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ABSTRACT

The photometric stereo (PS) problem consists in reconstructing the 3D-surface of an object, thanks to a set of

photographs taken under different lighting directions. In this paper, we propose a multi-scale architecture for

PS which, combined with a new dataset, yields state-of-the-art results. Our proposed architecture is flexible: it

permits to consider a variable number of images as well as variable image size without loss of performance. In

addition, we define a set of constraints to allow the generation of a relevant synthetic dataset to train convolutional

neural networks for the PS problem. Our proposed dataset is much larger than pre-existing ones, and contains

many objects with challenging materials having anisotropic reflectance (e.g. metals, glass). We show on publicly

available benchmarks that the combination of both these contributions drastically improves the accuracy of the

estimated normal field, in comparison with previous state-of-the-art methods.
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1 INTRODUCTION

Photometric stereo (PS) is a 3D-reconstruction tech-

nique that estimates the 3D normal at each point of the

surface of an object, using three or more photographs

taken from the same viewpoint but with different light-

ing directions. Early works in this field (e.g. [38]) con-

sidered the ideal case of a perfect Lambertian surface.

However, most images of real world objects exhibit a

wide variety of complex lighting effects, which are not

well predicted by Lambert’s law. Especially, objects’

reflectance often includes a specular component, giving

a more or less shiny appearance to the image surface.

Translucent surfaces, such as glass and acrylic, do not

respect Lambert’s law either. These kind of materials

remain in most cases, poorly managed by traditional

photometric stereo solutions [31]. In order to man-

age non-Lambertian surfaces, deep learning methods

based on convolutional neural networks have recently

emerged as the most efficient ones [31, 34]. The qual-

ity of results obtained by such approaches relies on two

main factors:
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1. The architecture of the network, which must ensure

a good capacity for generalization on new data, in-

cluding data with a different size from the training

set.

2. The quality of the learning dataset, which must be

as representative as possible of the diversity of ob-

servable light phenomena, for the network to be able

to differentiate materials from each other.
PS-FCN [6] Ours

Figure 1: From a set of images taken under different

illumination directions (left), photometric stereo esti-

mates a normal map (right). Our proposed method

is particularly efficient when used on challenging

anisotropic materials, e.g. metal and glass as with this

aluminium bunny from [31].

Contributions
Here, we propose a deep learning-based method for the

problem of calibrated PS (known lighting direction and

intensities), with the following features:

• A multi-scale network architecture for PS, which

analyzes the input images simultaneously at different

scales;

• A new synthetic training set featuring a wide variety

of geometry and non-Lambertian reflectance.



Using these two contributions together, we show that

challenging materials with anisotropic reflectance (e.g.

metal, glass) can be handled appropriately in the PS

problem (Fig. 1). The underlying core idea is that infor-

mation over the whole image is indeed necessary to in-

fer the 3D normal. Otherwise, complex lighting effects

like inter-reflections in metallic objects or sub-surface

scattering inside glass cannot be analyzed. On the con-

trary, our proposed multi-scale architecture takes ad-

vantage of all available complex geometric/lighting in-

formation and long-distance pixel correlations when in-

ferring the 3D normal map.

2 RELATED WORK

Deep learning techniques for photometric stereo are all

based on the use of Convolutional Neural Networks

(CNN). Typically, a fully CNN architecture requires a

fixed number of input images. However, in photometric

stereo, the number of images depends on the acquisition

procedure. To avoid having to train a different network

model for each possible number of input images, two

alternatives have been considered in the literature.

Observation map VS pooling

The first alternative consists in using an observation

map [11, 13, 22, 25, 41], which projects all observations

of each pixel under different illuminations into a fixed-

size space - typically a sampled hemisphere. Therefore,

an observation map makes a fixed-size summary of the

information contained in a variable-size set of images.

However, the spatial information (intra image) is lost,

and the performance drops when the number of input

images is small (typically, <10) [12].

