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Abstract: Complex manufacturing systems are challenging to study because of the high level of
information required and the inaccessibility of most of it. Their tractability is however essential
for the efficiency of state-of-the-art industries. This is particularly the case in the semiconductor
industry that faces high mix and low volume conditions, and for which traditional methods fail
to capture the high complexity and require continuous actions and corrections to adjust to
heterogeneous toolsets and product-mix.

We present the Concurrent WIP (CWIP), a new way of studying such systems at the level of a
process-cluster by identifying each job’s queue from its own perspective. CWIP is designed to be
practical, with a low level of resource investments, yet informative. We explain how CWIP can
be computed based on historical data and then used to derive capacity estimates and clearing
functions without any assumptions on the system or on the form of the functions. In the process,
we derive not only an average workload-dependent capacity, but also a confidence interval on this
capacity. The relevance and efficiency of the proposed estimates are experimentally tested on a
simulated system mimicking a small but complex process-cluster of the semiconductor industry.
The estimates are used to predict WIP absorption times and we show how they characterize
well not only the average behavior but also the full range of possible behaviors of the system.
Finally, we discuss further applications of CWIP, that could be used to compute refined clearing
functions or to monitor complex systems.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: complex logistic systems, production planning and control, modelling and decision
making in complex systems, methodologies and tools for analysis of complexity, data-driven
decision making

1. INTRODUCTION adapted control of the manufacturing systems become

central yet hard to achieve.

The shift of many industries from single-line single-
product to complex reconfigurable and flexible multi-
product manufacturing systems (ElMaraghy, 2008) is seen
in semiconductors (Dequeant et al., 2016b), photonics
(Frazee and Standridge, 2016), and many more “tradi-
tional” industries (Brettel et al., 2014) and is the natural
result of increasing demands for specialized products and
the necessity for industries to keep economies of scale. In
these industries, a process-cluster (a set of process-units

Traditional approaches (e.g., queuing theory, simula-
tion...), which attempt to model systems, become awfully
difficult to carry out: the amount of information required
to just describe accurately complex systems becomes huge,
let alone putting it all together. Besides, in many cases, one
does not need a full representation of the system; then the
cost to set up and to maintain such a well-tailored model
is prohibitive.

that share a flow of products to perform a particular man-
ufacturing step) shifts from doing one specific task with
identical process-units to doing multiple heterogeneous
tasks with multiple heterogeneous process-units. The con-
sequence of this shift to High Mix Low Volume production,
or more generally to the context of Industry 4.0, is that
an accurate understanding and a precise, continuously-

* This work benefited from a funding of the French National Agency
of Technical Research (ANRT).

Indeed, in the scope of this paper, we are not so much
interested by a manufacturing system itself, but rather by
its behavior; our focus is on better understanding how an
existing manufacturing system actually responds to usual
conditions of use so as to be able to control it effectively. A
typical need is to challenge production plans to anticipate
bottlenecks, delays, etc., so that operational corrections
can be implemented in time and in place. To this extend,
we propose a new way of studying manufacturing systems
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that is generic, easy to implement, and nevertheless allows
to derive useful characteristics such as clearing functions
of a set of process-units.

In the remainder of this paper, we review major existing
methods for the study of manufacturing systems with a
focus on cycle times and capacities (section 2). We intro-
duce our new approach, Concurrent WIP (section 3) and
explain how it can be used to derive capacity estimates and
clearing functions (section 4). The approach is validated
on a simulated complex heterogeneous system (section 5).
A discussion and perspectives are proposed to conclude
(section 6).

