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Abstract

Background
Single-cell histone post translation modification (scHPTM) assays such as scCUT&Tag or scChIP-seq allow single-cell
mapping of diverse epigenomic landscapes within complex tissues, and are likely to unlock our understanding of various
epigenetic mechanisms involved in development or diseases. Running an scHTPM experiment and analyzing the data
produced remains, however, a challenging task since few consensus guidelines exist currently regarding good practices
for experimental design and data analysis pipelines.

Methods
We perform a computational benchmark to assess the impact of experimental parameters and of the data analysis
pipeline on the ability of the cell representation produced to recapitulate known biological similarities. We run more
than ten thousands experiments to systematically study the impact of coverage and number of cells, of the count matrix
construction method, of feature selection and normalization, and of the dimension reduction algorithm used.

Results
The analysis of the benchmark results allows us to identify key experimental parameters and computational choices to
obtain a good representation of single-cell HPTM data. We show in particular that the count matrix construction step has
a strong influence on the quality of the representation, and that using fixed-size bin counts outperforms annotation-based
binning; that dimension reduction methods based on latent semantic indexing outperform others; and that feature
selection is detrimental, while keeping only high-quality cells has little influence on the final representation as long as
enough cells are analyzed.

Introduction
Posttranslational modifications (PTM) of histone proteins are key epigenetic events that modulate chromatin structure,
nucleosome positioning and transcription. They are involved in numerous biological processes, including DNA repair
[1], development [2, 3] and cancer [4]. With the recent advent of high-throughput technologies to measure histone
PTM at the single-cell level (scHPTM), such as single-cell chromatin immunoprecipitation followed by sequencing
(scChIP-seq) [5] and single-cell cleavage under targets and tagmentation (scCUT&Tag) [6, 7], it is now feasible to
explore the diversity of histone PTM in complex biological samples with an ever-increasing level of details [8, 6, 9, 10].
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ScHPTM has already allowed new biological insights such as the discovery of epigenetic factors involved in cancer
response to chemotherapy [11], and is likely to unlock our understanding of various epigenetic mechanisms in the years
to come.

While scHPTM has great potential, it is also a relatively recent approach which comes with numerous computational
challenges that need to be addressed in order to fully deliver its promise of capturing biologically relevant information
from raw experimental data. In this work, we leave aside the question of which technology to use to generate scHPTM
data, and focus instead on two important questions for practitioners, namely, 1) how to design experiments, in particular
to choose a good trade-off between number of cells and coverage, and 2) how to computationally analyze the raw
experimental data and transform them in biologically relevant representations, where subsequent analysis such as cell
classification or lineage inference become feasible. While both questions have been investigated through systematic
benchmarks and comparisons for more mature single-cell technologies such as single-cell RNA-seq (scRNA-seq) and
single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) [12, 13, 14, 15, 16], we are not aware
of any similar study conducted for the burgeoning field of scHPTM, leaving experimentalists without rational guidelines
on how to design their scHPTM experiments and analyze the data they produce.

Given the similar nature of raw experimental data between scHPTM and scATAC-seq, namely, sequencing reads
capturing an epigenomic signal distributed in specific regions over the whole genome, it would seem natural to use
the same computational methods to analyze scHPTM and scATAC-seq data. However, both modalities differ in many
aspects. First, the actual distribution of reads can be drastically different between scHPTM and ATAC-seq. Indeed
ATAC-seq reads are known to cluster in relatively small, ∼1k base pairs (kbp), regions [17], whereas the regulatory
regions for scHPTM vary much more widely in size (e.g., between 5kbp and 2000kbp for H3K27me3 [17]) and their
locations can vary depending on the histone mark - from enhancers (H3K27ac) to gene body (H3K36me3) or intergenic
regions (H3K27me3). Second, with current technologies, the number of sequenced reads in scHPTM is generally
between a few hundred and a few thousand per cells, compared to several thousands for scATAC-seq and tens of
thousands for scRNA-seq. Such a low coverage leads to only about 1% of the expected enriched regions to contain
at least one read per cell (compared to 1-10% for scATAC-seq and 10-45% for scRNA-seq [12]). Thus one can not
assume that computational recommendations for scATAC-seq or RNA-seq hold for scHPTM.

To start filling this gap, we perform in this paper a large-scale computational study to evaluate the impact and best
choices for the number of cells, coverage per cell, cell selection, matrix construction algorithm, feature selection and
dimension reduction algorithm. To quantify the impact of each of these factors, we use two single-cell multi-omics
datasets where, in addition to scHPTM, a second modality is measured for each cell (gene expression or cell surface
proteins); we then assess how well the cell-to-cell similarity observed with scHPTM data analysis agrees with the one
inferred from the co-assay (RNA or protein) [18, 19]. The analysis of more than 10.000 computational experiments
allows us to clarify the impact of various experimental choices and data processing factors for scHTPM data, and to
suggest practical guidelines.

Results

Benchmarking methods for scHPTM analysis
Irrespective of the technology used, most protocols for scHPTM analysis produce sequencing reads which, after being
mapped to a reference genome, indicate where on the genome a given PTM mark is likely to be present in each
individual cell under study. A number of computational steps are then applied to transform these raw data into a useful
representation of each individual cell, where downstream applications such as cell classification or differential analysis
are performed. Here we focus on computational frameworks that produce a representation of each cell as a vector of
moderate dimension (typically, 10 to 50 dimensions), which has been found to be a powerful approach for scRNA-seq
data analysis [20] and is currently the de facto standard for scATAC-seq and scHPTM as well [20]. Going from the
mapped read to a vector representation for each cell involves a number a steps that we investigate in this study (Figure
1A), including 1) the binning of the mapped reads into genomic regions in order to create a cell×region count matrix to
summarize the raw data, 2) various quality control (QC) preprocessing operations to filter out low-quality cells and
regions, and 3) an embedding method to build the representation of each cell from the preprocessed count matrix. Each
step can be performed in many different ways, and we propose a benchmark to assess the impact of each choice at each
step on the final cell representation (Figure 1).