The second alternative rather resorts to specific pooling

modules [5, 6, 16, 18, 37], which aggregate the different

features of each image extracted by previous convolu-

tion layers. This allows to obtain fixed-size image fea-

tures from a variable number of input images. Different

pooling methods can be considered. It is shown in [6]

that max pooling performs better than average pooling

as soon as the number of images exceeds 16. The latter

tends to over-smooth the salient features and to be too

sensitive to the regions of images with little interest, al-

though a max pooling can also sometimes ignore a large

proportion of the features extracted [17]. Still, in con-

trast to the observation map approach, pooling methods

pay attention to intra image information, despite using

less the variations of pixel values across the images.

Architectural variants

To overcome the drawbacks of both these approaches,

Yao et al. [40] introduced a graph method called GPS-

NET. It first aggregates the inter-image information by

using a graph structure, and then uses a CNN to predict

a 3D normal map. This graph structure therefore al-

lows to preserve the spatial information. More recently,

Ikehata [12] proposed a dual-branch transformer (PS-

transformer). One branch takes as input the pixels un-

der different illuminations to get the inter-information,

the other branch processes the images to get the spatial

one. The features extracted are then aggregated, and

a CNN finally gives the 3D normal map. However, as

mentioned in [12] transformers are not particularly suit-

able for dense problems (in our case, a large number of

input images).

In this paper, we rather consider the pooling-based

scheme from [6] as a baseline model, and broaden it

to a multi-scale architecture. Multi-scale architecture

for photometric stereo has already been used, e.g., by

Lichy et al. in the context of directional lighting with

few images (no more than 6 images in inputs) [24], or

for near (non-parallel) lighting [23]. On the contrary,

we design our method to handle the directional light-

ing case with a large number of input images (e.g. 96

images).

Existing training datasets

Regardless of its architecture, a neural network needs to

be trained on a proper dataset to perform well. In prac-

tice though, it is very difficult to acquire a large dataset

of real images with 3D ground truths of photographed

objects. For this reason, deep photometric stereo net-

works proposed in the literature often rely on training

datasets of synthetic 3D objects, notably the Blobby

and Structure datasets introduced in [6], and CyclePS

in [11].

The Blobby dataset is composed of 10 geometric

shapes, each one observed from 1296 distinct view-

points. As the name suggests, the shapes in Blobby

are rather smooth and regular (Fig. 2a). The Structure

dataset consists in objects with complex geometry

containing fine details (Fig. 2b). It is composed of

8 objects, rendered in 3D from 1387 to 6874 view-

points. To simulate surfaces with non-Lambertian light

reflectance, a material from the MERL [28] dataset

is randomly drawn and applied in each rendering,

providing a total of 25920 samples for Blobby and

59292 for Structure. In both cases, each sample is

rendered under 64 different light directions, randomly

selected on the hemisphere (Fig. 3c).

Finally, the CyclePS [11] dataset is also composed of

complex objects, but contains only 18 objects rendered

from 10 views (Fig. 2c). However, the number of ma-

terials available is substantial because Disney’s princi-

pled BSDF [3] parametric reflectance model is used. It

allows the variation of the base colour, roughness, pro-

portion of specular reflectance, etc., thus the objects can

be rendered using a near infinite number of materials.

The training dataset presented in the present paper will

also feature the possibility to generate as many materi-

als as needed, while also considering much more geo-

metric shapes than in existing sets.



(a) Blobby [15] (b) Structure [15] (c) CyclePS [11] (d) DiLiGenT [34] (e) DiLiGenT102 [31]

Figure 2: Samples from existing datasets. The first three [15, 11] are synthetic ones, used for training the neural

networks. Both the last ones [34, 31] are real-world datasets used for benchmarking. Our proposed multi-scale

architecture is evaluated on both benchmarking datasets, and trained on a new synthetic training set, which contains

much more objects with non-Lambertian reflectance.

Existing benchmarking datasets

To validate the relevance of the training datasets, as

well as to verify that the models trained on these

synthetic data are able to generalize to real images,

two real-world datasets exist: DiLiGenT [34] and

DiLiGenT102 [31].

