
HAL Id: hal-03863896
https://hal.science/hal-03863896v1

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Local Searchable Symmetric Encryption
Brice Minaud, Michael Reichle

To cite this version:
Brice Minaud, Michael Reichle. Dynamic Local Searchable Symmetric Encryption. Crypto 2022 - 42nd
Annual International Cryptology Conference, Aug 2022, Santa Barbara, United States. �10.1007/978-
3-031-15985-5_4�. �hal-03863896�

https://hal.science/hal-03863896v1
https://hal.archives-ouvertes.fr

Dynamic Local Searchable Symmetric Encryption

Brice Minaud∗ and Michael Reichle∗

∗École normale supérieure, PSL University, CNRS, Inria, France.
{brice.minaud,michael.reichle}@ens.fr

Abstract. In this article, we tackle for the first time the problem of dy-
namic memory-efficient Searchable Symmetric Encryption (SSE). In the
term “memory-efficient” SSE, we encompass both the goals of local SSE,
and page-efficient SSE. The centerpiece of our approach is a new con-
nection between those two goals. We introduce a map, called the Generic
Local Transform, which takes as input a page-efficient SSE scheme with
certain special features, and outputs an SSE scheme with strong locality
properties. We obtain several results.
– First, we build a dynamic SSE scheme with storage efficiency O(1)

and page efficiency only Õ (log log(N/p)), where p is the page size,
called LayeredSSE. The main technique behind LayeredSSE is a new
weighted extension of the two-choice allocation process, of indepen-
dent interest.

– Second, we introduce the Generic Local Transform, and combine it
with LayeredSSE to build a dynamic SSE scheme with storage effi-
ciency O(1), locality O(1), and read efficiency Õ (log logN), under
the condition that the longest list is of size O

(
N1−1/ log log λ

)
. This

matches, in every respect, the purely static construction of Asharov
et al. from STOC 2016: dynamism comes at no extra cost.

– Finally, by applying the Generic Local Transform to a variant of
the Tethys scheme by Bossuat et al. from Crypto 2021, we build an
unconditional static SSE with storage efficiency O(1), locality O(1),
and read efficiency O(logεN), for an arbitrarily small constant ε >
0. To our knowledge, this is the construction that comes closest to
the lower bound presented by Cash and Tessaro at Eurocrypt 2014.

1 Introduction

Searchable Symmetric Encryption. In Searchable Symmetric Encryption
(SSE), a client outsources the storage of a set of documents to an untrusted
server. The client wishes to retain the ability to search the documents, by issuing
search queries to the server. In the setting of dynamic SSE, the client may also
issue update queries, in order to modify the contents of the database, for instance
by adding or removing entries. The server must be able to correctly process all
queries, while learning as little information as possible about the client’s data and
queries. SSE is relevant in many cloud storage scenarios: for example, in cases
such as outsourcing the storage of a sensitive database, or offering an encrypted
messaging service, some form of search functionality may be highly desirable.

2 Brice Minaud, Michael Reichle

In theory, SSE is a special case of computation on encrypted data, and could
be realized using generic solutions, such as Fully Homomorphic Encryption.
In practice, such approaches incur a large performance penalty. Instead, SSE
schemes typically aim for high-performance solutions, scalable to large real-world
databases. Towards that end, SSE trades off security for efficiency. The server
is allowed to learn some information about the client’s data. For example, SSE
schemes typically leak to the server the repetition of queries (search pattern),
and the identifiers of the documents that match a query (access pattern). The
security model of SSE is parametrized by a leakage function, which specifies the
nature of the information leaked to the server.

Locality. In the case of single-keyword SSE, search queries ask for all doc-
uments that contain a given keyword. To realize that functionality, the server
maintains an (encrypted) reverse index, where each keyword is mapped to the
list of identifiers of documents that match the keyword. When the client wishes
to search for the documents that match a given keyword, the client simply re-
trieves the corresponding list from the server. A subtle issue, however, is how
the lists should be stored and accessed by the server.

The naive approach of storing one list after the other is unsatisfactory: in-
deed, the position of a given list in memory becomes dependent on the lengths of
other lists, thereby leaking information about those lists. A common approach
to address that issue is to store each list element at a random location in mem-
ory. In that case, when retrieving a list, the server must visit as many random
memory locations as the number of elements in the list. This is also undesirable,
for a different reason: for virtually all modern storage media, accessing many
random memory locations is much more expensive than visiting one continuous
region. Because SSE relies on fast symmetric cryptographic primitives, the cost
of memory accesses becomes the performance bottleneck. To capture that cost,
[CT14] introduces the notion of locality : in short, the locality of an SSE scheme
is the number of discontinuous memory locations that the server must access to
answer a query.

The two extreme solutions outlined above suggest a conflict between security
and locality. At Eurocrypt 2014, Cash and Tessaro showed that this conflict
is inherent [CT14]: if a secure SSE scheme has constant storage efficiency (the
size of the encrypted database is linear in the size of the plaintext database),
and constant read efficiency (the amount of data read by the server to answer
a search query is linear in the size of the plaintext answer), then it cannot have
constant locality.

Local SSE constructions. Since then, many SSE schemes with constant
locality have been proposed, typically at the cost of superconstant read effi-
ciency. At STOC 2016, Asharov et al. presented a scheme with O (1) storage
efficiency, O (1) locality, and Õ (logN) read efficiency, where N is the size of
the database [ANSS16]. At Crypto 2018, Demertzis et al. improved the read effi-
ciency to O

(
log2/3+εN

)
[DPP18]. Several trade-offs with ω(1) storage efficiency

were also proposed in [DP17]. When the size of the longest list in the database is
bounded, stronger results are known. When such an upper bound is required, we

Dynamic Local Searchable Symmetric Encryption 3

will call the construction conditional. The first conditional SSE is due to Asharov
et al., and achieves Õ (log logN) read efficiency, on the condition that the size of
the longest list is O

(
N1−1/ log logN

)
. This was later improved to Õ (log log logN)

read efficiency, with a stronger condition of O
(
N1−1/ log log logN

)
on the size of

the longest list.
Locality was introduced as a performance measure for memory accesses, as-

suming an implementation on Hard Disk Drives (HDDs). In [BBF+21], Bossuat
et al. show that in the case of Solid State Drives (SSDs), such as flash disks,
locality is no longer the relevant target. Instead, performance is mainly deter-
mined by the number of memory pages accessed, regardless of whether they
are contiguous. In that setting the right performance metric is page efficiency.
Page efficiency is defined as the number of pages read by the server to answer
a query, divided by the number of pages needed to store the plaintext answer.
The main construction of [BBF+21] achieves O(1) storage efficiency and O(1)
page efficiency, assuming a client-side memory of ω(log λ) pages.

To this day, a common point among all existing constructions, both local and
page-efficient, is that they are purely static, as known techniques for subloga-
rithmic read efficiency and page efficiency do not apply to the dynamic setting.
That may be because of the difficulty inherent in building local SSE, even in the
static case (as evidenced, from the onset, by the impossibility result of Cash and
Tessaro [CT14]). Nevertheless, many, if not most, applications of SSE require
dynamism. This state of affairs significantly hinders the applicability of local
and page-efficient SSE.

While one work [MM17] targets local SSE in a dynamic setting, and has
constant storage efficiency and locality, it has read efficiency O(L logW), where
L is the maximum list size. Further, [MM17] employs an ORAM-variant which
incurs a heavy computational overhead, in addition to the large read efficiency.
When reinterpreting [MM17] in the context of page-efficiency, its guarantees
improve to O (logW) page efficiency and constant storage efficiency, but the
heavy computational cost of ORAM remains.

1.1 Our Contributions

In this article, we consider the problem of dynamic memory-efficient SSE, by
which we mean that we target both dynamic page-efficient SSE, and dynamic
local SSE.

The centerpiece of our approach is a novel connection between these two
goals. We introduce a map, called the Generic Local Transform, which takes as
input a page-efficient SSE scheme with certain special features, and outputs a
SSE scheme with strong locality properties. Our strategy will be to first build
page-efficient schemes, then apply the Generic Local Transform to obtain local
schemes. This approach turns out to be quite effective, and we present several
results.

(1) Dynamic page-efficient SSE. We start by building a dynamic page-
efficient SSE scheme, LayeredSSE. LayeredSSE achieves storage efficiency O (1),

4 Brice Minaud, Michael Reichle

and page efficiency Õ
(
log log N

p

)
, where p is the page size. In line with prior

work on memory-efficient SSE, the technical core of LayeredSSE is a new dynamic
allocation scheme, L2C. L2C is a weighted variant of the so-called “2-choice” al-
gorithm, notorious in the resource allocation literature. L2C is of independent
interest: the two-choice allocation process is ubiquitous in various areas of com-
puter science, such as load balancing, hashing, job allocation, or circuit routing
(a survey of applications may be found in [RMS01]). Weighted variants have
been considered in the past, but have so far required a distributional assump-
tion [TW07, TW14] or presorting [ANSS16]. What we show is that by slightly
tweaking the two-choice process, a dynamic and distribution-free result can be
obtained (Theorem 1). Such a distribution-free result is necessary for crypto-
graphic applications, where the adversary may influence the weights (as in our
case). Other uses beyond cryptography are discussed in Appendix F.

(2) Generic Local Transform. We introduce the Generic Local Trans-
form. On input any page-efficient scheme PE-SSE with certain special features,
called page-length-hiding SSE, the Generic Local Transform outputs a local SSE
scheme Local[PE-SSE]. Roughly speaking, if PE-SSE has client storage O (1),
storage efficiency O(1), and page efficiency O(P), then Local[PE-SSE] has stor-
age efficiency O(1), and read efficiency O(P). Regarding locality, the key feature
is that if PE-SSE has locality O(L) when querying lists of size at most one page,
then Local[PE-SSE] has locality O(L+ log logN) when querying lists of any size.
Thus, the Local construction may be viewed as bootstrapping a scheme with weak
locality properties into a scheme with much stronger locality properties.

The Generic Local Transform also highlights an interesting connection be-
tween the goals of page efficiency and locality. Originally, locality and page ef-
ficiency were introduced as distinct performance criterions, targeting the two
most widespread storage media, HDDs and SSDs respectively. It was already
observed in [BBF+21] that a scheme with locality L and read efficiency R must
have page efficiency at most R+ 2L. In that sense, page efficiency is an “easier”
goal. With the Generic Local Transform, surprisingly, we build a connection in
the reverse direction: we use page-efficient schemes as building blocks to obtain
local schemes. On a theoretical level, this shows a strong connection between
the two goals. On a practical level, it provides a strategy to target both goals at
once.

(3) Dynamic local SSE. By applying the Generic Local Transform to the
LayeredSSE page-efficient scheme, we immediately obtain a dynamic SSE scheme
Local[LayeredSSE], with storage efficiency O (1), locality O (1), and read effi-
ciency Õ (log logN). The construction is conditional: it requires that the longest
list is of sizeO

(
N1−1/ log logN

)
. The asymptotic performance of Local[LayeredSSE]

matches exactly the second static construction from [ANSS16], including the con-
dition on maximum list size: dynamism comes at no extra cost. In particular,
Local[LayeredSSE] matches the lower bound from [ASS21] for SSE schemes built
using what [ASS21] refers to as “allocation schemes”—showing that the bound
can be matched even in the dynamic setting.

Dynamic Local Searchable Symmetric Encryption 5

(4) Unconditional local SSE in the static setting. The original 1-
choice scheme from [ANSS16] achieves O (1) storage efficiency, O (1) locality,
and Õ (logN) read efficiency, unconditionally. The read efficiency was improved
to O

(
log2/3+εN

)
in [DPP18], for any constant ε > 0. This was, until now,

the only SSE construction to achieve sublogarithmic efficiency unconditionally.
By applying the Generic Local Transform to a variant of Tethys [BBF+21], in
combination with techniques inspired by [DPP18], we obtain an unconditional
static SSE scheme with storage efficiencyO(1), localityO(1), and read efficiency
O (logεN), for any constant ε > 0. To our knowledge, this is the construction
that comes closest to the impossibility result of Cash and Tessaro, stating that
O(1) locality, storage efficiency, and read efficiency simultaneously is impossible.

Table 1 – Page-efficient SSE schemes. N denotes the total size of the database,
W denotes the number of keywords, p is the number elements per page, ε > 0
is an arbitrarily small constant, and λ is the security parameter.

Schemes Client st. Page eff. Storage eff. Dynamism

Πpack, Π2lev [CJJ+14] O(1) O(1) O(p) Static
TCA [ANSS16] O(1) Õ (log logN) O(1) Static
Tethys [BBF+21] O(p log λ) 3 3 + ε Static
IO-DSSE [MM17] O(W) O(logW) O(1) Dynamic

LayeredSSE O(1) Õ
(
log log N

p

)
O(1) Dynamic

Table 2 – SSE schemes with constant locality and storage efficiency. N denotes
the total size of the database, and ε > 0 is an arbitrarily small constant.

Schemes Locality Read eff. St. eff. Max list size Dynamism

TCA [ANSS16] O(1) Õ (log logN) O(1) O
(
N1−1/ log logN

)
Static

[ASS21] O(1) Õ (log log logN) O(1) O
(
N1−1/ log log logN

)
Static

OCA [ANSS16] O(1) Õ (logN) O(1) Unconditional Static
[DPP18] O(1) Õ

(
log2/3+εN

)
O(1) Unconditional Static

Local[LayeredSSE] O(1) Õ (log logN) O(1) O
(
N1−1/ log logN

)
Dynamic

UncondSSE O(1) Õ (logεN) O(1) Unconditional Static

Remark on Forward Security. The SSE schemes built in this work have a stan-
dard “minimal” leakage profile during Search: namely, searches leak the search
pattern, the access pattern and the length of the retrieved list of document
identifiers. For our dynamic schemes, Update operations importantly leak no

6 Brice Minaud, Michael Reichle

information about unqueried keywords, but leak an identifier of the list being
updated, as well as, in some cases, the length of the list. As a consequence,
our dynamic schemes are not forward-secure. The underlying issue is that the
goals of forward security and memory efficiency seem to be fundamentally at
odds. Indeed, locality asks that identifiers associated to the same keywords must
be stored close to each other; while forward-privacy requires that the location
where a new identifier is inserted should be independent of the keyword it is
associated with. That issue was already noted in [Bos16], who claims that “for
dynamic schemes, locality and forward-privacy are two irreconcilable notions”.
We refer the reader to [Bos16] for more discussion of the problem and leave
further analysis of this issue for future work.

Note that SSE has a very varied range of uses cases, for example private
database services, online messaging and encrypted text search. In practice, its
security requirements depend entirely on the use case. There are use cases where
forward secrecy is crucial. The argument for forward security that is often given
in the literature (e.g. [Bos16, ?, ?, ?]) is to thwart file injection attacks in the style
of [?]. Those attacks require injecting adversarially crafted entries into the target
database. In an online messaging scenario, those attacks could be realistic, hence
forward security is needed. In other cases, adversarial file injection is much less of
a threat, and forward security can be reasonably dispensed with. For use cases
where forward security is not required, we show that dynamism and memory
efficiency are achievable at the same time.

Remark on the Focus on the Reverse Index. As most SSE literature, this work fo-
cuses on the (inverse) document index. The simplest usage scenario is to retrieve
document indices from the index, then fetch those documents from a separate
database. In reality, there are many other ways to use the index, for example by
intersecting the document indices from several queries before fetching, fetching
only some of the documents (see [?]), or building graph databases via several
layers of inverse indices [?].

In most cases, the cost of fetching the actual documents is the same for the
encrypted database as it is for the equivalent plaintext database: the efficiency
overhead comes entirely from the inverse index. Schemes that hide access pattern
or volume leakage are a possible exceptions but are out of the scope of this work.

2 Technical Overview

This work contains several results, tied together by the Generic Local Transform.
As such, we believe it is beneficial to present them together within one paper.
This requires introducing a number of different allocation mechanisms. We have
endeavored to provide in this section a clear overview of those mechanisms. For-
mal specifications, theorems, and proofs will be presented in subsequent sections.

It is helpful to fist recall a few well-studied allocation mechanisms. In what
follows, “with overwhelming probability” is synonymous with “except with negli-
gible probability” (in the usual cryptographic sense), whereas “with high proba-

Dynamic Local Searchable Symmetric Encryption 7

bility” simply means with probability close to 1 in some sense, but not necessarily
overwhelming.

One-choice allocation. In one-choice allocation, n balls are thrown into n bins.
Each ball is inserted into a bin chosen independently and uniformly at random
(by hashing an identifier of the ball). A standard analysis using Chernoff bounds
shows that, at the outcome of the insertion process, the most loaded bin contains
O (log n) balls with high probability [JK77]. (And at most O (f(n) log n) balls
with overwhelming probability, for any f = ω(1).)

Two-choice allocation. Once again, n balls are thrown into n bins. For each ball,
two bins are chosen independently and uniformly at random (e.g. by hashing
an identifier of the ball). The ball is inserted into whichever of the two bins
contains the fewest balls at the time of insertion. A celebrated result by Azar
et al. shows that, at the outcome of the insertion process, the most loaded bin
contains O(log log n) balls with high probability [ABKU94]. (It was later shown
that the result holds with overwhelming probability [RMS01].)

2.1 Layered 2-Choice Allocation

Our first goal is to build a dynamic page-efficient scheme. Let us summarize
what this entails, starting with the static case. As explained in the introduction,
to realize single-keyword SSE, we want to store lists of arbitrary sizes on an
untrusted server. Hiding the contents of the lists can be achieved in a straight-
forward way using symmetric encryption. The main challenge is how to store the
lists in the server memory, in such a way that accessing one list does not reveal
information about the lengths of other lists.

In the case of page-efficient schemes, this challenge may be summarized as
follows. We are given a set of lists, containing N items in total. We are also
given a page size p, which represents the number of items that can fit within a
physical memory page. The memory of the server is viewed as an array of pages.
We want to store the lists in the server memory, with three goals in mind.

1. In order to store all lists, we use SdN/pe pages of server memory in total,
where S is called the storage efficiency of the allocation scheme. We want S
to be as small as possible.

2. Any list of length ` can be retrieved by visiting at most P d`/pe pages in server
memory, where P is called the page efficiency of the allocation scheme. We
want P to be as small as possible.

3. Finally, the pages visited by the server to retrieve a given list should not
depend on the lengths of other lists.

The first two goals are precisely the aim of bin packing algorithms. The third goal
is a security goal: it stipulates that the pattern of memory accesses performed
by the server should not leak certain information. As such, the goal relates to
oblivious or data-independent algorithms. In [BBF+21], a framework for realizing
the three goals was formalized as Data-Independent Packing (DIP).

8 Brice Minaud, Michael Reichle

To ease presentation, we will focus on the case where all lists are of size at
most one page. If a list is of length more than one page, the general idea is that
it will be split into chunks of one page, plus one final chunk of size at most one
page; each chunk will then be treated as a separate list by the allocation scheme.
We assume from now on that lists are of length less than one page.

In a nutshell, the idea proposed by [BBF+21] to instantiate a DIP scheme
is to use weighted variant of cuckoo hashing [PR04]. In more detail, for each
list, two pages are chosen uniformly at random, by hashing an identifier of the
list. Each element of the list will then be stored in one of the two designated
pages, or a stash. The stash is stored on the client side. In order to choose how
each list is split between its three possible destinations (the two chosen pages,
or the stash), [BBF+21] uses a maximum flow algorithm. The details of this
algorithm are not relevant for our purpose. The important point is that when
retrieving a list, the server accesses two uniformly random pages. Clearly, this
reveals no information to the server about the lengths of other lists. The resulting
algorithm, called Tethys, achieves storage efficiency O(1), page efficiency O(1),
with client storage ω(log λ) pages (used to store the stash).

In this paper, we wish to build a dynamic SSE. For that purpose, the under-
lying allocation scheme needs to allow for a new update operation. An update
operation allows the client to add a new item to a list, increasing its length
by one. The security goal remains essentially the same as in the static case: the
pages accessed by the algorithm in order to update a given list should not depend
on the lengths of other lists.

Tethys is not a suitable basis for a dynamic scheme, because it does not allow
for an efficient data-independent update procedure: when inserting an element
into a cell, the update procedure requires running a max flow algorithm. This
either requires accessing other cells, with an access pattern that is intrinsically
data-dependent, or performing a prohibitively expensive data-oblivious max flow
computation each update. Instead, a natural idea is to use a weighted variant of
the two-choice allocation scheme. With two-choice allocation, the access pattern
made during an update is simple: only the two destination buckets associated
to the list being updated need to be read. The new item is then inserted into
whichever of the two buckets currently contains less items.

Instantiating that approach would require a weighted dynamic variant of
two-choice allocation, along the following lines: given a multiset of list sizes
{`i : 1 ≤ i ≤ k} with `i ≤ p and

∑
`i = N , at the outcome of a two-

choice allocation process into O (N/p) buckets, the most loaded bucket con-
tains O (p log logN) items with overwhelming probability, even if the weight
of balls is updated during the process. However, a result of that form appears
to be a long-standing open problem (some related partial results are discussed
in [BFHM08]). The two-choice process with weighted items has been studied in
the literature [TW07, TW14, ANSS16], but to our knowledge, all existing re-
sults assume that (1) either the weight of the balls are sampled identically and
independently from a sufficiently smooth distribution or (2) the balls are sorted
initially and then allocated in decreasing order. Even disregarding constraints

Dynamic Local Searchable Symmetric Encryption 9

on the distribution, in our setting, we cannot even afford to assume that list
lengths are drawn independently: in the SSE security model, lists are chosen
and updated arbitrarily by the adversary. Also, presorting the lists according
to their length is not possible in a dynamic setting, as the list lengths can be
changed via updates.

