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Abstract 10 

Signaling pathways can be activated through various cascades of genes depending on cell identity and 11 

biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health 12 

and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one 13 

unique common metric across cell types. Here, we present MAYA a computational method that 14 

enables the automatic detection and scoring of the diverse modes of activation of biological pathways 15 

across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of 16 

genes within reference pathways, each characteristic of a cell population and how it activates a 17 

pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified 18 

modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also 19 

predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show 20 

that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the 21 

perspective to discover shared therapeutic vulnerabilities. 22 
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Introduction 37 

The identification of cell type and function is the driving force of a majority of single-cell studies. Such 38 

approaches are based on lists of canonical marker genes and pathway databases. Standard scRNA-seq 39 

analysis pipelines involve steps of dimensionality reduction and clustering before starting any marker 40 

or pathway analysis1–3, which makes the resulting conclusions highly dependent on the chosen 41 

algorithm and clustering parameters. In the case of oncogenic datasets, such clustering-based 42 

approaches appear inadequate to identify shared transcriptional programs across tumors as cancer 43 

cells tend to cluster independently per patient4–9 rather than group by biological similarities. Several 44 

approaches have emerged, bypassing dimensionality reduction and clustering, by proposing to score 45 

pathway activity directly in individual cells rather than clusters. Such pooling of gene-based 46 

measurements into scores for gene lists has proven extremely powerful for the interpretation of sparse 47 

and noisy scRNA-seq datasets10,11. A recent benchmark12 presented Pagoda213 and AUCell14 as two of 48 

the top performing tools for pathway activity scoring. They are based on different scoring methods - 49 

AUCell estimates the proportion of highly expressed genes in each pathway while Pagoda2 uses the 50 

weights of the first principal component from Principal Component Analysis (PCA) – and each proposes 51 

a way to select significant scores. Nonetheless, both tools compute a unique activity score by pathway 52 

for all cells, implying that genes of a given signaling pathway should have coordinated expression 53 

across cell types.  54 

Biological evaluation of pathway activation and more recently single-cell studies have repeatedly 55 

demonstrated the heterogeneity of cell functions depending on the biological context. Yet a majority 56 

of single-cell studies study pathway activation with single scores based on gene lists built from bulk 57 

data. Such curated gene lists represent the current reference biological knowledge and are the only 58 

available key to make biological sense of sparse and noisy scRNA-seq data. Adding more specialized 59 

curated gene lists to databases - detailing cellular functions according to cell identity - is ongoing but 60 

it will take some time to be completed. In order to already inspect existing pathway databases with 61 

single-cell resolution, we developed MAYA (Multimodes of pathwAY Activation), a tool that detects for 62 

each pathway the different modes of activation across cell types, each mode relying on different 63 

subsets of genes. We argue that MAYA could be a way for currently available biological knowledge to 64 

meet the granularity reached by single-cell data and help researchers go deeper in their understanding 65 

of complex cellular mechanisms. Particularly, in the case of oncogenic datasets, we show that MAYA 66 

can detect cell type specific modes of pathway activation for both the microenvironment and tumor 67 

cells, identifying common transcriptional programs across patients. 68 

 69 
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Results 70 

MAYA method 71 

MAYA enables comprehensive pathway study thanks to multimodal activity scoring of gene lists in 72 

individual cells (Fig. 1). Provided a scRNA-seq count matrix and pathway lists, MAYA detects all 73 

biologically relevant ways to activate each pathway relying subgroups of genes and summarizes their 74 

activity in each cell in a multimodal pathway activity score matrix (Fig. 1a). This activity matrix can then 75 

be used to identify groups of cells sharing similar activation of provided pathways and as a 76 

dimensionally-reduced dataset for cell visualization (Fig. 1b). As a comparison, reference tools that 77 

measure pathway activity, such as AUCell14 or Pagoda213, provide a unique activity score per pathway 78 

where MAYA can provide several. 79 

MAYA is built on two main functions that are applied to each provided gene list: the detection of 80 

activation modes and the selection of biologically relevant ones. Detection of modes is performed 81 

thanks to a PCA on a normalized gene-cell expression matrix restricted to pathway genes (Fig.1a). The 82 

purpose of such decomposition of the matrix is to find, within the pathway, genes whose expression 83 

is coordinated and variable across cells, and to simultaneously score their activity in individual cells. 84 

Each principal component (PC) represents a possible mode of activation of the pathway, that is 85 

characterized by the genes that contribute the most to the PC, and by a score that corresponds to the 86 

cell coordinate on the PC. Each gene can contribute to several PCs and therefore to several modes.  87 

However, all detected modes might not reflect a relevant biological pattern in the data and could be 88 

driven by outliers, either cells and/or genes, and this probability increases as modes explain less and 89 

less variance in the dataset. We thus developed a method to assess the informativity of each mode, 90 

based on two biologically interpretable criteria. First, an informative mode should be more active in a 91 

minimal subset of cells compared with other cells. This is assessed by detecting bimodal distributions 92 

of scores across cells and checking that the group of active cells represents more than a minimum 93 

fraction of the population, which can be determined based on previous knowledge of the underlying 94 

biology or set arbitrarily (Supplementary Fig.1a-c). Second, an informative mode should be driven by 95 

enough genes to be considered as a mode of activation per se and not solely correspond to the 96 

expression of a single outlier gene. To that end, we determined a cutoff for maximal variance of each 97 

gene of a mode, indicative of how much a gene can contribute on its own (Supplementary Fig. 1d,e). 98 

Default cutoff value was chosen to maximize the number of modes detected as informative while 99 

keeping a high average number of genes significantly contributing to each mode (Supplementary Fig. 100 