The DiLiGenT dataset comprises 10 different objects,

taken from the same viewpoint under 96 different illu-

minations (Fig. 3a). The reflectance of the objects in

this dataset goes from quasi-Lambertian to moderately

specular. For each photographed object, the ground

truth normal map is provided, as well as the calibrated

lighting directions and intensities. Therein, the ground

truth geometry was acquired by manually registering

laser scans with the images.

The DiLiGenT102 dataset contains 10 different objects.

Each object was explicitly fabricated with 10 different

materials and photographed under 100 calibrated illu-

minations (Fig. 3b). The ground truth was not obtained

by scanning the objects, but from the 3D digital models

used to machine the objects. This real dataset is particu-

larly interesting for evaluating performances on highly

specular materials and translucent ones. Indeed, it con-

tains metallic materials, such as aluminium or steel, and

a translucent one (acrylic). This dataset also contains

diffuse and slightly specular materials, hence most of

real-world material characteristics are present. The di-

versity of object shapes is also high as it contains ob-

jects with simple geometry like balls but also complex

ones like turbines. It offers the opportunity to test the

impact of diverse inter-reflection, shadow and shading

effects. Today, it is the most complete dataset com-

posed of real images available in PS.
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Figure 3: Distribution of illumination directions in the

real DiLiGenT and DiLiGenT102 datasets, and an ex-

ample of a random distribution. The z-axis corresponds

to the optical axis of the camera, with the imaged object

at coordinates (0,0,0).

Uncalibrated PS

In all the methods discussed above, the light directions

and intensities are assumed to be known, i.e. we con-

sider the calibrated PS problem. When these acqui-

sition parameters are unknown, the problem is called

uncalibrated. Uncalibrated PS has been studied e.g.

in [5, 14, 20], and partially solved by defining a first

neural network that predicts the lighting parameters as-

sociated with each acquired image. This estimated data

is then fed into a second network that solves the prob-

lem of calibrated PS. Managing non-directional light-

ing, e.g. near point-light sources [26, 32] or natural illu-

mination [9, 14, 29], is another ongoing research prob-

lem. In this paper we focus on the case of calibrated PS

with known directional light sources.



3 A NEW MULTI-SCALE ARCHITEC-

TURE FOR PS

The multi-scale architecture we propose builds upon the

normal estimation network introduced in [6]. Therein,

each image is first normalized by the calibrated light-

ing intensity, and then concatenated with the calibrated

direction. The resulting ªimageº forms the input to the

feature extractor which processes each (image, direc-

tion) pair independently. Then, all the independent fea-

tures are aggregated through a feature aggregation mod-

ule, and lastly a regression module predicts the normal

map.

In order for the normal estimation to perform

equivalently well on low-frequency geometry and

high-frequency details, we propose to embed this

network in a multi-scale approach which progressively

refines the result as the spatial scale increases. Thus,

our model first focuses on the global aspect of the

object, then progressively insert details such as cracks,

slight bumps, or holes as illustrated in Fig. 4.

Figure 4: Multi-scale normal estimation at three dif-

ferent scales (bottom row is a contrast-enhanced zoom

on the rectangle area). Low-detail geometry is recon-

structed from the first levels. High-frequency details

get refined as the scale increases.