2. MODELLING COMPLEX MANUFACTURING
SYSTEMS

Our work originates from the semiconductor industry,
and more particularly from plants that display several
challenging characteristics: flexibility, process-units’ het-
erogeneity, batching, setups, re-entrancy, process-units’
breakdowns, process-time variability, arrivals variability,
job-dispatching, queuing rules, as well as other less con-
ventional sources of variability, as reported by Dequeant
et al. (2016b). However we intend our work to be widely
applicable from simple cases to complex ones (by “com-
plex”, we merely mean that the amount of information
required to accurately describe the system is extremely
high; usually part of this information is even unknown) and
we do not assume the presence or absence of any charac-
teristic. Besides, an important aspect of the tractability of
a system is that not only the conjunction of many sources
makes the system complex, but each individual source
can be complex by itself (for instance real-life process-
times are not independent and follow complex patterns
based on the health of the process-unit). Another major
component of the overall complexity is that the sum of all
the small sources of complexity can be really impactful on
the macroscopic scale: the conjunction of factors that are
too complex to model individually cannot be neglected as
a whole.

Many systems can be represented accurately with a vari-
ety of methodologies. Queueing theory, which relies on a
classical server point-of-view, has been widely used. Whitt
(1993) applied it to calling centers while Hopp and Spear-
man (2011) have set a milestone for all practitioners with
their general queuing theory model; many other works
have been done, partly summarized by Dequeant et al.
(2016b), Shanthikumar et al. (2007), C and Appa Iyer
(2013), and Wu (2014). Other approaches have also been
used, for instances: markovian processes have been applied
by Gurumurthi and Benjaafar (2004) to study flexible
queuing systems; linear programming models have been
proposed by Romauch and Hartl (2017) for capacity plan-
ning of cluster-tools restricted to multi-chamber tools in
a static context; Vamsikrishna and Padmanabhan (2016)
have reviewed the use of Petri nets in flexible manufac-
turing systems. To the best of our knowledge, the work
closest to ours is that of Etman et al. (2011): based on
a similar analysis (bottom-up modeling gets challenged
due to the high level of information required), they have
also proposed an aggregated, top-bottom, data-driven ap-
proach, but they have concentrated on the effective process

time, with an assumption of independency and with the
purpose of estimating the parameters of an equivalent
simple closed-form queuing model. On the practitioners’
side and especially in the semiconductor manufacturing
industry, a standard practice to study process-clusters is
to build a capacity model from the theoretical capacity
of all process-units, to individually measure all inefficien-
cies (down-times, idle-times, setup-times...) and to remove
them to get an estimation of the overall capacity, as shown
by Martin (1999).

All those approaches provide detailed and well-tailored
representations of the system under study, but they require
a precise and detailed knowledge of it. In the case of
complex systems, in particular with heterogeneous jobs
and heterogeneous process-units, that information may be
not known, not available or, in the best case, amount to too
high a level of information inducing too high costs when
a detailed representation of the system is not needed. Our
objective is therefore to allow local studies of the actual
performances of a complex system at a low level of resource
investments.

When it comes to planning purposes, cycle times and
capacities are of particular importance, as stressed by Pahl
et al. (2007).

Following Hopp and Spearman (2011), we define the cycle
time of a job as the time between its arrival at a processing
step and its departure from this step; it includes processing
times but also waiting times and possibly transportation
times (cycle times are often called lead times; however
“cycle time” is the preferred term in microelectronics and
some other industries, see Hopp and Spearman (2011)).

The capacity of a system is usually defined as the max-
imum throughput the system can achieve. This is well
illustrated by Little’s Law (Little, 1961, 2011) that states
that the throughput (TH) of a system is equal to the ratio
of the average number of jobs in the system (WIP) by
the average cycle time (CT): TH = WIP/CT. Then, the
throughput corresponds to the capacity of the system if
there is always at least one job waiting. Little’s Law also
underlines the relation between capacity and cycle time.

Even though accurate cycle times or capacities are es-
sential for accurate planning, they are often considered
constant and independent of resource utilization (Kacar
and Uzsoy, 2010); the MRP methodology is a typical
example. Pahl et al. (2007) states that load dependent
cycles times are still rare in the literature and that the
work-around of using maximal cycle times leads to earlier
job releases, higher WIP levels and thus even longer cycle
times. It is thus essential to take into account that cycle
times and capacities are influenced by workload, batching
and sequencing decisions, WIP levels, etc.