For our purpose, we require a distribution-free statement: we only know a
bound p on the size of each list, and a bound N on the total size of all lists.
We want an O(p log logN) upper bound on the size of the most loaded bucket
that holds for any set of list sizes satisfying those constraints, even if list sizes
are updated during the process. A result of that form is known for one-choice
allocation processes [BFHM08] (with a O(p logN) upper bound), but the same
article shows that the same techniques cannot extend to the two-choice process.

To solve that problem, we introduce a layered weighted 2-choice allocation
algorithm, L2C. L2C has the same basic behavior as a (weighted) two-choice
algorithm: for each ball, two bins are chosen uniformly at random as possible
destinations. The only difference is how the bin where the ball is actually inserted
is selected among the two destination bins. The most natural choice would be
to store the ball in whichever bin currently has the least load, where the load
of a bin is a the sum of the weights of the balls it currently contains. Instead,
we use a slightly more complex decision process. In a nutshell, we partition the
possible weights of balls into O(log log λ) subintervals, and the decision process
is performed independently for balls in each subinterval. For the first subinterval
(holding the smallest weights), we use a weighted one-choice process, while for
the other subintervals, we use an unweighted two-choice process.

The point of this construction is that its analysis reduces to the analysis
of the weighted one-choice process, and the unweighted two-choice process, for
which powerful analytical techniques are known. We leverage those techniques
to show that L2C achieves the desired distribution-free guarantees on the load of
the most loaded bin. In practice, what this means is that we have an allocation
algorithm that, for most intents and purposes, behaves like a weighted variant
of two-choice allocation, and for which updates and distribution-free guarantees
can be obtained relatively painlessly.

The LayeredSSE scheme is obtained by adding a layer of encryption and key
management on top of L2C, using standard techniques from the SSE literature,
although some care is required for updates. We refer the reader to Section 5 for
more details.

2.2 Generic Local Transform

At Crypto 2018, Asharov et al. identified two main paradigms for building local
SSE [ASS18]. The first is the allocation paradigm, which typically uses variants of
multiple-choice allocation schemes, or cuckoo hashing. The second is the pad-and-
split approach. The main difficulty of memory-efficient SSE is to pack together
lists of different sizes. The idea of the pad-and-split approach is to store lists
separately according to their size, which circumvents the issue. The simplest
way to realize this is to pad all lists length to the next power of 2. This yields

10 Brice Minaud, Michael Reichle

logN possible values for list lengths. All lists of a given length can be stored
together using, for instance, a standard hash table. Since we do not want to
reveal the number of lists of each length, the hash table at each level needs to
be dimensioned to be able to receive the entire database. As a result, a basic
pad-and-split scheme has storage efficiency O(logN), but easily achieves O(1)
locality and read efficiency.

For the Generic Local Transform, we introduce the notion of Overflowing
SSE (OSSE). An OSSE behaves like an SSE scheme in all aspects, except that,
during its setup and during updates, it may refuse to store some list elements.
Such elements are called overflowing. An OSSE is intended to be used as a
subcomponent within an overarching SSE construction. The OSSE scheme is
used to store part of the database, while overflowing elements are stored using
a separate mechanism. The notion of OSSE was not formalized before, but in
hindsight, the use of OSSE may be viewed as implicit in several existing con-
structions [DPP18, ASS18, BBF+21]. We choose to introduce it explicitly here
for ease of exposition.

We are now in a position to explain the Generic Local Transform. The chief
limitation of the pad-and-split approach is that it creates a logN overhead in
storage. The high-level idea of the Generic Local Transform, then, is to use an
OSSE to store all but a fraction 1/ logN of the database. Then a pad-and-split
variant is used to store theN/ logN overflowing elements. The intent is to benefit
from the high efficiency of the pad-and-split approach, without having to pay
for the logN storage overhead.

There is, however, a subtle but important issue with that approach. A given
list may be either entirely stored within the OSSE scheme, or only partially
stored, or not stored at all. In the OSSE scheme that we will later use (as well
as OSSEs that were implicit in prior work), those three situations should be
indistinguishable to the server, or else security breaks down. To address that
issue, we proceed as follows.

Let us assume all lists have been padded to the next power of 2. For the
pad-and-split part of the construction, we create logN SSE instances, one for
each possible list size. We call each of these instances a layer. The overflowing
elements of a list of size ` will be stored in the layer that handles lists of size `,
regardless of how many elements did overflow from the OSSE for that list.

The OSSE guarantees that the total number of overflowing items is at most
n = O(N/ logN). Thus, if we focus on the layer that handles lists of size `, the
layer will receive at most n elements. These elements will be split into lists of
size at most ` (corresponding to the set of overflowing elements, for each list
of size ` in the original database). To achieve storage efficiency O (S) overall,
we want the layer to store those lists using O (Sn) storage. To achieve read
efficiency R, the layer should also be able to retrieve a given list by visiting at
most R` memory locations. This is where everything comes together: an SSE
scheme satisfying those conditions is precisely a page-efficient SSE scheme with
page size `, storage efficiency S, and page efficiency R.

Dynamic Local Searchable Symmetric Encryption 11

The page-efficient scheme used for each layer is also required satisfy a few
extra properties: first, when searching for a list of size at most one page, the
length of the list should not be leaked. We call this property page-length-hiding.
(We avoid the term length-hiding to avoid confusion with volume-hiding SSE,
which fully hides lengths.) All existing page-efficient constructions have that
property. Second, we require the page-efficient scheme to have O(1) client stor-
age. All constructions in this article satisfy that property, but the construction
from [BBF+21] does not. Finally, we require the scheme to have locality O (1)
when fetching a single page. All existing page-efficient constructions have this
property. (The last two properties could be relaxed, at the cost of more com-
plex formulas and statements.) We call an SSE scheme satisfying those three
properties suitable.

Putting everything together, the Generic Local Transform takes as input a
suitable page-efficient scheme, with storage efficiency S and page efficiency P .
It outputs a local scheme with storage efficiency S + S′, read efficiency P +R′,
and locality L′, where S′, R′, and L′ are the storage efficiency, read efficiency,
and locality of the underlying OSSE. It remains to explain how to build a local
OSSE scheme with O(N/ logN) overflowing items, discussed next.

2.3 ClipOSSE: an OSSE scheme with O (N/ logN) Overflowing
Items

At STOC 2016, Asharov et al. introduced so-called “2-dimensional” variants of
one-choice and two-choice allocation, for the purpose of building local SSE. The
one-choice variant works as follows. Consider an SSE database with N elements.
Allocate m = Õ (N/ logN) buckets, initially empty. For each list of length ` in
the database, choose one bucket uniformly at random. The first element of the
list is inserted into that bucket. The second element of the list is inserted into
the next bucket (assuming a fixed order of buckets, which wraps around when
reaching the last bucket), the third one into the bucket after that, and so on,
until all list elements have been inserted. Thus, assuming ` ≤ m, all list elements
have been placed into ` consecutive buckets, one element in each. An analysis
very similar to the usual analysis of the one-choice process shows that with
overwhelming probability, the most loaded bucket receives at most τ = Õ (logN)
elements. To build a static SSE scheme from this allocation scheme, each bucket
is padded to the maximal size τ and encrypted. Search queries proceed in the
natural way.

Such a scheme yields storage efficiency O(1), locality O(1) (since retrieving
a list amounts to reading consecutive buckets), and read efficiency Õ (logN)
(since retrieving a list of length ` requires reading ` buckets, each of size τ =

Õ (logN)). To build ClipOSSE, we start from the same premise, but “clip” buckets
at the threshold τ = Õ (log logN). That is, each bucket can only receive up to
τ elements. Elements that cannot fit are overflowing.

In the standard one-choice process, where n balls are thrown i.i.d. into n bins,
it is not difficult to show that clipping bins at height τ = O (log log n) results

12 Brice Minaud, Michael Reichle

in at most O(n/ log n) overflowing elements with overwhelming probability. In
fact, by adjusting the multiplicative constant in the choice of τ , the number of
overflowing elements can be made O

(
n/ logd n

)
for any given constant d. We

show that a result of that form still holds for (a close variant of) the 2-dimensional
one-choice process outlined earlier. The result is conditional: it requires that the
maximum list size is O (N/polylogN). (A condition of that form is necessary,
insofar as the result fails when the maximum list size gets close to N/ logN .)
The proof of the corresponding theorem is the most technically challenging part
of this work, and relies on the combination of a convexity argument with a
stochastic dominance argument. An overview of the proof is given in section 6.5,
so we omit more discussion here.

In the end, ClipOSSE achieves storage efficiency O (1), locality O (1), and
read efficiency O(log logN), with O

(
N/ logdN

)
overflowing elements (for any

fixed constant d of our choice), under the condition that the maximum list size is
O(N/polylogN). All applications of the Generic Local Transform in this article
use ClipOSSE as the underlying OSSE. (That is why we write Local[PE-SSE] for
the Generic Local Transform applied to the page-efficient scheme PE-SSE, and
do not put the underlying OSSE as an explicit parameter.)

2.4 Dynamic Local SSE with Õ (log logN) Overhead

By using the Generic Local Transform with ClipOSSE as the underlying OSSE,
and LayeredSSE as the page-efficient scheme, we obtain Local[LayeredSSE]. The
Local[LayeredSSE] scheme has storage efficiency O (1), locality O (1), and read
efficiency Õ (log logN). This result follows from the main theorem regarding the
Generic Local Transform, and does not require any new analysis.

Local[LayeredSSE] is a conditional scheme: it requires that the longest list
is of length O

(
N1−1/ log log λ

)
. The reason is subtle. ClipOSSE by itself has a

condition that the longest list is O (N/polylogN), which is less demanding.
The reason for the condition comes down to the fact that LayeredSSE only
achieves a negligible probability of failure as long as the number of pages in
the scheme is at least Ω(λ1/ log log λ). More generally, the same holds for the
number of bins in two-choice allocation processes in general, even the standard,
unweighted process. The condition is optimal: [ASS21] shows that any sublog-
arithmic “allocation-based” scheme must be conditional, and gives a bound on
the condition. Local[PE-SSE] matches that bound.

2.5 Unconditional Static Local SSE with O(logεN) Overhead

The (static) Tethys scheme from [BBF+21] achieves storage efficiency O(1) and
page efficiency O(1) simultaneously. It is also page-length-hiding. Since we have
the Generic Local Transform at our disposal, it is tempting to apply it to Tethys.
There is, however, one obstacle: Tethys uses ω(p log λ) client memory, in order
to store a stash on the client side. For the Generic Local Transform, we need

Dynamic Local Searchable Symmetric Encryption 13

O (1) client memory. To reduce the client memory of Tethys, a simple idea is
to store the stash on the server side. Naively, reading the stash for every search
would increase the page efficiency to ω(log λ). To avoid this, we store the stash
within an ORAM.

For that purpose, we need an ORAMwith a failure probability of zero: indeed,
since we may store as few as log λ elements in the ORAM, a correctness guarantee
of the form negl(n), where n = log λ is the number items in the ORAM, fails to
be sufficient (it is not negl(λ)). We also need the ORAM to have O(1) locality.
An ORAM with these characteristics was devised in [DPP18], motivated by the
same problem. The ORAM from [DPP18] achieves read efficiency O

(
n1/3+ε

)
,

for any arbitrary constant ε > 0. It was already conjectured in [DPP18] that
it could be improved to O (nε). We build that variant explicitly, and name it
LocORAM. Roughly speaking, LocORAM is a variant of the Goldreich-Ostrovsky
hierarchical ORAM, with a constant number of levels.

By putting the stash of Tethys within LocORAM on the server side, we nat-
urally obtain a page-efficient SSE scheme OramTethys, with O(logε λ) read effi-
ciency, suitable for use within the Generic Local Transform. This yields a static
local SSE for lists of size at most N/polylog N . To handle larger lists, borrow-
ing some ideas from [DPP18], we group lists by size, and use again OramTethys
to store them. In the end, we obtain an unconditional SSE with O (1) store
efficiency, O(1) locality, and O(logε λ) read efficiency.

Comparing with the O
(
log2/3+ε λ

)
construction from [DPP18], we note that

the bottleneck of their construction comes from the allocation schemes the au-
thors use for what they call “small” and “medium” lists. This is precisely the range
where we use Local[OramTethys]. Our construction essentially removes that bot-
tleneck, so that the O(logε λ) read efficiency bottlneck now comes entirely from
the ORAM component.

3 Preliminaries

Let λ ∈ N be the security parameter. For a probability distribution X, we denote
by x← X the process of sampling a value x from the distribution. Further, we
say that x is We denote by [a, b]R the interval {x ∈ R | a ≤ x ≤ b} and extend
this naturally to intervals of the form [a, b)R, (a, b]R, (a, b)R.

3.1 Symmetric Searchable Encryption

A database DB = {wi, (id1, ..., id`i)}Wi=1 is a set of keyword-identifier pairs with
W keywords. We assume that each keyword wi is represented by a machine word
of O(λ) bits. We write DB(wi) = (id1, ..., id`i) for the list of identifiers matching
wi. Throughout the article, we set N =

∑W
i=1 `i and define p as the page size

(which we treat as a variable, independent of the size of the database N).
A dynamic searchable symmetric encryption scheme Σ is a 4-tuple of PPT

algorithms (KeyGen,Setup,Search,Update) such that

14 Brice Minaud, Michael Reichle

– Σ.KeyGen(1λ): Takes as input the security parameter λ and outputs client
secret key K.

– Σ.Setup(K, N,DB): Takes as input the client secret key K, an upper bound
on the database size N and a database DB. Outputs encrypted database
EDB and client state st.

– Σ.Search(K, w, st;EDB): The client receives as input the secret key K, key-
word w and state st. The server receives as input the encrypted database
EDB. Outputs some data d and updated state st′ for the client. Outputs
updated encrypted database EDB′ for the server.

– Σ.Update(K, (w,L), op, st;EDB): The client receives as input the secret key
K, a pair (w,L) of keyword w and list L of identifiers, an operation op ∈
{del, add} and state st. The server receives as input the encrypted database
EDB. Outputs updated state st′ for the client. Outputs updated encrypted
database EDB′ for the server.

In the following, we omit the state st and assume that it is implicitly stored and
updated by the client. We say that Σ is static, if it does not provide an Update
algorithm. Further, we assume that the keyword w is preprocessed via a PRFby
the client, whenever the client sends w to the server in either Search or Update.
This ensures that the server never has access to w in plaintext and unqueried
keywords are distributed uniformly random in the view of the server.

Intuitively, the client uses Setup to encrypt and outsource a database DB to
the server. Then, the client can search keywords w using Search and receives
the list of matching identifiers DB(w) from the server. The list DB(w) can be
updated via Update, provided that the size of the database stays below N . Note
that we allow the client to add (or delete) multiple identifiers at once for a single
keyword (which is required for the Generic Local Transform section 6).

Security. We now define correctness and semantic security of SSE. Intuitively,
correctness guarantees that a search always retrieves all matching identifiers
and semantic security guarantees that the server only learns limited information
(quantified by a leakage function) from the client.

Definition 1 (Correctness). A SSE scheme Σ is correct if for all databases
DB and N ∈ N, keys K← Σ.KeyGen(1λ), EDB← Σ.Setup(K,DB) and sequences
of search, add or delete queries S, the search protocol returns the correct result
for all queries of the sequence, if the size of the database remains at most N .

We use the standard semantic security notion for SSE (see [CGKO06]). Se-
curity is parameterized by a leakage function L = (LStp,LSrch,LUpdt), composed
of the setup leakage LStp, the search leakage LSrch, and the update leakage
LUpdt. We define two games, SSEReal and SSEIdeal. First, the adversary
chooses a database DB. In SSEReal, the encrypted database EDB is generated
by Setup(K, N,DB), whereas in SSEIdeal the encrypted database is simulated
by a (stateful) simulator Sim on input LStp(DB, N). After receiving EDB, the
adversary issues search and update queries. All queries are answered honestly in

Dynamic Local Searchable Symmetric Encryption 15

SSEReal. In SSEIdeal, the search queries on keyword w are simulated by Sim
on input LSrch(w), and update queries for operation op, keyword w and identi-
fier list L are simulated by Sim on input LUpdt(op, w, L). Finally, the adversary
outputs a bit b.

We write SSERealadp and SSEIdealadp if the queries of the adversary
were chosen adaptively, i.e. dependant on previous queries. Similarly, we write
SSERealsel and SSEIdealsel if the queries are chosen selectively by the adver-
sary, i.e. sent initially in conjunction with the database before receiving EDB.

Definition 2 (Semantic Security). Let Σ be a SSE scheme and L = (LStp,
LSrch,LUpdt) a leakage function. Scheme Σ is L-adaptively secure if for all PPT
adversaries A, there exists a PPT simulator Sim such that

|Pr[SSERealadpΣ,A(λ) = 1]− Pr[SSEIdealadpΣ,Sim,L,A(λ) = 1]| = negl(λ) .

Similarly, scheme Σ is L-selectively secure if for all PPT adversaries A, there
exists a PPT simulator Sim such that

|Pr[SSERealselΣ,A(λ) = 1]− Pr[SSEIdealselΣ,Sim,L,A(λ) = 1]| = negl(λ) .

Intuitively, semantic security guarantees that the interaction between client
and server reveals no information to the server, except the leakage of the given
query. The schemes from this article have common leakage patterns. We use the
standard notions of query pattern qp and history Hist from [Bos16] to formalize
this leakage: (1) The query pattern qp(w) for a keyword w are the indices of
previous search or update queries for keyword w. (3) The history Hist(w) is
comprised of the list of identifiers matching keyword w that were inserted during
setup and the history of updates on keyword w, that is each deleted and inserted
identifier. We can retrieve the number `i of inserted identifiers and the number
di of deleted identifiers from Hist(w) for each keyword.

We define two leakage patterns we use throughout the article. (1) We de-
fine page-length hiding leakage Llen-hid. We set Llen-hid = (Llen-hid

Stp ,Llen-hid
Srch ,Llen-hid

Updt),
where the setup leakage is Llen-hid

Stp (DB, N) = N is the maximal size N of the
database, the search leakage Llen-hid

Srch (w) = (qp, d`i/pe , ddi/pe) is the query pat-
tern and the number of pages required to store the inserted and deleted items,
and the update leakage Llen-hid

Updt (op, w, L) = (op, qp, d(`i + |L|)/pe , d(di + |L|)/pe ,
d`i/pe , ddi/pe) is the operation, the query pattern and the number of pages re-
quired to store the inserted and deleted items (before and after the update)1.
(2) Similarly, we define length reveiling leakage Llen-rev. We set Llen-rev = (Llen-rev

Stp ,

Llen-rev
Srch ,Llen-rev

Updt) with Llen-rev
Stp (DB, N) = N , Llen-rev

Srch (w) = (qp, |L′|, `i, di) and lastly
Llen-rev
Updt (op, w, L′) = (op, qp, |L′|, `i, di).
We will use Llen-hid and Llen-rev for both dynamic and static schemes. When we

say that a static scheme is L-semantically secure, for L ∈ {Llen-hid,Llen-rev}, we
1 Note that we allow for inserting more than one identifier per keyword in a single
update operation in this work. Thus, the server will also learn (limited) information
about the number |L| of added or deleted identifiers.

16 Brice Minaud, Michael Reichle

simply ignore the update leakage. Note that both leakage patterns, Llen-hid and
Llen-rev, have standard setup and search leakage, common in most SSE schemes.
The update leakage of Llen-hid and Llen-rev is similar to their search leakage, and
reveals nothing about unqueried keywords. While the update leakage is not for-
ward secure, similar leakage patterns are commonly considered in literature, for
example [CJJ+14]. We hope our techniques pave the way for future work on
dynamic schemes with forward security and memory efficiency.

Efficiency Measures. We recall the notions of locality, storage efficiency and
read efficiency [CT14], and page efficiency [BBF+21] (and extend them to the
dynamic SSE setting in a natural manner). In the following definitions, we set
K ← KeyGen(1λ) and EDB ← Setup(K, N,DB) given database DB and upper
bound N on the number of document identifiers. Also, S = (opi, ini)

s
i=1 is a

sequence of search and update queries, where opi ∈ {add, del,⊥} is a operation
and ini = (opi, wi, Li, sti,EDBi) its input. Here, wi is a keyword and Li is a
(added or deleted) list of identifiers, and after executing all previous operations
opj for j ≤ i, sti is the client state and EDBi the encrypted database. We denote
by DBi the database after i operations. We assume that the total number of
identifiers never exceeds N . (If opi = ⊥, the query is a search query and Li is
empty.)

Definition 3 (Read Pattern). Regard server-side storage as an array of mem-
ory locations, containing the encrypted database EDB. When processing search
query Search(K, wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi),
the server accesses memory locations m1, ...,mh. We call these locations the read
pattern and denote it with RdPat(opi, ini).

Definition 4 (Locality). A SSE scheme has locality L if for any λ, DB, N ,
sequence S, and any i, RdPat(opi, ini) consists of at most L disjoint intervals.

Definition 5 (Read Efficiency). A SSE scheme has read efficiency R if for
any λ, DB, N , sequence S, and any i, |RdPat(opi, ini)| ≤ R · P , where P is the
number of memory locations needed to store all (added and deleted) document
indices matching keyword wi in plaintext (by concatenating indices).