1f). 101 
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Although MAYA’s main purpose is to detect multimodal activation of pathways, it can also perform 102 

unimodal activity scoring, to detect cell identity from any cell marker gene lists. To this end, we have 103 

developed a built-in function to leverage MAYA’s scoring and informativity methods to automatically 104 

annotate cells in a dataset. This approach is based on activation of the first mode of provided cell type 105 

markers lists, using PanglaoDB16 by default (Methods). This function allows cluster-free cell type 106 

annotation in a timely fashion as it annotates a dataset of around 16,000 cells in less than 1 minute 107 

and 125,000 cells in approximately 15 minutes (Supplementary Fig.1g).   108 

 109 

MAYA detects biologically relevant multimodal pathway activity in kidney 110 

The main distinguishing feature of MAYA over existing pathway activity scoring tools is the 111 

multimodality of its activity score, which proves useful when studying broad pathways in complex 112 

biological systems. We first sought to demonstrate its ability to detect cell-type specific activation 113 

modes of hallmark pathways. For that, we ran MAYA on a dataset of normal kidney and immune cells 114 

from Young et al.17, from which we selected cells from 5 distinct subtypes for clarity (n=1,252). We 115 

used the MSigDB Hallmark pathways18 as input gene lists, covering main biological functions. 116 

Unsupervised clustering on the multimodal activity matrix shows MAYA detects modes that distinguish 117 

different cell populations (Fig. 2a). More specifically, we noticed that modes from the same pathway 118 

were specifically activated in different cell types. As an example, the Allograft rejection pathway 119 

presents two modes of activation (Fig. 2b-d): (i) mode 1, driven by the expression of CTSS and SPI1 - 120 

known to have a critical role in antigen presentation19 and gene regulation during myeloid 121 

development20 - and specific to monocytes (specificity of 0.57), and (ii) mode 2, driven by CD2, CD3E 122 

and CD3D - coding for T cell surface proteins - and by CD8A and CD8B - coding for the CD8 antigen – 123 

and specific to CD8 T cells (specificity of 0.88). In contrast, AUCell and Pagoda2 both describe this 124 

pathway with a single score, corresponding to an aggregation of MAYA’s mode 1 and 2, or mode 1 only 125 

respectively (Fig. 2e). Another detailed example is shown in Supplementary Figure 2 for the TNFA 126 

signaling via NFKB pathway, where four activation modes were detected with MAYA based on their 127 

bimodal activity distribution (Supplementary Fig. 2a): one specific to monocytes, one to CD8 T cells 128 

and two to endothelial cells (Supplementary Fig. 2b-d). Interestingly, each mode involves a different 129 

interleukin specific to the population in which the mode is found to be active: (i) IL6ST is a signal 130 

transducer, which dimerizes with IL6R and bound for instance by IL-6, resulting in the activation of 131 

downstream cascades in endothelial cells21, (ii) IL1B is a lymphocyte activating factor produced by 132 

monocytes, macrophages and neutrophils, and (iii) IL7R is associated with T cell differentiation. 133 
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Altogether, we demonstrate here that MAYA identifies relevant cell-type specific modes of pathway 134 

activation from general reference gene lists. 135 

To test both the stability and the ability of MAYA to detect biologically relevant signal in noisy gene 136 

lists, we added 10, 50, 100 and 200 random genes to the initial 200 genes of the pathways Allograft 137 

rejection and TNFA signaling via NFKB; each experiment was repeated a 100 times. For the Allograft 138 

Rejection pathway, the two initial activation modes were detected for all modified gene lists with a 139 

high cell-type specificity, whatever the level of added noise (Fig. 2f,g). These results also show the 140 

accuracy of our selection method to detect relevant modes, as we rarely detect additional activation 141 

modes (corresponding to PC3/mode 3) even when randomly increasing the reference gene lists. 142 

Similarly, for the TNFA signaling pathway, the first three modes are robust to noise, with a decrease in 143 

sensitivity of detection when adding more than 100 unrelated genes (Supplementary Fig. 2e).  144 

 145 

MAYA detects biologically relevant multimodal pathway activity in colon 146 

We then illustrated the relevance of the biological insight gained by using multimodal pathway analysis 147 

for another tissue with a dataset of colon and immune cells from Lee et al.22 - from which we selected 148 

cells from 10 distinct cell types (n=1,415) - and using the MSigDB KEGG and REACTOME pathways23. 149 

Both analyses recover cell-type specific activation modes, given the clustering of cells by cell type on 150 

the heatmaps derived from the activity matrix (Supplementary Fig. 3a,c). Focusing on KEGG cell 151 

adhesion molecules list, we observed that MAYA was able to detect several well-known types of cell-152 

cell adhesion processes starting from the mixed general reference list (Fig. 3a,b and Supplementary 153 

Fig. 3b): (i) mode 1 driven by the expression of HLA genes coding MHC class II molecules24, detected in 154 

antigen-presenting cells - monocytes and dendritic cells - and B cells, with a specificity of 0.29, 0.27 155 

and 0.15 respectively, (ii) mode 2 driven by the expression of genes coding for claudins and cadherins 156 

located at tight junctions25,26, specifically activated in epithelial cells (specificity of 0.24 and 0.16 for 157 

enterocytes and goblet cells respectively), and (iii) mode 3 driven by the expression of T cell membrane 158 

molecules, specific to Regulatory T cells (specificity of 0.29).  159 

Applying MAYA to the REACTOME pathway ion channel transport, we were able to detect different 160 

types of ion channels and functions, specific to each cell populations (Fig. 3c,d and Supplementary Fig. 161 

3d). Mode 1 is specific to colon epithelial cells (specificity of 0.34 and 0.24 for enterocytes and goblet 162 

cells respectively, Fig. 3d) and corresponds to two types of ion channels – Epithelial Sodium Channel 163 

(ENaCs) and Na,K-ATPase27  - that have been shown to participate to the regulation of salt and water 164 

absorption from the colon lumen28,29. In particular, activation mode 1 captures genes regulating ENaCs 165 

and their residence at the apical membrane: SCNN1A encodes a subunit of ENaCs30, NEDD4L 166 
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participates to ENaCs ubiquitination which leads to their retrieval from cell surface31 and SGK1 is known 167 

to phosphorylate NEDD4L product, which decreases its binding to ENaCs32,33. Mode 4 is specific to 168 

goblet cells only, driven by the expression of the genes CLCA1 and BEST2. These two genes are 169 

associated with Calcium-activated Chloride Channels (CaCCs) that have been shown to participate in 170 

epithelial secretion34. Mode 3 is specific to pericytes and smooth muscle cells (specificity of 0.16 and 171 