The most significant effort to establish variable cycle times
is probably provided by clearing functions. The notion
originates in Graves (1986) (constant proportions, linear
cycle times) and has been refined ever since. As illustrated
by Figure 1, typical clearing functions relate throughput
(or capacity) as a non-decreasing concave function of
the WIP level. Several close-forms have been proposed
on several queuing systems, e.g., by Karmarkar (1989)
and Asmundsson et al. (2009) (see Pahl et al. (2007)
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Fig. 1. Examples of clearing functions (adapted from
Karmarkar (1989); Kacar and Uzsoy (2010)).

for an overview). A major advantage of those clearing
functions is that their close-form allows for an efficient
integration within mathematical programming model for
optimal planning. However, even more recent versions as
those of Kacar and Uzsoy (2010) remain problem-specific.

In what follows, we aim at deriving clearing functions that
are representative of the actual behavior of complex sys-
tems without making assumptions regarding distributions,
independences, or the existence of an equivalent closed-
form model (we want to cope with real complex and fuzzy
systems).

3. CONCURRENT WIP (CWIP)

Concurrent WIP (CWIP) has been first introduced in
Dequeant et al. (2016a); Dequeant (2017) but is worth
being described here. It all starts by changing the reference
frame: instead of classically studying the system from the
process-clusters point-of-view, we propose to study it from
the jobs point-of-view.

The CWIP is a notion defined for every job that waited
before being processed. Informally, it corresponds to the
total amount of processing that has been achieved by
the process-cluster while the job was waiting for being
processed. Discarding jobs that did not wait is not an issue
in our case as such jobs would not provide insightful infor-
mation about the process-cluster; somehow, such jobs have
witness nothing, so they have nothing to say. They may
fall into two categories: either “emergency” jobs that are
processed right-away at the cost of stopping a currently-
processed job, but such jobs should be exceptional in an
industrial context and talk about themselves, not about
the normal behavior of the process-cluster; or jobs that
arrived when some process-unit was idle and ready, and
that only informs that the process-cluster was currently
under-utilized.

Hence, we place ourselves at an individual process-cluster
and consider a given job p that waited for a non-null
time before being processed. The reference frame of job
p is the time interval between its arrival at the process-
cluster and its actual process start: we call it its Effective

Pierre Lemaire et al. / IFAC PapersOnLine 55-10 (2022) 696-701
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Fig. 2. The Concurrent WIP of a job p as the sum of
the workloads of other jobs theoretically processed
during job p Effective Wait Time window on the same
process-cluster.

Waiting Time (EWT,). For every other job i, we call WL,
its Workload (several definitions are possible; see details
below) and we then define the Concurrent WIP of a job p
(CWIP,) as:

CWIP, =Y WL; x i,

7

(1)

where x; , is the theoretical fraction of the workload of job
i processed in the time-window defined by EWT,,.

The theoretical workload process of each job i that we
consider here starts when the process of job i effectively
starts, and lasts for a duration W L;: if the process starts
at time s;, it is assumed to end at time ¢; = s; + WL;.
The theoretical fraction x;, is then the proportion of
theoretical workload process that happens during EW T,
so that WL; x x;, corresponds to the workload amount
of job i that is expected to have been processed while p
was waiting. Fig. 2 illustrates the 6 different cases. If a,, is
the arrival date of job p and s, the date its process starts,
then the general formula is:

e = e f )~ (1,0
1 1

(2)

Effectively, CWIP, is the total amount of workload job p
had to wait to be processed before starting its own process.
The theoretical process used for this definition ensures the
consistency between what is waiting to be processed and
what has been processed. Note that in a simple FIFO
single-family-job case, all jobs have the same workload and
CW 1P, simply corresponds to the number of unprocessed
jobs at the time of arrival (which corresponds to the
traditional view of WIP).

We purposely speak of Effective Waiting Time as it is not
necessarily composed of only waiting time. In practice,
it can be composed of transportation time, loading time,
and other non-waiting but non-processing times. However,
from a logistical point-of-view, it can be seen as effective
waiting time on the same reasoning as in (Etman et al.,
2011).
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Fig. 3. Cycle Time vs Concurrent WIP for a simulated
complex system.