Definition 6 (Storage Efficiency). A SSE scheme has storage efficiency E
if for any λ, DB, N , sequence S, and any i, |EDBi| ≤ E · |DBi|.

Definition 7 (Page Pattern). Regard server-side storage as an array of pages,
containing the encrypted database EDB. When processing search query Search(K,
wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi), the read pattern
RdPat(opi, ini) induces a number of page accesses p1, ..., ph′ . We call these pages
the page pattern, denoted by PgPat(opi, ini).

Definition 8 (Page Cost). A SSE scheme has page cost aX + b, where a, b
are real numbers, and X is a fixed symbol, if for any λ, DB, N , sequence S, and
any i, |PgPat(opi, ini)| ≤ aX+b, where X is the number of pages needed to store
document indices matching keyword wi in plaintext.

Dynamic Local Searchable Symmetric Encryption 17

Definition 9 (Page Efficiency). A SSE scheme has page efficiency P if for
any λ, DB, N , sequence S, and any i, |PgPat(opi, ini)| ≤ P · X, where X is
the number of pages needed to store document indices matching keyword wi in
plaintext.

4 Layered Two-Choice Allocation

In this section, we describe layered two-choice allocation (L2C), a variant of two-
choice allocation that allows to allocate n weighted balls (bi, wi) into m bins,
where bi is a unique identifier and wi ∈ [0, 1]R is the weight of the ball. (We often
write ball bi for short.) First, let 1 ≤ δ(λ) ≤ log(λ) be a function. We denote
by w =

∑n
i=1 wi the sum of all weights and set m = w/(δ(λ) log logw). We

will later choose δ(λ) = o(log log λ) such that allocation has negligible failure
probability. In the overview, we set δ(λ) = 1 and assume that m = Ω(λ) for
simplicity (which suffices for negligible failure probability).

Overview of L2C. L2C is based on both weighted one-choice allocation (1C)
and unweighted two-choice allocation (2C). On a high level, we split the set of
possible weights [0, 1]R into log logm subintervals

[0, 1/ logm]R, (1/ logm, 2/ logm]R, ..., (2log logm−1/ logm, 1]R.

In words, the first interval is of size 1/ logm and the boundaries between intervals
grow by a factor 2 every time. We will allocate balls with weights in a given
subinterval independently from the others.

Balls in the first subinterval have weights wi ≤ logm and are thus small
enough to apply weighted 1C. Intuitively, this suffices because one-choice (prov-
ably) performs worst for uniform weights of maximal size 1/ logm. In that
case, there are at most n′ = w logm balls and we expect a bin to contain
n′/m = logm · log logw balls of uniform weight, since m = w/(log logw). As
each ball has weight 1/ logm, the expected load per bin is log logw. This trans-
lates to a O (log logw) bound with overwhelming probability after applying a
Chernoff’s bound.

For the other intervals, applying unweighted and independent 2C per interval
suffices, as the weights of balls differ at most by a factor 2 and there are only
log logm intervals. More concretely, let ni be the number of balls in the i-th
subinterval Ai = (2i−1/ logm, 2i/ logm]R for i ∈ {1, ..., log logm}. Balls with
weights in subinterval Ai fill the bins with at most O (ni/m+ log logm) balls,
independent of other subintervals. Note that we are working with small weights,
and thus potentially have ω(m) balls. Thus, we need to extend existing 2C results
to negligible failure probability in m for the heavily-loaded case (cf. lemma 5).
As there are only log logm subintervals, and balls in interval Ai have weight at
most 2i/ logm, we can just sum the load of each subinterval and receive a bound

log logm∑
i=1

2i

logm
O(ni/m+ log logm) = O(w/m+ log logm) .

18 Brice Minaud, Michael Reichle

In total, we have O (w/m+ log logm) = O (log logw) bounds for the first and
the remaining intervals. Together, this shows that all bins have load at most
O (log logw) after allocating all n items. This matches the bound of standard
2C with unweighted balls ifm = Ω(λ). For our SSE application, we want to allow
for negligible failure probability with the least number of bins possible. We can
set δ(λ) = log log log(λ) and obtain a bin size of Õ (log logw) with overwhelming
probability, if m = w

δ(λ) log logw . The analysis is identical in this case.

Handling Updates. The described variant of L2C is static. That is, we
have not shown a bound on the load of the most loaded bin if we add balls or
update the weight of balls. Fortunately, inserts of new balls are trivially covered
by the analysis sketched above, if m was chosen large enough initially in order to
compensate for the added weight. Thus, we assume there is some upper bound
wmax on the total weights of added balls which is used to initially set up the
bins. We can also update weights if we proceed with care.

For this, let bi be some ball with weight wold. We want to update its weight to
wnew > wold. If wold and wnew reside in the subinterval, we can directly update the
weight of bi, as L2C ignores the concrete weight of balls inside a given subinterval
for the allocation. Indeed, in the first interval, the bin in which bi is inserted is
determined by a single random choice, and for the remaining subintervals, the 2C
process only considers the number of balls inside the same subinterval, ignoring
concrete weights.

When wnew is larger than the bounds of the current subinterval, we need to
make sure that the ball is inserted into the correct bin of its two choices. For
this, the ball bi is inserted into the bin with the lowest number of balls with
weights inside the new subinterval. Even though the bin of bi might change in
this process, we still need to consider bi as a ball of weight wold in the old bin
for subsequent ball insertions in the old subinterval. Thus, we mark the ball
as residual ball but do not remove it from its old bin. That is, we consider it
as ball of weight wold for the 2C process but assume it is not identified by bi
anymore. As there are only log logm different subintervals, storing the residual
balls has a constant overhead. The full algorithm L2C is given in Algorithm 1.
We parameterize it by a hash function H mapping uniformly into {1, ...,m}2.
The random bin choices of a ball bi are given by α1, α2 ← H(bi).

Load Analysis of L2C. Let either δ(λ) = 1 or δ(λ) = log log log λ and m
sufficiently large such that m−Ω(δ(λ) log logw) = negl(λ). (Note that this is the
probability that allocation of 1C and 2C fails.)

We need to show that after setup and during a (selective) sequence of op-
erations, the most loaded bin has a load of at most O(δ(λ) log logwmax), where
wmax is an upper bound on the total weight of the inserted balls. We sketch the
proof here and refer to Appendix C for further details. First, we modify the se-
quence S such that we can reduce the analysis to only (sufficiently independent)
L2C.InsertBall operations, while only increasing the final bin load by a constant
factor. This is constant factor of the load is due to the additional weight of
residual balls. Then, we analyze the load of the most loaded bin for the each

Dynamic Local Searchable Symmetric Encryption 19

subinterval independently. This boils down to an analysis of a 1C process in
the first subinterval and a 2C process in the remaining subintervals as in the
overview of L2C (see Section 4). Summing up the independent bounds yields the
desired result.

Theorem 1. Let either δ(λ) = 1 or δ(λ) = log log log λ. Let wmax = poly(λ)

and m = wmax/(δ(λ) log logwmax). We require that m = Ω(λ
1

log log λ) if δ(λ) =
log log log λ or m = Ω(λ) otherwise. Let {(bi, wi)ni=1} be balls with (pair-wise
unique) identifier bi and weight wi ∈ [0, 1]. Further, let S = (opi, ini)

s+n
i=n+1 be a

sequence of s insert or update operations opi ∈ {L2C.InsertBall, L2C.UpdateBall}
with input ini = (bi, wi, Bαi,1 , Bαi,2) for inserts and ini = (bi, oi, wi, Bαi,1 , Bαi,2)
for updates. Here, bi denotes the identifier of a ball with weight wi and old weight
oi ≤ wi before the execution of opi. Also, the bins are chosen via αi,1, αi,2 ←
H(bi).

Execute (Bi)
m
i=1 ← L2C.Setup({(bi, wi)ni=1}) and the operations opi(ini) for

all i ∈ [n+ 1, n+ s]. We require that
∑n+s
i=1 wi − oi ≤ wmax, i.e. the total weight

after all operations is at most wmax.
Then it holds that throughout the process, the most loaded bin of B1, ..., Bm

has at most load O (δ(λ) log logwmax) except with negligible probability, if H is
modeled as a random oracle.

5 Dynamic Page Efficient SSE – Overview

We introduce the SSE scheme LayeredSSE based on L2C. Essentially, we interpret
lists Li of identifiers matching keyword wi as balls of a certain weight. Then, we
use L2C to manage the balls in m encrypted bins, where each bin corresponds
to a memory page, yielding page efficiency Õ (log logN/p) and constant storage
efficiency. Let N be the maximal size of the database, p ≤ N1−1/ log log λ be
the page size2 and H be a hash function mapping into {1, ...,m}2 for m =
dwmax/(log log log λ · log logwmax)e and wmax = N/p. Due to space limitations,
we assume that each keyword has at most p associated keywords, and outline
the scheme and its security analysis. We refer to Appendix A for details (without
restrictions on the database3).

For convenience, we adapt the notation of L2C to lists of identifiers. A ball
(w,L) of weight |L|/p ∈ [0, 1]R is a list of (at most p) identifiers matching
keyword w. The 2 bin choices α1, α2 for ball (w,L) are given via (α1, α2)← H(w).
Now, L2C.Setup takes input balls {(wi, Li)}Wi=1 and maximal weight wmax, and
allocates them as before into m bins. L2C.InsertBall receives ball (w,L) and two
bins (Bα1 , Bα2), and inserts (w,L) into either bin Bα1 or bin Bα2 as before.

2 This condition is needed for the requirementm ≥ λ1/ log log λ of L2C which guarantees
negligible failure probability (see Theorem 1). In practice, we have p� N .

3 For arbitrary lists sizes, we can split lists into sublists of size at most p and deal
with each sublist separately as before. Some care has to be taken, for example with
the random choices of the bins, but details are mostly straightforward.

20 Brice Minaud, Michael Reichle

Algorithm 1 Layered 2-Choice Allocation (L2C)
L2C.Setup({(bi, wi)}ni=1, wmax)

1: Receive n balls (bi, wi), and maximal total weight wmax

2: Initialize m = dwmax/(δ(λ) log logwmax)e empty bins B1, ..., Bm
3: for all i ∈ {1, ..., n} do
4: Set α1, α2 ← H(bi)
5: InsertBall(bi, wi, Bα1 , Bα2)

6: Return B1, ..., Bm
L2C.InsertBall(bnew, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 , and ball (bnew, wnew)
2: Assert that α1, α2 are the choices given by H(bnew)
3: Split the set of possible weights [0, 1]R into log logm sub-intervals

[0, 1/ logm]R, (1/ logm, 2/ logm]R, ..., (2log logm−1/ logm, 1]R

4: Choose k ∈ N minimal such that wnew ≤ 2k/ logm
5: if k = 1 then
6: Set α← α1

7: else
8: Let Bα be the bin with the least number of balls of weight in

(
2k−1

logm
, 2k

logm

]
R

among Bα1 and Bα2

9: Insert ball bnew into bin Bα
L2C.UpdateBall(bold, wold, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 that contain ball (bold, wold), and new weight wnew ≥ wold

2: Assert that α1, α2 are the choices given by H(bold)

3: if wold, wnew ∈
(

2k−1

logm
, 2k

logm

]
R
for some k then

4: Update the weight of bold to wnew directly
5: else
6: Mark bold as residual ball (it is still considered as a ball of weight wold)
7: InsertBall(bold, wnew, Bα1 , Bα2)

L2C.UpdateBall receives old ball (w,L), identifiers L′ and bins (Bα1
, Bα2

), and
updates ball (w,L) to ball (w,L ∪ L′) as before, while merging both identifier
lists L and L′. (The weight of the updated ball is |L ∪ L′|/p ∈ [0, 1]R.)

5.1 LayeredSSE

We describe LayeredSSE, focusing on insert operations. In Appendix A, we de-
scribe LayeredSSE in more detail, and show how to treat arbitrary list sizes,
introduce delete operations and show how to obtain updates in 1 RTT. A de-
tailed description of LayeredSSE is given in algorithm 2.

Setup. To setup the initial database DB = (w,Li)
W
i=1, given upperbound N

on the number of keyword-identifiers, allocate the balls (w,Li) into m bins via
L2C. Next, each bin is filled up to maximal size p · c log log log(λ) log log(N/p),
for some constant c. Finally, the encrypted bins are output.

Dynamic Local Searchable Symmetric Encryption 21

Search. During a search operation on keyword w, the client retrieves en-
crypted bins Bα1

, Bα2
for (α1, α2)← H(w) from the server.

Update. During an update operation to add identifier list L′ to keyword w,
the client retrieves Bα1

, Bα2
, decrypts both bins and retrieves ball (w,L) from

the corresponding bin Bα ∈ {Bα1
, Bα2

}. Then, she calls L2C.UpdateBall with
old ball (w,L), new identifiers L′ and bins Bα1

, Bα2
to insert the new identifiers

L′ into one of the bins. Finally, she reencrypts the bins and sends them to the
server. The server then replaces the old bins with the updated bins.

Algorithm 2 LayeredSSE
Global parameters: constant c ∈ N, page size p

LayeredSSE.KeyGen(1λ)

1: Sample KEnc for Enc with input 1λ

2: return K = KEnc

LayeredSSE.Setup(K, N,DB)

1: Set τ ← p · c log log log(λ) log log(N/p)
2: Sample bins B1, ..., Bm via L2C.Setup

with input ({(wi,DB(wi))}Wi=1, N/p)
3: Fill B1, ..., Bm up to size τ with zeros
4: Set Benc

i ← EncKEnc(Bi) for i ∈ [1,m]
5: return EDB = (Benc

1 , ..., Benc
m)

LayeredSSE.Search(K, w;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

LayeredSSE.Update(K, (w,L′), add;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

Client:
1: Set Bαi ← DecKEnc(B

enc
αi) for i ∈ {1, 2}

2: Retrieve ball (w,L) from Bα for appro-
priate α ∈ {α1, α2}

3: Run L2C.UpdateBall((w,L), L′, Bα1 , Bα2)
4: Set Bnew

αi ← EncKEnc(Bαi) for i ∈ {1, 2}
5: return Bnew

α2
, Bnew

α2

Server:
1: Replace Benc

αi with Bnew
αi for i ∈ {1, 2}

5.2 Security and Efficiency

Correctness. LayeredSSE is correct as each keyword has two bins that contain its
identifiers associated to it (and these bins are consistently retrieved and updated
with L2C). If the hash function is modeled as a random oracle, the bin choices
are uniformly random and Theorem 1 guarantees that bins do not overflow.

Selective Security. LayeredSSE is selectively secure and has standard setup leak-
age N , such as search and update leakage qp, where qp is the query pat-
tern4. This can be shown with a simple hybrid argument, sketched here. For
setup, the simulator Sim receives N , recomputes m and initializes m empty
bins B1, ..., Bm of size p · c log log log(λ) log log(N/p) each. Sim then outputs
EDB′ = (EncK′Enc(Bi)

m
i=1) for some sampled key K′Enc. As Enc is IND-CPA secure

(and bins do not overflow in the real experiment except with negligible proba-
bility), the output EDB′ is indistinguishable from the output of Setup in the real
4 This is equivalent to page length hiding leakage Llen-hid, as we only restrict ourselves
to lists of size at most p.

22 Brice Minaud, Michael Reichle

experiment. For a search query on keyword w, Sim checks the query pattern qp
whether w was already queried. If w was not queried before, Sim a new uniformly
random keyword w′. Otherwise, Sim responds with the same keyword w′ from
the previous query. As we assume that keywords are preprocessed by the client
via a PRF, the keywords w and w′ are indistinguishable. For an update query
on keyword w, the client output in the first flow is the same as in a search query
and thus, Sim can proceed as in search. For the second flow, Sim receives two
bins Bα1

, Bα2
from the adversary, directly reencrypts them and sends them back

to the adversary. This behaviour is indistinguishable, as the bins are encrypted
and again, bins do not overflow except with negligible probability.

Adaptive Security. For adaptive security, the adversary can issue search and up-
date queries that depend on previous queries. As Theorem 1 assumes selectively
chosen InsertBall and UpdateBall operations, there is no guarantee that bins do
not overflow anymore in the real game. Thus, the adversary can potentially dis-
tinguish update queries of the simulated game from real update queries if she
manages to overflow a bin in the real game, as she would receive bins with in-
creased size only in latter case. Fortunately, we can just add a check in Update
whether one of the bins overflows after the L2C.UpdateBall operation. In that
case, the client reverts the update and send back the (reencrypted) original bins.
Now, Theorem 1 still guarantees that bins overflow only with negligible proba-
bility after Setup and we can show that the simulated game is indistinguishable
from the real game as before. Note that LayeredSSE is still correct after this
modification, since updates that lead to overflows cannot occur by accident, but
only if the client systemically adapts the choice of updates to the random coins
used during previous update operations (see Theorem 1).

Note that when the client remarks that a bin overflowed in an Update in a
real world environment, this is due malicious Update operations. The client can
adapt his reaction accordingly, whereas the server learns no information about
the attack without being notified by the client. We can show that LayeredSSE
with the adjustment of Update is correct and Llen-hid-adaptively secure. The same
simulator Sim suffices and we omit the details.

Efficiency. LayeredSSE has constant storage efficiency, as the server stores m =⌈
(N/p)/(log log log λ · log log N

p)
⌉
bins ofO

(
p log log log λ · log log N

p

)
identifiers

each. There is no client stash required. Each search and update query, the server
looks up 2 bins, and thus LayeredSSE has Õ (log log(N/p)) page efficiency. Note
that LayeredSSE has O(1) locality if only lists up to size p are inserted.

Extensions. With some care, LayeredSSE can handle deletes and arbitrary lists
(without sacrificing security and efficiency). We refer to Appendix A.3 for more
details. The results are formalized in Theorem 2.

Theorem 2 (LayeredSSE). Let N be an upper bound on the size of database DB
and p ≤ N1−1/ log log λ be the page size. The scheme LayeredSSE is correct and
Llen-hid-adaptively semantically secure if Enc is IND-CPA secure and H is modeled

Dynamic Local Searchable Symmetric Encryption 23

as a random oracle. It has constant storage efficiency and Õ (log logN/p) page
efficiency. If only lists up to size p are inserted, LayeredSSE has constant locality.

6 The Generic Local Transform

In this section, we define the Generic Local Transform (GLT), creating a link
between the two IO-efficiency goals of locality and page efficiency. Namely, the
GLT builds an SSE scheme with good locality properties from an SSE scheme
with good page efficiency. For a page-efficient scheme to be used within the GLT,
it needs to have certain extra properties. We define such schemes as suitable
page-efficient schemes in Section 6.1. Next, we introduce the useful notion of
overflowing SSE. The GLT is then obtained by combining an overflowing SSE
with a suitable page-efficient scheme. The OSSE we will use for that purpose,
ClipOSSE, is presented in Section 6.2. Finally, the GLT is built from the previous
components in Section 6.4. An overview of the correctness and security proofs is
provided in section 6.5. Full proofs are available in Appendix E.

6.1 Preliminaries

Suitable page-efficient SSE.
The GLT will create many instances of the underlying page-efficient scheme,

each with a different page size. For that reason, for the purpose of the GLT,
we slightly extend the standard SSE interface defined in Section 3: namely,
Setup(K, N,DB, p) takes as an additional parameter the page size p. In addi-
tion, recall that, in Section 3, we have allowed the Update(K, (w,L), op, st;EDB)
procedure to add a set of matching documents K to a given keyword w in a
single call. Note that S is allowed to be empty, in which case nothing is added.

If a scheme instantiates that interface, and, in addition, satisfies the following
three conditions, we will call such as scheme a suitable page-efficient SSE.

– The scheme has client storage O(1).
– The scheme has locality O (1) during searches and updates when accessing

a list of length at most one page.
– The leakage of the scheme is page-length-hiding.

Overflowing SSE. We introduce the notion of Overflowing SSE. An Overflow-
ing SSE (OSSE) has the same interface and functionality as a standard SSE
scheme, except that during a Setup or Update operation, it may refuse to store
some document identifiers. Those identifiers are called overflowing. At the out-
put of the Setup and Update operations, the client returns the set of overflowing
elements. Compared to standard SSE, the correctness definition is relaxed in the
following way: during a Search, only matching identifiers that were not overflow-
ing need to be retrieved.

The intention of an Overflowing SSE is that it may be used as a component
within a larger SSE scheme, which will store the overflowing identifiers using

24 Brice Minaud, Michael Reichle

a separate mechanism. The use of an OSSE may be regarded as implicit in
some prior SSE constructions. We have chosen to introduce the notion explicitly
because it allows to cleanly split the presentation of the Generic Local Transform
into two parts: an OSSE scheme that stores most of the database, and an array
of page-efficient schemes that store the overflowing identifiers.

6.2 Dynamic Two-Dimensional One-Choice Allocation

The first component of the Generic Local Transform is an OSSE scheme, ClipOSSE.
In line with prior work, we split the presentation of ClipOSSE into two parts: an
allocation scheme, which specifies where elements should be stored; and the SSE
scheme built on top of it, which adds a layer of encryption, key management,
and other mechanisms needed to convert the allocation scheme into a full SSE.

The allocation scheme within ClipOSSE is called 1C-Alloc. Similar to [ANSS16],
the allocation scheme is an abstract construct that defines the memory locations
where items should be stored, but does not store anything itself. In the case of
1C-Alloc, items are stored within buckets, and the procedures return as output
the indices of buckets where items should be stored. From the point of view of
1C-Alloc, each bucket has unlimited storage. In more detail, 1C-Alloc contains
two procedures, Fetch and Add.

