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Surface energy is a key quantity that controls many physical properties of materials, yet determining its
value at the nanoscale remains challenging. By using N-body interatomic potentials and performing analytical
calculations, we develop a robust approach to determine the surface energy of metallic nanoparticles as a function
of particle size and temperature. A strong increase in the surface energy is obtained when the size of the
nanoparticle decreases in both the solid and liquid states. However, we show how the use of the classical spherical
approximation to characterize the surface area of a nanoparticle leads to an almost constant surface energy with
size as usually done to characterize the thermodynamic and kinetic properties of NPs in many works. We then
propose a correction of the spherical approximation that is particularly useful for small size nanoparticles to
improve the different models developed in the literature so far.

DOI: 10.1103/PhysRevB.105.165403

I. INTRODUCTION

Surface energy (γ ) is an important descriptor of metal-
lic nanoparticles (NPs) as it drives, among others, their
nucleation-growth mechanism, three-dimensional morphol-
ogy, reactivity in various environments, surface segregation,
and so on [1]. To characterize these wide range of phenomena,
the main theories developed in the literature are derived from
models that involve surface energies of infinite systems [2]. In
other words, γ is basically assumed to be size independent.
With this assumption, it is then possible to remarkably pre-
dict the equilibrium shape of free and supported crystallites
based respectively on the Wulff and Wulff-Kaishew relations
at the nanoscale [3–5]. Other examples illustrating the success
of such a choice include understanding Ostwald’s ripening
during particle synthesis or annealing [6,7] and the reactiv-
ity of different metal facets to gas environments in catalytic
processes [8]. From a fundamental point of view, this is very
surprising because it is well known, both experimentally and
theoretically, that many properties (thermodynamic, optical,
and mechanical) of nanomaterials are strongly different from
their bulk counterparts [9–14]. Despite the agreement of the
different models employing the surface energy of the infinite
system with the experimental observations, there is no direct
evidence that the surface energy in case of NPs is indeed size
independent. This is a very complicated issue to be addressed
since there is not any clear and straightforward answer to it
at present. Experimentally, no systematic studies on measure-
ment of surface energy as a function of size are presented due
to the extreme difficulty to measure absolute surface energy of
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very small NPs [15,16]. Theoretically, the existing literature
contains many conflicting and contradictory results concern-
ing the variation of the surface energy of metallic NPs with
size. Actually, a simple dimensional argument is often put
forward in the case of solid NPs [17,18]. According to this
hypothesis, γ decreases with increasing size as the contribu-
tion of the different surface sites (vertices, edges), which are
preponderant for small sizes, decreases at the expense of the
facets. Although many studies agree with this trend [19–25],
other suggest an opposite tendency [26–30]. Indeed, the di-
mensional argument is not that simple since γ is commonly
defined as an excess energy with respect to a reference energy
normalized to a surface area related to the NP. All the dis-
crepancies are mainly due to the difficulty to correctly define
the reference state to characterize the excess energy resulting
from the presence of a surface and in particular the definition
of the considered surface area [31,32]. In any scenario, it can
be noted that there is no direct evidence that the surface energy
remains constant with the size.

In this work, we investigate the surface energy of solid
and liquid Cu NPs as a function of particle size with the aim
to provide a robust γ calculation applicable to characterize
the thermodynamic and kinetic properties of NPs through
experimental or theoretical data. We focus on cuboctahedral
NPs where an analytical study is possible, which is an asset
of incomparable richness to the understanding of the numer-
ical results. With our approach, the correlation between the
effective area considered for γ calculation and its dependence
on size is clearly demonstrated. Based on this statement, we
demonstrate how a judicious and practical choice of NPs
surface results in the independence of perfectly adapted to
investigate the physical properties of NPs through different
macroscopic models.
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II. METHODOLOGY