0.22 respectively) and is associated with Calcium homeostasis (ATP2B4, PLN, CASQ2) and Na,K-ATPases 172 

(FXYD1,FXYD6, ATP1A2, ATP1B2), two important channels for the membrane polarization of 173 

contractile cells. Finally, mode 2, mainly active in monocytes and dendritic cells (specificity of 0.33 and 174 

0.16 respectively), involves genes associated with acidification of intracellular organelles through 175 

colocalization of V-type proton ATPases35 (ATP6V1B2, ATP6AP1, ATP6V1F, ATP6V0E1, ATP6V0D236) 176 

and Chloride channels37 (TTYH3, CLIC2), a process necessary for phagocytosis. Altogether, as for the 177 

kidney, starting from reference databases, MAYA untangles pathway activities specific to each cell 178 

type, revealing precise cell functions. 179 

 180 

MAYA automatically assigns cell identity  181 

We then leveraged MAYA’s scoring and selection ability to automatically and robustly assign cell 182 

identity. We applied MAYA to PanglaoDB cell type marker lists and the subsets of kidney and colon 183 

datasets used previously (Fig. 4a,d). We demonstrate that MAYA enabled an automated and accurate 184 

annotation of each cell in the two datasets, using the initial cell type annotation by authors as a 185 

reference (Fig. 4b,e). We compared the accuracy of our predictions with the ones obtained with three 186 

other algorithms: AUCell14, Pagoda213 and Cell-ID38, a cell type identification method based on Multiple 187 

Correspondence Analysis (MCA). MAYA presents among the highest rates of recall and precision for 188 

both datasets (Fig. 4c,f and Supplementary Fig. 4a,b). We finally tested the scalability of MAYA and its 189 

ability to detect rare cell types on a dataset with 16,815 cells from ovarian tumors6 (Supplementary 190 

Fig. 4c). Overall, MAYA had an average precision of 51% and recall of 68%. Notably, B cells were 191 

identified with a precision and recall of 98% when they represent only 4.9% of the dataset and 192 

endothelial cells with a precision of 100% and recall of 85% when they represent 0.2% of cells in the 193 

dataset (Supplementary Fig. 4d). Lower precision is achieved for some types probably due to overlap 194 

between cell type markers in PanglaoDB, such as between NK cells and T cells (28 shared markers out 195 

of 80 and 95 markers respectively), dendritic cells and macrophages (34 shared out of 121 and 128 196 

markers respectively), and endothelial cells and fibroblasts (13 shared out of 187 and 171 markers 197 

respectively). All three pairs of cell types share more genes than with any other type from the 198 

PanglaoDB lists. 199 
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Furthermore, as batch effect is a main concern in single-cell analyses, notably for data visualization 200 

and cell annotation, we tested whether MAYA was affected by such technical biases. We worked on a 201 

dataset containing n=5,179 cells from laryngeal squamous cell carcinoma biopsies of 2 patients with a 202 

batch effect between patients39. Using standard gene-based scRNA-seq matrix processing, cells from 203 

the same cell types – whether cells from the microenvironment or the tumors – indeed cluster by 204 

patient whereas clustering on the MAYA activity matrix groups cells by cell type, with cells from both 205 

patients within the same cluster (Fig. 4g). To quantify the inter-patient overlap between clusters of 206 

similar cell types, we computed the Shannon Diversity Index (SDI) for both methods as well as for 207 

clusters obtained with the reference integration tool Harmony40 (Supplementary Fig. 4e). MAYA had 208 

an average SDI of 0.77 against 0.65 and 0.17 for the integration-based and the gene-based method 209 

respectively (Fig 4h). In addition to pathway scoring, MAYA can perform accurate cell type annotation 210 

independently of batch effect, making it an all-in-one tool to address both cell identity and function.  211 

 212 

MAYA detects common modes of pathway activation across cancer patients 213 

Patient-specificity of cancer cells is currently a major limitation for the comprehensive study of 214 

oncogenic scRNA-seq datasets. Cells of the microenvironment coming from different patients can 215 

easily group together, showing the absence of a major batch effect between samples, while tumor 216 

cells form distinct clusters4–9. Such behavior is thought to be due in part to the genetic variations across 217 

tumor cells from different patients, notably copy-number variations. Integration methods, correcting 218 

for general batch effect in samples, such as Harmony40, are not suited to deal with such cell-type 219 

specific effect.  220 

We demonstrate here that MAYA can be an alternative to gene-based or integration-based methods 221 

to identify common transcriptional features between cancer cells across patients. Using an ovarian 222 

cancer dataset, we show that MAYA identifies several modes of pathway activation shared across 223 

patients (Fig. 5a,b and Supplementary Fig. 5a,b) that are associated with known cancer hallmarks. 224 

Indeed, top specific modes of epithelial cancer cells reflect the expression of targets of the oncogene 225 

KRAS, genes associated with early response to estrogen or the P53 pathway (specificity of 0.63, 0.45 226 

and 0.31 respectively), that all relate to tumor growth and proliferation (Fig. 5b). MAYA also identifies 227 

modes of pathway activation specific to tumor microenvironment populations. It notably detects a 228 

cell-type specific activation of complement genes in macrophages (specificity of 0.24) and of 229 

angiogenesis-related genes in cancer-associated fibroblasts (CAFs) (specificity of 0.40).  230 

MAYA multimodality allows to untangle several cell-type specific modes of activation for biological 231 

phenomena that are commonly difficult to sort out between cell populations within the tumors and 232 

their microenvironment. For example, MAYA detects different modes of epithelial-to-mesenchymal 233 
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transition (EMT) (Fig. 5c): mode 1 specific to CAFs/mesothelial cells (specificity of 0.47 and 0.36 234 

respectively), mode 2 specific to tumor cells (specificity of 0.30) and mode 3 to macrophages 235 