The proposed multi-scale network combines two inde-

pendent architectures (Fig. 5). The first stage takes as

inputs the calibrated lighting directions and the images

(downsampled from the original images to some ini-

tial resolution r0), and outputs a low-resolution normal

map with the same resolution r0. This first stage is es-

sentially similar to the normal estimation network pro-

posed in [6]. In the second stage, the low-resolution 3D

normal map is up-sampled to a resolution r1 = 2r0 (us-

ing bilinear interpolation followed by normalization to

enforce the unit-length constraint on normal vectors),

and concatenated with the images (down-sampled from

the original input images to resolution r1) and light-

ing directions. The process is then repeated until the

resolution of the original images is reached. In these

sequential stages, the inputs differ from the first stage,

thus a new, independent architecture is obviously nec-

essary. Yet, let us emphasize that since this new archi-

tecture is completely convolutional (except the pooling

layer) and as only the spatial resolution changes from

stage to stage, we can share the weights between each

processed scale. Therefore, only two networks actually

need being trained, independently from the number of

scales. The network formed by these two sub-networks

is trained by minimizing the cosine similarity, which

measures the angular difference between the estimated

3D normals and the ground truth ones. It is defined as

follows:

lnormal = 1−∑
i j

N⊤

i j N̂i j, (1)

where N̂i j is the estimated normal at pixel (i, j), and

Ni j is the ground truth one. In terms of computational

cost, our multi-scale CNN has 4.4 millions parameters.

In comparison with the mono-scale approach, it uses

only 5% more memory and takes 14% more time for

inference.

As remarked in [24], one of the most interesting fea-

tures of a multi-scale architecture is its ability to pro-

cess images with arbitrary size (small or large) with-

out loss of performance. Indeed, even if a single-scale

model is fully convolutional and so can process high-

resolution images, such a model with a fixed number of

convolution layers may not have enough convolutions

to synthesize the information over a whole, potentially

large image. And, a network trained to handle a spe-

cific resolution may not behave well for much larger

images. For example, information from the bottom left

of the image may not be used to infer the normal at

the top right. Yet, such an ability would be particularly

useful for handling non-local reflectance effects such as

translucency. See for instance the acrylic ball shown in

the experiments section in Fig. 10, where light passes

through the object. By propagating global information

at different scales, such a limitation of local methods is

overcome.

More importantly, the proposed multi-scale architecture

with shared weights allows one to process images with

higher resolution than the ones used during training.

For example, in our implementation the first processing

resolution is 8× 8 pixels. By taking a resolution mul-

tiplier of two between two scales, four scales are nec-

essary to reach a resolution of 128×128 pixels (which

is the training resolution in our tests), and seven scales

for the DiLiGenT102 images which have a resolution

of 1001× 1001 pixels. Yet, the same weights are used

in both cases, hence a resolution-specific training is not

necessary. In practice, this removes the need for either

rescaling the input images to the resolution of the train-

ing images, or resorting to a (too local) patch-based ap-

proach.



Figure 5: First two stages of the proposed multi-scale architecture. A first architecture, inspired by the PS-

FCN method [6], takes as inputs the calibrated lighting directions and downsampled images, and outputs a low-

resolution 3D normal map. The latter is then up-sampled and concatenated with lighting directions and higher-

resolution images. A second architecture then infers higher-resolution normals, and this part of the process is

repeated until the resolution of the original images is reached (network weights being shared by all scales).

4 PROPOSED LEARNING DATASET

As discussed in Section 2, the existing Blobby and

Structure synthetic datasets lack of diversity in terms

of geometry and textures. For example, although the

Structure dataset is composed of complex objects, all

these objects are statues. Similarly, the number of dif-

ferent materials in the MERL material base is only 100.

This is clearly not enough to model the huge diversity

of materials present in the nature. The CyclePS dataset

partially solves this issue, by allowing to generate in-

finitely many materials by randomly selecting parame-

ters from a parametric BSDF model. Still, it remains

limited in terms of geometry. Overall, a greater diver-

sity of shapes and materials in the images of the train-

ing dataset would be beneficial for training networks for

photometric stereo. For these reasons, we propose here

a new dataset, which includes a large variety of shapes

and materials.

In order to create this dataset, we implemented our

own image data generation pipeline. We used the

Blender [8] software with the Cycles rendering engine.

As a result, our new dataset is composed of two parts:

• Our Blobby contains objects with smooth surfaces;

• Our Object contains objects with complex geome-

try: strong discontinuities, edges, corners, textures

details, etc.

Samples from our training dataset are shown in Fig. 6.