In order to evaluate the impact of each decision on the quality of the final representation, we need reference datasets
and a way to quantify the quality of that representation. As no ground truth reference datasets are available for scHPTM
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Figure 1: Overview of the evaluation protocol. A. We build the count matrix using different bin sizes as well as a
GeneTSS annotation and peaks called on the pseudo bulk (only for the human PBMC dataset). We then simulate
in-silico different experimental conditions for studying the role of the number of cells in a dataset, and the effect of the
coverage per cell, as well as different feature selection strategies. Afterwards we run 7 different dimension reduction
methods to obtain the cell representations. B. In order to compute the neighbor score, we start by selecting a cell, we
then build the kNN graph for a value of k (5 in the figure), we then compute the size of the intersection between the
neighborhood of the cell in the two embeddings (3 cells in the figure) and divide it by k to obtain the score for one cell
and one value of k (score of 0.6 in the figure). We then compute and average this score over all the cells, to have an
neighbor score for a given value of k, that score is then further averaged over different values of k (0.1%, 0.3%, 0.5%,
1%, 3%, 5% and 10% of the number of cells in the experience) to obtain the final neighbor score

analysis, we rely on two datasets produced with multiomics co-assays (Table 1), where two modalities are measured
simultaneously in each cell. More precisely, we consider a mouse brain dataset from [9] where five histone marks
(H3K4m1, H3K4me3, H3K9me3, H3K27ac, and H3K27me3) are assessed by scHPTM jointly with scRNA-seq-based
gene expression, and a human peripheral blood mononuclear cell (PBMC) dataset from [10] where the same five histone
marks are assessed by scHPTM jointly with CITE-seq-based cell surface proteins. For both datasets, we use a unique
representation of the second modality (respectively, scRNA-seq and CITE-seq) using a well-established method as a
reference (scanpy’s [21] implementation of PCA), and compare each representation obtained from the scHPTM data to
that reference. We compute a neighbor score that assesses to what extent neighbor cells in the scHPTM representation
are also found neighbors in the reference representation of the second modality. The neighbor score varies between 0
when both representations disagree completely to 1 when both representations are identical (see Methods and Figure 1B).
This evaluation has been previously used in [18, 19] and is currently the standard for evaluating modality alignment
tasks in recent community benchmarks such as https://openproblems.bio/.

For each dataset and each histone PTM mark, we systematically vary the choices that we can make in each step of
the computational pipeline that goes from the mapped reads to the scHPTM representation of each cell, and measure
the quality of the final representation with the neighbor score to assess the impact of the choices.

More precisely, for the first step that bins mapped reads to regions in order to build a first cell×region count
matrix, we consider three different strategies that represent the various approaches used in practice for the analysis
of single-cell epigenomic assays: 1) discretizing the whole genome into "bins" of fixed size, and trying different
sizes following a logarithmic progression between 5kbp and 1000kbp, 2) counting the reads into bins based on prior
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Tissue Source Co-assay Mark Number of cells

Mouse brain [9] RNA-seq

H3K4me1 12,962
H3K4me3 7,465
H3K9me3 12,044
H3K27ac 11,749
H3K27me3 6,534

Human PBMC [10] CITE-seq

H3K4me1 12,770
H3K4me3 10,386
H3K9me3 8,304
H3K27ac 15,609
H3K27me3 8,232

Table 1: Description of the co-assay datasets used for this study
.

biological knowledge, i.e., on genes and transcription start sites annotations (GeneTSS), 3) counting the reads into
a set of peaks, characteristic of each cell population found in the sample (identified from the corresponding pseudo
bulk using MACS2, [22] ’PseudoBulk’). This last approach was only performed with the human PBMC dataset that
is distributed in a format that allows us to build the pseudo bulk and use it for peak calling. With these matrices, we
attempt different feature selection approaches to select only a subset of genomic regions to keep for further analysis: 1)
selection of highly variable regions using Seurat’s [23] FindVariableFeatures function (variable features), 2) selection of
regions with the highest coverage (top features). The first feature selection method is the current standard in scRNA-seq,
and the second approach is recommended in Signac [24] for analyzing scATAC-seq. We further study the role of cell
filtering based on their coverage, which is part of the standard analysis steps. For region filtering, we study the effect of
coverage and variance filtering. We also simulate different experimental conditions in silico in order to evaluate how
cell numbers affect cell representation, as well as the importance of their coverage. Finally, we consider seven popular
methods for analyzing the count matrices: cisTopic [25], Signac [24] SnapATAC [26], PeakVI [18], SCALE [27], and
ChromSCape [28] with TF-IDF (ChromSCape_LSI) and count per million (CPM) normalization (ChromSCape_PCA).

This leads us to test 11,970 combinations of mark, dimension reduction method, matrix construction, cell selection,
feature selection, number of cells and coverage conditions, out of which 11,080 ran successfully (Tables S1-S2).
Failures to run were generally due to memory issues on small bin sizes and GeneTSS annotation. We then analyze
the impact of each decision choice and experimental condition by assessing statistically how the neighbor score of the
representation varies with the decision.

LSI based methods outperform other methods
We first focus on the influence of the embedding methods on the quality of the final representation. The seven
methods we selected implement a broad range of algorithms that are currently used for the analysis of scATAC-seq and
scHPTM data. More precisely, ChromSCape_PCA is a simple use of PCA after count per million (CPM) normalization,
which serves as baseline. ChromSCape_LSI and Signac implement two variants of the latent semantic indexing (LSI)
algorithm, which consists in transforming the count matrix with TF-IDF and applying PCA on that matrix. They
have been used to analyze scHPTM data [28, 10], and differ in the fact that ChromSCape_LSI weights the principal
components by their eigenvalues, as is standard to do with PCA, while Signac does not and instead whitens the data
representation. They implement variants of the algorithm used in Cusanovich2018 [29, 30, 31], which was found with
SnapATAC and cisTopic to be among the best methods for scATAC-seq data analysis in [12]. SnapATAC computes the
Jaccard similarity between all the cells, and runs kernel PCA on this similarity matrix. cisTopic binarizes the count
matrix and then applied latent Dirichlet allocation (LDA) on this modified matrix. Finally SCALE and PeakVI both
implement a variational autoencoder (VAE) with a product of Bernoulli likelihood function. They differ in the fact that
SCALE uses a mixture of gaussian prior where PeakVI uses a unimodal gaussian prior. Furthermore PeakVI computes
corrections for the size factor of each cell as well as for the accessibility of each DNA region. We run all methods with
their default parameters (see Methods). In particular, we keep the default number of dimensions for all methods; indeed
some methods offer their own heuristics for deciding the number of dimensions, and we did not want to disadvantage
them by using a dimension they do not consider optimal. More precisely, PeakVI sets by default the dimension to
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Figure 2: A. Best performances of the different representation methods on the mouse brain dataset. B. UMAP
representation of the different samples in the mouse brain dataset, the first row is the RNA co-assay processed with
PCA using the scanpy best practices, the second row is the scHPTM assay processed with ChromSCape_LSI using
the matrix construction algorithm with the best neighbor score, both colored by the labels of [9] obtained from the
scRNA-seq co-assays.

the square root of the square root of the number of regions, while cisTopic trains model for multiple dimensions and
chooses one based on an elbow rule of its evidence lower bound (ELBO). Signac uses a dimension of 50 by default,
while SnapATAC, SCALE, and ChromSCape have a default dimension of 10.