(specificity of 0.19) (Fig. 5d). MAYA identifies a combination of genes that characterizes EMT occurring 236 

in epithelial cells, with LAMA3 and LAMC2 being exclusive to this cell type (Fig. 5e). These two genes 237 

expressed by basal epithelium code for two subunits of laminin 332, an essential component of 238 

epithelial basement membrane that promotes tumor cell motility41,42. In CAFs, MAYA detects EMT as 239 

driven mainly by genes encoding proteins from the extracellular matrix (ECM) including collagens, 240 

which have been shown to promote EMT in the tumor microenvironment directly43 or by increasing 241 

the ECM stiffness44,45. A third mode of EMT, characterized by the expression of the gene SPP1, is found 242 

in macrophages; macrophages have indeed been shown to be involved in EMT induction in various 243 

types of cancer46–49. Two additional modes are detected but are not as cell-type specific as the others 244 

(Supplementary Fig. 5a, maximum specificity scores of 0.12).  245 

MAYA also identifies two different modes of activation of the estrogen response early cascade 246 

(Supplementary Fig. 5c,d), one specific to tumor cells, and one specific to CAFs, consistent with the 247 

observation that CAFs can use ER-mediated signaling pathways to promote tumor cell proliferation50,51. 248 

MAYA also helps to untangle the respective contribution of cancer cells and its microenvironment to 249 

the hemostatic imbalance observed in cancer52,53, by detecting coagulation modes with high specificity 250 

for CAFs and mesothelial cells (0.31 and 0.32), tumor cells (0.22) and macrophages (0.24) 251 

(Supplementary Fig. 5e,f).  252 

Altogether, MAYA appears extremely powerful to detect modes of pathway activation across tumor 253 

cells from different patients as well as within the microenvironment - novel combinations of genes 254 

within known global reference gene lists. We see with these examples that MAYA can discover refined 255 

gene lists, specific to each population, matching the biological interpretation of pathway activation to 256 

the granularity of the single-cell measurements.  257 
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Discussion 258 

MAYA sorts out the different modes of pathway activation specific to each cell type, by automatically 259 

detecting gene subgroups within reference pathways and computing several scores of pathway 260 

activation. We show that MAYA leverages existing biological knowledge to extract cell-type specific 261 

ways of activating pathways from single-cell datasets. In addition to pathway analysis, MAYA also 262 

performs automated cell typing as a side function, making it an all-in-one tool for both cell type and 263 

cell function identification. MAYA proves particularly useful for single-cell cancer datasets, by (i) 264 

identifying common modes of pathway activations across patients in tumor cells, and also by (ii) 265 

dissecting the contribution of each population – fibroblast, immune & tumor cell – to the activation of 266 

a given pathway.  267 

In comparison to previously published methods (AUCell14, Pagoda213, ROMA54 and UCell55), MAYA 268 

provides multiple activation scores per pathway, and in a time efficient and user-friendly way. Indeed, 269 

running Pagoda2 for example can quickly become computationally intensive; its selection method 270 

requires to build a null distribution for each pathway by retrieving variance explained by PC1 for 271 

random gene lists of the same pathway size – which drastically increases the number of PCA run to 272 

score a single pathway. AUCell computes several bimodality thresholds by pathway, which can also 273 

increase computing time, and needs rather advanced users to tune its technical parameters if default 274 

ones do not provide satisfying results. With MAYA, we simplified bimodal detection by focusing on 275 

inflection points and introducing two biologically interpretable parameters, easily tuned by users: (i) a 276 

minimum proportion of cells that should activate a mode for the mode to be considered relevant and 277 

(ii) a maximum contribution to a mode that a single gene can have.  278 

We have also challenged the robustness to noise of our scoring and informativity methods and showed 279 

MAYA can detect relevant biological signal from noisy pathway lists. It can prove very useful as we 280 

know pathway and cell markers manual curation is very time-consuming. Here, we argue that MAYA 281 

can take as input non-curated and potentially very exhaustive pathway or cell type lists and detect 282 

biological signal if they contain any.  283 

We also leveraged our methods of scoring and selection of informative scores to propose a built-in 284 

function to automatically annotate cells using PanglaoDB cell type markers lists. This method performs 285 

better with MAYA scores than Pagoda2 or AUCell scores and has performance results equivalent to or 286 

better than Cell-ID38, a package specialized in cell type annotation. MAYA is scalable to large datasets 287 

(>100,000 cells, in 15 minutes) and it is able to accurately detect and annotate cell populations 288 

representing less than 5% of cells. MAYA is therefore an all-in-one tool proposing both cell type 289 

identification - like Cell-ID38, CellTypist56 and scGate57 - and multi-modal pathway analysis. 290 
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MAYA also enables to identify shared identity expression patterns between cells from the same type 291 

across patients, which proves useful in case of batch effect. Indeed, as MAYA focuses on cell identity 292 

by looking only at genes considered as markers, it does not detect the variations between patients 293 

driven by other sets of genes that are not related to cell type identity and that lead to the formation 294 

of different clusters in a classical gene-based analysis.  295 

Finally, MAYA brings particular biological insights when studying single-cell datasets from cancer 296 

patients that do not suffer from batch effect on all cell types but from patient-specificity for tumor 297 

cells. There is currently no standard way to address this challenge for data interpretation and a growing 298 

need to understand common cancer features across patients. Recently, Gavish et al.15 provided the 299 

community with clues about shared transcriptional programs across patient and tumor types by 300 

describing 41 “meta-programs” grouped in 11 hallmarks of intra-tumor heterogeneity. These “meta-301 

programs” were inferred de novo by studying scRNA-seq from multiple tissues and cancer types. This 302 

approach is very complementary to ours, where we interrogate existing knowledge. MAYA identifies 303 

common modes of activation across tumor cells, which could be compared to such tumor meta-304 

programs. In addition, MAYA deciphers the respective contribution of each cell population to the 305 

activation of a given pathway, by defining the ensemble of genes that drive the pathway activity in 306 

each contributing population. Both inter and intra-patient features of MAYA will enable the 307 

identification of shared therapeutic vulnerabilities across patients, as well as various strategies to 308 

target them within the tumor eco-system.  309 

 310 

 311 

 312 

 313 
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Methods 446 

Code availability: MAYA is available as an R package on GitHub at https://github.com/One-447 