We perform calculations at the atomic level for Cu NPs
by using a specific N-body interatomic potential derived
from the second moment approximation of the tight-binding
scheme (TB-SMA) [33–35]. More details of the TB model
can be found in Sec. I of the Supplemental Material [36].
Our TB framework gives direct access to the total energy
of each atom. This possibility to easily analyze local energy
distributions will be decisive in the following. The atomic
interaction model is implemented in a Monte Carlo (MC) code
in the canonical ensemble, based on the Metropolis algorithm,
which allows us to relax the structures at finite temperatures
[37]. In the canonical ensemble, MC trials correspond to ran-
dom displacements. The average quantities are calculated over
106 MC macrosteps, a similar number of macrosteps being
used to reach equilibrium. A MC macrostep corresponds to
N propositions of random atomic displacement, N being the
total number of atoms of the cluster. We consider cubocta-
hedral solid NP bounded by six squares and eight equilateral
triangles which structure is constructed on the face-centered
cubic (fcc) lattice, leading to the presence of outer facets of
{100} and {111} orientations, respectively. From this structure,
it is possible to define analytically all the sites for a given
cluster size with k shells [18]. Indeed, this cluster contains
12 vertices (v), 24(k-1) atoms in edges (e), and 6(k-1)2 and
4(k-2)(k-1) atoms on {100} and {111} facets ( f ), respectively.
Moreover, the total number of atoms N (k), the surface S(k),
and the volume V (k) are given by the following equations::

N (k) = 10

3
k3 + 5k2 + 11

3
k + 1, (1)

S(k) = 2(3 +
√

3)(kd )2, (2)

V (k) = 5
√

2

3
(kd )3, (3)

where d corresponds to the equilibrium distance between
first neighbors. To characterize the evolution of surface en-
ergy of solid and liquid states, calculations are done at two
temperatures (T = 5 and 1500 K). As seen in Sec. I of the
Supplemental Material [36], the NPs are definitely in the
liquid state for T = 1500 K. Intermediate temperatures were
not considered because the presence of solid-liquid region at
the transition makes the analysis very difficult. It is clear that
the calculation of γ but also its definition is not so simple and
is subject to considerable studies [38,39]. However, the main
goal of the present work is essentially on providing a useful
calculation for the exploitation of experimental or theoretical
data to characterize the thermodynamic and kinetic properties
of NPs. As a result, the so-called surface energy resulting from
the creation of a surface is defined as an excess internal energy
(Eexc) normalized to a given surface area, A:

γ (R) = Eexc

A
, (4)

where Eexc = ENP(R) − Eref . ENP(R) is the total energy of the
NP of radius R where necessarily R and the number of k shells
are linked. Last, Eref is a reference energy to be defined. The
calculation of ENP(R) is not an issue since it is a straight-
forward output of the MC simulations. On the contrary, Eref

FIG. 1. Energy profiles along the radius of NPs containing 147,
923, and 5083 atoms (from top to bottom). Left: Solid NPs (T =
5 K); right: Liquid NPs (T = 1500 K). The gray and blue areas
represent the core and surface atoms, respectively.

and A are not well-defined quantities. Typically the reference
energy is commonly chosen as the energy of the bulk fcc
in the solid state [23,31,40]. Regarding the surface area, its
choice is not unique [32] and can strongly affect the results.
To overcome this problem, we first consider the case of solid
particles and then extend our approach to liquid systems.

III. SOLID NANOPARTICLES

We apply two complementary approaches to get an insight-
ful analysis of our results. The first is to calculate the surface
energy from MC simulations according to Eq. (4) where ENP

(R) is obtained after relaxation at 5 K. The second one consists
of developing an analytical model by assuming that all excess
energy is ascribed to the surface sites [17,18]. This is made
possible because all surface sites are perfectly identified. In
both approaches, it is quite natural to consider A as the exact
surface S(k) of the cuboctahedral shape [see Eq. (2)]. Further-
more, the identification of local energies within the NP turns
out to be very precious to tackle the challenge of correctly
defining Eref . In Fig. 1(a), we present the energy profiles along
the radius of the different nanoparticles (147, 923, and 5083
atoms) in solid state. Such an analysis is made possible by
the calculation of local energies derived directly from the TB
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FIG. 2. Calculated surface energies for cuboctahedron Cu NPs as
a function of size based on an (a) exact surface S(k) and (b) a spher-
ical (sa) approximation as well as corrected spherical approximation
(csa). Both figures present analytical and MC results.

model. Interestingly, we can clearly identify two populations,
i.e., core (gray area) and surface atoms (blue area). In case
of solid NPs, the first corresponds to the core atoms which
have energies around −3.50 eV/atom. The second population
corresponds to surface atoms which are less stable and have
energies reaching −2.60 eV/atom. The discontinuous aspect
of the curve is mainly due to the layer structure of solid NP
giving rise to this type of profile. Consequently, Eref is simply
the average energy of atoms identified in core position. In
principle, it would be relevant to determine a different core
energy for all sizes of NP. However, as the variation is very
small (less than 10 meV/atom between Cu147 and Cu5083), we
choose to determine Eref from the largest NP where the plateau
corresponding to the core atoms is more clearly defined. In
case of solid NP, Eref is equal to −3.50 eV/at which is exactly
the total energy per atom of a face-centered cubic bulk Cu in
our TB model. This result confirms that defining Eref from the
bulk system, as done in many works, is completely justified.