Figures 2A and S4 summarize the performance of each embedding method on the different histone PTM marks in the
mouse brain and human PBMC datasets, respectively. In those plots, we summarize the performance of each embedding
method by reporting the best performance achieved by each embedding method across all possible matrix construction
choices, without performing any additional QC processing such as cell or feature selection. This allows us to quantify
the best possible result that each embedding method can reach without setting an arbitrary feature engineering pipeline
that could advantage some methods over others. We see that the neighbor scores vary roughly in the range 0.05∼0.35
across methods, datasets and marks. As can be seen in Figures 2B, where we visualize the embeddings obtained by
ChromSCape_LSI on different marks on the mouse brain dataset, this corresponds to a fairly good agreement with
scRNA-seq embedding in terms of recovering major cell types, particulary for H3K27ac (score=0.302) and H3K4me1
(score=0.321). Interestingly, we observe differences in the neighbor scores of different marks across methods in the
mouse brain dataset, with H3K4me1 and H3K27ac (score=0.291± 0.028 and 0.273± 0.026, respectively) significantly
(p=0.008, see Table S4 for all pairwise comparison p-values) higher than H3K9me3 and H3K27me3, and H3K4me3
(score=0.148± 0.040, 0.169± 0.033 and 0.112± 0.035, respectively). Note that this does not necessarily mean that
some marks are more informative than others in general, but rather than they are less directly linked to expression
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than others. A similar trend is visible but weaker on the human PBMC dataset (Figure S4), where in particular the
scores on H3K27ac and H3K4me1 are lower than on the mouse brain dataset (scores=0.113± 0.031 and 0.150± 0.021,
respectively), and only H3K4me1 has a significantly higher scores (p<0.05) than the other marks (see Table S5). This
difference between the mouse brain and human PBMC datasets could be caused by the differences in co-assay, by the
relative complexity of the cell types, or by the quality of the experiments.

The performance of each method on each histone PTM mark of the mouse brain datasets is shown in Figure 2 and
Table S3. We see that the two best performing methods on the mouse brain datasets are consistently ChromSCape_LSI
and Signac, which are significantly better than all other methods (see Table S7 for p-values of pairwise comparisons).
They are followed by SnapATAC and PeakVI (except on H3K4me3), then cisTopic, SCALE, and ChromSCape_PCA.
SnapATAC is significantly better than cisTopic and SCALE, while ChromSCape_PCA is significantly worse than
all other methods. Both top performing methods (ChromSCape_LSI and Signac) implement LSI, suggesting that
LSI-based method have an advantage over other approaches. Surprisingly, though, while ChromSCape_LSI also
performs well on the human PBMC dataset, Signac does not (Figure S4). This may be due to the lower coverage of the
human PBMC dataset than of the mouse brain data, and to the detrimental effect of the whitening operation specific to
Signac, as studied in more details in the supplementary text. On the PBMC dataset, ChromSCape_PCA again performs
poorly compared to other methods, while the differences between other methods and between marks are overall less
pronounced than on the mouse brain dataset.

Since the four methods ChromSCape_PCA, ChromSCape_LSI, Signac and SnapATAC all implement a form of
PCA after applying to the count data matrix a specific data transformation, the difference in their performance highlights
the importance of this data transformation choice. Simply normalizing the counts by CPM, as ChromSCape_PCA
does, leads to poor performances, while normalizing the count data by Jaccard similarity (SnapATAC) or TF-IDF
(ChromSCape_LSI and Signac) is consistently better. This seems to be specific to scHTPM, since methods using CPM
normalization are competitive with the ones using TF-IDF or kernel PCA on the Jaccard similarity on scATAC-seq data
[12].

We also find that cisTopic is not among the best performing methods for the analysis of scHPTM, while it was
identified by [12] as one of the best tools for analysing scATAC-seq. On the other hand, LSI is extremely competitive
for both modalities. This shows that while scHPTM and scATAC-seq have some similarities, one should be careful
before extrapolating good practices from one modality to the other. Finally, the more recent VAE-based methods,
PeakVI and SCALE, are overall not competitive with the more classical LSI-based ones. As we show below, this may
be due to the relatively small size of the datasets used.

The count matrix construction strongly influences the quality of the representation
We now investigate the influence of the count matrix construction method (i.e., how the raw reads are mapped to regions)
to obtain relevant embeddings of scHTPM datasets. For that purpose, we explore the performance of the different
embedding methods as a function of the matrix construction parameter, again without further preprocessing such as
cell or feature selection. We show the results in Figures 3 and S5 for the mouse brain and human PBMC datasets,
respectively.

We see that matrix construction has overall a strong influence on the quality of the representations. For most
methods and marks, the performance first increases when the bin size increases, then decrease after a peak. This effect
is more pronounced on the mouse brain data, and in particular for repressive marks (H3K27me3 and H3K9me3). In
order to quantify this effect, we report the ratios between the best and worst performing matrix construction for each
method and mark in Table S10 for the mouse brain dataset and in Table S11 for the human PBMC dataset. In the human
PBMC dataset, we can see that the ratio between the best and worst feature engineering can reach up to 7.64 (PeakVI
on H3K4me1), this is mostly due to the very poor performances of using a GeneTSS annotation on this dataset as can
be seen in Fig S5.

In the mouse brain dataset, we can see that this ratio is on average above 2 for H3K27me3 in Fig S9 and reaches
2.8 in the case of PeakVI. The lowest ratio is 1.2 (ChromSCape_LSI on H3K4me1), which is still an increase in
performance of 20%. While that ratio is on average higher for the best performing methods (ChromSCape_LSI and
Signac), it is mostly due to the fact that their best performances are higher than the other methods, more than it is due
to an extreme sensitivity to matrix construction. Indeed we can see that for all marks, ChromSCape_LSI has a very
large range of matrix construction parameters that are extremely competitive. We can also note that by choosing an
average performing method (e.g. SnapATAC or PeakVI) and an appropriate matrix construction parameter, we can
always beat the best performing methods (ChromSCape_LSI or Signac) if they are run with a suboptimal parameter for
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function of the matrix construction. B. UMAP projecttion of H3K4me1 and H3K27me3 using ChromsSCape_LSI
using bins of 20kbp and 300kbp, colored by the labels of [9] obtained from the scRNA-seq co-assays.

matrix construction.
We see on the mouse brain dataset that performances reach a level close to their maximum for smaller bin sizes

for enhancing marks (H3K27ac, H3K4me1 and H3K4me3) than for repressive marks (H3K27me3 and H3K9me3),
and that, except for Signac, the range of appropriate bin size is relatively large (e.g. 50kbp-1000kbp for H3K27me3
or 10kbp-200kbp for H3K4me1). Furthermore, except for Signac, that range is relatively stable across methods for
each bin size. We investigate in more details the reason why Signac behaves so distinctively in the supplementary text
(Fig S1), and show in particular that the fact that it uses a whitening step and a relatively high embedding dimension by
default makes it might capture more noise for larger bin sizes.