Biosciences/MAYA/. Requires R >= 4.0.5.  448 

Data availability: 449 

Kidney dataset: The count matrices were downloaded from Supplementary data S1 from Young et al. 450 

and metadata was built by combining table S11 providing a cell manifest with table S2 providing 451 

author’s cell type annotation. Only protein-coding genes were kept for downstream analysis. Data was 452 

provided for 125,139 cells, with 72,502 cells passing the author’s quality control criteria. MAYA 453 

automatic annotation function was run on the dataset before and after QC filtering to evaluate its 454 

scalability to large datasets. For our detailed pathway analysis, only normal kidney cells were selected 455 

based on author’s annotation (categories “Normal_mature_kidney” and 456 

“Normal_mature_kidney_immune”). Cells from 5 distinct cell types out of 28 were selected after 457 

default Seurat processing and clustering (aliases 8T, AV2, MNP1, G and M) for a total 1,252 cells.  458 

Colon dataset: Raw count matrix and cell annotations were downloaded from the NCBI Gene 459 

Expression Omnibus (GEO) database under the accession code GSE144735 for the KUL3 cohort. Only 460 

protein-coding genes were kept for downstream analysis. MAYA automatic annotation function was 461 

run on this full dataset - including normal, tumor and border cells - to evaluate its scalability to large 462 

datasets. For our detailed pathway analysis, cells from Class “Normal” and from 10 out of the 35 cell 463 

types identifies by the authors were selected, representing a total of 1,415 cells.  464 

Ovary dataset: Count data were downloaded from the NCBI Gene Expression Omnibus (GEO) database 465 

with accession code GSE165897. Only cells labelled as treatment-naïve for the treatment phase 466 

metadata field were kept for downstream analysis, representing a total of 16,815 cells. 467 

Larynx dataset: Count data were downloaded from the NCBI Gene Expression Omnibus (GEO) database 468 

with accession code GSE150321 (2 files, one for each patient), for a total of 5,179 cells. 469 

Reference databases: 470 

PanglaoDB was downloaded from the website (https://panglaodb.se/) and loaded in R with the 471 

provided command line. Markers lists are categorized by organs. Some can be considered as generic 472 

organs that should always be tested for a dataset (connective tissue, smooth muscle, immune system, 473 

vasculature, blood, epithelium, skeletal muscle), others are more specific such as kidney or lungs and 474 

can be loaded on demand. The full Panglao gene list can be loaded as well. Kidney related lists were 475 
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loaded for the kidney dataset, GI tract related lists for the colon dataset, and finally no other list than 476 

generic types for the larynx and ovary datasets. 477 

MSigDB gene lists (Hallmark, KEGG and REACTOME) were downloaded from the Broad Institute 478 

website (http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp) in their version 7.4. For the 479 

Reactome database, only pathways comprising between 100 and 300 genes were kept for efficiency 480 

purposes, which represents 165 pathways kept over 1615. 481 

 482 

Matrix preprocessing: All count matrices were processed with Seurat v3 to get the gene-based cell 483 

embeddings and check the consistency of author’s annotations. Matrices were log-normalized using 484 

scale factor 10,000. Top 2,000 variable features were found using “vst” method. PCA and UMAP 485 

computed with default settings, using first 10 PCs for UMAP, which constitutes the “gene-based 486 

UMAP”. For the larynx dataset, the two datasets were read separately and merged in a unique Seurat 487 

object of 5,179 cells. The authors did not provide their annotation, so we followed the default Seurat 488 

pipeline on each individual count matrix, performed PCA and default clustering. We then annotated 489 

clusters based on expression of cell type markers described in the publication. 490 

 491 

Detailed description of MAYA algorithm: 492 

Building count matrix: For a provided gene list, the log-normalized CPM matrix is subsetted to keep all 493 

cells but only genes from the list. Rows of the matrix are then scaled so that more highly expressed 494 

genes do not weight more than the others in the PCA that is later performed. The sign of each principal 495 

component is then chosen to favor the directions for which the absolute value of gene contribution is 496 

the highest. Each mode is scaled between 0 and 1. An iterative process then begins: we evaluate the 497 

informativity of each successive PC starting from PC1. If a PC is found uninformative, the iteration 498 

stops, and we do not interrogate further PCs. There is however an exception for PC1: we interrogate 499 

PC2 even if PC1 is uninformative, as PC2 can still explain a significance part of the variance. The final 500 

activity matrix is built by gathering all modes from all gene lists in a single matrix with modes as rows 501 

and cells as columns. 502 

Informativity: For each successive mode, a density curve is drawn from the distribution to get local 503 

maxima and minima. A bimodal curve is expected to have at least one minimum that will be low 504 

enough relative to its surrounding maxima on the y-axis to mark a clear distinction between 2 groups 505 

of cells (difference of at least 10% of global maximum density). Only local minima with abscissa 506 

superior to the one of the global maximum are considered and iteratively evaluated in decreasing 507 
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order as the point is to detect extreme behaviors and activation patterns that potentially occur in rare 508 

populations. The iteration stops when a potential minimum meets the criteria, or none was found. As 509 

this process relies on the detection of inflection points that depends itself on the adjustment of the 510 

density curve to the distribution, we start with an adjustment meant to detect global variations of 511 

distributions and if none are detected we test a more fitted adjustment to ensure no significant local 512 

variation was missed. Then follow two additional checks to ensure the biological relevance of the 513 

detected mode. First, we filter out modes that are activated in very few cells as they could be outliers. 514 

The user can adjust this parameter based on what he expects to observe in the dataset or the number 515 

of cells from rarer cell type or set it to default 5%. The second biological check is based on the number 516 

of genes potentially contributing to the mode. However, it is hard to set a definition of what is a 517 

contributing gene to PCA; here we consider that contributing genes contribute more than they would 518 

be expected i.e. if all genes from the pathway contributed the same (1/number of genes in the 519 

pathway). Given that pathways have various sizes, it is difficult to set a hard cutoff on this number of 520 

genes contributing to the mode. Instead, we chose to set a cut-off on the maximum contribution of a 521 

gene to a mode. As the sum of squared gene contributions is equal to 1, if a gene contributes to up to 522 