At this stage, all the quantities required to determine γ (R)
from MC simulations according to Eq. (4) are known. The
calculated surface energies for the cuboctahedral Cu NP as a
function of size are shown in Fig. 2(a). It can be seen that the
surface energy decreases with particle size. More precisely,
there is a significant variation for small particles (<20 Å),
from 1.92 to 1.22 J/m2. For larger particles, the decrease
of γ with the size becomes negligible to reach a constant
value around 1.20 J/m2. We now consider an analytical model
where the determination of γ (k) is simply reduced to the
following equation:

γcubo(k) =
∑

i niγi

A
, (5)

where γi represents the local excess energy for each surface
sites i (i = v, e, f ) defined as Ei − Eref and ni being the
number of sites of type i. In this approach, it is assumed
that the excess energy is located only on the surface sites.
The slice view shown in Fig. 3 provides a direct insight
into the distribution within the nanoparticle and confirms the
presence of two populations where the excess energy is lo-
cated at the surface. Although subsurface atoms have still a
slightly different energy than in bulk, we consider that they
do not play a decisive role and that they can be neglected in γ

FIG. 3. Slice views showing the presence of core and surface
populations for NPs containing 923 atoms in solid state where the
contribution of subsurface atoms can be identified. Energies are
in eV.

calculations. In a first step, A is considered as the exact surface
S(k) of the cuboctahedral NP [see Eq. (2)], and the related sur-
face energy is noted γ exact

cubo (k). Meanwhile, the local energies
of all sites (Ei) are calculated from our TB potential. As seen
in Fig. 4, we plot the histogram of local energies for Cu NPs
with total number of atoms, N = 147, 923, and 5083 atoms.
Different populations of atoms can be identified [Fig. 4(a)].
The energies lie between −3.6 and −3.4 eV/atom are due to
the bulk atoms which have 12 neighbors. The second pop-
ulation corresponds to the surface atoms which energies are
below −3.2 eV/atom. As expected, the contribution of sur-
face atoms decreases as the cluster size increases from Cu147

to Cu5083. Moreover, a local analysis presented in Fig. 4(b)
provides a spatial representation of the different surface sites
with the following hierarchy: E{111} < E{100} < Ee < Ev . This
result is not surprising since it is directly related to the coordi-
nation number (Zi) of each site. The larger Zi is, the higher the
cohesion energy. Finally, it is particularly interesting to note
that local energies are independent on the size and remain con-
stant whatever the nanoparticle under consideration. From
this local analysis, the resulting values of γi are presented in
Table I. From γ exact

cubo (k), the analytically calculated surface
energy for the cuboctahedral Cu NPs as a function of size

FIG. 4. (a) Analysis of the local energies in a histogram form
for Cu solid NPs containing 147, 923, and 5083 atoms at 5K.
For the sake of clarity, the values for the number of atoms in case
of the NP147 have been increased by a factor of 10. (b) Analysis of
the local energies on surface sites of solid Cu923 NP where different
populations can be identified according to the following hierarchy:
Ef < Ee < Ev . Note that the distinction between the different facets
({111} and {100}) is not visible at this scale. Energies are in eV/at.
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TABLE I. Local excess energy for each surface site and crucial
quantities that are involved in the calculation of γ exact

cubo (k) and γ sa
cubo(k).

Values are given in eV for all noble metals.

2γe − γ100 2γe − 3
2 γ100

γv γe γ100 γ111 −γ111 − 4
3 γ111

Cu 0.94 0.62 0.43 0.37 0.44 0.09
Ag 0.60 0.38 0.28 0.22 0.26 0.05
Au 0.56 0.36 0.29 0.21 0.22 0.005

is shown in Fig. 2(a). Similarly to results obtained from MC
simulations, the surface energy decreases strongly with size.
Moreover, results from the analytical model are in good agree-
ment with the complete MC calculations, the small difference
observed being due to the the subsurface contributions. To
go deeper and analyze this tendency, the first-order Taylor
expansion of γ exact

cubo (k) turns out to be very precious (see details
in Sec. II of the Supplemental Material [36]):

γ exact
cubo (k) ≈ γ exact

∞ + 6[2γe − γ100 − γ111]

kd2(3 + √
3)

γ exact
∞ = 3γ100 + 2γ111

d2(3 + √
3)

, (6)

where γ exact
∞ corresponds to the plateau observed in Fig. 2 for

large NPs [i.e., for k → ∞ in Eq. (6)]. In addition, the second
term is necessarily positive according to the γi hierarchy dis-
cussed above. As seen in Table I, this argument is valid for all
noble metals. Consequently, the heterogeneity of the surface
with different types of site explains the decrease in γ (R), as
already argued in previous works with a simple dimensional
argument [17,18].