We observe that using the GeneTSS annotation is usually not competitive compared to using an appropriate bin size.
The fact that H3K4me3 is an exception to that rule is consistent with the fact that this mark is known to be particularly
enriched around genes and TSSs. We can also see in Fig S5 that the PseudoBulk annotation is also generally not
competitive, with a less pronounced effect for H3K4me1 and H3K4me3. This is consistent with the fact that these
marks tend to have small peaks, which are easier to identify with peak calling algorithms than larger ones.

It is interesting to note that the range of appropriate bin sizes for optimal representations usually includes 100kbp
and can even go up to 500kbp, which would a priori be considered too large to keep biological relevant information.
In particular in [8], the authors made the choice of 5kbp for H3K4me3 and 50kbp for H3K27me3, while in [9] the
authors chose 5kbp for all marks, except for H3k4me3 for which it was 1kbp. Here we find that, to reach a maximal
concordance between epigenomic and transcriptomic embeddings, bin sizes one or two orders of magnitude larger than
the ones used in previous studies are still competitive. This is likely due in part to the fact that the coverage per cell is

7



so low that taking smaller bins introduces too much noise in the matrix, and to the fact that genes are not randomly
distributed in the genome, and tend to cluster into groups of co-expressed genes [32, 33],. We can also observe from
Fig 3 that LSI based methods such as Seurat can achieve good performances in the lower bin sizes regime (as well as
ChromSCape_LSI as shown in the supplementary text).

Selecting high coverage cells has a modest positive impact on the representation

GeneTSS

GeneTSS

10 4
10 5

10 6

0.0

0.1

0.2

0.3

N
e
ig

h
b

o
r 

sc
o
re

H3K4me1

10 4
10 5

10 6

H3K27me3

10 4
10 5

10 6

Binsize (bp)

H3K4me1

10 4
10 5

10 6

H3K27me3

Fraction of cells kept
40% 50% 60% 70% 80% 90% 100%

GeneTSS

GeneTSS

A

B Signac ChromSCape_LSI

40%
50%

60%
70%

80%
90%

100%

0.0

0.1

0.2

0.3

B
e
st

 n
e
ig

h
b

o
r 

sc
o
re

H3K27me3

40%
50%

60%
70%

80%
90%

100%

H3K9me3

40%
50%

60%
70%

80%
90%

100%

Fraction of cells kept

H3K27ac

40%
50%

60%
70%

80%
90%

100%

H3K4me1

40%
50%

60%
70%

80%
90%

100%

H3K4me3

Method
Signac ChromSCape_LSI PeakVI SnapATAC cisTopic SCALE ChromSCape_PCA

Figure 4: A. Each point corresponds to the best performance across matrix construction of a given method and a
given coverage threshold, for the 7 methods, 5 marks, and 7 coverage conditions. B. Performances of Signac and
ChromSCape_LSI as a function of matrix construction on H3K4me1 and H3K27me3 for different coverage thresholds.

In a standard QC pipeline, poorly covered cells can be filtered out before performing dimensionality reduction and
subsequent analysis on the highest quality cells. Such selection step often leads to a trade-off between keeping a high
number of cells to maximise the discovery rate of rare cell states, and keeping only highly-covered cells to maximise the
quality of the embedding. We now assess how selection of cells based on coverage affects the quality of the embedding,
by applying different thresholds for coverage selection and measuring neighbor scores across methods.

As shown on Fig 4, there is overall a modest gain in performance when applying more stringent QC criteria on
cell coverage. Across histone marks, we observe a maximum gain of 15% and 13% in performance for H3K4me1
when using the best performing methods ChromSCape_LSI or Signac respectively (Table S12). Across methods, we
observe that the highest gains in performances are observed for the low performing methods identified above Table S13.
ChromSCape_PCA and SCALE benefit from a 41% and 21% gain respectively whereas ChromSCape_LSI only benefits
from an average 8% gain. In summary, filtering out cells with low coverage has little impact on the quality of the
representation, while reducing the probability to capture rare cells.

A related question important to prepare the experiments is, independently of the number of cells filtered out, to
clarify the impact of average cell coverage. As studied in Supplementary text, we observe that for a given number of
cells, the average coverage per cell is strongly positively correlated with the quality of the representation for most marks
and methods. This confirms that low cell coverage is currently one of the main reasons behind the difficulty to analyze
scHTPM data and to capture a robust biological representation of each cell.
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Feature selection decreases the quality of the embedding
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Figure 5: Role of feature selection, using the Highly Variable Gene (HVG) method used for scRNA-seq on the mouse
brain dataset.A. Each point corresponds to the best performance across matrix construction of a given method and a
given percentage of features kept, for the 7 methods, 5 marks, and 7 feature selection conditions. B. Performances of
Signac and ChromSCape_LSI as a function of matrix construction on H3K4me1 and H3K27me3 for different feature
selection thresholds.

Another QC criteria used in single-cell analysis is the selection of features - genomic regions for single-cell
epigenomics datasets - prior to dimensionality reduction. Two standard approaches are (i) the selection of regions with
the highest coverage or (ii) the selection of regions that have a highly variable enrichment score across cells. Such a
selection step is relatively common, but there is currently no consensus for scHPTM analysis on whether such selection
is beneficial, and which of the two methods is optimal.

To address this question, we compare the maximal neighborhood scores for all methods with various feature selection
thresholds, when we select features based on variability (HVG) or coverage. The results are shown on Figures 5.A and
S6 respectively, for the mouse brain dataset. We observe consistently that feature selection is generally detrimental to
the performances, in the sense that for both methods, the more regions we keep the better the performances are. As
shown on Figure 5.B for Signac and ChromSCape_LSI, this trend is in fact not only true when we look at the best
performance reached over different bin sizes in the matrix construction step, but also when we look at each bin size
individually.

Feature selection has been shown to increase performances for scRNA-seq in [13] and is part of the guidelines for
scATAC-seq [24]. Our results show that, contrary to scRNA-seq and scATAC-seq, feature selection is detrimental to the
analysis of scHPTM data, and we therefore recommend not to use it.

Performances reach a plateau near 6000 cells
While computational parameters can have an important role in the quality of the representation [13], experimental ones
also have a strong influence. In this section we look at the role of the number of cells on such representations, in order to
help practitioners design their experiments. For that purpose, we systematically downsample each dataset by randomly
selecting a subset of cells of various size, and assess the quality of the representation obtained from the downsampled
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Figure 6: Effect of downsampling uniformly at random the number of cells in the experiment. Each point corresponds
to the best performance across matrix construction. A. Performances the 7 methods, on the 5 marks of the mouse brain
dataset and on 5 sizes of dataset (by increase of 20% of the dataset size). B. Performances of ChromSCape_LSI on the
5 marks, using an increase of 500 cells per step.

datasets. We show on Figure 6.A the best performance reached across matrix construction for each method on each
mark, as a function of the size of the downsampled dataset, for the mouse brain dataset. We further add a finer grained
sweep over dataset size for ChromSCape_LSI, by increasing the size of the datset by 500 cells per step as can be seen
in Fig 6.B.

