3) As commonly reported, the singularities in the local magneto-electro-elastic field solutions are removed when the nonlocal
effect is taken into account. A larger nonlocal parameter results in a smoother field variation with a remarkable change in the
magnitude and sign of the in-plane displacement as well as the transverse shear stress states, especially in the CFO material.
Furthermore, the nonlocal effect is mainly concentrated in the vicinity of the dislocation cores, for which a singularity occurs in
the local solutions, except for the electric and magnetic potentials where a more widespread distributed influence of the nonlocal
parameters is substantially observed.

4) In specific frequency regimes, the field solutions induced by time-harmonic dislocation loops and dislocation arrays lead to
oscillatory responses. Specifically, a larger difference between the maximum and minimum values of the elastic field magnitudes
corresponds to a higher frequency. However, in high-frequency BTO materials, a high excitation frequency results in a change
of sign in the displacement field state, which could also be particularly useful to engineers in developing self-powered switching
designs for piezoelectric energy harvesting.
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Figure 9: Effect of the frequencies on the nonlocal elastic field solutions produced by the rectangular and prismatic dislocation loop embedded in homogeneous
free-stranding (a) BTO and (b) CFO materials. Curves are plotted along the dislocation axis.

5) Three-dimensional maps of the magneto-electro-elastic interaction between a dislocation loop and periodically arranged
edge dislocations, arbitrarily embedded in the piezomagnetic core plate of a BTO/CFO/BTO trilayered structure, reveal that
the total electric potential is preferentially localized at the internal heterophase interfaces, with a specific electric polarization,
while the total magnetic potential is strongly located within the vicinity of the edge dislocation cores of the low-angle tilt grain
boundary.
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Figure 10: Effect of the frequencies on the nonlocal MEE field solutions induced by a time-harmonic tilt grain boundary of edge dislocations in a free-standing
a CFO/BTO/CFO trilayered system. The blue (red) color with negative (positive) values represents the minimum (maximum) magnitude of the corresponding
field components, while zeros are shown in white.
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Figure 11: Static and nonlocal magneto-electro-elastic interaction between a rectangular prismatic dislocation loop and a dislocation array with edge characters
in a BTO/CFO/BTO trilayered system. (a) Configuration where both defects are arbitrarily embedded in the central piezomagnetic CFO plate. (b) Isosurfaces
of the normal electric displacement Dz , with magnitudeDz =−0.002 C/m2 in dark grey, and Dz = 0.002 C/m2 in yellow, as well as of the magnetic induction
Bz , with Bz =−0.3 N/A.m in blue, and Bz = 0.3 N/A.m in red, induced by the prismatic dislocation loop, only. Isosurface of the von Mises equivalent stress
value of σvM = 1 GPa, produced by the two types of dislocations, where (c) the total electric potential (φ = ±0.04 V) and (d) the total magnetic potential
(ψ =±3×10−5 A) are displayed. For both potentials, the blue (red) color with negative (positive) values represents the minimum (maximum) magnitude of the
corresponding field components, while zeros are shown in white.
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Mechanica, 23, 743-781.

17



Ran, Y., Zhang, Y., Vishwanath, A., 2009. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Physics, 5,
298-303.

Tang, E., Fu, L., 2014. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nature Physics,
10, 964-969.

Sumiyoshi, H., Fujimoto, S., 2016. Torsional chiral magnetic effect in a Weyl semimetal with a topological defect. Physical Review Letters, 116, 166601.
Chernodub, M., Zubkov, M., 2017. Chiral anomaly in Dirac semimetals due to dislocations. Physical Review B, 95, 115410.
Hamasaki, H., Tokumoto, Y., Edagawa, K., 2017. Dislocation conduction in Bi-Sb topological insulators. Applied Physics Letters, 110, 092105.
Yang, Z., Tan, Y., Zu, J., 2017. A multi-impact frequency up-converted magnetostrictive transducer for harvesting energy from finger tapping. International

Journal of Mechanical Sciences, 126, 235–241.
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