On a purely theoretical point of view, it is quite natural
to consider the true surface of the cuboctahedron S(k) as
done so far. Experimentally, it is, however, not always pos-
sible to identify the exact shape of the NP (i.e., icosahedron,
decahedron, and cuboctaedron) and even less to determine
the exact surface area of the observed NPs. In practice, a
spherical approximation of the different NPs to be analyzed
is made. Typical examples from transmission electron mi-
croscopy (TEM) images are presented in Fig. 5(a) where a
radius R can be assigned to each NPs in solid states (see
Sec. III of the Supplemental Material for experimental details
[36]). Within this spherical approximation, determining A of
a solid NP from MC simulations is also nontrivial. Actually,
the effective surface is equal to 4πR2. To address the arising
difficulty in MC simulations, R is determined from the atomic
density, ρ∞ = √

2/d3 (see Sec. IV of the Supplemental Mate-
rial [36]) using the following relation: R3(k) = 3N (k)/4πρ∞.
To highlight the relevance of such a choice, Fig. 5(a) shows
the sphere obtained from ρ∞ on snapshots of MC simula-
tions from solid NPs, whose surface area is noted Ssa (k).
The comparison with the determination of the radius of the
NPs from TEM images is clearly relevant. From Eq. (4), it
is now possible to calculate the dependency with the size of
the surface energy within the spherical approximation from
MC simulations. As seen in Fig. 2(b), the conclusion differs
significantly from the exact calculation. Indeed, almost no
variation is observed and γ remains rather constant around

FIG. 5. Spherical approximation to determine the effective sur-
face area from TEM images of Cu NPs in (a) solid (facetted NPs
at 573 K) and (b) liquid states (nonfaceted NPs with a spherical
shape at 1073 K). On the right: Comparison of the sphere of radius R
obtained from the atomic density (ρ∞) with configurations from MC
simulations for different sizes and states of NPs containing 55 atoms,
561 atoms, and 2869 atoms. For the liquid cases, it is obvious that a
snapshot is not so representative of the situation since the particle is
strongly deformed during the simulation.

1.23 J/m2. Consequently, the surface energy using the spher-
ical approximation does not depend on the size of the system.
In fact, the apparent discrepancy between the two approaches
can be attributed to the different ways to calculate the surface
area. Once the gap between both approaches becomes neg-
ligible, then an equivalent behavior can be observed where
the surface energy varies only slightly (see Fig. 6). Obviously,
this happens for sufficiently large particles where the spherical
approximation is all the more adapted. To better under-
stand these differences with the strong decrease observed for
γ exact

cubo (k), a first-order Taylor expansion of γ (k) within the
spherical approximation (sa), noted γ sa

cubo(k), is done leading
to (see Sec. V of the Supplemental Material [36]):

γ sa
cubo(k) ≈ γ sa

∞ + 6[2γe − (3/2)γ100 − (4/3)γ111]

kd2(25π )1/3

γ sa
∞ = 3γ100 + 2γ111

d2(25π )1/3
. (7)

As seen in Fig. 2(b), we confirm an almost constant variation
of γ (k) around 1.20 J/m2. Such observation is in agreement
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FIG. 6. Relative difference between the surface area calculated
according to the spherical approximation and the exact one of the
cuboctahedron as a function of size.

with MC simulations where the discrepancy in the plateau is
mainly due to the assumption of considering only surface sites
in the analytical approach. Unfortunately, the variation of γ

with size is not straightforward contrary to the exact calcula-
tion discussed previously. Indeed, nothing can be concluded
about the importance of the predominant term in the numera-
tor of Eq. (7). In the particular case of Cu, it is close to zero ex-
plaining the stability of γ with size. To generalize this result,
the estimation of the numerator has been extended to other
noble metals (Ag and Au) confirming this trend (see Table I).
Within the spherical approximation, our analytical calcula-
tions therefore suggest that the surface energy does not vary
with the size and is equal to γ sa