We see that all methods, on all datasets, benefit from an increase in the number of cells. However, it is interesting to
note that the benefits resulting from a larger number of cells diminish as the number of cells increases. Indeed we can
observe that the performances increase quickly up to ∼6,000 cells, and then only keep increasing at a much smaller
rate. PeakVI is an exception to that observation, and we can see that its performances have not yet reached this plateau,
see Table S15. This is consistent with the intuition that deep learning based models require a large amount of data to
achieve their full performances, and in the datasets used in this paper, this full performance does not seem to have
been achieved. The gains in performances are also quite important, with an average increase of 34% by increasing the
number of cells by 150%, and 18% by increasing the number of cells by 66%.

On the other hand the more standard methods, such as LSI or kernel PCA, reach their peak performances around
6,000 cells, and only gain an average of 5% in performances by going from 6,000 to 10,000 cells. Since these methods
are the best performing ones in regime tested in this paper (less than 12,000 cells), it means that practitioners can
sequence less cells while keeping relatively good performances. The case of ChromSCape_LSI is shown in more details
in Fig 6.B, where the dimishing return effect of adding more cells is very pronounced. It also allows us to confirm that
the difference in performances between the enhancing and repressive marks is not due to the number of cells present in
the datasets, as we see a clear separation of 3 groups: H3K27ac and H3K4me1 having the best performances, H3K9me3
and H3K27me3 following them, and finally H3K4me3 having the worst performances. The plateauing effect can also
be seen for all of these marks, leading us to believe that it is not specific to just some marks.

It is however very possible that given more cells (>12,000), PeakVI and SCALE could outperform these methods
and lead to better representations. This would be consistent with the behaviour of deep learning-based methods on other
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modalities such as text of images, even though we can only conjecture that this would happen.
While the increase in the number of cells leads to observable and consistent gains in the quality of the representation,

it is noteworthy that these gains have a lower influence than the use of an optimal matrix construction algorithm. It is
also important to note that the performances of the current best methods do not strongly benefit from such an increase
in the number of cells as can be seen in Table S14, meaning that practitioners may work on relatively small samples
while maintaining state-of-the-art performances.

Discussion
In this paper we studied the role of experimental parameters, cell and feature selection, matrix construction, and
dimension reduction on the quality of the representation from scHPTM datasets. We decided to focus on the quality of
the dimension reduction as it is generally the input of most downstream tasks such as clustering, cell type identification,
differential enrichment or trajectory inference. A good representation is thus beneficial to all these tasks.

Unlike other benchmarks [12, 13, 15] we decided not to measure the quality of the representation based on the
ability of clustering algorithms to retrieve known cell types. This is due to the lack of high quality labels for scHPTM
data. One possibility for obtaining labels could be to use the labels derived from the co-assay, however this would rely
on computational methods instead of an orthogonal protocol and thus would not allow us to truly measure the quality
of the representation. An alternative would be to use FACS-sorted data, whose label are not computational in nature,
however no such data exists that presents interesting complexity to our knowledge. FACS-sorted label also suffer from
being discrete in nature, which may not be informative to how well we could represent continuous state transition in
cell differentiation. The last alternative would be to use simulation data, but not only is there no such simulation tool
accepted in the community, but also performances on simulated data may not be transferable to real data. Instead we
decided to evaluate how well the representation in scHPTM locally agrees with a reference co-assay. This approach
allows us to be independent of labels, as well as working with potentially continuous cell states. Yet when using this
score, we make the assumption that cells that have similar epigenomic landscapes, measured by scHPTM, should
at least locally display similar RNA or protein expression patterns. While we know that this assumption holds well
for enhancer marks (e.g. H3K4me1 or H3K27ac), it might suffer some exceptions for repressive marks (H3K27me3,
H3K9me3). Overall, looking at the available datasets and prior biological knowledge, it appears reasonable and the best
we can have without proper labels. We can also note that this approach has already been successfully used in evaluating
scATAC-seq pipelines in [19, 18].

While we expected the choice of matrix construction algorithm to have an impact, that impact is larger than what
we expected a priori. Indeed as is shown in Table S8 the performances using the best bin size can be up to 80% better
than using the worst one. Surprisingly the ranges of bin size are larger than what could be expected a priori, and we
were also surprised to find that enhancing marks such as H3K4me1 benefited from very large bin sizes (up to 200kbp)
despite being known to have small peaks (in the order of a few kbps [17]). Yet, at a bin size of more than 50kbp,
embeddings will not rely on local epigenomic enrichments, such as the ones observed for enhancers. The coverage of
current scHPTM datasets might not be sufficient to produce reliable embeddings from small bins, and may thereby
be unable to distinguish cell states distinguished by a few local differences. Identifying differences in enrichment for
smaller regions than the bin size used for the embeddings can however be done by using a bin size more appropriate for
the biology of the studied mark when running differential enrichment analysis, while using the clusters obtained from
the embedding. We can also consider the fact that our evaluation relies on the similarities between gene expression and
gene regulation, which may be biased by the known existence of co-expressed gene clusters throughout the genome
[32, 33]. With bin sizes over 100kbp, we might be robustly detecting such co-regulated gene clusters. The fact that
GeneTSS and PseudoBulk annotations were in general not competitive is also not something that was not previously
rigorously established in the literature to the best of our knowledge.

It was also interesting to note that, except for PeakVI, the performances of the different methods tend to stagnate
when increasing the number of cells. This is likely due to the relatively low complexity of the models used. More
complex models such as PeakVI or SCALE did not manage to outperform these low complexity ones in our experiments.
One could imagine that these models could show better performances with larger datasets, such as cell atlases, but they
do not seem appropriate for experiments as they are currently designed.

On the other hand, we found that the performances of all methods largely benefited from being run on high coverage
cells, and that these performances did not stagnate on the available data, suggesting that future improvements of
protocols - increasing coverage, such as in [34] - will surely provide additional information and granularity to refine
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embeddings.
We were also surprised to observe that feature selection, using either a variance or a coverage criteria, almost always

had a negative impact on the performances. This may be due to the excessively low coverage per cells compared to
other protocols where this procedure can be beneficial (see [13] for scRNA-seq).