Our Blobby has 3000 distinct objects, generated by

the sum of random Gaussian potentials, followed by

iso-surface extraction using the Marching Cubes algo-

rithm [27]. Our Object contains 76 detailed objects

Figure 6: Examples of images from the proposed

dataset.

which are 3D meshes from the Sketchfab [2] website.

Moreover, to allow the learning of non-Lambertian sur-

faces, more than 1100 different real materials, extracted

from the ambientCG [1] website, are randomly applied

to the objects, much more than the 100 materials of

Structure and Blobby. To complete a lack of diver-

sity of the most complicated materials (metals, glasses,

etc.) that could persist, we generated additional mate-

rials by randomly setting the values of somes parame-

ters (metallic, specular, roughness, anisotropic, etc.) of

Disney’s principled BSDF [3]. To ensure that all possi-

ble materials are represented, during the rendering we

choose to apply to the object with a probabilty of 50% a

real material (from ambientCG), with 17% a glass ma-

terial and with 17% a metal one. The remaining 16%

materials are constructed by randomly selecting all pos-

sible parameters in the principled BSDF (which may

result in non-realistic materials).



# objects # views # total number of samples # lighting # materials

Blobby 10 1 296 25 920 64 100

Structure 8 1387-6874 59 292 64 100

CyclePS 18 10 180 1 300 90 000

DiLiGenT 10 1 10 96 10

DiLiGenT102 10 10 100 100 10

Our Blobby 3000 5 15 000 100 1 100 + infinity

Our Object 76 267 45 000 100 1 100 + infinity

Table 1: Summary of the characteristics of the different learning datasets used in photometric stereo.

If we set a single value for each parameter of the prin-

cipled BSDF, we would obtain a material which is spa-

tially uniform in terms of reflectance, as in the exam-

ple of Fig. 7a. Yet, many real-world objects exhibit a

spatially-varying reflectance, which is a known limita-

tion of existing PS techniques [6]. To solve this prob-

lem in our generation pipeline, we rather incorporated

a few spatially-varying material maps, as in the exam-

ple of Fig. 7b. This technique was used for 50% of the

renderings. It allowed us to create both objects with

uniform reflectance, and others with spatially-varying

one, as illustrated in Fig. 6.

Finally, to generate data having realistic lighting con-

ditions, we rendered all the images with both random

illumination direction (Fig.3c) and random intensity. In

total, 15 000 blobby samples and 45 000 object sam-

ples were generated this way. Table 1 summarizes the

characteristics of the existing datasets, versus the ones

we propose. In order to ensure the reproducibility of

our results, the code and these learning datasets will be

made publicly available online.

Uniform reflectance Spatially-varying

reflectance

Figure 7: Rendering of the same ball with a uniform

base color, or with a spatially-varying one.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of

our proposed multi-scale architecture on publicly

available benchmarks, namely DiLiGenT [34] and

DiLiGenT102 [31]. To evaluate the impact of our new

training dataset, we trained our network both on the

pre-existing training datasets Blobby and Structure

(this training is referred to as ªDS1º in the following)

and on our new training dataset (ªDS2º in the follow-

ing). In the rest of this section, ªMono (DS1)º will

thus refer to the mono-scale architecture trained on

the pre-existing dataset, ªMulti (DS1 + DS2)º to the

multi-scale architecture trained on both the pre-existing

and the new datasets, etc. We will first provide a

few qualitative results to illustrate the importance of

the two building blocks of our contribution, and then

provide a thorough quantitative evaluation on the two

benchmarks.

5.1 Implementation details

Both the ªMonoº and the ªMulti architectures were im-

plemented in Pytorch. The Adam optimizer [21] was

used with a learning rate of 10−4. We trained both the

multi-scale and the mono scale architecture by taking

32 patches of size 128 by 128 as inputs. The training

took a few days on a single Nvidia GeForce GTX 1080

Ti with a batch size of 3 (the maximun we can fit in

our GPU). The inference time depends on the number

of input images and their resolution. For example, by

taking 100 images of 256 by 256 pixels, it takes approx-

imately 1.6 seconds for our multi-scale methods on our

GPU. The inference time scales linearly with the num-

ber of images, while it seems to be roughly multiplied

by a factor of 4 when the resolution is multiplied by 2.