∞ [i.e., for k → ∞ in Eq. (7)].
In the following, we analyze the error made in the spherical

approximation where two strong assumptions were estab-
lished. The first one was to determine R(k) from the atomic
density where all the atoms constituting the NP contribute
equally. However, as seen in Sec. IV of the Supplemental
Material [36], ρ∞ is correctly reproduced (at least to first
order) when only considering that the surface atoms, Nsurf (k),
contribute half compared to the core atoms. In the defini-
tion of R(k), this is equivalent to consider that the total
number of atoms is N (k) − Nsurf (k)/2. In this corrected spher-
ical approximation (csa), the surface area becomes Scsa (k) =
Ssa (1 − 1/k). By applying this new surface formulation to the
MC simulations, a significant variation of the surface energy
with the size of the NPs is found. The result (corrected MC)
presented in the Fig. 2(b) shows a decrease for NPs smaller
than 20 Å to reach a plateau in the order of 1.20 J/m2. As
seen in Fig. 2(b), the same trend is observed for the analytical
model, γ csa

cubo(k), where Scsa (k) is considered. In other words,
by using this simple surface area correction to the spherical
approximation, it is possible to restore the energy dependence
obtained with an exact description of the surface area. The
second assumption comes from the morphology, i.e., sphere
rather than cuboctahedron. Actually, the following relation-
ship γ csa

cubo(k) ≈ 1.10γ exact
cubo (k) can be established (see Sec. V

of the Supplemental Material [36]). Thereby, the only differ-

FIG. 7. (a) Calculated surface energies for liquid Cu NPs as
a function of size within a spherical approximation and corrected
spherical approximation. (b) Analysis of the local energies on surface
of liquid NPs containing 561 and 5083 atoms. Energies are in eV.

ence between the exact calculation and the corrected spherical
approximation ones results in a morphological factor due to
the difference between a sphere and a cuboctahedron. To
conclude, the spherical approximation is very appropriate for
large sizes (with a constant form factor) but must be corrected
for small sizes by a factor modifying the radius of the NP,
which itself depends on the size and takes into account the
specific contribution of the surface atoms.

IV. LIQUID NANOPARTICLES

Let us now consider liquid NPs by applying the approach
developed for solid NPs to determine Eref and A in Eq. (4).
For the reference energy, it is simply a question of calculating
the average energy of a bulk system at 1500 K. From the
energy profiles presented in Fig. 1(b), Eref is equal to −3.18
eV/at and corresponds to an infinite system in the liquid
state at 1500 K. To determine the surface area, one can no
longer rely on an exact calculation. Moreover, the corrected
spherical approximation allows a precise determination of this
area by assuming that the number of surface atoms is very
close to that in the solid state. Meanwhile, the usual spherical
approximation is subject to the same disadvantage as in the
solid state, i.e., an overestimation of the volume (and therefore
of the radius) of the NP at small sizes, which is even greater
the smaller the size is. Figure 7(a) shows that the variation
of the surface energy with the size of the NP in the liquid
state is very similar to that observed in the solid state. Thus
the calculation with the usual spherical approximation shows
a constant surface energy close to 1.15 J/m2, whereas the
corrected spherical approximation gives a strong increase of
γ when the size decreases, a variation slightly higher than
that observed in the solid state. This significant variation may
seem very surprising if we refer to the solid state where the
weight of highly energetic sites (edges and vertices) decreases
in favor of that of the facets when the size increases. However,
vertices, edges, and facets no longer exist in the liquid state
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and it is tempting to think that the surface energy distribution
is relatively homogeneous. To address this issue, we deter-
mined the local energies in terms of spatial distribution in the
liquid state. As seen in Fig. 7(b), we show the local energies
for two NP sizes (561 and 5083 atoms). The particles do adopt
a quasispherical shape without the presence of facets and
edges in agreement with TEM observations [see Fig. 5(a)].
Nevertheless, the energy analysis shows a strong surface het-
erogeneity. There is a difference of about 0.8 eV between
the most energetic and the least energetic surface atoms,
compared to a difference of about 0.6 eV in the solid state
between vertices and facets {111}. This unexpected presence
in the liquid state of highly energetic surface atoms whose
weight decreases with increasing size [cf. Fig. 7(b)] is at the
origin of the strong variation of γ with size, as in the solid
state. Note that all snapshots analyzed for the different sizes
considered in this study exhibited this strong disparity with
the presence of high-energy sites. The determination of the
statistics of these sites as a function of size and temperature
remains to be done through an analysis of the average energy
distributions (see Sec. VI of the Supplemental Material [36]).
While relevant, this is beyond the scope of the present study.
As proposed in case of solid NPs, this result therefore suggests
that a heterogeneous surface necessarily tends to a variation in
the value of γ .