To the best of our knowledge, this manuscript provides the first comprehensive study on how to both design the
experiment, build the matrix, and analyse scHPTM data. We hope that the large effect of matrix construction that we
were able to identify will lead the community to pay more attention to this crucial, if overlooked step. Furthermore by
testing the algorithms and pipelines most likely to work on scHPTM data, we hope to save the community some time
by avoiding having to discover which already existing algorithms work best.

Material and Methods

Matrix construction
We downloaded the mouse brain dataset from GSE152020 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020).
The data come in count matrix format, with 5kbp bins for all marks except for H3K4me3 which is in 1kbp bins. The
larger bin sizes were obtained by merging the original bins together to form new bins using a custom script, available
at https://github.com/vallotlab/benchmark_scepigenomics. The GeneTSS annotation comes from the ChromSCape
package, and the matrix was done by merging the bins containing the regions in that annotation using the same custom
script. We keep all the cells present in that matrix, as the original authors already applied QC steps on the cells.

The human PBMC dataset data was downloaded from https://zenodo.org/record/5504061, the data was processed
from the fragment files. We used ChromSCape for generating 5kbp matrices and then used our custom script to generate
the other matrices similarly to the mouse brain dataset. The PseudoBulk annotation was obtained by turning the
fragment files into bams, calling the peaks using MACS2, and then merging them using bedtools. We then select only
the cells used in the original paper analysis, by keeping only the barcodes present in the rds objects on zenodo.

In silico modifications
Using the matrices generated in the previous section, we modified them in order to both simulate experimental conditions,
as well as apply standard bioinformatics steps. Feature selection was done using Seurat’s FindVariableFeatures
for the HVG selection and ChromSCape’s find_top_features for the top regions selection, ran using our
filter_sce.R script. For selecting only the high coverage cells we sorted cells by coverage, and kept only the most
covered ones, the relevant script is filter_cells_quality.R. For studying the role of the number of cells, we
sampled cells at ramdom without replacement from the matrice, the relevant script is sample_cells.R.

scRNA-seq and CITE-seq processing
The scRNA-seq matrix for the mouse brain dataset was processed using the scanpy [21] package, and following their
best practice notebook (https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html). We have previously shown in
[13] that the algorithms used in that package are robust and perform well. The CITE-seq matrix for the human PBMC
dataset was extracted from the rds objects and processed with standard PCA.

Representations for scHPTM
For computing the representations using the different methods, we used the implementation from the original pack-
ages, except for SnapATAC for which we used the reimplementation of [12] as it allowed a nicer API for running
a large number of jobs, their implementation can be found on their github https://github.com/pinellolab/scATAC-
benchmarking. For cisTopic, we ran the runWarpLDAModels method from the cisTopic Bioconductor package
(version 0.3.0) and followed the steps from [12]. For Signac we followed the scATAC-seq best practices vignette
(https://satijalab.org/signac/articles/pbmc_vignette.html) and used the Signac CRAN package (version 1.7.0). For
ChromSCape_LSI and ChromSCape_PCA we processed the matrix with the tpm_norm and TFIDF methods respec-
tively, then called the pca method, and removed the first principal component, all the methods were callled from the
ChromSCape Bioconductor package (version 1.6.0). For PeakVI we followed the tutorial on the package website
https://docs.scvi-tools.org/en/0.15.1/tutorials/notebooks/PeakVI.html using the scvi-tools (version 0.15.1) [35] pip
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package. Since SCALE did not have an API for calling their model, we modified the main.py script from the scale
python package (version 1.1.0), so that it does not remove cells.

The scripts for processing used for all R methods ate in the R_analysis.R script, PeakVI and SCALE are
respectively peakVI_process.py and scale_process.py scripts.

The R methods were run on CPUs with 16 cores and 32GB of RAM, the deep learning ones (PeakVI and SCALE)
on V100 GPUs with an additional 2 cores CPU.

Neighbor score computation
To compute the neighbor score of an scHPTM representation, we first compute the k nearest neighbor graphs (kNNG)
for values of k ranging from 0.1% up to 10% of the cells present in the dataset. We then compute the representation for
the second modality using scanpy [21], whose algorithm (PCA) has been identified in [13] as being the most reliable
for achieving good representations for scRNA-seq. We then compute kNNG on this second representation, count the
number of common neighbors in the kNNG for each cell, divide by k, and average over the cells. This gives a score
between 0 and 1, where 1 means that the two representations perfectly agree on which cells are similar, and a score of 0
means complete disagreement. We further average that score across the various values of k, which were selected to be
0.1%, 0.3%, 0.5%, 1%, 3%, 5% and 10% of the cells contained in the assay, in order to take into account the multiple
possible levels of similarity. Two completely random representations would have a score of 0.05 given the values of k
that we selected.

Compute time
The average time for computing an embedding per method is presented in Table 2. The scores computation took an
additional 30 minutes per seven embeddings. This resulted in about 1 year equivalent of CPU/GPU time to run the full
benchmark.

architecture small matrix large matrix

Signac CPU 16 cores 3 minutes 6 minutes
ChromSCape_LSI CPU 16 cores 3 minutes 6 minutes
ChromSCape_PCA CPU 16 cores 3 minutes 6 minutes
SnapATAC CPU 16 cores 10 minutes 40 minutes
cisTopic CPU 16 cores 15 minutes 60 minutes
PeakVI GPU V100 10 minutes (early stopping) 3 hours
SCALE GPU V100 10 minutes (early stopping) 3 hours

Table 2: Average time for computing an embedding per method, small matrix is large bin size (>200kbp), small matrix
is <100kbp.
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Supplementary text
Role of whitening in LSI
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Figure S1: Performances of Signac, ChromSCape_LSI, and modified ChromSCape_LSI on the 5 marks in the mouse
brain dataset, as a function of the matrix construction
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Figure S2: Percentage of variance explained by each principal component of LSI on H3K4me1 of the mouse brain
dataset.

We could see in Fig 3 that Signac’s best performances are achieved for a smaller bin size than the other methods, it
is especially surprising because it is supposed to implement the same algorithm as ChromSCape_LSI. In this section we
investigate the reason behind this difference.

A close look at the implementation of Signac shows that it does not implement the standard LSI algorithm,
but instead a whitened version of it; the principal components (PC) are not weighted by their explained variance.
Furthermore the default dimension used is 50 instead of 10 for ChromSCape_LSI. Both methods also remove the first
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PC, as it is assumed to be mostly driven by the coverage per cell. In order to understand the cause of the shift in optimal
bin size we ran Signac with dimension 10, and ran ChromSCape_LSI at dimension 50 and modified it to use whitening.

By comparing the three conditions with a dimension of 10, we can see that the difference in performances between
Signac and ChromSCape_LSI in the previous sections can mostly be explained by the number of PCs, indeed except in
the case of H3K9me3 the performances of the two are almost identical as can be seen in Fig S1.