– Fetch(m,w, `): given a number of bucketsm, a keyword w, and a list length `,
Fetch returns (a superset of) the indices of buckets where elements matching
keyword w may be stored, assuming there are ` such elements.

– Add(m,w, `): given the same input, Add returns the index of the bucket
where the next element matching keyword w should be inserted, assuming
there are currently ` matching elements.

The intention is that Add is used during an SSE Update operation, in order
to choose the bucket where the next list element is stored; while Fetch is used
during a Search operation, in order to determine the buckets that need to be
read to retrieve all list elements. 1C-Alloc will satisfy the correctness property
given in Definition 10. Note that the number of buckets m is always assumed to
be a power of 2.

Definition 10 (Correctness). For all m, w, `, if m is a power of 2, then⋃
0≤i≤`−1

Add(m,w, i) ⊆ Fetch(m,w, `).

To describe 1C-Alloc, it is convenient to conceptually group buckets into
superbuckets. For ` = 2i ≤ m, an `-superbucket is a collection of ` consecutive
buckets, with indices of the form k · `, k · ` + 1, ..., (k + 1) · ` − 1, for some
k ≤ m/`. A 1-superbucket is the same as a bucket. Notice that for a given `, the
`-superbuckets do not overlap. They form a partition of the set of buckets. For
` > 1, each `-superbucket contains exactly two `/2-superbuckets.

Let H be a hash function, whose output is assumed to be uniformly random
in {1, ...,m}. 1C-Alloc works as follows. Fix a keyword w and length ` ≤ m

Dynamic Local Searchable Symmetric Encryption 25

(the case ` > m will be discussed later). Let `′ = 2dlog `e be the smallest power
of 2 larger than `. On input w and `, 1C-Alloc.Fetch returns the (unique) `′-
superbucket that contains H(w).

Algorithm 3 Dynamic Two-Dimensional One-Choice Allocation (1C-Alloc)
1C-Alloc.Fetch(m,w, `)

1: `′ ← 2dlog `e

2: if `′ ≥ m then
3: return {0, ...,m− 1}
4: else
5: i← bH(w)/`′c
6: return {`′ · i, ..., `′ · i+ `′ − 1}

1C-Alloc.Add(m,w, `)

1: `← ` mod m
2: `′ ← 2dlog(`+1)e

3: i← bH(w)/`′c
4: if b2H(w)/`′c mod 2 = 0 then
5: return `′ · i+ `
6: else
7: return `′ · i+ `− `′/2

Meanwhile, 1C-Alloc.Add is designed in order to ensure that the first ` suc-
cessive locations returned by Add for keyword w are in fact included within the
`′-superbucket above H(w) (that is, in order to ensure correctness). For the first
list element (when ` = 0), Add returns the bucket H(w); for the second element,
it returns the other bucket contained inside the 2-superbucket above H(w). More
generally, if S is the smallest superbucket above H(w) that contains at least `+1
buckets, Add returns the leftmost bucket within S that has not yet received an
element. In practice, the index of that bucket can be computed easily based on
` and the binary decomposition of H(w), as done in Algorithm 3. (In fact, the
exact order in which buckets are selected by Add is irrelevant, as long as it selects
distinct buckets, and correctness holds.)

When the size of the list ` grows above the number of buckets m, Fetch
returns all buckets, while Add selects the same buckets as it did for ` mod m.

6.3 Clipped One-Choice OSSE

ClipOSSE is the OSSE scheme obtained by storing lists according to 1C-Alloc,
using m = O(N/ log logN) buckets, with each bucket containing up to τ =
dα log logNe items, for some constant α. Buckets are always padded to the
threshold τ and encrypted before being stored on the server. Thus, from the
server’s point of view, they are completely opaque. A table T containing (in
encrypted form) the length of the list matching each keyword w is also stored
on the server.

Given 1C-Alloc, the details of ClipOSSE are straightforward. A short overview
is given in text below. The encrypted database generated by Setup is essentially
equivalent to starting from an empty database, and populating it by making
repeated calls to Update, one for each keyword–document pair in the database.
For that reason, we focus on Search and Update. The full specification for Setup,
Search, and Update is given as pseudo-code in Algorithm 4.

Search. To retrieve the list of identifiers matching keyword w, ClipOSSE calls
1C-Alloc(m,w, `) to get the set of bucket indices where the elements matching
keyword w have been stored. The client retrieves those buckets from the server,
and decrypts them to obtain the desired information.

26 Brice Minaud, Michael Reichle

Update. For simplicity, we focus on a the case where a single identifier is
added. The case of a set of identifiers can be obtained by repeating the process
for each identifier in the set. To add the new item to the list matching keyword w,
ClipOSSE calls 1C-Alloc(m,w, `) to determine the bucket where the new list item
should be inserted. The client retrieves that bucket from the server, decrypts it,
adds the new item, reencrypts the bucket, and sends it back to the server. If
that bucket was already full, the item is overflowing, in the sense of Section 6.1.

Algorithm 4 Clipped One-Choice OSSE (ClipOSSE)

Global parameters: constants d, α ∈ N∗
ClipOSSE.KeyGen(1λ)

1: Generate keys K, KPRF for Enc, PRF
2: return K = (K,KPRF)

ClipOSSE.Setup(K, N,DB)

1: m← 2dlog(N/ log logN)e

2: τ ← dα log logNe
3: B0, ..., Bm−1, T,EDB, clip← ∅
4: for all each (w, {e1, ..., e`}) in DB do
5: Kw ← PRFKPRF(w)
6: T [w]← EncKw (`)
7: for all t from 1 to ` do
8: C ← ∅
9: i← 1C-Alloc.Add(m,w, t− 1)

10: if then|B[i]| < τ
11: B[i]← B[i] ∪ {ei}
12: else
13: C ← C ∪ {ei}
14: if |S| > 0 then
15: clip← clip ∪ (w, `, C)

16: Let BEnc[i] = EncK(Bi) for each i
17: return EDB = (T, (BEnc[i])), clip

ClipOSSE.Search(K, w, st;EDB)
Client: (search token)

1: send (w,Kw) = PRFKPRF(w)

Server:
1: `← DecKw (T [w])
2: S ← 1C-Alloc.Fetch(m,w, `)
3: return {BEnc[i] : i ∈ S}

ClipOSSE.Update(K, (w, {e}), op, st;EDB)
Client: (update token)

1: send (w,Kw = PRFKPRF(w))

Server:
1: `← DecKw (T [w])
2: i← 1C-Alloc.Add(m,w, `)
3: send BEnc[i]

Client:
1: B ← DecK(BEnc[i])
2: if |B| < τ then
3: clip← ∅
4: B ← B ∪ {e}
5: else
6: clip← {e}
7: send B′ = EncK(B)

Server:
1: BEnc[i]← B′

Client:
2: return clip

6.4 The Generic Local Transform

The Generic Local Transform takes as input a page-length-hiding page-efficient
SSE scheme PE-SSE. It outputs a local SSE scheme Local[PE-SSE].

To realize Local[PE-SSE], we use two structures. The first structure is an
instance of ClipOSSE, which stores most of the database. The second structure
is an array of nlevel instances of PE-SSE. The i-th instance, denoted PE-SSEi,
has page size 2i. The PE-SSEi instances are used to store elements that overflow

Dynamic Local Searchable Symmetric Encryption 27

from ClipOSSE. In addition, a table T stores (in encrypted form) the length of
the list matching keyword w, for each keyword5.

Fix a keyword w, matching ` elements. Let `′ = 2dlog `e be the smallest power
of 2 larger than `. Let i = log `′. At any point in time, the elements matching w
are stored in two locations: ClipOSSE, and PE-SSEi. Each of these two locations
stores part of the elements: ClipOSSE stores the elements that did not overflow,
and PE-SSEi stores the overflowing elements. Each element exists in only one
of the two locations. Again, for simplicity, we define updates for adding a single
identifier per keyword. The case of adding a set of identifiers at once can be
deduced by repeating the same process for each identifier in the set.

Algorithm 5 Generic Local Transform (Local[PE-SSE])
Global parameters: constant d ∈ N∗

Local[PE-SSE].KeyGen(1λ)

1: Generate key KPRF for PRF
2: return K = (K,KPRF)

Local[PE-SSE].Update(K, (w,L);EDB)
Client: (update token)

1: send (w,L,Kw = PRFKPRF(w))

Server:
1: C ← ClipOSSE.Update(w,L)
2: `← DecKw (T [w])
3: T [w]← EncKw (`+ 1)
4: send `

Client:
1: i← dlog `e
2: if dlog `e = dlog(`+ 1)e then
3: PE-SSEi.Update(w,C)
4: else
5: S ← set of matches in

PE-SSEi.Search(w)
6: PE-SSEi+1.Update(w, S ∪ C)

Local[PE-SSE].Setup(K, N,DB)

1: nlevel ← dN/ logdNe
2: for all (w, S) ∈ DB do
3: Kw ← PRFKPRF(w)
4: T [w]← EncKw (|S|)
5: EDB, clip← ClipOSSE.Setup(DB)
6: for all i from 0 to nlevel do
7: DBi ← {(w,C) : (w, `, C) ∈ clip

and 2i−1 < ` ≤ 2i}
8: PE-SSEi ← PE-SSE.Setup(

dN/ logNe, 2i,DBi)
Local[PE-SSE].Search(K, w, st;EDB)
Client: (search token)

1: send (w,Kw = PRFKPRF(w))

Server:
1: i← dlog(DecKw (T [w]))e
2: return ClipOSSE.Search(w)

∪ PE-SSEi.Search(w)

Search. During a search operation, Local[PE-SSE] queries both structures,
and combines their output to retrieve all matching elements.

Update. During an update operation to add element e, Local[PE-SSE] for-
wards the update query to ClipOSSE, and gets as output C = ∅ if the element
did not overflow, or C = {e} if the element did overflow. For now, assume that
dlog `e = dlog(` + 1)e, that is, the PE-SSEi instance associated with the list re-
mains the same during the update operation. In that case, PE-SSEi is updated
for the set C. (Recall from Section 6.1 that a length-hiding SSE such as PE-SSE
accepts sets of elements as input in Update.) The length-hiding property is de-
signed to guarantee that the content of C (including whether it is empty) is not

5 The same table exists in ClipOSSE. In an actual implementation, they would be the
same table, but using ClipOSSE in black box eases the presentation.

28 Brice Minaud, Michael Reichle

leaked to the server. Now assume dlog `e < dlog(`+1)e. In that case, the PE-SSE
instance associated with the list becomes PE-SSEi+1 instead of PE-SSEi. The
client retrieves all current overflowing elements from PE-SSEi, adds the content
of C, and stores the result in PE-SSEi+1.

6.5 Overflow of ClipOSSE

The main technical result in this section regards the number of overflowing items
in ClipOSSE.

Theorem 3. Suppose that ClipOSSE receives as input a database of size N , such
that the size of the longest list is O

(
N/ logdN

)
for some d ≥ 2.Then for any

constant c, there exists a choice of parameters of ClipOSSE such that the number
of overflowing items is O(N/ logcN).

The proof of Theorem 3 is intricate. For space reasons, we only give a brief
overview here. The full proof is given in Appendix E. A more detailed overview
may also be found in Appendix E.2. First, we show that the result holds in the
special case where all lists have lengthN/ logdN . This uses a negative association
argument, similar to the proof of [DPP18, Theorem 1]. The core of the proof
is to then show that this special case implies the general case. This is done by
iteratively merging short lists, while showing that this merging process can only
have a limited effect on the number of overflowing elements. At the outcome of
the merging process, all lists have lengthN/ logdN , which reduces the problem to
the special case. The main technique for the reduction is a stochastic dominance
argument, combined with a convexity argument (similar to the proof of [BBF+21,
Theorem 5]).

The Generic Local Transform itself uses standard SSE techniques, and its
properties follow from previous discussions. We provide a formal statement be-
low.

Theorem 4 (Generic Local Transform). Let N be an upper bound on the
size of database DB. Suppose that PE-SSE is a suitable page-efficient scheme
with page efficiency P and storage efficiency S. Then Local[PE-SSE] is a correct
and secure SSE scheme with storage efficiency O (S), locality O (1), and read
efficiency P + Õ (log logN).

7 Unconditional Static Local SSE – Overview

We sketch our SSE scheme UncondSSE with constant locality, constant storage
efficiency and O(logεN) read efficiency for any ε > 0, without condition on the
maximal list size. On a high level, we proceed in 3 steps and refer to Appendix B
for the detailed construction.

First, we construct LocORAM, a generalization of the ORAM of [DPP18]
with constant locality and O (nε) bandwith, given that the block size is “large
enough”. The construction is straigthforward, though some details are technical.

Dynamic Local Searchable Symmetric Encryption 29

Then, we use LocORAM to outsource the stash of Tethys (from [BBF+21])
via trivial binpacking, obtaining the scheme OramTethys that has O (logε λ)
page efficiency, constant storage efficiency and contant client storage. Note that
OramTethys requires p = Ω(λ) (which stems from the minimal block size re-
quirement of LocORAM). Given Tethys and LocORAM, this is straigthforward.

Now, we are ready to describe UncondSSE. For this, we follow the high level
idea of [DPP18] to handle lists with different schemes depending on the list size.
For some d ∈ N, we split the interval [1, N] of possible list lengths into four
different subintervals:

1. For the subinterval [1, N1−1/ log log λ), we can simply store the lists using
Local[LayeredSSE]. Here, the read efficiency is Õ (log logN).

2. For the subinterval [N1−1/ log log λ, N/ logdN), the lengths are small enough
for the local transformation and large enough for OramTethys. Thus, we store
the lists using Local[OramTethys] with O(logεN) read efficiency.

3. We further split the subinterval [N/ logdN,N/ logεN) into a constant num-
ber of subintervals, such that OramTethys has O(logεN) read efficiency for
each subinterval.

4. For the subinterval [N/ logεN,N], we can read the entire database. Thus,
we simply encrypt DB and fetch it from the server each query.

Note that subinterval (2) is the bottleneck in [DPP18], and we can use the
Generic Local Transform to remove it. The result is formalized in Theorem 5.

Theorem 5 (UncondSSE). The static scheme UncondSSE is correct and Llen-rev-
adaptively secure. It has constant client storage, O (1) locality and O (logεN)
read efficiency for any ε > 0.

Acknowledgments

The authors would like to thank Raphael Bost for his helpful comments. This
work was supported by the ANR JCJC project SaFED.

References

ABK+20. Azar, Y., Broder, A., Karlin, A., Mitzenmacher, M., and Upfal, E. 2020
ACM Paris Kanellakis Theory and Practice Award. https://awards.acm.
org/kanellakis (2020).

ABKU94. Azar, Y., Broder, A.Z., Karlin, A.R., and Upfal, E. Balanced allocations.
In: Proceedings of the twenty-sixth annual ACM symposium on theory of
computing, pp. 593–602 (1994).

ANSS16. Asharov, G., Naor, M., Segev, G., and Shahaf, I. Searchable symmetric
encryption: optimal locality in linear space via two-dimensional balanced
allocations. In: D. Wichs and Y. Mansour (eds.), 48th Annual ACM Sym-
posium on Theory of Computing, pp. 1101–1114. ACM Press, Cambridge,
MA, USA (Jun. 18–21, 2016).

https://awards.acm.org/kanellakis
https://awards.acm.org/kanellakis

30 Brice Minaud, Michael Reichle

ASS18. Asharov, G., Segev, G., and Shahaf, I. Tight tradeoffs in searchable sym-
metric encryption. In: H. Shacham and A. Boldyreva (eds.), Advances in
Cryptology – CRYPTO 2018, Part I, Lecture Notes in Computer Science,
vol. 10991, pp. 407–436. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug. 19–23, 2018).

ASS21. Asharov, G., Segev, G., and Shahaf, I. Tight tradeoffs in searchable sym-
metric encryption. Journal of Cryptology, vol. 34(2):(2021), pp. 1–37.

BBF+21. Bossuat, A., Bost, R., Fouque, P.A., Minaud, B., and Reichle, M. SSE
and SSD: Page-efficient searchable symmetric encryption. In: T. Malkin
and C. Peikert (eds.), Advances in Cryptology – CRYPTO 2021, Part III,
Lecture Notes in Computer Science, vol. 12827, pp. 157–184. Springer, Hei-
delberg, Germany, Virtual Event (Aug. 16–20, 2021).

BCSV06. Berenbrink, P., Czumaj, A., Steger, A., and Vöcking, B. Balanced
allocations: The heavily loaded case. SIAM Journal on Computing,
vol. 35(6):(2006), pp. 1350–1385.

BFHM08. Berenbrink, P., Friedetzky, T., Hu, Z., and Martin, R. On weighted balls-
into-bins games. Theoretical Computer Science, vol. 409(3):(2008), pp.
511–520.

Bos16. Bost, R. Σoφoς: Forward secure searchable encryption. In: E.R. Weippl,
S. Katzenbeisser, C. Kruegel, A.C. Myers, and S. Halevi (eds.), ACM CCS
2016: 23rd Conference on Computer and Communications Security, pp.
1143–1154. ACM Press, Vienna, Austria (Oct. 24–28, 2016).

CGKO06. Curtmola, R., Garay, J.A., Kamara, S., and Ostrovsky, R. Searchable
symmetric encryption: improved definitions and efficient constructions. In:
A. Juels, R.N. Wright, and S. De Capitani di Vimercati (eds.), ACM CCS
2006: 13th Conference on Computer and Communications Security, pp. 79–
88. ACM Press, Alexandria, Virginia, USA (Oct. 30 – Nov. 3, 2006).

CGLS17. Chan, T.H.H., Guo, Y., Lin, W.K., and Shi, E. Oblivious hashing re-
visited, and applications to asymptotically efficient ORAM and OPRAM.
In: T. Takagi and T. Peyrin (eds.), Advances in Cryptology – ASI-
ACRYPT 2017, Part I, Lecture Notes in Computer Science, vol. 10624,
pp. 660–690. Springer, Heidelberg, Germany, Hong Kong, China (Dec. 3–7,
2017).

CJJ+14. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., and
Steiner, M. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In: ISOC Network and Distributed System
Security Symposium – NDSS 2014. The Internet Society, San Diego, CA,
USA (Feb. 23–26, 2014).

CT14. Cash, D. and Tessaro, S. The locality of searchable symmetric encryption.
In: P.Q. Nguyen and E. Oswald (eds.), Advances in Cryptology – EURO-
CRYPT 2014, Lecture Notes in Computer Science, vol. 8441, pp. 351–368.
Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014).

DP17. Demertzis, I. and Papamanthou, C. Fast searchable encryption with tunable
locality. In: Proceedings of the 2017 ACM International Conference on
Management of Data, pp. 1053–1067 (2017).

DPP18. Demertzis, I., Papadopoulos, D., and Papamanthou, C. Searchable en-
cryption with optimal locality: Achieving sublogarithmic read efficiency.
In: H. Shacham and A. Boldyreva (eds.), Advances in Cryptology –
CRYPTO 2018, Part I, Lecture Notes in Computer Science, vol. 10991,
pp. 371–406. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug. 19–23, 2018).

Dynamic Local Searchable Symmetric Encryption 31

DR96. Dubhashi, D.P. and Ranjan, D. Balls and bins: A study in negative depen-
dence. BRICS Report Series, vol. 3(25).

GM11. Goodrich, M.T. and Mitzenmacher, M. Privacy-preserving access of out-
sourced data via oblivious ram simulation. In: International Colloquium on
Automata, Languages, and Programming, pp. 576–587. Springer (2011).

GMOT11. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., and Tamassia, R.
Oblivious ram simulation with efficient worst-case access overhead. In: Pro-
ceedings of the 3rd ACM workshop on Cloud computing security workshop,
pp. 95–100 (2011).

Goo11. Goodrich, M.T. Data-oblivious external-memory algorithms for the com-
paction, selection, and sorting of outsourced data. In: Proceedings of the
twenty-third annual ACM symposium on Parallelism in algorithms and ar-
chitectures, pp. 379–388 (2011).

JK77. Johnson, N.L. and Kotz, S. Urn models and their application; an approach
to modern discrete probability theory. New York, NY (USA) Wiley (1977).

KMW10. Kirsch, A., Mitzenmacher, M., andWieder, U. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal on Computing, vol. 39(4):(2010), pp.
1543–1561.

MM17. Miers, I. and Mohassel, P. IO-DSSE: Scaling dynamic searchable encryption
to millions of indexes by improving locality. In: ISOC Network and Dis-
tributed System Security Symposium – NDSS 2017. The Internet Society,
San Diego, CA, USA (Feb. 26 – Mar. 1, 2017).

PPYY19. Patel, S., Persiano, G., Yeo, K., and Yung, M. Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing.
In: L. Cavallaro, J. Kinder, X. Wang, and J. Katz (eds.), ACM CCS 2019:
26th Conference on Computer and Communications Security, pp. 79–93.
ACM Press (Nov. 11–15, 2019).

PR04. Pagh, R. and Rodler, F.F. Cuckoo hashing. Journal of Algorithms,
vol. 51(2):(2004), pp. 122–144.

PSSZ15. Pinkas, B., Schneider, T., Segev, G., and Zohner, M. Phasing: Private
set intersection using permutation-based hashing. In: J. Jung and T. Holz
(eds.), USENIX Security 2015: 24th USENIX Security Symposium, pp. 515–
530. USENIX Association, Washington, DC, USA (Aug. 12–14, 2015).

PTW10. Peres, Y., Talwar, K., and Wieder, U. The (1+ β)-choice process and
weighted balls-into-bins. In: Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms, pp. 1613–1619. SIAM (2010).