5.2 Qualitative evaluation

Let us start by showing two illustrative results on the

DiLiGenT102 [31] benchmark, on challenging metallic

objects (the copper golf ball and the copper hexagon).

As we shall see, both the new training dataset and the

new multi-scale architecture contribute to improving

the estimation performances on such objects exhibiting

an anisotropic reflectance. Since we do not have ac-

cess to the ground truth normals, for visual purpose we

show as ªground truthº the result we obtained with our

Multi (DS1+DS2) approach, applied to the same object

but fabricated in PVC (a matte material). The example

of Fig. 8 shows that, independently from the training

set, the multi-scale architecture largely contributes to

improving the results on metals. In this example, the

same dataset is used for training both the mono-scale

and multi-scale architectures, and the latter offers vi-

sually more accuate results. Likely, the ability of the

multi-scale architecture to propagate information in a

global manner helps interpreting the anisotropic behav-

ior.



Mono (DS1) Multi (DS1) ªGround truthº

Figure 8: Results of our mono- and multi-scale ar-

chitectures (both trained on the pre-existing dataset

DS1) on the copper golf ball from [31]. The multi-

scale architecture yields much sharper results, espe-

cially around the holes.

The example of Fig. 9, on the contrary, shows the im-

portance of the presence of metallic objects in the train-

ing dataset, independently from the network architec-

ture. It can be observed that the network performs much

better when it is trained on our new training dataset,

even without considering the multi-scale architecture.

Mono (DS1) Mono (DS1+DS2) ªGround truthº

Figure 9: Results of our mono-scale architecture on the

copper hexagon from [31]. Since the new dataset (DS2)

contains much more metallic objects than the existing

one (DS1), training on our new dataset yields largely

improved results.

Fig. 10 illustrates a particularly visible improvement

brought by the multi-scale architecture, which is the

correct handling of translucent materials. In this exam-

ple, we consider again the gulf ball from [31], but this

time coated with an acrylic material. Acrylic is a glass-

like material, with some of the light passing through the

object. As can be seen in the top of Fig. 10, even when

light comes from the right side of the ball, part of its left

side appears illuminated. Without seeing the whole ob-

ject the model could not imagine that there exists a path

underneath the surface that lets the light go through.

On the contrary, the multi-scale approach being global

by construction, such non-local phenomena are better

managed by the network and the overall reconstruction

is clearly more accurate.

Acrylic ball

Mono

(DS1+DS2)

Multi

(DS1+DS2)

ªGround

truthº

Figure 10: An image of an acrylic ball from [31], il-

luminated from the right, and results of our mono-

and multi-scale architectures (both trained on the new

dataset DS2) on the acrylic golf ball from [31]. The re-

construction of translucent objects is improved a lot by

using the multi-scale approach.

Others common phenomenas which are cast-shadows

and inter-reflections are also better handled by our

multi-scale architecture, as Fig. 11 shows.

Mono (DS1) Multi

(DS1+DS2)

Multi

(DS1+DS2)

Figure 11: Angular error map and predicted normal

map for the ªreadingº and ªharvestº objects from [34].

The concave parts, where cast shadows and inter-

reflections occur, are better handled by our approach.