0.8, there is not much contribution left for other genes to share and this mode is probably driven by 523 

this unique gene. As a mode should represent joint expression of groups of genes, we do not consider 524 

these monogenic modes biologically significant. Setting a threshold of 0.4 allows to remove monogenic 525 

modes while keeping a relatively large number of modes with higher cell type specificity. This 526 

parameter can also be changed by the user depending on the tolerance to probable monogenic 527 

pathways. Finally, we chose to test the informativity of each pathway mode in decreasing order of 528 

variance explained in the dataset and to stop when a mode is found uninformative after mode 2 as we 529 

know the following will explain even less variance and is more likely to be noise. 530 

Predict cell type: Once the activity matrix generated, a k-Nearest Neighbors matrix with k=20 is 531 

computed, then an adjacency matrix using Jaccard distance and finally transformed as a weighted 532 

graph using igraph function graph.adjacency. Clustering is then performed using leiden_find_partition 533 

from leidenbase package with ModularityVertexPartition as partition type and a maximum number of 534 

iterations of 2. The average activity score is computed by cell type and by cluster. Each cluster is 535 

attributed the cell type for which the activity score is the highest, if it passes a threshold of default 536 

value 0, otherwise it is labeled as unassigned. This value can be modified by the user, depending on 537 

the level of confidence needed for annotation.  538 

 539 

Comparison with other tools: 540 
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Pagoda2 and AUCell to compare pathway activity scoring with MAYA: Pagoda2 was run with default 541 

settings, following the vignette. AUCell was run using default settings, with log-normalized counts as 542 

input. Pagoda2 and AUCell were provided the same pathway lists as MAYA. 543 

Pagoda2, AUCell and Cell-ID to compare cell type prediction with MAYA: The three tools were 544 

provided the same PanglaoDB cell type marker lists as MAYA. Pagoda2 was run with default settings, 545 

following the vignette. AUCell was run using default settings, with log-normalized counts as input. We 546 

used AUCell_exploreThresholds function to select the cell type lists that were activated in at least one 547 

cell. MAYA’s procedure of clustering and cell type attribution was performed on AUCell and Pagoda2 548 

activity matrix as they do not have an integrated function for cell annotation. Cell-ID was applied on a 549 

Seurat object following standard procedure, computing MCA and then performing hypergeometric 550 

test with gene lists. Each cell was attributed the cell type for which -log10(p-value) was the highest. 551 

When the value was inferior to 2, the cell was labeled unassigned.  552 

Integration with Harmony: Harmony was run through Seurat v3 with default settings. 553 

 554 

Metrics: 555 

Shannon Diversity Index: It measures in each predefined cluster the diversity of cells in terms of 556 

patient identity, batch or cell type. Here we use it to measure the diversity of patients found in each 557 

Leiden cluster computed on the activity matrix. 558 

𝑆𝐷𝐼$ =
(−1) ∗ ∑ 𝑝- ∗ log	(𝑝-)2

-34
log	(N)

 559 

With c the cluster in which we compute the SDI, N the number of different possible identities (patients 560 

in our case) and 𝑝- is the proportion of cells from the cluster corresponding to identity i. SDI of 1 561 

indicates that cells constituting the cluster come equally from all possible identities i.e. the cluster 562 

displays high identity diversity.  563 

Specificity metric: For a mode, we can compute for each predetermined cluster of cells (cells grouped 564 

by cell type in our case) a specificity score. As the sum of scores across clusters for a mode equals 1, 565 

the maximum value of specificity across cells reflects the repartition of high activity scores between 566 

clusters.  567 

𝑆6,$ =
𝑎6,$9

∑ 𝑎6,:92
:34

 568 
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;𝑆6,:9 = 1
2

:34

 569 

With 𝑆6,$  the specificity of mode m in cluster c, 𝑎6,$ the average activity score of m in c, and N the 570 

number of clusters.  571 

We consider that specificity is significant for a cluster when it is 50% above expected value of 1/N 572 

(specificity score when all cells across all clusters have the same activity). 573 

Precision, recall, F1-score 574 

Precision = CD
CDEFD

 ; Recall = CD
CDEF2

	; F1_score = 9∗DKL$-MNO∗PL$QRR
DKL$-M-NOEPL$QRR

  575 

Where TP is the number of true positives, FP the number of false positives and FN the number of false 576 

negatives. F1-score of 1 means perfect precision and recall. 577 

Matching PanglaoDB cell types with author annotation for precision and recall assessment: 578 

To assess precision and recall of cell-type annotation tools, we had to find equivalents of cell types 579 

described by authors in the PanglaoDB and chose the closest type or multiple types when PanglaoDB 580 

included several subtypes. 581 

Kidney: Monocytes=c("Monocytes"), Endothelial cells=c("Endothelial cells"), 582 

Mesangial_cells=c("Mesangial cells","Smooth muscle cells"), Podocytes=c("Podocytes"), TCD8 =c("T 583 

cells","T memory cells", "T helper cells") 584 

Colon: `Mature Enterocytes`=c("Enterocytes"), `Goblet cells`=c("Goblet cells"), 585 

Pericytes=c("Pericytes"), `Smooth muscle cells`=c("Smooth muscle cells"), cDC=c("Dendritic cells"), 586 

Proliferating monocytes=c("Monocytes","Macrophages"), `NK cells`=c("NK cells","Natural killer T 587 

cells"), ̀ Regulatory T cells`=c("T regulatory cells","T cells","T memory cells","T helper cells","T follicular 588 

helper cells","T cytotoxic cells"), `CD19+CD20+ B`=c("B cells","B cells naive","B cells memory"), `Mast 589 