RMS01. Richa, A.W., Mitzenmacher, M., and Sitaraman, R. The power of two
random choices: A survey of techniques and results. Combinatorial Opti-
mization, vol. 9:(2001), pp. 255–304.

TW07. Talwar, K. and Wieder, U. Balanced allocations: the weighted case. In:
Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting, pp. 256–265 (2007).

TW14. Talwar, K. and Wieder, U. Balanced allocations: A simple proof for the
heavily loaded case. In: International Colloquium on Automata, Languages,
and Programming, pp. 979–990. Springer (2014).

Vöc03. Vöcking, B. How asymmetry helps load balancing. Journal of the ACM
(JACM), vol. 50(4):(2003), pp. 568–589.

32 Brice Minaud, Michael Reichle

A Dynamic Page Efficient SSE

In this section, we introduce the SSE scheme LayeredSSE based on L2C. Es-
sentially, we interpret lists Li of identifiers matching keyword wi as balls of a
certain weight and use L2C to manage the balls in m bins. Let N be the maximal
size of the database, p be the page size and H be a hash function mapping into
{1, ...,m}2 form = dwmax/(log log log λ · log logwmax)e and wmax = N/p. Assume
for now that |Li| ≤ p, i.e. each keyword has at most p associated keywords. Let
p ≤ N1−1/ log log λ. (This is needed for the requirement m ≥ λ1/ log log λ of L2C,
see Theorem 1.) For convenience, we adapt the notation of L2C to such lists as
follows6:

– L2C.Setup({(wi, Li)}Wi=1, wmax): We interpret the pair (wi, Li) as a ball with
identifier wi and weight |Li|/p ∈ [0, 1], where Li is a list of (at most p)
identifiers matching keyword wi. The bin choices for (wi, Li) are given by
α1, α2 ← H(wi). Run the setup defined in Algorithm 1 given these balls.

– L2C.InsertBall((w,L), Bα1 , Bα2): Insert ball (w,L) into either bin Bα1 or bin
Bα2 as in Algorithm 1.

– L2C.Update((w,L), L′, Bα1
, Bα2

): Update the weight of ball (w,L) to weight
|L ∪ L′|/p as in Algorithm 1 and add identifiers L′ to list L. One of the
bins now contains the ball (w,L ∪ L′). If the new weight lies in a different
subinterval, one bin contains a residual ball (w,L) that we consider to not
match w anymore.

A.1 LayeredSSE

Here, we describe the dynamic page efficient symmetric searchable encryption
scheme LayeredSSE based on L2C. For a concise overview, we assume that `i ≤ p
and ignore delete operations for now. Also, we present a version of the scheme
with an update that requires 2 RTTs. Later, we show how to treat arbitrary list
sizes, introduce delete operations and show how to obtain updates in 1 RTT. A
detailed description of LayeredSSE is given in algorithm 6.

LayeredSSE.KeyGen(1λ). Sample encryption key KEnc for Enc with the given
security parameter λ. Return the client’s master secret key K = KEnc.

LayeredSSE.Setup(K, N,DB). Receive as input the client’s secret key K, an
upperbound N on the number of identifiers and the initial database DB =
(DB(wi))

W
i=1. Recall that DB(wi) = (id1, ..., id`i) is a list of `i document identi-

fiers and that
∑W
i=1 `i ≤ N . interpret (wi,DB(wi)) as a ball of weight `i/p ∈ [0, 1]

6 As Algorithm 1 is kept purely combinatorial, balls technically have no content. We
still need to retreive lists L given the keyword w in this context. Thus, we say that
the pair (w,L) is a ball identified by w and scaled weight |L|/p. We assume that we
can retrieve the list L given w from the bin that contains ball (w,L). Clearly, this
does not change the behaviour of L2C and we can still apply Theorem 1 on the given
variant.

Dynamic Local Searchable Symmetric Encryption 33

and call L2C.Setup with maximal weight N/p and balls (wi,DB(wi))
W
i=1 as in-

put. The two random choices (αi,1, αi,2) ← H(wi) in L2C.Setup are drawn by
evaluating H on wi. The result are m bins (Bi)mi=1 filled with the balls such that
each bin has load at most c log log log(λ) log log(N/p) (see Theorem 1). Thus,
each bin contains at most p · c log log log(λ) log log(N/p) identifiers as weights
are scaled by a factor p. (The constant c ∈ N only depends on N but not the
output of L2C.Setup.) Next, each bin is filled up to maximal size with dummy
items. Finally, encrypt the bins Benc

i ← EncKEnc
(Bi) and return EDB = (Benc

i)mi=1.

LayeredSSE.Search(K, w;EDB). The client receives its secret key K and key-
word w. She sends w to the server, and in return receives bins Benc

α1
, Benc

α2
, where

(α1, α2)← H(w).

LayeredSSE.Update(K, (w,L′), add;EDB). The client receives its secret key K,
keyword w and a list L′ of new identifiers matching w. She sends w to the
server and again receives bins Benc

α1
, Benc

α2
in return, where (α1, α2) ← H(w).

Next, the client decrypts Benc
α1
, Benc

α2
to Bα1 , Bα2 and retrieves ball (w,L) from

the corresponding bin Bα ∈ {Bα1 , Bα2}. Then, she calls L2C.UpdateBall with
old ball (w,L), new identifiers L′ and bins Bα1

, Bα2
to insert the new identifiers

L′ into one of the bins. Finally, she reencrypts the bins and sends them to the
server. The server then replaces the old bins with the updated bins.

Algorithm 6 LayeredSSE
Global parameters: constant c ∈ N, page size p

LayeredSSE.KeyGen(1λ)

1: Sample KEnc for Enc with input 1λ

2: return K = KEnc

LayeredSSE.Setup(K, N,DB)

1: Set τ ← p · c log log log(λ) log log(N/p)
2: Sample bins B1, ..., Bm via L2C.Setup

with input ({(wi,DB(wi))}Wi=1, N/p)
3: Fill B1, ..., Bm up to size τ with zeros
4: Set Benc

i ← EncKEnc(Bi) for i ∈ [1,m]
5: return EDB = (Benc

1 , ..., Benc
m)

LayeredSSE.Search(K, w;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

LayeredSSE.Update(K, (w,L′), add;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

Client:
1: Set Bαi ← DecKEnc(B

enc
αi) for i ∈ {1, 2}

2: Retrieve ball (w,L) from Bα for appro-
priate α ∈ {α1, α2}

3: Run L2C.UpdateBall((w,L), L′, Bα1 , Bα2)
4: Set Bnew

αi ← EncKEnc(Bαi) for i ∈ {1, 2}
5: return Bnew

α2
, Bnew

α2

Server:
1: Replace Benc

αi with Bnew
αi for i ∈ {1, 2}

A.2 Security

The scheme LayeredSSE is correct as each keyword has two bins that contain its
identifiers associated to it (and these bins are consistently retrieved and updated
with L2C). If the hash function is modeled as a random oracle, the bin choices
are uniformly random and Theorem 1 guarantees that bins do not overflow.

34 Brice Minaud, Michael Reichle

Also, LayeredSSE is selectively secure and has standard setup leakage N , such
as search and update leakage qp, where qp is the query pattern7. This can be
shown with a simple hybrid argument. We sketch the proof here and refer to Ap-
pendix D for more details. For setup, the simulator Sim receives N , recomputes
m and initializes m empty bins B1, ..., Bm of size p · c log log log(λ) log log(N/p)
each. Sim then outputs EDB′ = (EncK′Enc(Bi)

m
i=1) for some sampled key K′Enc.

As Enc is IND-CPA secure (and bins do not overflow in the real experiment ex-
cept with negligible probability), the output EDB′ is indistinguishable from the
output of Setup in the real experiment. For a search query on keyword w, Sim
checks the query pattern qp whether w was already queried. If w was not queried
before, Sim a new uniformly random keyword w′. Otherwise, Sim responds with
the same keyword w′ from the previous query. As we assume that keywords are
preprocessed by the client via a PRF, the keywords w and w′ are indistinguish-
able. For an update query on keyword w, the client output in the first flow is the
same as in a search query and thus, Sim can proceed as in search. For the sec-
ond flow, Sim receives two bins Bα1

, Bα2
from the adversary, directly reencrypts

them and sends them back to the adversary. This behaviour is indistinguishable,
as the bins are encrypted and again, bins do not overflow except with negligible
probability.

For adaptive security, the adversary can issue search and update queries that
depend on previous queries. As Theorem 1 assumes selectively chosen InsertBall
and UpdateBall operations, there is no guarantee that bins do not overflow any-
more in the real game. Thus, the adversary can potentially distinguish update
queries of the simulated game from real update queries if she manages to over-
flow a bin in the real game, as she would receive bins with increased size only
in latter case. Fortunately, we can just add a check in Update whether one of
the bins overflows after the L2C.UpdateBall operation. In that case, the client
reverts the update and send back the (reencrypted) original bins. Now, Theo-
rem 1 still guarantees that bins overflow only with negligible probability after
Setup and we can show that the simulated game is indistinguishable from the
real game as before. (Note that LayeredSSE is still correct after this modification,
since queries are chosen selectively for correctness.) Note that when the client
remarks that a bin overflowed in an Update in a real world environment, this is
due malicious Update operations. The client can adapt his reaction accordingly,
whereas the server learns no information about the attack without being notified
by the client.

We can show that LayeredSSE with the adjustement of Update is correct
Llen-hid-adaptively secure. The same simulator Sim suffices and we omit the de-
tails.

A.3 Extensions

Handling Long Lists. We now adapt LayeredSSE to handle arbitrary lists L
(with potentially more than p identifiers). We proceed similarly to the static
7 This is equivalent to page length hiding leakage Llen-hid, as we only restrict ourselves
to lists of size at most p.

Dynamic Local Searchable Symmetric Encryption 35

scheme Pluto from [BBF+21] and extend the ideas to updates. For this, we split
L into sublists of size at most p. The (encrypted) full sublists of size p can be
stored in a hash table Tfull on the server and the incomplete sublists are handled
by LayeredSSE as before. For search, the client needs to know the number of
sublists in order to fetch the right amount from the server. This information is
also required for update queries in order to know when to insert another full list
into Tfull. This information can be outsourced in a table Tlen. Here, the client
stores for each keyword w (with ` matching identifiers) the number of sublists
Tlen[w] = d`/pe in encrypted format. In the following, we describe the updated
Setup,Search and Update of LayeredSSE in more detail.

Setup. For setup, let Li be a list of `i identifiers matching keyword wi
and PRF be a secure pseudo-random function mapping to {0, 1}dlog(N)e. We set
xi = d`i/pe. The client splits Li into sublists Li,1, ..., Li,xi−1 of size p and sublist
Li,xi of size at most p. She evaluates mi ← PRFKPRF

(wi), where KPRF is a key for
PRF sampled in KeyGen. The maskmi is used to encrypt the content of Tlen. After
initializing the table Tlen with N random entries of size log(N) bits and Tfull with
N/p (arbitrary) lists of size p, she sets Tlen[wi] = xi ⊕mi and Tfull[w || i] = Li,j
for j ∈ [1, x− 1]. Next, she generates (Bi)mi=1 as before with the incomplete lists
Li,xi except that the bin choices for list Li,xi are (αi,1, αi,2)← H(wi || xi). Note
that we need to also hash the counter xi, as after some updates, the incomplete
sublist of wi might become full and a new incomplete sublist has to be started.
When the new incomplete sublist gets inserted with L2C, it is interpreted as a
new ball and new bins need to be chosen. Finally, she encrypts the content of
Tfull and returns EDB = (Tlen, Tfull, (B

enc
i)mi=1).

Search. For search queries on keyword w, the client outputs mask m ←
PRFKPRF

(w) in addition to w. The server uses this mask to decrypt the number of
sublists x← Tlen[w]⊕m, retreives x−1 encrypted sublists Li ← Tfull[w || i] from
the table for i ∈ [1, x−1] and the two bins Benc

α1
and Benc

α2
via (α1, α2)← H(w || x).

Finally, the server sends the encrypted bins and sublists to the client. Clearly,
the client obtains all matching identifiers after decrypting the received lists and
bins.

Update. For update queries on keyword w and list L′ of (at most p) new
identifiers8, the client generates maskm as before and sends (w,m) to the server.
The server again decrypts x from Tlen and sends Benc

α1
, Benc

α2
to the client. In

addition, the server already sends the bins Benc
α3
, Benc

α4
for α3, α4 ← H(w || x+ 1)

to the client (in case the incomplete list overflows). The client now retrieves
the old (incomplete) list L of identifiers matching w from the decrypted bins
Bα1

, Bα2
. We distinguish two cases:

1. If L ∪ L′ contains more than p identifiers, the client sets Lnew = L ∪ L′ and
marks (w,L) as a residual ball inside Bα1

, Bα2
. Then, she splits Lnew into

two sublists L=p with p identifiers and L≤p of at most p identifiers. The client
then inserts list L≤p into binsBα3 , Bα4 via L2C.InsertBall((w,L≤p), Bα3 , Bα4)

8 For updates with more than p identifiers, the client can perform multiple updates.

36 Brice Minaud, Michael Reichle

and sends the updated (reencrypted) bins {Benc
i }4i=1 such as encrypted list

Lenc = EncKEnc
(L=p) to the server.

2. Otherwise, the client proceeds as before, i.e. adds the new identifieres L′ to
ball (w,L) via UpdateBall and reencrypts the received bins.

Finally, the server replaces the old bins with the reencrypted bins, and if she
received an encrypted list Lnew, she stores the received list in Tfull[w || x+ 1] =
Lenc and updates Tlen[w] = x+ 1.

Leakage profile. Now, search and update queries LayeredSSE leak the num-
ber of sublists x = d`/pe for a given keyword w with ` matching identifiers. Fur-
ther, updates leak when a list was completed (so also the value d(`+ |L′|)/pe).
This is exaclty the leakage modeled by Llen-hid. As tables Tlen and Tfull are en-
crypted, it is straigthforward to adapt the security analysis in Appendix A.2 to
the extended scheme with respect to leakage function Llen-hid.

Handling Deletes. We apply the generic solution from [Bos16] to handle
deletes. We use two instantiations of LayeredSSE, Σadd for added items and Σdel

one for deletes. For adding identifiers L′ to a keyword w, the client adds list L′
to Σadd via Σadd.Update(K, (w,L

′), add;EDB). For deleting identifiers L′ from a
keyword w, the client adds list L′ to Σdel via Σdel.Update(K, (w,L

′), add;EDB).
For a search query, the client fetches the identifiers w from both Σadd and Σdel

and removes the set of items Ldel received from Σdel from the set of items Ladd

received from Σadd, i.e. sets L← Ladd \ Ldel.

Optimized RTT. Search queries of LayeredSSE need only 1 RTT, whereas
update queries unfortunately require 2 RTTs. We can use “piggybacking” in
order to reduce the update RTT to 1 as follows. Instead of sending the second
flow of the update query directly to the server, the client stashes the response and
waits for the next query (either update or search). On the next query, the client
sends the stashed response in addition to the query. The server then finishes the
pending update query (by storing the received bins and updating the tables)
and responds the query subsequently.

A.4 Efficiency

We now inspect the efficiency of LayeredSSE. Let wmax = N/p. The server stores
m = dwmax/(log log log λ · log logwmax)e bins of sizeO(p log log log(λ) log log(wmax))·
O(λ) each, tables Tlen with N entries of size log(N) and Tfull with N/p entries of
size p·O(λ) each. (Recall that a single identifier has size O(λ).) As N = poly(λ),
the storage efficiency is O(1) in total. There is no client stash required9. Further,
the server looks up 4 bins of capacity Õ (p log log(N/p)) and x−1 encrypted lists
9 The version of LayeredSSE with 1 RTT updates requires a stash of size
Õ (p log log(N/p)) to temporarily store the second flow of the update query until
the next query.

Dynamic Local Searchable Symmetric Encryption 37

of p identifiers from Tfull for a search query on word w, where x is the number of
pages needed to store the document indices matching keyword w in plaintext.
Thus, the page efficiency is Õ

(
log log N

p

)
. This further implies that LayeredSSE

has O(1) locality if only lists up to size p are inserted.

Theorem 6 (LayeredSSE). Let N be an upper bound on the size of database
DB and p be the page size. Let p ≤ N1−1/ log log λ. The scheme LayeredSSE
is correct and Llen-hid-adaptively semantically secure if Enc is IND-CPA secure
and H is modeled as a random oracle. It has constant storage efficiency and
Õ (log logN/p) page efficiency. If only lists up to size p are inserted, LayeredSSE
has constant locality.

Proof. Efficiency and security follow from the discussions above.

B Unconditional Static Local SSE

In this section, we present our unconditional SSE scheme UncondSSE with con-
stant locality, constant storage efficiency and O(logεN) read efficiency for any
ε > 0. For this, we first present a local ORAM construction in Appendix B.1.
Then we construct a static SSE scheme with O (logε λ) page efficiency in Ap-
pendix B.2 that works for large page sizes and has constant client storage. Finally,
we use those schemes in order to construct UncondSSE in Appendix B.3

B.1 Local ORAM

Let c ∈ N be arbitrary. We now construct an ORAM LocORAM with amortized
constant locality and O

(
β · n1/c log2(n)

)
bandwith, where n is the size of the

memory array and β = Ω(n(c−1)/c) is the block size. As c is arbitrary, we can
instantiate LocORAM with bandwith overhead O(nε) for any ε > 0 and constant
locality, if the block size is sufficiently large. Our scheme follows the blueprint of
the scheme of [DPP18]. The reader may find it helpful to refer to their scheme
first.

More Preliminaries. Before detailing the construction, we introduce some
additional preliminaries.

Definition 11 (ORAM).

– InitializeORAM(1
λ,M): Client take as input security parameter λ such as mem-

ory array M of n values {(i, vi)}ni=1 of O(λ) bits each. Outputs client state
st and encrypted memory EM.

– AccessORAM(st, i;EM): The client takes as input its state and index i. The
server takes as input encrypted memory EM. Outputs value vi assigned to i
and updated state st to the client such as updated encrypted memory EM′ to
the server.

38 Brice Minaud, Michael Reichle

We require read-only ORAM with zero-failure probability for our construc-
tion. We say that an ORAM scheme is correct, if for any access sequence on block
i, the retrieved block via AccessORAM is (i, vi). We say that an ORAM scheme is
(adaptively) secure, if for any two (adaptively chosen) access sequences S1 and
S2 of the same length, their access patterns A(S1) and A(S2) are computation-
ally indistinguishable by anyone but the client. We refer to [DPP18] for formal
definitions.

Lemma 1 (Local Oblivious Sort [Goo11, GM11, DPP18]). Given an
array X containing n comparable elements, we can sort X with a data-oblivious
external-memory protocol OblSort that uses O

(
n
b log

2 n
b

)
I/O operations and lo-

cal memory of 4b chunks, where an I/O operation is defined as the read/write of
b consecutive chunks of X.

We set chunk size b = n1/c log2 n in our ORAM scheme. This suffices for
O(1) locality. We implicitly assume that the sorted array is reencrypted (under
the same encryption key as the input array).

The Scheme. We now describe our construction LocORAM of a read-only
ORAM (based on [DPP18]). Let c be a constant. We write β for the ORAM
blocksize. Essentially, LocORAM is a hierarchical ORAM with c levels. For n
blocks of memory, it has constant locality and a bandwith of O

(
β · n1/c log2(n)

)
with O

(
β · n1/c log2(n)

)
temporary client storage, if β = Ω(n(c−1)/c). Now, we

give an overview of the construction. A detailed description is given in Algo-
rithm 7.

LocORAM.InitializeORAM(1
λ,M). The client receives memory M = {k, vk}nk=1

with blocksize |k, vk| = β. She allocates c arrays A1, A2, ..., Ac with space for ni
blocks each, where n1 = n1/c and ni = ni/c + n(i−1)/c. Let πi : [1, ni] 7→ [1, ni]
be pseudorandom permutations. Initially, the client stores all blocks (k, vk) in
Ac at position πc(k). Later on, blocks will also be stored in other levels. Note
that while Ac can hold all blocks, lower levels Ai can only store up to ni/c blocks
(and the remaining space is reserved for dummy queries). We would still like to
store block (k, vk) at a pseudorandom position. For this, we initialize tables Ti,
i ∈ [2, c−1], which store a scaled index Ti[k] ∈ [1, ni/c] for block k (if the block is
stored in level i). (Note that we do not require table T1 for the first level, as the
client always retrieves the entire array A1 each read and thus, no pseudorandom
accesses is required for the first level.) The block k is later stored at location
πi(Ti[k]). Further, the client initializes sets Ri that store the blocks mapped to
level Ai. Initially, Rc = M and the other sets are empty. Levels are later rebuilt
(with a new pseudorandom permutation) after a certain number of reads such
that each item is only accessed once per level before the next rebuild (and thus
resemble a random access to Ai). The client keeps track of the number of reads
cnti at level i after the last rebuild, initialized to 0. The client finally encrypts
Ai, Ri and Ti and sends them to the server and stores the encryption key, cnti,
and πi in its state.