Fig. 12 shows several additional qualitative compar-

isons of the result obtained with our baseline (mono-

scale architecture trained on the existing dataset) and

with both our building blocks included (multi-scale ar-

chitecture trained on the new dataset). The convex ob-

jects (Bunny and Propeller) are very well reconstructed,

despite being fabricated with anisotropic (Aluminium)

or moderately specular (ABS, a type of plastic) materi-

als. The steel turbine reconstruction is also improved,

although on this object our approach shows its limita-

tions. Indeed, this object exhibits concavities, which

create many inter-reflections which are not very well

handled by the network.



ball bear buddha cat cow goblet harvest pot1 pot2 reading average

L2 (Baseline)[38] 4.10 8.39 14.92 8.41 25.60 18.5 30.62 8.89 14.65 19.80 15.39

GPS-NET [40] 2.92 5.07 7.77 5.42 6.14 9.00 15.14 6.04 7.01 13.58 7.81

CHR-PSN [19] 2.26 6.35 7.15 5.97 6.05 8.32 15.32 7.04 6.76 12.52 7.77

PS-transformer (10 images) [12] 3.27 4.88 8.65 5.34 6.54 9.28 14.41 6.06 6.97 11.24 7.66

MT-PS-CNN [4] 2.29 5.87 6.92 5.79 6.89 6.85 7.88 11.94 7.48 13.71 7.56

PS-FCN [7] 2.67 7.72 7.52 4.75 6.72 7.84 12.39 6.17 7.15 10.92 7.39

CNN-PS [11] 2.2 4.6 7.9 4.1 8.0 7.3 14.0 5.4 6.0 12.6 7.2

Mono (DS1) 2.63 6.66 8.27 4.47 4.77 8.24 12.78 6.00 5.38 9.68 6.88

Multi (DS1) 1.60 7.82 7.55 4.33 4.18 7.85 12.36 5.22 5.36 9.04 6.54

OB-Cnn [10] 2.49 3.59 7.23 4.69 4.89 6.89 12.79 5.10 4.98 11.08 6.37

PX-NET [25] 2.03 3.58 7.61 4.39 4.69 6.90 13.10 5.08 5.10 10.26 6.28

Multi (DS1+DS2) 2.05 4.24 7.03 3.9 4.00 7.57 11.01 4.94 5.22 8.47 5.84

Table 2: Mean angular error (in degrees) on the DiLiGenT [34] benchmark.The best result for each object is

indicated in bold, and the second best one is underlined. The lines in blue indicate our results. Combining the

proposed multi-scale architecture ªMultiº and proposed training dataset ªDS2º yields state-of-the-art results, by a

large margin.
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(a) Bunny -

Aluminium

(b) Propeller -

ABS

(c) Turbine -

Steel

Figure 12: Visual comparison of the improvements

brought by the combination of the new architecture and

our new training set, on three objects from [31]. All

three objects are much better reconstructed, although

the steel turbine remains challenging.

5.3 Quantitative evaluation on DiLi-

GenT [34]

Next, we compare in Table 2 our results against the

most recent state-of-the-art methods, on the DiLi-

GenT benchmark [34]. Let us however remark that

PS-transformer [12] takes as inputs no more than 10

images, hence the comparison is biased. Besides, we

emphasize that our mono-scale architecture is largely

inspired from PS-FCN [6, 7], hence Mono (DS1) can

be considered as an optimized version of [6, 7], where

we let the training phase run for much longer. This

table shows that the proposed multi-scale architecture

provides a significant gain of 4.6%, in comparison with

the mono-scale approach ± compare Mono (DS1) and

Multi (DS1). And, as soon as our new training dataset

is considered, the state-of-the-art is outperformed and

we reach an average angular error below 6◦, with a

particularly visible improvement on the most difficult

ªreadingº object (Fig. 11).

5.4 Quantitative evaluation on DiLiGenT

102 [31]

We now quantatively evaluate the impact of the

multi-scale architecture on the DiLiGenT 102 bench-

mark [31]. Note that we process images at their full

resolution (1024 pixels by 1024), requiring 7 scales

in the multi-scale architecture. To this end, we show

in Table 3 the difference between the mono- and the

multi-scale approaches, when they are both trained

on the pre-existing dataset. As can be observed, a

significant gain of 9.3% is observed with the multi-

scale architecture. The gain is most visible on objects

which have a spherical shape and anisotropic material

(top right of Tab 3c, see also Fig. 8 for a qualitative

result on the Golf - CU object), as well as for the most

challenging ªacrylicº material, which is translucent.