It is essential to define CW P, in terms of workload, and
not in terms of number of jobs, because heterogeneous jobs
are assumed, and different job families have different ex-
pected process times. The workload is therefore a measure
of the expected occupancy weight that a job has on the
process-cluster. In what follows, workloads can be assumed
to be average per-family processing-times measured in
(expected) hours-of-process, but other workload measures
and units could be chosen, depending on the underlying
need.

For an actual system, CWIP is easy to compute from
historical data, provided one knows arrival times, start
times and completion times of each job. As an example,
Figure 3 pictures cycle times vs CWIP for a simulated
complex system (this system is described in appendix A).

4. CWIP-BASED CLEARING FUNCTIONS

We know, from section 2, that estimating capacity is useful
but tricky for heterogeneous systems. In this section we
show how Concurrent WIP enables to capture the behav-
ior of the system and, in particular, to derive measures
of capacity and clearing functions, without making any
particular assumptions.

From Little’s Law, one can derive the capacity of a system
as the ratio between the average amount of WIP and the
average cycle time (provided there is always WIP present).
However, this quantity is a long-term capacity of a stable
system and it is thus improper for short-term planning
taking system variability into account. To this extend, we
adapt the ratio to define C), the capacity witnessed by job
p while waiting:

C,=CWIP,/EWT, (3)
By definition of the CWIP, this quantity is well defined

(EWT, > 0) and is indeed a capacity since there is
always at least one job waiting (job p). This capacity is

& LOESS average
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Tw | = = weigthed average
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<
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©
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2] 1
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o _|

0 5 10 15 20 25 30
CWIP (workload)

Fig. 4. Effective capacity vs Concurrent WIP for a simu-
lated complex system.

expressed in terms of units-of-workload /hours (instead of
a traditional number-of-jobs/hours), in order to enable to
cope with heterogeneous jobs and different job families.
Besides, note that this capacity is not the capacity of
the process-cluster, in the sense of a maximum achievable
performance; it is the effective capacity of the whole
system defined by the process-cluster, dispatching rules,
workload level, mix, etc., all those particular conditions
being caught by the CWIP. Doing so, we shift from a
theoretical capacity barely seen in practice to a practical
measure of the response of a process-cluster to particular
conditions.

For each job we have a snapshot of the effective capacity,
as pictured by Figure 4 (it is, of course, the same data
as the data used for Figure 3). One can see that the
capacity varies in mean and in variance with the CWIP.
To better quantify this last assertion, several aggregations
are possible, as we describe below.

To capture capacity as a single measure, we propose the
following formula:

o >, CWIP, x C, )
>, CWIP,

This formula computes the average effective capacity seen
by all jobs. Jobs are weighted by their Concurrent WIP so
as to give a proportionally higher importance to jobs that
witnessed the system’s capacity over a higher workload.
This measure is shown as a blue dashed line on Figure 4.

To capture the variability of the capacity, we use a LOESS
regression procedure (Cleveland et al., 1992), to get the
average capacity as a function of the workload (orange
curve on Figure 4). This curve corresponds to the clearing
function of the system under study. Remark that, as
expected for a clearing function, it is concave and non-
decreasing (except at the end where data is sparse).
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Fig. 5. WIP absorption for a simulated complex system.

In addition to the average capacity, we also propose to
derive regressions for extreme quantiles (in our case, 5%
and 95%, green and red curves on Figure 4) in order to get
a more precise description of the capacity. The capacity
can now be seen as a random variable for which we know
the average behavior and a 90% confidence interval, both
depending on the level of CWIP.

The relevance of the proposed measures is experimentally
tested on the next section.

5. AN APPLICATION TO WIP ABSORPTION

To ensure the relevance of what we have just discussed, we
challenge our capacity measures and clearing functions on
our simulated system. More particularly, we test whether
WIP absorption can be well-anticipated.