Dynamic Local Searchable Symmetric Encryption 39

LocORAM.AccessORAM(st, k;EM). The client receives index k of the block
to be retrieved and its state st which she parses as {πi}ci=2, {cnti}ci=2,KEnc.
The server receives the encrypted memory EM which she parses as ({Aenc

i }ci=1

, {Renc
i }

c−1
i=2 , {Tenc

i }
c−1
i=2). First, the client increments the counts cnti. Next, the

client retrieves tables Tenc
i and array Aenc

1 from the server10. After decryption,
the client looks for the first level Ai∗ in which (k, vk) is stored. This level is
the first for which the table Ti has a non-zero entry Ti[k] 6= 0. She performs
a dummy query for all other levels Ai (by accessing a random and unqueried
position in Ai using πi) and retrieves (k, vk) from level Ai∗ (either by scanning
A1 if i∗ = 1 or from Ai∗ at position πi(Ti[k])) with the help of the server. Next,
the client writes (k, vk) to A1. Note that later, A1 will be merged with upper
levels and thus, we already prepare Ti[k] = cnti+1 and add an encryption of
block (k, vk) to the set Ri of blocks stored in the i-th level. Last, the client re-
builds (some of) the levels if necessary. For this, she takes the highest i∗ such
that cnti∗ > n(i∗−1)/c. If i∗ ≥ 2, all levels Ai below Ai∗ are emptied and filled
with dummy blocks. Then, she chooses new pseudorandom permutations πi for
i ∈ [2, i∗] and merges all blocks from the lower levels into Ai∗ via a local obliv-
ious sort OblSort (see Lemma 1). Concretely, the client and server interactively
sort Ri∗ with respect to the new πi∗ . The array Ri∗ is temporarily filled up to
ni∗ blocks with zeros in order to obtain array Ai∗ of size ni∗ . For the oblivious
sort, we choose a chunk size of n1/c log2 n (which is sufficient for O(1) locality).
Lastly, the server and client empty the lower levels (and its auxiliary data struc-
tures) Ai, Ri, Ti for i ∈ [2, i∗ − 1] and A1. (Note that an empty and encrypted
array Ai can be constructed iteratively with the same method as Ri.) Finally,
the client updates its state, reencrypts the received data structures, and sends
them back to the server (who updates EM accordingly).

Theorem 7 (LocORAM). Let n be the size of the memory array, β = Ω(n
c−1
c)

the blocksize. The scheme LocORAM is correct and secure, if the πi’s are se-
cure pseudorandom permutations and Enc is an IND-CPA secure encryption
scheme. Further, LocORAM has amortized constant locality and bandwith of
O
(
β · n1/c log2(n)

)
, and requires O

(
β · n1/c log2(n)

)
temporary client storage

(during a rebuild). The client state st has constant size.

Proof. We show that scheme LocORAM is correct (1), secure (2) and analyze its
efficiency (3).

(1) We need to show that for all indices k ∈ [1, n], the server retrieves
the block (k, vk) via the access protocol when executing an adaptive access se-
quence after the initialization. For this, we observe that (k, vk) is either in A1,
Ai[πi(Ti[k])] (for the minimal i ∈ [2, c − 1] such that Ti[k] 6= 0) or Ac[πc(c)] (if
no such i exists). This is because if (k, vk) has been accessed in the last n1/c

operations, the block will be stored in A1. If (k, vk) has been accessed in the last
ni/c operations but not in the last n(i−1)/c operations, it was shuffled into array
Ai at position Ti[k] during a previous rebuild of level Ai. Also, as it has not
10 Downloading all encrypted Ti incurs a bandwith of O(n(c−1)/c · log(n)). As we re-

quire β = Ω(n(c−1)/c) this cost vanishes in the total access bandwith.

40 Brice Minaud, Michael Reichle

been accessed recently, we have Tj [k] = 0 for j < i as tables below are emptied
during a rebuild. Otherwise, it was never accessed before and is located in Ac
at initial position πc(k). These values are retrieved by the client and thus, the
scheme is correct.

(2) We give an simulator Sim. For initialization, the simulator receives |M|,
the block size β and the security parameter λ. Sim outputs LocORAM.InitializeORAM

(1λ,M′) for M′ = {i, 0}ni=1 where the zeros are of size β. Under the IND-CPA
security, this output is indistinguishable from the real game, as the output is
encrypted. For simulating an access, Sim retrieves A1 and the tables Ti from
the server. First, Sim increments cnti. Then, Sim outputs ri ← EncKEnc

(0) and
random indices indexi that were not yet queried in Ai (since Ai was last emp-
tied). Lastly, Sim and the server rebuild the largest level Ai if cnti ≥ n(i−1)/c

for some i ≥ 2. For this, Sim simply checks (and updates) cnti accordingly and
simulates the oblivious search with the server. It follows by inspection that if
πi are pseudorandom permutations and Enc is IND-CPA secure, the interaction
with Sim is indistinguishable from the game.

(3) As c is a constant, the client state is O (1). Further, the client requires
O
(
n1/c log2 n

)
blocks of temporary storage for the oblivious sort (see Lemma 1).

We now inspect the bandwith and locality. Over the course of n accesses, the
following holds for the i-th access.
– The client reads array A1 of size O

(
β · n1/c

)
, one block from each other

level Ai and tables Ti of size O
(
n(c−1)/c · log(n)

)
= O (β · log n), as β =

Ω(n(c−1)/c). In total, this incurs O
(
β · n1/c

)
bandwith and O(1) locality.

– If i mod n(i−1)/c = 0∧ i ≥ 2, the client performs a rebuild of array Ai via an
oblivious sort with chunk size n1/c log2 n. According to Lemma 1 and as Ai
contains O

(
ni/c

)
blocks, the sort requires O

(
n(i−1)/c

)
I/O operations. In

total, this incurs O
(
β · ni/c log2 n

)
bandwith and O

(
n(i−1)/c

)
locality and

happens n(c−i+1)/c times during n accesses.

In total, the amortized bandwith B and locality L are

L =
nO
(
β · n1/c

)
+
∑c
i=2 n

(c−i+1)/cO
(
β · ni/c log2 n

)
n

= O
(
β · n1/c log2 n

)
,

B =
nO(1) +

∑c
i=2 n

(c−i+1)/cO
(
n(i−1)/c

)
n

= O(1) .

Remark 1 (On Deamortization). Generally, hierarchical ORAMs can be deamor-
tized by continuously reshuffling the layers each operation [GMOT11]. Indeed,
our ORAM is an iterated version of [DPP18] which uses this technique for their
deamortization. We believe that LocORAM can be deamortized in the same man-
ner but leave the details for future work.

B.2 Tethys without Stash.

Now, we introduce a page-length-hiding static SSE scheme OramTethys that has
O(logε λ) page efficiency, constant storage efficiency and contant client storage.
We will later use it in the local transformation.

Dynamic Local Searchable Symmetric Encryption 41

More Preliminaries. Again, we require some additional preliminaries.

Definition 12 (Binpacking). We define the algorithm Binpack that takes at
most N keyword-identifier pairs Stash and a size p as input. Binpack proceeds as
follows. Allocate bins B1, ..., B2N/p and table Tpos. Then, take list L of identifiers
matching keyword w and insert the identifiers one-by-one into the bin with the
smallest index that is not full yet. Set Tpos[w] = i, where i is the smallest index
of a bin containing an identifier matching w. Finally, fill the bins up to size p
with zeros. Finally, output (M, Tpos).

Clearly, if there are at most p identifiers matching keyword w, the identifiers
will all fit into Bi, Bi+1 for i ← Tpos[w]. Also, note that Binpack can always fit
all N identifiers into the bins.

Lemma 2 (Tethys [BBF+21]). The SSE scheme Tethys is correct and Llen-hid-
adaptively secure in the random oracle model (under the assumption that there
exists an IND-CPA secure encryption scheme and a secure pseudo-random func-
tion). It has a client storage ω(log λ)/ logN pages, and O (1) storage and page
efficiency.

We call the client storage of Tethys its stash. In this work, a stash size of
O
(
log1+δ(λ)

)
= ω(log λ)/ logN) pages is sufficient for our construction, for

some arbitrary δ > 0.

The Scheme. We now define the static SSE scheme OramTethys with client
storage O (1). Let p = Ω(λ), c ∈ N and δ > 1. Essentially, we use Tethys (see
Lemma 2) and outsource its stash using LocORAM. We define the static SSE
scheme OramTethys for given page size p as follows:

OramTethys.KeyGen(1λ). Simply output K← Tethys.KeyGen(1λ).

OramTethys.Setup(K, N,DB). The client generates encrypted database EDB′

and stash Stash using (EDB′,Stash) ← Tethys.Setup(K, N,DB). The stash con-
tains the remaining keyword-identifier pairs (wi, idi) that could not be allocated
directly in Tethys. We want to outsource Stash using LocORAM with c levels and
blocksize β = p. The items in Stash are not necessarily lists of size p. Thus, we
group Stash into pages of p identifiers using (M, Tpos) ← Binpack(Stash, p). Let
n = O

(
log1+δ(λ)

)
. After the binpacking, M consists of n pages with p iden-

tifiers each (see Lemma 2) and we can access the identifiers matching keyword
w in page i = Tpos[w], as there is at most one such page11. As this binpack-
ing process is not data-oblivious, we can not leak i to the server. Thus, the
11 Without loss of generality, we can assume that there are at most p identifiers per

keyword in the stash. For this, we can keep full lists inside a table Tfull such as in
LayeredSSE. This version of Tethys was already described in [BBF+21] (see their
scheme Pluto). Note further that the binpacking algorithm Binpack packs a list of
identifiers into at most two consecutive bins. Thus, knowledge of i sufficies to fetch
bin i and i + 1. We assume in the following that the list of identifiers is in at most
one bin for simplicity.

42 Brice Minaud, Michael Reichle

client sets T enc
pos ← EncKEnc

(Tpos) (after padding Tpos to n entries of log n bits).
Further, she applies (EM, st)← LocORAM.InitializeORAM(1

λ,M). Finally, she out-
puts EDB = (EDB′,EM, T enc

pos) and stores state st locally.

OramTethys.Search(K, w;EDB). The client initiates protocol Tethys.Search(K,
w;EDB) with the server from which she receives some of the identifiers matching
keyword w. Next, the client retrieves ienc = T enc

pos [w] from the server and decrypts
the index of the page containing the remaining identifiers via i← DecKEnc

(ienc).
The client retrieves this page via LocORAM.AccessORAM(st, i;EM).

Lemma 3 (OramTethys). The SSE scheme OramTethys is correct and Llen-hid-
adaptively secure. Let ε > 0 and p = Ω(λ). There are constants δ > 1 and
c ∈ N such that it has constant client storage, constant storage efficiency and
O(logε λ) page efficiency. Further, the scheme has O(1) locality if each list fits
into a constant number of pages.

Proof. We first show that OramTethys is correct and Llen-hid-adaptively secure.
Then, we analyze the efficiency for arbitrary constants c and δ from which we
conclude the existence of ε.

(1) As Tethys is correct, it remains to show that all remaining identifiers are
fetched from the stash when searching a keyword w. First, note that we store
n = O

(
log1+δ(λ)

)
blocks in LocORAM. The scheme LocORAM is correct if the

blocksize p is Ω
(
n
c−1
c

)
= Ω

(
log

1+δ(c−1)
c λ

)
which holds as δ, c are constant and

p = Ω(λ) by assumption. As Binpack packs the stash into bins of size p and
the accessed index i = Tpos[w] corresponds to the bin containing the identifiers
matching keyword w, the scheme OramTethys is correct.

(2) The security follows directly as Tethys is L-adaptively secure, LocORAM
is adaptively secure (with zero-failure probability) and the fact that Tpos is en-
crypted.

(3) We now analyze the efficiency of OramTethys. As the client state of
LocORAM is O (1) and the instantiation of Tethys only stores its keys on the
client side (as the stash is stored on the server), OramTethys only requires con-
stant client storage. The storage efficiency of OramTethys is O(1) because Tethys
has constant storage efficiency, and EM and Tpos have size n = O

(
log1+δ(λ)

)
pages and entries respectively. We now inspect the page efficiency. First, note
that Tethys has constant page efficiency and the access to Tpos requires (at most)
one page access. The access of the stash through LocORAM requires bandwith
O
(
β · n1/c log2(n)

)
= O

(
p · log

1+δ
c +δ′ λ

)
for some arbitrary δ′ > 0. As c, δ and

δ′ are arbitrary constants, scaling them accordingly yields the desired result.
Constant locality follows directly from the fact that LocORAM has constant lo-
cality and that Tethys accesses at most O (`/p) pages for a search on keyword
w, where ` is the length of the list of identifiers matching w. (Recall that we
assume that O(`/p) is constant for all lists.)

Dynamic Local Searchable Symmetric Encryption 43

B.3 The Scheme

Finally, we describe our unconditional static SSE scheme UncondSSE withO(logε(N))
locality, for abitrary ε > 0. We follow the high level idea of [DPP18] to handle
lists with different schemes depending on the list size. For d ∈ N, we split the
interval [1, N] of possible list lengths into four different subintervals.

1. For the subinterval [1, N1−1/ log log λ), the lengths are sufficiently for LayeredSSE
and can simply store the lists using Local[LayeredSSE]. Here, the read effi-
ciency is O(log logN).

2. For the subinterval [N1−1/ log log λ, N/ logdN), the lengths are simultaneously
small enough for the local transformation and large enough for OramTethys.
Thus, we store the lists using Local[OramTethys] with O (logεN) read effi-
ciency.

3. We further split the subinterval [N/ logdN,N/ logεN) into a constant num-
ber of subintervals, such that OramTethys has O(logεN) read efficiency.

4. For the subinterval [N/ logεN,N], lists are large enough to read the entire
database. Thus, we simply encrypt DB and fetch it entirely from the server
for these lists.

We now present how to divide the interval [N/ logdN,N/ logεN) into subin-
tervals in more detail.

Handling the Remaining List Sizes. Note that for lists of size in [N/ logεN,N),
we can just store an encrypted copy of the database on the server and retrieve
the entire copy for each read. We now sketch how we handle the remaining lists
of size in S = [N/ logdN,N/ logεN) for some arbitrary d ∈ N and ε ∈ (0, 1)R.
For this, we split the interval S into a constant number of subintervals Si such
that the borders of each interval differ by a factor logεN . Concretely, we set

Si = [N/ logd−iεN,N/ logd−(i+1)εN) for i ∈ [0, dd/εe].

For each Si, we store lists of size in Si via OramTethys with page size p = max(Si).
Note that each list has at most size p. Thus, OramTethys has O (1) locality
and O(logε λ) read efficiency (see Lemma 3). Note that page efficiency directly
translates to read efficiency in this case, as each list is at most a factor of logε λ
smaller than the page size.

UncondSSE. We now present our static SSE scheme UncondSSE. For a given
ε > 0, it has unconditionally O (logεN) read efficiency, constant locality and
constant storage efficiency. Let d ∈ N be the parameter of the local transforma-
tion chosen appropriately.

UncondSSE.KeyGen(1λ). Generate key K1 for Local[LayeredSSE], key K2 for
Local[OramTethys], key K3 for OramTethys and encryption key K4 for Enc. Also,
generate key KPRF for pseudorandom function PRF mapping to {0, 1}dlog(N)e.
Output K = (K1,K2,K3,K4,KPRF).

44 Brice Minaud, Michael Reichle

UncondSSE.Setup(K, N,DB). First, we initialize a table Tlen that stores the
encrypted length `i ⊕ mi of each list DB(wi) at position Tlen[w], where mi ←
PRFKPRF

(wi) is a mask. Then, we pad Tlen up to size N (with random values of
dlogNe bits). We split the interval of possible list lengths [1, N] into four different
subintervals and handle each subinterval seperately. For each subinterval, we
define four databases DBi containing a subset of the keyword-identifier pairs of
the given database DB (chosen with respect to the lists length). We set

DB1 =
{
DB(wi) | `i ∈

[
1, N1− 1

log logN

)}
,

DB2 =
{
DB(wi) | `i ∈

[
N1− 1

log logN , N/ logdN
)}

,

DB3 =
{
DB(wi) | `i ∈

[
N/ logdN,N/ logεN

)}
,

DB4 = {DB(wi) | `i ∈ [N/ logεN,N]} .

The lists in DB1 are sufficiently small for LayeredSSE and thus, we can apply
the local transformation and run EDB1 ← Local[LayeredSSE].Setup(K1, N,DB1).
Note that we still pad the encrypted database to size O(N) and not O(|DB1|)
because we can not reveal the distribution of lists amongst each subinterval.
The lists in DB2 are sufficiently large for OramTethys. Consequently, we can
set EDB2 ← Local[OramTethys].Setup(K2, N,DB2). For DB3, we further split the
interval [N/ logdN,N/ logεN] into the constant number of subintervals Si =

[N/ logd−iεN,N/ logd−(i+1)εN]R for i ∈ [0,
⌈
d · ε−1

⌉
] as described above. We

then set DB3,i = {DB(wi) | `i ∈ Si} and EDB3,i ← OramTethys.Setup(K3, N,DB3,i).
Finally, set EDB3 = (EDB3,1, · · · ,EDB3,dd·ε−1e). Lastly, lists in DB4 are large
enough that we can scan entire database each read. For this, we pad DB4 up to
sizeN and set EDB4 ← EncKEnc

(DB4). Outputs EDB = (EDB1,EDB2,EDB3,EDB4,
Tlen).

UncondSSE.Search(K, w;EDB). For retreiving the identifiers matching key-
word w, the client sends w and m ← PRFKPRF

(w) to the server. The server
decrypts the length `← Tlen[w]⊕mi of the list to be fetched and then checks in
which subinterval ` lies. We distinguish four cases: (1) If ` ∈ [1, N1− 1

log logN), the
client retrieves the identifiers from the server via Local[LayeredSSE].Search(K1, w;EDB1).
(2) If ` ∈ [N1− 1

log logN , N/ logdN), the client runs Local[OramTethys].Search(K2, w;EDB2)
with the server. (3) If ` ∈ [N/ logdN,N/ logεN), the server sets i ∈ [0,

⌈
d · ε−1

⌉
]

such that ` ∈ Si. Then, server and client run OramTethys.Search(K3, w;EDB3,i).
(4) Otherwise, we have ` ≥ N/ logεN and the server sends the entire encrypted
database EDB4 to the client (from which he fetches the corresponding list).

Theorem 8 (UncondSSE). The scheme UncondSSE is correct and Llen-rev-adaptively
secure. It has constant client storage, O(1) locality and O(logεN) read efficiency
for any ε > 0.

Proof. Security (and correctness) directly follow from the security of Local[LayeredSSE],
Local[OramTethys] and OramTethys. The efficiency properties of UncondSSE can

Dynamic Local Searchable Symmetric Encryption 45

also be derived from the efficiency properties of the used SSE schemes (see dis-
cussion above).

Remark 2 (On RTT and Deamortization). The scheme UncondSSE uses LocORAM
and thus, the efficiency properties are amortized. Also, this introduces a large
round trip time for some operations. We note that if LocORAM is deamortized,
we can adapt UncondSSE in order to have a constant RTT and deamortized
efficiency.

C Analysis of L2C

Here, we proof Theorem 1. First, we introduce some additional preliminaries.

Lemma 4 (Chernoff’s Bound). Suppose that X1, ..., Xn are independent
random variables taking values in {0, 1}. Let X denote their sum and let µ =
E[X] denote the expectancy of X. Then for any δ > 0, it holds that

Pr[X < (1− δ)µ] ≤ e−
δ2µ
2

In the next lemma, we consider a sequence of ball insertions and deletions of
arbitrary length, such that the total number of balls in the bins at any point in
time is bounded by n = h ·m. A ball insertion is a standard 2-choice insertion:
pick two bins i.u.r., and insert the ball into the least loaded bin. A deletion
removes one previously inserted ball. The sequence of additions and deletions is
fixed at the input of the problem.

Lemma 5 (2C). Let δ(m) be an arbitrary map such that 1 ≤ δ(m) ≤ logm
for all m ≥ 1. At the outcome of the sequence of additions and deletions, the
most loaded bin contains O(h + δ(m) log logm) items, except with probability
m−Ω(δ(m) log logm).

In particular, by setting δ = 1, we get that if m ≥ λ, then the failure prob-
ability from the claim is negligible. By setting δ = log log logm, we get that if
m ≥ λ1/ log log λ, then the failure probability from the claim is negligible.

Proof. We adapt the proof of [Vöc03], which proves a bound O(h) + log logm
with probability m−α, for an arbitrary constant α. The proof uses witness trees.
The existence of a bin containing more than Ch+L items implies the existence
of a witness tree of height L + C ′, for some suitable constants C, C ′. Thus, in
order to bound the probability that a bin contains more than Ch + L items, it
suffices to bound the probability that a witness tree of height L+ C ′ exists. In
more detail, the proof shows that the probability that a witness tree of height
L+ 3 exists is upper-bounded by

m−κ+1+o(1) +m−α

where κ, α are certain parameters (to be discussed later), with:

L ≤ log logm+ log(1 + α) + κ.

46 Brice Minaud, Michael Reichle

The proof sets α and κ to be constants. The fact that γ and κ are constant
is not essential to the argument, and is only used in two places in the proof.

The first place is the end of Section 2.3, when upper-bounding the probability
of activation of a pruned witness tree by m−κ+1+o(1). The final step of that
upper-bound requires α·κ = mo(1), which is obviously true for a pair of constants.

The other, more important place where the choice of having constant α and
κ comes into play is in the final derivation. The proof shows that, except with
probability at most m−κ+1+o(1) +m−α, the number of items in the most loaded
bin is at most:

L+O(h) ≤ log logm+ log(1 + α) + κ+O(h)

= log logm+O(1) +O(h)

= log logm+O(h).

In that final computation, the fact that α and κ are constant makes it possible
to absorb the log(1 + α) + κ term into the O(h) term. The other term is only
log logm, which is optimal. If we set α = κ = δ(m) log logm instead, we get:

L+O(h) ≤ log logm+ log(1 + α) + κ+O(h)

≤ 3δ(m) log logm+O(h).