(a) Mono (DS1) (b) Multi (DS1)

(c) Multi (DS1) - Mono (DS1)

Table 3: Mean angular on the DiLiGenT102 bench-

mark, considering either the mono-scale architecture

or the multi-scale one, both trained on the pre-existing

dataset DS1. The multi-scale approach yields a signifi-

cant gain, most visible on the top-right part of the table

(spherical shapes with anisotropic reflectance).



(a) Mono (DS1+DS2) (b) Multi (DS1+DS2) (c) CNN-PS [11] (DS1)

Table 4: Mean angular error on the DiLiGenT102 benchmark, with the results of CNN-PS [11] indicated for

comparison. When incorporating both the new dataset and the multi-scale architecture, the state-of-the-art is

largely outperformed.

We repeat this experiment in Table 4, but this time with

our networks trained on the new dataset. Comparing

Tables 3 and 4 allows one to quantify the benefits of

using our new training dataset: the mono-scale archi-

tecture gets improved by 14%, and the multi-scale one

by 30%. Comparing Tables 4a and 4b also allows one

to quantify the impact of switching to the multi-scale

architecture: the results improve by 26%. Particularly

large improvements can be observed on the Turbine and

Acrylic Gulf objects (see also Figs. 12c and 10). For

such objects with non-local light transport (due to inter-

reflections or anisotropic reflectance), the ability of tne

multi-scale approach to get access to a global informa-

tion is indeed of primary importance.

Overall, the combination of the new architecture and

dataset allows one to reach an average error of 11.33◦

on this benchmark. This is to be compared with the

15.78◦ achieved by CNN-PS [11] (Table 4c), which was

the best performing method so far [31]. By comparing

our results with all available state-of-the-art methods

[5, 6, 11, 30, 33, 35, 36, 39, 40, 41], we found out that

the proposed method is the best performer on 73% of

the objects of this benchmark, as indicated in Table 5.

Table 5: Mean angular error achieved by the best per-

former among [5, 6, 11, 30, 33, 35, 36, 39, 40, 41] and

us, on the 100 objects of [31]. Green cases indicate

when the proposed architecture, combined with the new

dataset, gives the best results.

5.5 Limitations

Even if the combination of our multi-scale and our new

training dataset improves the results on non-Lambertian

materials, some shortcomings remain. For example, we

notice that the normals at the border of some translucent

objects are incorrectly predicted (Fig. 13). As shown in

Fig. 14, in this example the the opposite side of the in-

coming light is the most shiny part of the image. Al-

though our multi-scale approach better handles such

anisotropic than the mono-scale one or existing meth-

ods such as CNN-PS, it shows its limitations when the

anisotropy is this much important.

CNN-PS (DS1)

Error: 32◦
Mono (DS1)

Error: 26◦
Multi (DS1+DS2)

Error: 22◦

Figure 13: Results of CNN-PS, our mono-scale and our

multi-scale architecture on the acrylic turbine.

ABS Acrylic

Figure 14: Same turbine, fabricated either with a dif-

fuse (ABS) or an anisotropic (acrylic) material, and il-

luminated from the same direction (coming from ªtop

leftº). The bottom-right area, which is shadowed in the

diffuse case, appears much shinier on the anisotropic

object.



6 CONCLUSION

In this paper, we have proposed a novel deep nor-

mal estimation framework for the calibrated photomet-

ric stereo problem. It builds upon a multi-scale ar-

chitecture which is independent from the resolution of

the images, as well as a new comprehensive learning

dataset. We have shown on publicly available bench-

marks that the combination of these two features yields

state-of-the-art results, with performances particularly

improved on challenging anisotropic materials. In the

future, we plan to extend our approach to handle ob-

servation maps [11] as well, which have recently been

shown to benefit from physical interpretability [13].
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