V. CONCLUSION

Based on both numerical simulations and analytical devel-
opments, this study explains the origin of the disagreements
regarding the evolution of the surface energy with the size of
the NPs [19–21,25,28,32]. Our microscopic approach being
direct, it allows us to go beyond the approximations or param-
eters that are present in many works in the literature ranging
from an atomistic description [21,25,40] to macroscopic mod-
els. For the latter, the work of Tolman [41,42], which is an
extension of a development based on Gibbs theory [43], stands
as a reference. From a macroscopic thermodynamic point of
view, this formalism gives an expression of the variation of the
surface tension γ of a spherical liquid droplet as a function
of its radius by introducing a characteristic length, δ, called
the Tolman length [44,45]. It is defined as the difference
between the radii of the equimolar dividing surface (Re) and
the surface of tension (Rs) of the droplet. The position of the
equimolar surface is defined when the chemical potential of
the liquid and the gas phases are equal. Unfortunately, this
macroscopic model is not adapted to describe the surface
energy at the nanoscale since it involves phenomenological
quantities (Re, Rs) that are difficult to justify (or define) even
at the microscopic level. As a result, our unique approach
thus unifies numerous works and approaches in the literature.
A strong dependence is obtained when the exact surface of
the NP is considered, which is possible for simple forms.
In contrast, using the classical spherical approximation, we
obtain a surface energy that is almost independent of the size
of the NP. If we correct the classical spherical approxima-
tion by taking into account the specific contribution of the
surface atoms, we obtain a very good agreement with the
exact calculation within one morphological factor. This result
is particularly useful for dealing with liquid NPs, for which

the exact surface area can hardly be calculated. Moreover,
density functional theory calculations can be used to deter-
mine γ , either by considering the exact area when possible or
by using the corrected spherical approximation. The findings
reported here for cuboctrahedron NPs may be transferable to
experimentally observed shapes (truncated octahedra, deca-
hedra, and so on) which are also bounded by {111} and/or
{001} facets. In the particular case of icosahedral NPs, the
excess energy is localized at the surface as well as in the
core of the NP making the generalization of our approach
more delicate or even impossible. How then can we explain
the success of thermodynamic or kinetic approaches that use
the classical spherical approximation and that reproduce well
the experimental data, while neglecting the variation of γ with
size [3–8] The answer is that they rely on the expression of the
chemical potential which involves the product γ A and where
the excess energy of the NP is considered to be localized at
the surface (and does not contain core contributions as for
the icosahedron). In these approaches, it is therefore essential
to respect the consistency of the calculations of γ and A.
This product can be evaluated either by considering the exact
value of the surface area A and the exact variation of γ with
size, or by considering the value of A given by the classical
spherical approximation and the value of γ consistent with
this calculation of A, namely a constant value equal to that of
a semi-infinite bulk. In this latter case, even if the variations
of γ and A are not exact, the product is correct explaining the
success of thermodynamic or kinetic approaches based on the
classical spherical approximation.

To conclude, we present a robust and direct method to
calculate the surface energy of metallic nanoparticles of dif-
ferent sizes in the solid (here with cuboctahedron shape) and
liquid states to reconcile the apparently contradictory results
described in the literature. By considering an exact surface
of the NP, we show that a significant dependence on size is
obtained with a strong increase of the surface energy when
the size of the NP decreases. In contrast, using the classical
spherical approximation to characterize the surface area, we
obtain a surface energy almost independent of the size of the
NP for solid and liquid states. Such a discrepancy does not
come from the morphology (sphere vs. cuboctahedron) but
from the definition of the radius of the considered NPs. To
overcome this problem, we propose for the first time a simple
way to introduce a corrective term allowing to restore a strong
variation of the surface energy from the spherical approxima-
tion. In contrast to previous works in the literature, we sought
to develop an approach that could be applied to experimen-
tal data and used in thermodynamic and/or kinetic models.
Indeed, the use of the spherical approximation being simpler
in practice for the analysis of experimental data (as shown
in our work from transmission electron microscopy images)
or for theoretical developments, it then becomes possible to
improve the models used so far to better characterise the
thermodynamic and kinetic properties of NPs. Moreover, the
interpretations and the correction presented in this manuscript
can be applied to the surface energy of any metallic NP what-
ever the state and for different shapes. Our work thus is an
advance in understanding likely to influence thinking in the
field and represents a significant step towards understanding
the unique properties of nano-objects.
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