In the case δ = 1, this worsens the constant in front of the log log term, which
is likely why the authors chose α and κ to be constant. (A better constant than
3 is possible, we choose 3 for simplicity.) On the other hand, the probability of
failure becomes at most

m−κ+1+o(1) +m−α = m−Ω(δ(m) log logm)

as claimed. Note that the condition α · κ = mo(1) is still fulfilled.

The next lemma is a direct application of Markov’s inequality.

Lemma 6. For any random variable X ∈ [0, N]R and any R > 0 (which may
depend on N):

Pr [X > R] = negl(λ) iff E[max(X −R, 0)] = negl(λ) .

Lemma 7 (Weigthed 1C [BFHM08].). Let m ∈ [0, 1]R be some maximal
weight. Let x = (m)i≤n and x′ = (w′i)i≤n′ be (non-negative) weight vectors. Let∑n′

i=1 w
′
i ≤ n · m and wi ≤ m for all i ∈ {1, ..., n′}12. Let R ∈ R+. Then it

holds that E[max(Xmlb −R, 0)] ≥ E[max(X ′mlb −R, 0)], where Xmlb (X ′mlb) are a
random variable indicating the load of the most loaded bin after throwing n balls
with weights x (n′ balls with weights x′) uniformly and independently at random
into m bins13.
12 [BFHM08] requires that x majorizes x′. This is implied by our condition on x and
x′.

13 [BFHM08] shows that E[Xmlb] ≥ E[X ′mlb]. As f(X) = max(X −R, 0) is convex, their
proof can be adapted to our formulization.

Dynamic Local Searchable Symmetric Encryption 47

In words, for 1C, the load above threshold R of the most loaded bin is higher
with balls of weight x than with balls of weight x′.

We are now ready to prove Theorem 1.

Proof. Note that the load of a bin is never decreasing, so it is sufficient to an-
alyze the final load of bins B1, ..., Bm. Also, note that we can replace Setup
with n InsertBall operations. Thus, we can assume without loss of general-
ity that bins B1, ...Bm are initially empty after L2C.Setup. Also, note that
m−Ω(δ(λ) log logw) = negl(λ) under the given requirements (see lemma 5). As
H is modeled as a random oralce, we assume that the bin choices α1, α2 of ball
b are chosen independently and uniformly at random from [1,m]2. We split the
proof into three parts:

(1) First, we will modify the sequence S such that we can reduce the analysis
to only (sufficiently independent) L2C.InsertBall operations, while only increasing
the final bin load by a constant factor.

(2) Second, we analyze the maximal bin load when only considering balls of
weight at most 1/ logm. Here, L2C.InsertBall proceeds exactly as weighted 1C.
Since uniform weights of value 1/ logm are the worst case for the most loaded
bin in 1C, the bound follows from a Chernoff’s bound as balls are sufficiently
small.

(3) Last, we inspect the maximal bin load considering items in the remain-
ing subintervalls (2i−1/ logm, 2i/ logm]R for i ∈ {1, ..., log logm}. Per interval,
L2C.InsertBall behaves like unweighted two-choice (independent of other subin-
tervals) and inherits the log logm bin load direclty, as balls with different weights
differ only by a constant factor per interval. Summing up the maximal bin load
per interval will yield the desired result.

Part 1 – Adapting the sequence: We observe that update operations
updating the weight inside the same subinterval can be ignored. More concretely,
let opi = UpdateBall be some update operation on ball bi with old weight oi
and new weight wi. If oi, wi ∈ (2k−1

logm ,
2k

logm]R for some k, the operation opi
replaces the old weight oi of ball bi with the new weight wi direclty (inside the
same bin). Thus, we can simply remove opi and replace the previous operation
opj = (bi, oj , oi) = (bj , oj , wj) on the same ball with op′j = (bi, oj , wi) directly.
Clearly this does not change the final load of the bins. (Note that operations
between opj and opi make the same choices as the concrete weight inside a
subinterval never impacts which bin is chosen.)

Now, let (opi)i∈I be all remaining update operations for some fixed ball b∗, so
b∗ = bi and opi = UpdateBall for i ∈ I. As we removed consecutive update opera-
tions in the same subinterval, operation opi marks the ball b∗ as residual ball and
calls InsertBall(b∗, wi, Bα∗,1 , Bα∗,2). Let j = max(I) be the index of the last up-
date operation opj on b∗ and k be minimal such that wj ≤ 2k/ logm. As there are
only k subintervals below the last interval (2k−1/ logm, 2k/ log(m)]R, there are at
most k such update operations, i.e. |I| ≤ k, and one insert ball operation. Assume
without loss of generality that all k+1 operations exist. The residual ball left by
the i-th update operation has at most size 2i−1/ logm and thus, this UpdateBall

48 Brice Minaud, Michael Reichle

operation can be replaced by an InsertBall(b∗, 2
i−1/ logm, (Bα∗,1 , Bα∗,2) opera-

tion. Thus, for ball b∗ with final weight wj , we have to insert k additional balls
in order to replace all update operations on ball b∗ with inserts. The total weight
of these additional balls is

k∑
i=1

2i−1/ logm ≤ 2k/ log(m) ≤ 2wj ,

since wj ≥ 2k−1/ log(m). Thus, the total weight is increased at most by a factor
3 per ball.

This way, we can iteratively remove all UpdateBall operations at the cost of a
factor 3 in the total weight. The remaining operations are InsertBall operations,
where each ball bi is inserted at most once per subinterval and the bin choices are
drawn uniformly and independently random per ball. Clearly, ifO(3 log logwmax)
is an upper bound on the load of the most loaded bin for the modified sequence
S′, then O (3 log logwmax) is an upper bound for the initial sequence S. In the
following, we only consider modified sequences S of n such InsertBall operations.

Part 2 – Light balls: Here, we show that the most loaded bin has load at
most 3δ(λ) log logwmax when only considering balls of at most weight 1/ logm.
Let w ≤ wmax be the total weight of all such light balls. Without loss of generality,
assume that wmax = w. At first, we assume that all such balls have weight
exactly 1/ logm each. We will then reduce the case with arbitrary weights in
[0, 1/ logm]R to the above.

Since we initially assume all balls have weight 1/ logm, the number of balls is
at most n′ = w logm. Let Xi be the random variable that denotes the number of
balls in bin Bi. Recall that m = w

δ(λ) log logw . We observe that InsertBall behaves
like 1C in this case and thus, we have E[Xi] = n′/m = δ(λ) log logw · logm.
Applying Chernoff’s bound (Lemma 10), we get:

Pr[Xi ≥ (1 + γ)E[Xi]] ≤ exp

(
−γ

2 E[Xi]

2

)
.

We insert γ = 2 in the equation above and receive:

Pr[Xi ≥ 3δ(λ) log logw·logm] ≤ exp(−2δ(λ) log logw·logm) = m−Ω(δ(λ) log logw).

A union bound yields that the most loaded bin contains at most 3δ(λ) log logw ·
logm balls with probability at most m−Ω(δ(λ) log logw) = negl(λ). As each ball
has size 1/ logm, the most loaded bin has a maximal load of 3δ(λ) log logw with
overwhelming probability.

Now, we show this bound is preserved when allowing arbitrary weights of
at most 1/ logm. We define the weight vectors x = (1/ logm)w logm

i=1 and x′ =
(wi)i∈I . LetXmlb andX ′mlb be the random variable indicating the load of the most
loaded bin with weights x and with weights x′ respectively. We want to show that
Pr[X ′mlb > 3δ(λ) log logw] = negl(λ). Lemma 12 implies that the above holds
iff E[max(X ′mlb − 3δ(λ) log logw), 0)] = negl(λ). This expectancy can be upper

Dynamic Local Searchable Symmetric Encryption 49

bound by E[max(Xmlb − 3δ(λ) log logw), 0)] as x and x′ fulfill the requirements
of Lemma 7. As we showed above that Pr[Xmlb > 3δ(λ) log logw)] = negl(λ), we
can conclude from another application of Lemma 12.

Part 3 – Heavy balls: So far, we have shown that the most loaded bin has
load at most 3δ(λ) log logw with overwhelming probability, when only consid-
ering balls of weight smaller or equal to 1/ logm, for any (modified) sequence
S. We will now show that when considering the remaining balls of weight in
(1/ logm, 1]R, a maximal load ofO(wmax/m+ δ(λ) log logw) = O(δ(λ) log logw)
is preserved.

For i ∈ [1, log logm], let ni be the number of balls in each subinterval
Ai = (2i−1/ logm, 2i/ logm]R. Recall that each ball bi has two bin choices that
are drawn uniformly and independently random at the first insertion. These
choices are reutilized across the subintervals Ai, if bi is inserted in multiple
subintervals. But note that per subinterval, bi is only inserted once. Thus, L2C
behaves like unweighted 2C on all balls with weights in Ai (independent from
the balls in other subintervals). By Lemma 5, the bin with the highest number
of balls (of weights in Ai) contains at most O(ni/m+ δ(λ) log logm) balls with
overwhelming probability. (Note that there are at most w logm balls and that
m−Ω(δ(λ) log logw) = negl(λ).)

Each ball has weight at most max(Ai) = 2i/ logm and thus, the load of the
most loaded bin is at most 2i/ logm(O(ni/m+ δ(λ) log logm)) when consider-
ing balls with weights in Ai. Summing over all Ai’s, when considering only balls
with weights in (1/ logm, 1], the load of the most loaded bin is at most

log logm∑
i=1

2i

logm
O(ni/m+ δ(λ) log logm)

=

log logm∑
i=1

O

(
2
ni2

i−1

m logm
+

log logm∑
i=1

2i

logm
O(δ(λ) log logm)

)
≤O

(wmax

m
+ δ(λ) log logwmax

)
,

as m = O (wmax) and wmax is an upper bound on the total weight. The above
holds with overwhelming probability, since the probability that 2C fails is negl(λ),
and there are only log logm subintervals.

As we showed in the first part that is suffices to look at the modified sequence
(with only InsertBall operations), we conclude that the load of the most loaded
bin is at most O(log logwmax).

D Security Analysis of LayeredSSE

Lemma 8 (Correctness). The scheme LayeredSSE is correct if at most p iden-
tifiers are associated to each keyword and H is modeled as a random oracle.

Proof. We use L2C to insert (and update) the lists of identifiers DB(w) of length
` ≤ p into m bins. Each list is interpreted as a ball of weight `/p ∈ [0, 1]. The-
orem 1 implies that the maximal loaded bin has load at most c log log log(λ)

50 Brice Minaud, Michael Reichle

log log(N/p) for some appropriate constant c ∈ N (for δ(λ) = log log log(λ)),
since the bin choices via H are uniformly and independently random by assump-
tion. That means, it contains at most p · c log log log(λ) log log(N/p) identifiers
(as we scaled weights by a factor p). Consequently, the bins only overflow with
negligible probability. Further, it follows from inspection that one of the two bins
returned by the search algorithm on input w contains all the identifiers matching
keyword w.

Lemma 9 (Selective Security). Let LStp(DB, N) = N , LSrch(w) = qp and
LUpdt(op, w, L

′) = qp, where qp is the query pattern and op = add. Let L =
(LStp,LSrch,LUpdt). The scheme LayeredSSE is L-selectively semantically secure
if at most p identifiers are associated to each keyword, Enc is IND-CPA secure
and H is modeled as a random oracle. Note that L = Llen-hid because we restrict
ourselves to lists of size at most p.

Proof. Let Sim denote the simulator and A an abitrary honest-but-curious PPT
the adversary.

Initially, Sim receives LStp(DB, N) = N and a series of search and update
requests with input LUpdt(opi, wi, L

′
i) = LSrch(wi) = qp. First, Sim initializesm =

d(N/p)/(log log(N/p) log log log(λ))e bins B1, ..., Bm zeroed out up to size p ·
c log log log(λ) log log(N/p), and outputs EDB′ = (EncK′Enc(B1), ...,EncK′Enc(Bm))
for some encryption key K′Enc sampled by Sim. Next, Sim simulates the search
and update queries.

For search queries, Sim receives sp. If the query pattern sp indicates that the
keyword was already queried, Sim outputs the keyword w′ from the previous
query. Otherwise, Sim outputs a new uniformly random keyword w′ (that has
not been queried yet).

For update queries, Sim receives sp. First, Sim proceeds as in search for
generating the first output w′. After sending w′ to the adversary A, Sim receives
two encrypted bins. Sim simply reencrypts both bins and sends them back to
the server.

We now show that the real game is indistinguishable from the ideal game.
For this, we define four hybrid games.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0 except the simulated keywords w′ are

output. By assumption Hybrid 0 and Hybrid 1 are indistinguishable.
– Hybrid 2 is the same as Hybrid 1 except a flag FAIL is raised when a bin

overflows (i.e. contains more than p · c log logN/p identifiers after Setup or
Update). Theorem 1 implies that this happens only with negligible probabil-
ity. Thus, Hybrid 1 and Hybrid 2 are indistinguishable.

– Hybrid 3 is the same as Hybrid 2 except that the encrypted database EDB
is replaced with the simulated EDB′ and bins are just reencrypted and sent
back to the adversary in the second flow of Update. Since Enc is IND-CPA
secure (and a flag FAIL is only raised with negligible probability), it follows
that Hybrid 2 and Hybrid 3 are indistinguishable.

Dynamic Local Searchable Symmetric Encryption 51

– Hybrid 4 is the same as the ideal experiment. The server’s view in the ideal
experiment and in Hybrid 3 are identically distributed, so we conclude in-
ductively that the ideal game and the real game are indistinguishable.

E Proof Of ClipOSSE

In this section, we prove Theorem 3. Recall that it is assumed all lists have length
at most N/ logd λ for d ≥ 2. This is a limitation of the result, and it is inherent
(lists of length close to N/ log λ can create too many overflowing elements, and
must be handled separately.)

The proof is divided into two parts. First, we show that the result holds when
all lists have size exactly N/ logd λ. Second, we show that the result still holds
as long as all lists have size at most N/ logd λ. The second part is the hard part.

E.1 Proof Part 1: All Lists Have Size N/ logd λ.

We recall one of the standard formulations of the Chernoff-Hoeffding bound.

Lemma 10 (Chernoff-Hoeffding). Let X =
∑
i≤nXi where the Xi’s are

i.i.d. 0-1 random variables, with p = E [Xi].

Pr [X > (p+ ε)n] < e−
1
2 ε

2n/(p+ε)

Pr [X < (p− ε)n] < e−
1
2 ε

2n/p.

The following lemma is a direct corollary.

Lemma 11. Throw n balls into m bins u.i.r. Let µ = n/m be the average load
of a bin. Then the probability that a given bin contains more than γµ balls is at
most:

e−Θ(γ)µ.

Proof. Use Lemma 10 with p = 1/m, ε = (γ − 1)p.

Let τ = β log log λ be the threshold at which a bin starts to overflow.
By construction, 1C with all lists of size N/ logd λ is exactly a balls-and-

bins game with n = logd λ balls (each ball is a list) and m = n/ log log λ bins.
By Lemma 11, the most loaded bin contains less than log λ log log λ elements,
except with negligible probability. We now want to bound the number of bins
that overflow. Using the previous lemma again, the probability that a given
bucket overflows is e−Ω(β) log log λ = log−Ω(β) λ.

Let (Xi)i≤m denote the indicator variables that are equal to 1 iff the i-th
bucket overflows, 0 otherwise. The number of overflowing buckets is X =

∑
Xi.

We know that E [Xi] = log−Ω(β) λ. We want to show that X cannot be much
higher than m log−Ω(β) λ.

For that purpose, we use the notion of negative association. Because that
notion is only used briefly to establish that Chernoff-Hoeffding bounds apply,

52 Brice Minaud, Michael Reichle

we do not develop the theory here, and instead refer the reader to [DR96] for
an excellent survey on the topic. By [DR96, Proposition 13], the occupancy
numbers (vector (Bn,m[i])i≤m where Bn,m[i] is the number of balls in the i-th
bin) are negatively associated. By [DR96, Proposition 7.2], sinceXi = 1Bn,m[i]≥τ ,
and x 7→ 1x≥τ is non-decreasing, the Xi’s are also negatively associated. By
[DR96, Proposition 5], it follows that we can apply Chernoff-Hoeffding bounds
to X =

∑
Xi.

Hence, using Lemma 10 with p = ε = E [Xi] = log−Ω(β) λ, we get:

Pr
[
X > 2m log−Ω(β) λ

]
= e−

1
4 εm = e−

1
4m log−Ω(β) λ.

The above quantity is negligible as soon as d−Ω(β) ≥ 2.
Since at most 2m log−Ω(β) λ buckets overflow, and the most loaded bucket

contains at most log λ log log λ items, we get that with overwhelming probability,
the number of overflowing balls is less than:

logd λ log1−Ω(β) λ.

Since each ball corresponds to a list containing N/ logd λ items, with overwhelm-
ing probability the number of overflowing items is:

N log1−Ω(β) λ

so we can make it O(N/ logc λ) for any constant c of our choice by picking β
suitably (and then picking d to satisfy the condition d−Ω(β) ≥ 2 encountered
earlier).

E.2 Proof Part 2: General Case

Let L denote an arbitrary multiset of list lengths, with maxL ≤ N/ logd λ, and∑
L = N . Let XL be (the random variable denoting) the number of overflowing

elements after inserting the lists in L.
In Part 1 of the proof, we have seen that Pr [XL > R] = negl(λ), for a

suitable R, when all lists have size N/ logd λ. Our goal is to show a similar result
for arbitrary L.

Preliminary groundwork. We are going to work with E [max(XL −R, 0)],
rather than Pr [XL > R]. This is made possible by the following lemma.

Lemma 12. For any integral random variable X ∈ [0, N] and any R ≥ 0:

Pr [X > R] = negl(λ) ⇔ E [max(X −R, 0)] = negl(λ) .

Proof. By a classic inequality, for any positive integral random variable Y ,
E [Y] =

∑
i≥0 Pr [Y > i]. It follows that Pr [Y > 0] ≤ E [Y]. On the other hand,

if Y ≤ N , we get E [Y] ≤ NPr [Y > 0]. Hence:

Pr [Y > 0] ≤ E [Y] ≤ NPr [Y > 0] .

Dynamic Local Searchable Symmetric Encryption 53

Since N = poly(λ) (λ), it follows that Pr [Y > 0] is negligible iff E [Y] is negli-
gible. The lemma is obtained by applying that observation to Y = max(X −
R, 0).

The following simple lemma will also be useful.

Lemma 13. Let X, Y be two random variables defined on the same sample
space. Let E be a set of events that forms a partition of the sample space (i.e.
pairwise disjoint events whose union is the whole space). If the conditional ex-
pectations satisfy E [X : E] ≤ E [Y : E] for all E ∈ E, then E [X] ≤ E [Y].

Notation

– Let B(p) denote the Bernoulli distribution with mean p: that is, a sample of
B(p) is a 0-1 random variable X such that Pr [X = 1] = p and Pr [X = 0] =
1− p.

– Let Bin(p, n) denote the Binomial distribution with n trials, each with prob-
ability p: that is, a sample of Bin(p, n) is distributed like

∑
i≤nXi, where

the Xi’s are i.i.d. sampled from B(p).
– Suppose we throw n balls i.u.r. into m buckets. Let Bn,m[i] be the (random

variable denoting the) load of the i-th bucket. Let Bn,m = (Bn,m[i])i ≤m
be the vector of the load of buckets. Observe that Bn,m[i] is distributed
according to Bin(1/m, n). Also note that the Bn,m[i]’s are not independent,
e.g. they are linked by

∑
Bn,m[i] = n.

– If D is a distribution, and E is an event, then D[E] denotes the distribution
D conditioned on the event E.

– If X is a random variable, and E is an event, then E [X : E] denotes the
conditional expectation of X, conditioned on the event E.

– If D is a distribution, X1, ..., Xn ←↩ D denotes that X1, ..., Xn are i.i.d.
random variables, each distributed according to D.

Recall that we are trying to show that the number of overflowing items is
bounded by some R = O(N/ logcN), except with negligible probability, for a
constant c of our choice. In Part 1 of the proof, we have already seen that this is
true when all lists are of size N/ logdN , for some suitable constant d. In Part 2,
we want to prove the same for an arbitrary multiset L of list sizes, assuming
maxL ≤ N/ logdN . Recall that

∑
L = N . Let τ = β log log λ be the threshold

at which buckets are cut off. For a given bucket load vector b = (b[i])i≤m, let
over(b) denote the number of overflowing items: over(b) =

∑
max(b[i]− τ, 0).

Fix a multiset L of list sizes, with maxL ≤ N/ logdN . Let N` denote the
number of lists of size ` = 2i. Note

∑
`N` = N . Recall that the number of

buckets is m = N/ log log λ.
LetD(L) be (the random variable denoting) the load of buckets at the output

of algorithm 1C, on input L. By abuse of notation, we still write D(L) for a ran-
dom variable distributed according toD(L). Our goal is to show Pr [over(D(L)) > R] =
negl(λ). By Step 1, this is equivalent to E [max(over(D(L))−R, 0))] = negl(λ).
To simplify notation, write F (L) = max(over(D(L))−R, 0)).