cells`=c("Mast cells") 590 

 591 

Performances: All tests were run with CPU: 6 cores / 12 threads @ 2.6GHz.  592 

 593 

  594 
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Fig.1: MAYA overview 
(a) MAYA takes as input a scRNA-Seq dataset and reference gene lists, and produces as output an ac�vity matrix, with for each cell its ac�vity score 
for each mode of every reference gene lists. (b) Example of MAYA outputs: a heatmap to visualize the modes of ac�va�on of reference pathways, or a 
Uniform Manifold Approxima�on and Projec�on (UMAP) of the ac�vity matrix to visualize cells according to any annota�on (ac�vity scores for 
different modes, predicted cell type or any user annota�on).
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Supplementary Fig.1: 
(a,b) Examples of density curve of ac�vity scores for one mode of ac�va�on. Detected maxima in density are colored in blue and minima in red. MAYA 
selects a mode as relevant when it has a local density minimum that (i) is low enough compared with surrounding highest maximum and that (ii) splits the 
datasets into two frac�ons that are of a minimal size (Methods). Minima are screened in decreasing order on the x-axis and MAYA stops either when a 
minimum meets the criteria or when it is to the le� of the highest density maximum. In (a) the first minimum at the right meets the two criteria and for (b) 
the fi�h. They are marked by a ver�cal dashed line. (c) When no minima are detected with the first density adjustment parameter, a more fi�ed 
adjustment is tested. If minima are found, the procedure described in (a,b) is applied. (d) Sca�erplot represen�ng the number of contribu�ng genes versus 
the maximum gene contribu�on, for the first five modes of all pathways from the KEGG pathway list on the kidney dataset. (e) Sca�erplots of the average 
mode specificity, the number of informa�ve modes and the number of informa�ve pathways according to the maximum single-gene contribu�on. Default 
cut-off of maximum single gene variance (0.4) was chosen to maximize the specificity of the modes of ac�va�on and is indicated as a ver�cal dashed line. 
(f) Heatmap of ac�vity matrices for different cut-off of single-gene contribu�on: 0.2, 0.4 and 0.9. (g) Compu�ng �me on different datasets for the two main 
modules of the func�on MAYA_predict_cell_type (building ac�vity matrix and annota�ng cells), using PanglaoDB (44 markers on average per cell type) 
restricted to cell types expected in the �ssue corresponding to the datasets.
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Fig.2: Ac�va�on modes of Hallmark pathways in kidney with MAYA 
(a) Heatmap of ac�vity matrix computed on kidney dataset with MSigDB Hallmark pathways, ini�al author annota�on is indicated above heatmap. The 
two ac�va�on modes of Allogra� Rejec�on are highlighted in bold and further described in the subsequent panels, and the four modes of ac�va�on of 
TNFA signaling via NFKB are further described in Supplementary Fig.2. (b) Sca�erplot of Mode 2 versus Mode 1 cell ac�vity scores. Associated density 
histograms are indicated on the sides of the graph. (c) Heatmap of scaled gene expression for top 10 contribu�ng genes for Mode1 (top) and Mode2 
(bo�om) of Allogra� Rejec�on pathway, ordered by decreasing contribu�on for each. (d) UMAP representa�on of ac�vity matrix of Hallmark pathways, 
cells are colored according to author annota�on, or ac�vity scores of modes 1 and 2 of Allogra� rejec�on pathway. Specificity score of cell popula�ons is 
displayed next to relevant clusters. (e) Heatmap of ac�vity scores computed by Pagoda2, AUCell and MAYA for Allogra� Rejec�on pathway, cells are 
grouped according to author annota�on. (f) Barplot representa�on of the detec�on rate of modes 1 to 3 for the pathway Allogra� Rejec�on when 
adding various numbers of random genes to the pathway gene list (n=100 experiments each). Barplots are colored according to the cell popula�on with 
the highest specificity score for the iden�fied mode. (g) Ji�er representa�on of specificity scores of modes 1 and 2 grouped by level of added noise, 
datapoints are colored according to author annota�on. Specificity obtained for each mode with ini�al gene list is represented with a dashed line.
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Supplementary Fig.3: 
(a) Heatmap of ac�vity matrix computed on colon dataset with MSigDB KEGG pathways, ini�al author annota�on is indicated above heatmap. (b) 
Heatmap of ac�vity scores computed by Pagoda2, AUCell and MAYA for KEGG Cell Adhesion Molecules pathway, cells are grouped according to author 
annota�on. (c) Heatmap of ac�vity matrix computed on colon dataset with MSigDB REACTOME pathways, ini�al author annota�on is indicated above 
heatmap. (d) Heatmap of ac�vity scores computed by Pagoda2, AUCell and MAYA for REACTOME Ion Channel Transport pathway, cells are grouped 
according to author annota�on. 
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(a) Gene-based UMAP representa�on of kidney dataset, cells are colored according to author annota�on. (b) Heatmap represen�ng for each author 
annota�on (rows) the frac�on of cells labelled with each MAYA annota�on (columns) for the kidney dataset. (c) Overlaid ji�er and boxplot representa�on
of F1-scores for automa�c annota�on of the kidney dataset using Pagoda2, AUCell, Cell-ID and MAYA, datapoints are colored according to author 
annota�on. (d) Gene-based UMAP representa�on of colon dataset, cells are colored according to author annota�on. (e) Heatmap represen�ng for each 
author annota�on (rows) the frac�on of cells labelled with each MAYA annota�on (columns) for the colon dataset. (f) Overlaid ji�er and boxplot 
representa�on of F1-scores for automa�c annota�on of the colon dataset using Pagoda2, AUCell, Cell-ID and MAYA, datapoints are colored according to 
author annota�on. (g) UMAP representa�on of the larynx dataset, either gene-based or based on ac�vity matrix of PanglaoDB cell-type markers lists, 
cells are colored according to cell type or to pa�ent. (h) Overlaid ji�er and boxplot representa�on of Shannon Diversity Index (SDI), for clusters derived 
from gene-based dimensionality reduc�on, Harmony dimensionality reduc�on and MAYA ac�vity matrix of the larynx dataset. 
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Supplementary Fig.4: 
(a,b) Overlaid ji�er and boxplot representa�on of precision and recall for automa�c annota�on of the kidney and colon datasets using Pagoda2, AUCell, 
Cell-ID and MAYA, datapoints are colored according to author annota�on. (c) Gene-based UMAP representa�on of the ovary dataset, cells are colored 
according to author annota�on. (d) Heatmap represen�ng for each author annota�on (rows) the frac�on of cells labelled with each MAYA annota�on 
(columns) for the ovary dataset.  The propor�on of each author annota�on in the dataset is indicated on the right side of the heatmap. (e) UMAP 
representa�on of larynx dataset integrated using Harmony, cells are colored according to cell type or pa�ent. 
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Fig.5: MAYA detects pathway ac�va�on in tumors across pa�ents 
(a) UMAP representa�on of ac�vity matrix of Hallmark pathways, cells are colored according to author annota�on and pa�ent. Clusters derived from 
ac�vity matrix are displayed next to relevant groups of cells. Overlaid ji�er and boxplot representa�on of Shannon Diversity Index (SDI), for clusters derived 
from gene-based dimensionality reduc�on and MAYA ac�vity matrix of the ovary dataset. Clusters corresponding to tumor cells are colored in pink.  (b) 
Barplot representa�on of specificity scores of the top5 specific modes for the four most prevalent popula�ons in the dataset. (c) Heatmap of ac�vity scores 
of the three modes of the Hallmark Epithelial Mesenchymal Transi�on (EMT) pathway, ini�al author annota�on is indicated above heatmap. (d) UMAP 
representa�on of ac�vity matrix of Hallmark pathways, cells are colored according to ac�vity scores of the three EMT modes. Specificity score of cell 
popula�ons is displayed next to relevant clusters. Violin plots of ac�vity scores for corresponding modes, grouped by author annota�on (adjusted p-values 
from Wilcoxon test are symbolized with: * : <0.05, ** : <0.01, *** : <0.001, **** : <0.0001). (e) Heatmap of scaled gene expression for top10 contribu�ng 
genes for the three modes of EMT, ordered by decreasing contribu�on.