WIP absorption corresponds to the time needed to process
all waiting jobs, providing there are no more arrivals. In
the process, the amount of WIP decreases, which should
impact the effectiveness of the system.

For our simulated system, historical data is known from
a first simulation and have already been presented (Fig-
ure 4). From this data, we know that a WIP of 20 hours-of-
workload is a large yet realistic level of WIP; it corresponds
to the upper-bound level of WIP experienced by 95% of the
jobs. Then, the weighted average capacity and the LOESS
regressions allow to anticipate the time required to absorb
such an amount of WIP.

Figure 5 depicts this “corridor” of WIP absorption. Ab-
sorbing a level of WIP of 20 hours-of-workload should take
at least 0.99 hour and at most 1.95 hours (90% confidence
level, red and green curves) and, on average 1.36 hours
(given by both LOESS average and weighted average,
orange and blue curves). Those values are derived a priori
from the corresponding effective capacities of Fig 4.

Now that WIP absorption has been anticipated, let see
how it actually goes. An experiment runs as follows:

we stop arrivals when 20 hours-of-workload of WIP are
waiting in front of our simulated process-cluster, and
we measure how long it takes for the system to process
it all. Since the process is stochastic, we run the same
experiment 100 times to get a full view of what could
happen. On Figure 5, each grey line corresponds to the
trajectory (remaining WIP level as a function of time) for
one experiment.

One can observe that those trajectories indeed fall around
the mean absorption curve, and within the whole range
between the optimistic and the pessimistic guesses. On the
100 runs, the 5%, 50% and 95% quantiles for absorption
times are 1.01, 1.36 and 1.72 hours respectively, very close
to the anticipated values.

This experiment shows that CWIP-derived clearing func-
tions allow to capture not only the average behavior of
the system, but also its variability and the whole range of
possible behaviors.

6. CONCLUSION

We have introduced the notion of Concurrent WIP
(CWIP) as a novel way to describe the queue of each job
from their unique perspective. The usefulness of CWIP
lies in its ability to describe the short-term response of the
system under variable conditions. This has been illustrated
for WIP absorption and a variable amount of WIP. More
generally, it allows to derive relevant data-driven clearing-
functions, even in the context of complex manufacturing
systems. Contrary to other approaches found in the litera-
ture, no assumptions have to be made on the system itself,
on the influencing factors or on the form of the clearing
function. Moreover, CWIP can be computed at a very low
cost, since only standard historical data is required.

Practically, CWIP and the derived clearing functions allow
to provide accurate short-term estimations of cycle times,
with measures of possible deviations. It should integrate
well into finite capacity planning heuristics such as the one
proposed by Mhiri et al. (2015).

Among the perspectives, CWIP and derived estimates
could be refined, similarly to what is discussed in Etman
et al. (2011). Indeed, they can be adapted to integrate any
aspect of choice: for instance, if one wants to know the
effective capacity for a given job-family or as a function of
priority, one just has to compute the aggregation (e.g.,
formula (4)) accordingly; the only requirement is that
enough data is available to compute reliable values. For
example, computing the effective capacity for different
priorities would allow to describe the impact of priorities
on cycle times.

CWIP could also be used to monitor a system. Computing
capacities and clearing functions (similar to Figure 4)
for the same system on different periods would allow to
compare the effectiveness of the system on the different
periods and reveal capacity losses.
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Appendix A. A SIMULATED COMPLEX SYSTEM

Throughout this paper, we use a simulated system, rather
small in size, but complex in the settings. It corresponds
to the processing of jobs from three families on 5 process-
units.

Each family represents, in average, one third of the
jobs; priorities and process-times follow family-based non-
standard distributions; arrivals follow a Poisson process.
The jobs are scheduling according to a priority-based
policy. The process-units have different speeds, differ-
ent batching-capabilities and there are incompatibilities
among job-families and process-units (see Case J4-M5 in
Lemaire (2019) for details).

2000 jobs have been generated and scheduled to form our
“historical data”.