However we can see that in higher dimensions, 50 PCs, the performances are very different. While the top
performances are comparable, with a slight advantage for ChromSCape_LSI, Signac has a much tighter range of bin
sizes with good performances. This can be explained by the fact that in large dimensions, the later PCs explain less
variance than the early ones, and not weighing appropriately induces noise. We can see that when the bin size is small,
the explained variance per PC is less concentrated in the first PCs than in the later ones, this is shown in Fig S2. This
explains why Signac has a tighter range of good bin sizes, as its whitening makes the later PCs as important as the first
ones.

We thus recommend not whitening when using LSI, as it makes the method less robust to the choice of bin size.
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Trade-off between coverage and cell number
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Figure S3: Study of the effect of cell coverage on the performances of the representations. The all condition contains all
the cell as a reference, the baseline condition contains only 50% of the cells uniformly sampled at random, the other 6
conditions contain 50% of the cells, but are sorted by coverage. We order the cells by how much reads they contain and
take all the cells from the bottom n% up to n + 50% in order to have the same amount of cells in all conditions. A
Best performance across matrix construction, measured for all of the 7 methods, 5 marks of the mouse brain dataset
and 8 coverage conditions. B. Performances of Signac and ChromSCape_LSI on H3K4me1 and H3K27me3 as a
function of matrix construction. C. Average best performance of the 7 methods across all marks, for the lowest covered
cells, random cells, and highest covered cells. D. UMAP projection of H3K4me1 at different coverage qualities, using
ChromSCape_LSI across at 30kbp, colored by the labels of [9] obtained from the scRNA-seq co-assays.

While experimentalists do not control the depth of sequencing per cell with the current technologies, we felt that
studying how increasing the coverage would impact the quality of the representations to be of interest. Indeed we
currently do not know whether there would be a benefit from such an increase, and if there is one, how strong its effect
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would be.
In order to evaluate the effect of coverage, we select 50% of the cells, but constrain them to have similar coverage.

For example in the q0_q50 condition we take the 50% cells with the lowest coverage per cell, and in q50_q100 we
take the cells with the highest coverage. In a more general way, we sort the cells by coverage per cell, and select the
cells whose coverage falls between the n-th percentile, and n+ 50-th percentile. This allows us to have all conditions
with the same amount of cells, and just study the effect of coverage. We also have a condition where we just sample
half of the cells at random, including all coverage, in order to have a baseline to compare against. That protocol is
summarized in Fig S3. This approach of sampling the cells by coverage instead of downsampling the reads per cell has
the advantage that it does not make any assumption on the data generation process. Indeed here all the observed cells
are real cells, instead of cells that are modified with computational means.

First we can observe that the performances of all methods increase as we increase the coverage, which was expected.
However unlike the number of cells in an experiment seen in Fig 6, the positive effect of more reads per cells does not
plateau and is almost a straight line in the case of H3K4me1 as we can see in Fig S3. If we look at the differences in
performances between the least and most covered cells, summarized by mark in Table S16 and by method in Table S17,
we can see an increase of at least 35%. That increase even goes as far as 107% for H3K4me3 with ChromSCape_LSI.
Looking at the difference between the baseline and the high coverage cells, that increase is still in the order of 15%. It
is interesting to notice that this effect on performances is larger than the one obtained by an increase in the number
of cells, furthermore as we can see in Fig S3 this gain is not yet completely achieved in our protocol. That effect is
specifically noticeable for H3K27me3. This also agrees with the results on the section studying the role of selecting cells
by coverage, where we identified that the marks benefiting the most from this selection were H3K27me3, H3K27ac,
and H3K4me1.

The effect of coverage is also consistent across methods, with Signac, ChromSCape_LSI an ChromSCape_PCA
benefiting the most form this increase in coverage, above 60%. The first two already being the best performing methods
allows to fully reap the benefits from a high coverage.
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Supplementary tables

H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3

Signac 88.2% 88.5% 90.3% 93.6% 84.8%
ChromSCape_LSI 80.0% 80.3% 78.8% 93.9% 78.2%
PeakVI 86.1% 87.9% 85.2% 84.5% 77.3%
SnapATAC 88.2% 89.1% 90.6% 94.8% 84.8%
cisTopic 88.2% 88.5% 90.3% 93.6% 84.8%
SCALE 86.1% 87.3% 90.6% 92.1% 85.2%
ChromSCape_PCA 88.2% 88.5% 90.3% 93.6% 84.8%

Table S1: Percentage of successful runs on the mouse brain data.

H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3

Signac 91.7% 91.7% 91.7% 91.7% 83.3%
ChromSCape_LSI 83.3% 83.3% 83.3% 83.3% 83.3%
PeakVI 83.3% 50.0% 75.0% 83.3% 91.7%
SnapATAC 91.7% 91.7% 8.3% 58.3% 91.7%
cisTopic 75.0% 75.0% 75.0% 75.0% 75.0%
SCALE 75.0% 50.0% 83.3% 83.3% 83.3%
ChromSCape_PCA 83.3% 83.3% 83.3% 83.3% 83.3%

Table S2: Percentage of successful runs on the human PBMC data.

Method neighbor score
H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3

Signac 0.213 0.191 0.309 0.338 0.161
ChromSCape_LSI 0.217 0.212 0.302 0.321 0.164
PeakVI 0.159 0.141 0.284 0.302 0.084
SnapATAC 0.180 0.157 0.266 0.282 0.125
cisTopic 0.154 0.130 0.263 0.267 0.096
SCALE 0.140 0.117 0.261 0.270 0.088
ChromSCape_PCA 0.121 0.086 0.225 0.256 0.069

Table S3: Best performance of each method across feature engineering methods on the mouse brain dataset, the best
performing method for each mark is bolded.

H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3
H3K27me3 0.0078 1.0000 1.0000 0.0078
H3K9me3 1.0000 1.0000 1.0000 0.0078
H3K27ac 0.0078 0.0078 1.0000 0.0078
H3K4me1 0.0078 0.0078 0.0078 0.0078
H3K4me3 1.0000 1.0000 1.0000 1.0000

Table S4: p-values for paired Wilcoxon one-sided (line greater than column) test between the different marks on the
mouse brain data.

22



H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3
H3K27me3 0.4688 0.8516 0.9922 0.4688
H3K9me3 0.5938 0.8516 1.0000 0.4688
H3K27ac 0.1875 0.1875 1.0000 0.1875
H3K4me1 0.0156 0.0078 0.0078 0.0078
H3K4me3 0.5938 0.5938 0.8516 1.0000

Table S5: p-values for paired Wilcoxon one-sided (line greater than column) test between the different marks on the
human PBMC data.