54 Brice Minaud, Michael Reichle

Proof outline. Starting from L, let µ = minL be the smallest list size in L. We
will merge all Nµ lists of size µ pairwise into Nµ/2 lists of size 2µ. This increases
the size of the smallest list in L from µ to 2µ. We can repeat this process as
long as the minimum list size µ is less than the maximum list size N/ logdN .
Eventually, all lists have size N/ logdN . At that point, we will be able to apply
the result from Part 1 of the proof, which deals precisely with the case that
all lists have size N/ logdN . This will show that E [F (Lfinal)] is negligible for
the final list Lfinal, obtained after all merging operations are done. In order to
show that E [F (L)] is negligible for the list L we start from, we will show that
if E [F (Li+1)] is negligible for a list Li+1 obtained after a merging operation,
then E [F (Li)] is also negligible for the list Li before the merging operation. By
induction, this will imply that since E [F (Lfinal)] is negigible, then E [F (L)] is
also negligible for the original list L.

Thus, it suffices to show that if E [F (L)] is negligible after merging, then it
was negligible before merging. This fact is the core of the proof, and involves
several techniques. For now, we outline these techniques at a high level, and
will provide more details when each technique is introduced. Let mµ = m/µ be
the number of superbuckets of size µ. Let us regard lists of size µ as balls, and
superbuckets of size µ as bins. Inserting the lists of size µ amounts to throwing
Nµ balls into mµ bins i.u.r. After merging, a list of size 2µ is viewed as two
connected balls. Each pair of connected balls is thrown i.u.r. into two adjacent
bins (where the two adjacent bins correspond to one superbucket of size 2µ).
When bins are inserted by pairs in that manner, one feature of the resulting
distribution is that the bins with even indices (bins number 0, 2, 4, etc) must
contain the same total number of balls as the bins with odd indices (bins number
1, 3, 5, etc). When that property is satisfied, let us say that the bins are balanced.
To recap: inserting merged lists will always yield balanced bins. On the other
hand, if we insert lists before the merging step, there is no particular reason
that the resulting bins should be balanced. The first main proof technique is
to show the following: if we insert lists before the merging step, and condition
the resulting distribution of bin occupancies being balanced, then the merging
operation can only increase E [F (L)]. This step relies on a convexity argument,
and uses a special auxiliary operator �. We leave a detailed discussion of those
points for later, and continue to focus on the global outline of the proof.

Insofar as merging can only increase E [F (L)], we get what we want: if
E [F (L)] is negligible after merging, then it was necessarily negligible before
merging. However, to apply that argument, we need bins to be balanced. As men-
tioned earlier, there is no special reason that inserting Nµ balls intomµ bins i.u.r.
should result in balanced bins. This leads to the next proof technique, which is
a stochastic dominance argument. Although the distribution obtained by throw-
ing Nµ balls into mµ bins i.u.r. is not balanced, we show that it is stochastically
dominated by balanced distribution, namely the distribution obtained by throw-
ing Nµ+φ(µ) balls into mµ bins i.u.r. conditioned on being balanced. Here, φ(µ)
is a carefully chosen small quantity. Intuitively, what happens is that although
the original distribution may not be balanced, the difference 2δ = |n0 − n1| be-

Dynamic Local Searchable Symmetric Encryption 55

tween the number n0 of balls in bins with even indices, and the number n1 of
balls in bins with odd indices, must be less than φ(µ) (except with negligible
probability). As a consequence, by adding less than 2δ balls, we can “correct”
the distribution into a balanced one, at the cost of slightly increasing the total
number of balls. Since adding new balls can only increase the output of over(·),
this new transformation has the desired property that if E [max(over(·)−R, 0)]
is negligible for the distribution at the output of the transformation, it was nec-
essarily negligible before the transformation. On the other hand, because we add
new balls, we need to be mindful that each merging increases the total number
of balls in the system. However, we show that the total number of balls remains
O(N) throughout, which completes the proof.

Full Proof.

Definition 13. Let a = (ai)i≤t and b = (bi)i≤t be two vectors in Nt. Then a � b
denotes the following vector in N2t:

a � b = (a1, b1, a2, b2, ..., at, bt).

The notation � is extended in the usual way to combine two sets of vectors
(A�B = {a� b : a ∈ A, b ∈ B}), and two distributions of vectors (D1 �D2 = a� b
where a← D1, b← D2}). The point of � is the next lemma, which is essentially
a convexity argument.

Lemma 14. Let a = (ai)i≤t and b = (bi)i≤t be two vectors in Nt. We have:

2F (a � b) ≤ F (a � a) + F (b � b).

Proof. Let a′ ∈ Nt be defined by a′i = max(ai − τ, 0), so that a′i is the number
of overflowing elements in bucket i for vector a. (Recall that τ is the threshold
at which buckets are cut off.) Define b′ in the same way. Observe that f : x 7→
max(x−R, 0) is a convex function, which implies that for all x, y, f(x/2+y/2) ≤
(f(x) + f(y))/2. As a consequence:

2F (a � b) = 2max
(∑

a′i +
∑

b′i −R, 0
)

= 2f
(∑

a′i +
∑

b′i

)
≤ f

(
2
∑

a′i

)
+ f

(
2
∑

b′i

)
= F (a � a) + F (b � b).

Given a load vector b ∈ Nm, let n0(b) =
∑
i:i mod 2=0 bi (resp. n1(b) =∑

i:i mod 2=1 bi) be the total number of balls in bins with even (resp. odd) index.
Let n(b) = n0(b)+n1(b) be the total number of balls. Let δ(b) = max(n0(b), n1(b))−
bn(b)/2c.

Recall that Bn,m[δ = 0] denotes the distribution Bn,m conditioned on the
event δ = 0, that is, the bins with even indices contain the same total number of
balls as the bins with odd indices. The proof of the following lemma is immediate.

56 Brice Minaud, Michael Reichle

Lemma 15. For all even n, m:

Bn,m[δ = 0] = Bn/2,m/2 �Bn/2,m/2.

Define:
B′n,m,d = Bn,m[max(n0, n1) ≤ n/2 + d].

Lemma 16. If d = Ω(
√
n log λ), then the statistical distance between Bn,m and

B′n,m,d is negligible.

Proof. By a simple Chernoff bound, the probability that the condition that de-
fines B′n,m,d is not satisfied in Bn,m is negligible. Further, if two distributions
are identical conditioned on an event with negligible probability not happening,
then their statistical distance is negligible.

Given two distributions D1, D2 on a set equipped with an order relation
�, recall that D1 is said to be stochastically dominated by D2 if there exists a
coupling (X1, X2) of D1 and D2 (i.e. a random variable (X1, X2) such that the
marginal distribution of Xi is Di) such that Pr [X1 � X2] = 1.

Lemma 17. For all n, m, d, B′n,m,d is stochastically dominated by Bn+2d,m[δ =
0] (with respect to the product order on Nm).

Proof. If we sample from B′n,m,d, then add n/2 + 2d− n0 (resp. n/2 + 2d− n1)
balls uniformly at random into buckets of even (resp. odd) indices, we obtain a
sample from Bn+d,m[δ = 0]. Hence, there exists a suitable coupling of the two
distributions.

Let φ(`) =
√
N/` log λ. If L is a multiset of list sizes, let µ = minL. Define

merge(L) by removing all Nµ instances of µ from L, and adding instead Nµ/2+
φ(µ) instances of size 2µ.

Let N ′1 = N1 +
√
N log λ. By induction, for i in {1, ..., logN} and ` = 2i,

define:

N ′` = N` +
N ′`/2

2
+

√
N

`
log λ.

Lemma 18. For all ` ≤ N/ log2 λ, N ′` = O(N/`).

Proof. A straightforward induction gives:

N ′` = N` +

log∑̀
i=0

√
N

2i
log λ

= N` +
√
N log λ

log∑̀
i=0

2−i/2

= N` +
√
N log λ ·O

(
2−

1
2 log `

)

Dynamic Local Searchable Symmetric Encryption 57

= N` +O

(√
N

`
log λ

)

= N` +O

(
N

`

)
because log2 λ ≤ N/`

= O

(
N

`

)
.

Lemma 19. Let µ = minL. Assume Nµ is even. If µ < N/ log2N , then:

E [F (L)] ≤ E [F (merge(L))] + negl(λ) .

Proof. In the scope of this proof, µ is set to minL. Letmµ = m/µ be the number
of superbuckets of size µ. Say that a superbucket is flat iff all the buckets it
contains have the same number of items. Say that a vector of occupancies b ∈ Nm
is k-flat if all superbuckets of size k are flat.

By construction of 1C, and that fact that µ = minL, after inserting lists in L,
bucket occupancies are µ-flat. The load of a bucket is entirely determined by the
number of items in the superbucket of size µ that contains it. As a consequence,
there is never a reason to consider superbuckets of size smaller than µ. For that
reason, instead of working with Nm, where each entry corresponds to the load
of a bucket, we will work with Nmµ , where each entry corresponds the load
of a superbucket of size µ, divided by µ (so that an entry is the load of one
bucket within the superbucket). To avoid creating confusion about whether a
“bucket” or “items” refers to the original occupancy vectors in Nm, or the ones
just introduced in Nmµ , we reserve the term “bucket”, “superbucket”, and “item”
to the former setting, so that the meaning of those terms is unchanged. When
working in Nmµ , we use balls-and-bins terminology: mµ is the number of bins,
and they are occupied by balls. Thus, each bin corresponds to a superbucket of
size µ, and each ball corresponds to a list of µ items.

We now have all the tools to prove Lemma 19. Let L∩ = L ∩ merge(L) be
the lists common to L and merge(L). Observe that the order lists are inserted
by the algorithm does not matter, hence we are free to assume lists in L∩ are
inserted first.

Let a ∈ Nmµ denote an arbitrary load vector obtained after inserting the lists
in L∩. Recall that lists in L∩ are multiples of 2µ, so the load vector after inserting
the lists is 2µ-flat. If follows that a may be written in the form a = a′ � a′ for
some a′ ∈ Nmµ/2. Let us denote by Ea the event that the outcome of inserting
L∩ is equal to a.

We want to prove E [F (L)] ≤ E [F (merge(L))] + negl(λ). By Lemma 13, it
suffices to prove the inequality when conditioning on Ea, for every possible a.

Given Ea, all that remains to do to compute D(L) is to insert Nµ lists of
length µ. In consequence, we have that D(L) conditioned on Ea is equal to
a+BNµ,mµ . The lemma can then be established as follows.

In the computation, we multiply the output of over by µ, to reflect the fact
that each ball in Nmµ represents a list of µ items.

E [F (L) : Ea]

58 Brice Minaud, Michael Reichle

= E [max(µ · over(D(L)−R, 0) : Ea]
= E [max(µ · over(a+X −R, 0)]
where X ←↩ BNµ,mµ
≤ E [max(µ · over(a+X ′ −R, 0)] +Nnegl(λ)

where X ′ ←↩ B′Nµ,mµ,φ(µ) by Lemma 1614.

≤ E [max(µ · over(a+ Y −R, 0)] + negl(λ)

where Y ←↩ BNµ+2φ(µ),mµ [δ = 0] by Lemma 17

= E
[
max(µ · over(a+ Y 1 � Y 2)−R, 0)

]
+ negl(λ)

where Y 1, Y 2 ←↩ B(Nµ+2φ(µ))/2,mµ/2 by Lemma 15

≤ E
[
max(µ · over(a+ Y 1 � Y 1)−R, 0)

]
/2

+ E
[
max(µ · over(a+ Y 2 � Y 2)−R, 0)

]
/2 + negl(λ) by Lemma 14

= E
[
max(µ · over(a+ Y 1 � Y 1)−R, 0)

]
+ negl(λ)

= E
[
max(µ · over((a′ + Y 1) � (a′ + Y 1))−R, 0)

]
+ negl(λ)

= E
[
max(2µ · over(a′ + Y 1)−R, 0)

]
+ negl(λ)

= E [F (merge(L)) : Ea] + negl(λ) .

If we start from an arbitrary L, by applying Lemma 19 and computing
merge(L) as in the statement of the lemma, we strictly increase the minimum
size of the list. Eventually, all lists have size N/ logdN , while the total number
of items remains O(N) (Lemma 18). Hence, the analysis from Part 1 applies,
and we are done.

F Applications of L2C

As mentioned in the introduction, the two-choice process is a staple in the re-
source allocation literature, with applications that range from job allocation to
circuit routing. A survey may be found in [RMS01], which also presents some
of the underlying analytical techniques. To further illustrate the range of appli-
cations, Azar, Broder, Karlin, Mitzenmacher and Upfal have recently received
the 2020 ACM Paris Kenallakis Theory and Practice Award for the discovery
and analysis of the two-choice process, highlighting in particular its “extensive
applications to practice” [ABK+20]. An overview of the two-choice process was
given in Section 2. In this section, we explain how our result on L2C fits within
that broader context, beyond cryptographic applications.

Let us first recall the two-choice allocation process itself. Suppose that n
balls are inserted into n bins as follows: for each ball in succession, two bins
are sampled uniformly at random among all bins. The ball is then inserted
into whichever bin currently contains fewer items. The central analytical result

14 The fact that the condition d = Ω(
√
n log λ) from Lemma 16 is satisfied follows from

Lemma 18.

Dynamic Local Searchable Symmetric Encryption 59

regarding this process as that, once all balls have been inserted, the most loaded
bin contains O(log log n) items with high probability.

Since typical applications include job allocation or memory management, it
is natural to consider the weighted case, where each ball i is assigned some weight
wi ∈ R (or wi ∈ N). The weighted variant of the two-choice process inserts each
ball into whichever of two uniformly random bins currently contains the least
weight in total (rather than the least number of balls, in the unweighted case).
One would hope that, for instance, if the weights lie in the real interval [0, 1],
then the load of the most loaded bin is O (log logW), where W =

∑
wi is the

total weight of the balls.
At STOC 2007, Talwar andWieder analyzed the weighted two-choice process.

They showed that when the weights of the balls are drawn independently from a
fixed distribution of expectation 1, with some mild smoothness assumptions, the
load of the most loaded bin is indeed O(log log n) (which is also O(log logW),
if W is defined to be the expectation of the total weight). In fact, they show
a much stronger result that the gap between the expected load of each bin
and the load of the most loaded bin is bounded by O (log logm) with high
probability, even when inserting an unbounded number of balls m � n into n
bins, inspired by a seminal paper by Berenbrink et al. showing the same result
in the unweighted case [BCSV06]. A simpler proof of a variant of the result
was later given in [TW14], again assuminig weights drawn independently from
a suitable distribution. To our knowledge, all existing analyses of the weighted
two-choice process rely on a distributional assumption of that form15.

It seems quite natural to want to consider the case that there is no distribu-
tional assumption: the sequence of ball weights is instead an arbitrary sequence,
subject only to an upper bound on the weight of an individual ball. Indeed, in
many cases, the weights of the balls (coresponding e.g. to the cost of a job in
a job allocation application, or the size of an object in a memory management
application) may be determined by a client, and need not be drawn from a consis-
tent distribution, and may not be independent of each other. To our knowledge,
a distribution-free result of that form has only been shown for the one-choice
process (which has a O(log) overhead, rather than O(log log)) by Berenbrink et
al. [BFHM08], but the same article argues that their analysis technique cannot
extend to the two-choice process.

In that context, our result on L2C (Theorem 1) shows that such a distribution-
free result holds for the two-choice process, at the cost of slightly tweaking the
process. In a nutshell, in L2C, instead of allocating a given ball to whichever
of two uniformly sampled bins currently contains the lowest weight in total, we

15 A partial exception may exist: the result on the so-called (1 + β)-choice process
studied in [PTW10] is written in the same distributional form, but upon closer
inspection, it appears that the core potential function argument could be written
without the need of a distributional assumption, as long as the weights are bounded.
However, as noted also in [TW14], this technique can only prove a logarithmic bound,
rather than the O (log log) bound we are hoping for, so it is insufficient for our
purpose.

60 Brice Minaud, Michael Reichle

allocate the ball to whichever of the two bins currently contains the fewest balls
within the same weight range, where weight ranges are defined by partitioning
the set of possible weights into O (log log n) sub-intervals. While this slightly
alters the process, the computation determining which of the two bins to choose
remains trivial. On the other hand, it allows for a distribution-free upper bound
on the load of the most loaded bin.

A notable feature of L2C is that it is built essentially by superposingO(log log n)
instances of a standard unweighted two-choice process. This makes it possible to
reduce its analysis to results on the unweighted process. Although we only use
this to show a simple upper bound on the most loaded bin, we conjecture that
many deeper results known about the unweighted process (e.g. the “memoryless”
properties from [BCSV06]), could be shown to extend to the weighted case for
L2C in a similar manner.

We conjecture that a result of the same form as Theorem 1 would also hold
for the standard weighted two-choice process considered in prior literature. How-
ever, such a result has remained elusive so far (some obstacles related to that
question are discussed in [BFHM08]). We view this question as a compelling
open problem.

Dynamic Local Searchable Symmetric Encryption 61

Algorithm 7 Local Oblivious RAM (LocORAM)
LocORAM.InitializeORAM(1

λ,M)

1: Parse M as {i, vi}ni=1, where |i, vi| = β

2: Let n1 = n
1
c and ni = n

i
c + n

i−1
c for i ∈ [2, c]

3: Let Ai be an empty array of size ni for i ∈ [1, c]
4: Let πi : [1, ni] 7→ [1, ni] be pseudorandom permutation for i ∈ [2, c]
5: for all i ∈ [1, n] do
6: Store (i, vi) at locations πc[i] in Ac
7: Encrypt Aenc

i ← EncKEnc(Ai) for i ∈ [1, c]
8: Let Ri be an empty set (of maximal size ni/c blocks for i ∈ [2, c− 1]) and Rc = M
9: Set cnti ← 0 for i ∈ [2, c]

10: Let Ti be an empty hash table of size n for i ∈ [2, c− 1]
11: Encrypt Renc

i ← EncKEnc(Ri) and Tenc
i ← EncKEnc(Ti) for i ∈ [2, c− 1]

12: Set st = ({πi}ci=2, {cnti}ci=2,KEnc)
13: Set EM = ({Aenc

i }ci=1, {Renc
i }c−1

i=2 , {T
enc
i }c−1

i=2)
14: return st,EM

LocORAM.AccessORAM(st, k;EM)
Client:
1: Retreive (Aenc

1 , {Tenc
i }c−1

i=2) from the server and decrypt to (A1, {Ti}c−1
i=2)

2: Set fnd← false and cnti ← cnti + 1 for i ∈ [2, c]
3: if (k, vk) ∈ A1 then
4: fnd← true
5: for all i ∈ [2, c− 1] do
6: if fnd or Ti[k] = 0 then
7: indexi ← πi(n

i/c + cnti)
8: else
9: indexi ← πi(Ti[k])

10: fnd = true
11: Ti[k]← cnti+1

12: ri ← EncKEnc(cnti+1, vk)

13: if fnd then
14: indexc ← πc[n+ cntc]
15: else
16: indexc ← πc[k]

17: A1[cnt2]← (k, vk)
18: send {indexi}ci=2 and {ri}c−1

i=2

Server:
1: Set Ri ← Ri ∪ ri for i ∈ [2, c− 1]
2: send {Aenc

i [indexi]}ci=2

Client:
1: Retreive block (k, vk) from either A1 or (decrypted) Ai[indexi] for some i ∈ [2, c]

2: Choose i ∈ (c, ..., 2) maximal such that cnti > n
i−1
c

3: if i exists then
4: Let πj be a new pseudorandom permutation for j ∈ [1, i]
5: Set cntj ← 0 for j ∈ [2, i]
6: Server updates Ai with the result of OblSort(πi, ni, n

1/c log2 n;Ri)
7: Empty A1 and Tj , such as Aj and Rj on the server, for j ∈ [2, i− 1]

8: Store updated client state
9: send reencrypted (Aenc

1 , {Tenc
i }c−1

i=2) to server
Server:
1: Update the encrypted memory EM accordingly

	Dynamic Local Searchable Symmetric Encryption
	Introduction
	Our Contributions

	Technical Overview
	Layered 2-Choice Allocation
	Generic Local Transform
	ClipOSSE: an OSSE scheme with O4.5mu plus 0.5mu(0.5mu plus0.5mu N/logN1.5mu plus0.5mu) Overflowing Items
	Dynamic Local SSE with O"0365O(loglogN) Overhead
	Unconditional Static Local SSE with O4.5mu plus 0.5mu(0.5mu plus0.5mu logN1.5mu plus0.5mu) Overhead

	Preliminaries
	Symmetric Searchable Encryption
	Security.
	Efficiency Measures.

	Layered Two-Choice Allocation
	Overview of L2C.
	Load Analysis of L2C.

	Dynamic Page Efficient SSE – Overview
	LayeredSSE
	Security and Efficiency

	The Generic Local Transform
	Preliminaries
	Dynamic Two-Dimensional One-Choice Allocation
	Clipped One-Choice OSSE
	The Generic Local Transform
	Overflow of ClipOSSE

	Unconditional Static Local SSE – Overview
	Dynamic Page Efficient SSE
	LayeredSSE
	Security
	Extensions
	Handling Long Lists.
	Handling Deletes.
	Optimized RTT.

	Efficiency

	Unconditional Static Local SSE
	Local ORAM
	More Preliminaries.
	The Scheme.

	Tethys without Stash.
	More Preliminaries.
	The Scheme.

	The Scheme
	Handling the Remaining List Sizes.
	UncondSSE.

	Analysis of L2C
	Security Analysis of LayeredSSE
	Proof Of ClipOSSE
	Proof Part 1: All Lists Have Size N/logd .
	Proof Part 2: General Case
	Preliminary groundwork.
	Notation
	Proof outline.
	Full Proof.

	Applications of L2C