EMT Mode3: Macrophages

A
ct

iv
it
y

A
ct

iv
it
y

A
ct

iv
it
y

Activity Expression

0 min1 max

EMT Mode1: CAF

EMT Mode2: Tumor cells

Tu
mor

 ce
lls

CAF

Mes
ot

he
lia

l c
ell

s

En
do

th
eli

al 
ce

lls

T c
ell

s

Pla
sm

a c
ell

s

Den
dr

itic
 ce

lls

Mac
ro

ph
ag

es

Pla
sm

ac
yt

oid
 de

nd
rit

ic 
ce

lls

B ce
lls

NK ce
lls

Mas
t c

ell
s

0.47

0.36

0.30

0.19

0.12

c

MAYA-
based

MAYA-
based

MAYA-
based

In
na

te
 ly

mph
oid

 ce
lls

0

1

0

1

0

1

Gene-based MAYA 

S
h
an

n
on

 d
iv

er
si

ty
 i
n
d
ex

0.00

0.25

0.50

0.75

1.00

Tumor-associated 
clusters
Other clusters

Author annotation

MAYA-
based

MAYA-
based

Patient

Patient
EOC372
EOC443

EOC540
EOC3

EOC87
EOC136

EOC1005
EOC733

EOC153
EOC349

EOC227

d

C1

C1

C2

C3

C3

C4

C4

C1

C2

C2

C3

C4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500633doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500633
http://creativecommons.org/licenses/by-nc-nd/4.0/


M
od

e1
M

od
e2

HALLMARK: ESTROGEN RESPONSE EARLY

HALLMARK: COAGULATION

M
od

e1
M

od
e2

M
od

e3
a

b

c d

e f

ESTROGEN RESPONSE EARLY Mode2: CAF/Mesothelial

Author annotation
Epithelial cancer cells

0.45

0.22

0.24

0.20

0.21

CAF
Mesothelial cells
Endothelial cells
T cells
Plasma cells
Dendritic cells

Macrophages
Plasmacytoid dendritic cells
B cells
NK cells
Mast cells
Innate lymphoid cells

Patient
EOC372
EOC443
EOC540
EOC3
EOC87
EOC136

EOC1005
EOC733
EOC153
EOC349
EOC227

MAYA Mode1

MAYA Mode2

MAYA Mode1

MAYA Mode2

MAYA Mode3

Activity

Expression

0

min

1

max

Tu
mor

 ce
lls

CAF

Mes
ot

he
lia

l c
ell

s

En
do

th
eli

al 
ce

lls

T c
ell

s

Pla
sm

a c
ell

s

Den
dr

itic
 ce

lls

Mac
ro

ph
ag

es

Pla
sm

a.
de

nd
rit

ic 
ce

lls

B ce
lls

NK ce
lls

Mas
t c

ell
s

In
na

te
 ly

mph
oid

 ce
lls

0.32

0.31

A
ct

iv
it
y

0

1

COAGULATION Mode1: CAF/mesothelial

COAGULATION Mode2: Tumor cells

A
ct

iv
it
y

0

1

A
ct

iv
it
y

0

1

A
ct

iv
it
y

0

1

A
ct

iv
it
y

0

1
COAGULATION Mode3: Macrophages

MAYA-
based

MAYA-
based

MAYA-
based

MAYA-
based

MAYA-
based

ESTROGEN RESPONSE EARLY Mode1: Tumor cells 

Author annotation

Gene-
based

Gene-
based

Patient

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500633doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500633
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Fig.5: 
(a) Heatmap of ac�vity matrix computed on ovary dataset with MSigDB Hallmark pathways, ini�al author annota�on is indicated above heatmap. (b) 
Gene-based UMAP representa�on of expression matrix, cells are colored according to author annota�on and pa�ent. (c,e) Heatmap of the ac�vity
scores  for the two modes of Hallmark Estrogen Response Early pathway (respec�vely Hallmark Coagula�on pathway), cells are grouped according to 
author annota�on. Heatmap of scaled gene expression for top10 contribu�ng genes for corresponding modes, ordered by decreasing contribu�on. (d,f) 
UMAP representa�on of ac�vity matrix of Hallmark pathways, cells are colored according to ac�vity scores of the two Estrogen Response Early modes 
(respec�vely three Coagula�on modes). Specificity score of cell popula�ons is displayed next to relevant clusters. Violin plots of ac�vity scores for 
corresponding modes, grouped by author annota�on (adjusted p-values from Wilcoxon test are symbolized with: * : <0.05, ** : <0.01, *** : <0.001, 
**** : <0.0001).
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