Signac ChromSCape_LSI PeakVI SnapATAC cisTopic SCALE ChromSCape_PCA
Signac 0.9863 0.0801 0.1377 0.0801 0.0322 0.0010
ChromSCape_LSI 0.0186 0.0020 0.0049 0.0029 0.0020 0.0010
PeakVI 0.9346 0.9990 0.7842 0.3125 0.0098 0.0010
SnapATAC 0.8838 0.9971 0.2461 0.0801 0.0527 0.0049
cisTopic 0.9346 0.9980 0.7217 0.9346 0.0068 0.0010
SCALE 0.9756 0.9990 0.9932 0.9580 0.9951 0.0010
ChromSCape_PCA 1.0000 1.0000 1.0000 0.9971 1.0000 1.0000

Table S6: p-values for paired Wilcoxon one-sided (line greater than column) test between the different methods accross
both the human PBMC and mouse brain data.

Signac ChromSCape_LSI PeakVI SnapATAC cisTopic SCALE ChromSCape_PCA
Signac 0.5938 0.0312 0.0312 0.0312 0.0312 0.0312
ChromSCape_LSI 0.5000 0.0312 0.0312 0.0312 0.0312 0.0312
PeakVI 1.0000 1.0000 0.7812 0.1562 0.0625 0.0312
SnapATAC 1.0000 1.0000 0.3125 0.0312 0.0312 0.0312
cisTopic 1.0000 1.0000 0.9062 1.0000 0.0938 0.0312
SCALE 1.0000 1.0000 0.9688 1.0000 0.9375 0.0312
ChromSCape_PCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table S7: p-values for paired Wilcoxon one-sided (line greater than column) test between the different methods on the
mouse brain data.

Method ratio

Chromscape_LSI 1.886
Chromscape_PCA 1.855
PeakVI 1.793
SCALE 1.449
Signac 1.796
SnapATAC 1.445
cisTopic 1.399

Table S8: Ratio between the best and worst performances for each method across matrix construction, with no
preprocessing, averaged over the mouse brain dataset marks.
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Mark ratio

H3K27ac 1.517
H3K27me3 2.022
H3K4me1 1.550
H3K4me3 1.606
H3K9me3 1.608

Table S9: Ratio between the best and worst performances for each mark of the mouse brain dataset across matrix
construction, with no preprocessing, averaged over the 7 methods.

H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3

Signac 1.96 1.96 1.65 1.79 1.62
ChromSCape_LSI 2.54 1.95 1.37 1.22 2.35
PeakVI 2.83 1.57 1.65 1.36 1.57
SnapATAC 1.58 1.61 1.28 1.37 1.38
cisTopic 1.43 1.35 1.35 1.54 1.33
SCALE 1.80 1.33 1.38 1.43 1.30
ChromSCape_PCA 2.01 1.49 1.94 2.14 1.70

Table S10: Ratio between the best and worst performances across matrix construction on the raw data (no feature or
cell selection applied) for each mark and method combination on the mouse brain dataset.

H3K27me3 H3K9me3 H3K27ac H3K4me1 H3K4me3

Signac 2.78 5.16 4.41 2.47 1.18
ChromSCape_LSI 1.30 1.56 1.52 1.25 1.46
PeakVI 1.20 3.95 5.07 7.64 1.10
SnapATAC 2.65 2.36 1.00 3.19 2.57
cisTopic 1.04 1.12 1.18 1.19 1.40
SCALE 2.00 2.14 2.22 3.19 1.12
ChromSCape_PCA 1.14 1.32 1.48 1.27 1.07

Table S11: Ratio between the best and worst performances across matrix construction on the raw data (no feature or
cell selection applied) for each mark and method combination on the human PBMC dataset.

Mark best increase Signac best increase ChromSCape_LSI

H3K27me3 1.104 1.071
H3K9me3 1.073 1.043
H3K27ac 1.110 1.095
H3K4me1 1.149 1.133
H3K4me3 1.008 1.082

Table S12: Ratio of the performances between the best coverage threshold and the worst one for each mark on the
mouse brain dataset.
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Method best increase

Chromscape_LSI 1.085
Chromscape_PCA 1.409
PeakVI 1.076
SCALE 1.211
Signac 1.089
SnapATAC 1.098
cisTopic 1.082

Table S13: Ratio of the performances between between the best coverage threshold and the worst one, averaged by
method on the mouse brain dataset.

Signac ChromSCape_LSI

Mark From 40% From 60% From 40% From 60%

H3K27ac 1.091 1.047 1.088 1.028
H3K27me3 1.155 1.061 1.118 1.084
H3K9me3 1.143 1.089 1.096 1.017
H3K4me1 1.057 1.013 1.057 1.025
H3K4me3 1.172 1.081 1.185 1.075

Table S14: Ratio of the performances, averaged by mark, between having all the cells present and having either only
40% or 60% of themin the mouse brain dataset.

Method From 40% From 60%

Chromscape_LSI 1.109 1.046
Chromscape_PCA 1.188 1.092
PeakVI 1.342 1.180
SCALE 1.290 1.159
Signac 1.124 1.058
SnapATAC 1.084 1.038
cisTopic 1.210 1.108

Table S15: Ratio of the performances, averaged by method, between having all the cells present and having either only
40% or 60% of themin the mouse brain dataset.

Signac ChromSCape_LSI

Mark large increase baseline large increase baseline

H3K27ac 1.708 1.150 1.666 1.119
H3K27me3 1.711 1.216 1.464 1.170
H3K9me3 1.555 1.223 1.355 1.140
H3K4me1 1.688 1.193 1.754 1.204
H3K4me3 1.682 1.087 2.067 1.220

Table S16: Ratio of the performances between having high coverage (q50_100 condition) in the mouse brain dataset,
and either low coverage or baseline coverage, averaged by mark. The "large increase" column is the increase in
performance observed against q0_50 where we select the cells with the lowest coverage. The "baseline" column is the
increase against no selection.
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Method large increase baseline

Chromscape_LSI 1.661 1.170
Chromscape_PCA 1.791 1.502
PeakVI 1.561 1.152
SCALE 1.504 1.467
Signac 1.669 1.174
SnapATAC 1.421 1.143
cisTopic 1.361 1.174

Table S17: Ratio of the performances between having high coverage (q50_100 condition) in the mouse brain dataset,
and either low coverage or baseline coverage, averaged by method. The "large increase" column is the increase in
performance observed against q0_50 where we select the cells with the lowest coverage. The "baseline" column is the
increase against no selection.
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Supplementary Figures
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Figure S4: Best performances of the different representation methods on the human PBMC dataset.
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Figure S5: Performances of the 7 dimension reduction algorithms on the 5 marks in the human PBMC dataset, as a
function of the matrix construction.
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Figure S6: Role of feature selection, using the top features method used for scRNA-seq Each point corresponds to
the best performance across matrix construction of a given method and a given percentage of features kept, for the 7
methods, 5 marks, and 7 features selection conditions

27


