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Abstract
Wild animal species living in anthropogenic areas are commonly carriers of 
antimicrobial-resistant bacteria (AMRB), but their role in the epidemiology of these 
bacteria is unclear. Several studies on AMRB in wildlife have been cross-sectional in 
design and sampled individual animals at only one point in time. To further under-
stand the role of wildlife in maintaining and potentially transmitting these bacteria to 
humans and livestock, longitudinal studies are needed in which samples are collected 
from individual animals over multiple time periods. In Europe, free-ranging yellow-
legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, 
and have been found to carry AMRB in their feces. Using bacterial metagenomics 
and antimicrobial resistance characterization, we investigated the spatial and tempo-
ral patterns of AMRB in a nesting colony of yellow-legged gulls from an industrialized 
area in southern France. We collected 54 cloacal swabs from 31 yellow-legged gull 
chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased 
over time and was not spatially structured within the gull colony. This study highlights 
the complex occurrence of AMRB in a free-ranging wildlife species and contributes to 
our understanding of the public health risks and implications associated with ARMB-
carrying gulls living in anthropogenic areas.
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1  |  INTRODUC TION

Antimicrobial resistance (AMR), defined as the ability of a microor-
ganism to resist a substance that would normally be inhibitory or le-
thal to it (WHO, 2020), is becoming one of the most serious modern 
threats to human health worldwide (Huemer et al., 2020; Morrison & 
Zembower, 2020). The causes of AMR are various, but the main ones 
clearly result from anthropogenic activities, especially antimicrobial 
use and misuse in human and veterinary medicine (Ayukekbong 
et al., 2017; Michael et al., 2014). Because of the close connections 
between human, animal, and environmental health, it is also increas-
ingly recognized that a “One Health” approach is essential when 
addressing problems associated with AMR (Singh et al., 2021; Swift 
et al., 2019; White & Hughes, 2019).

Among the important topics that are still only partially eluci-
dated is the role of wildlife in the epidemiology of antimicrobial-
resistant bacteria (hereafter AMRB). Numerous wild species, 
notably mammals and birds, have been shown to carry a large di-
versity of AMRB and associated AMR genetic determinants in their 
feces (Goulas et al., 2020; Ramey & Ahlstrom, 2020; Vittecoq et al., 
2016). Wildlife do not normally have direct exposure to antibiotics, 
but they can be exposed through anthropogenic sources, such as 
food and water contaminated with pharmaceutical effluents and 
sewage (Al-Bahry et al., 2009; Alroy & Ellis, 2011). Wildlife can also 
be exposed to antimicrobial-resistant substances through the soil, 
and some of this exposure may be from natural sources (Cytryn, 
2013; Nesme & Simonet, 2015). However, it is unclear whether 
wildlife are maintenance hosts or bridge hosts of antimicrobial re-
sistance. Longitudinal and spatiotemporal studies are needed to 
address this question.

Gulls, especially species feeding from anthropogenic sources, 
are regularly reported to carry AMRB of clinical importance for 
human and livestock (Aberkane et al., 2017; Russo et al., 2021; Stedt 
et al., 2014; Vergara et al., 2017). As an example, landfill-foraging 
gulls contribute to the maintenance of multiresistant Escherichia coli 
of clinical importance in Alaska (Ahlstrom et al., 2019), and it has 
been experimentally shown that they have the potential to act as 
bridge hosts for colistin-resistant E. coli between the environment 
and humans/livestock (Franklin et al., 2020). The yellow-legged gull 
is a common landfill-foraging species that is widely distributed along 
Mediterranean coasts (Vidal et al., 1998). It mainly feeds from an-
thropogenic sources, including industrial fishing discards and human 
waste from landfills, and waste from other human activities (Duhem 
et al., 2003, 2008; Ramos et al., 2009). Depending on the context, 
these gulls can be considered either as maintenance hosts, contrib-
uting to the maintenance of AMRB in the environment, or as envi-
ronmental reservoirs or bridge hosts, providing a link through which 
AMRB can be transmitted from the environment to humans or live-
stock (Caron et al., 2015; Franklin et al., 2020).

Our study was performed in a breeding colony of yellow-
legged gulls in the Rhone delta in the Camargue (southern France). 
Previous work by us on this colony found evidence for the occur-
rence of AMR enterobacteria in gull chicks nesting on this islet, 

for example, carbapenem-resistant E. coli isolates positive for 
the bla VIM-1 gene (Vittecoq et al., 2017). The objectives of this 
study included the use of a longitudinal study design to explore 
the temporal patterns of multiresistant Enterobacteriaceae isolates 
collected from yellow-legged gull chicks during their first weeks 
of life, and to identify the genetic diversity and spatial structuring 
of third-generation cephalosporin (3GC)-resistant enterobacte-
ria among chicks on the island. We focused our genetic analyses 
on 3GC-resistant Enterobacteriaceae because they represent one 
of the most important public health threats associated with anti-
microbial resistance in Europe (Rohde et al., 2018; Rottier et al., 
2021), with 3GC-resistant E. coli causing bloodstream infections 
that may increase hospital stays and even cause mortalities (de 
Kraker et al., 2011). Understanding these dynamics is important 
since it may help to identify high-risk areas and contexts for AMRB 
transfer from the environment to humans or livestock as well as to 
develop efficient surveillance programs to monitor these transfer 
risks (Torres, Carvalho, et al., 2020).

2  |  MATERIAL S AND METHODS

2.1  |  Study site and sampling data

The Rhone delta in the Camargue is a large biodiversity hotspot 
that hosts around 300 bird species annually. It also has industrial 
(e.g., petrochemical industry and metallurgy) and tourism activities 
that strongly impact the surrounding ecosystems (Fraixedas et al., 
2019). This study was conducted on the small islet of Carteau lo-
cated near the village of Port-Saint-Louis du Rhône (4°51′26.50″E, 
43°22′39.93″N) in the Camargue area of southern France (Figure 
S1). The islet, which is approximately 210 m long and 65 m wide 
(total area 6800 m2), harbors a colony of yellow-legged gulls (Larus 
michahellis) that has an estimated population of 400 breeding pairs. 
We sampled 31 gull chicks from 20 nests: 54  cloacal swabs were 
collected from chicks aged from 1 to 3 weeks on three dates in 2016 
(25 April, 5 May, 17 May), hereafter denoted D1, D2, and D3. We 
sampled 23 individuals on two occasions (11 on D1 and D3, 12 on 
D2 and D3), and 8 chicks were only sampled once (five on D1 and 
three on D2). Figure 1  summarizes the schematic sequence of the 
protocols performed, from sampling to genomic analyses.

2.1.1  |  Ethics statement

Our study was approved by the Direction Départementale des 
Territoires et de la Mer, Prefectural Order No. 13-2016-03-14-003 
of March 14, 2016, granting authorization in Article L.411-1, 
under Article L.411-2, 4 of the Environmental Code, for sampling 
protected species as part of a research program on antibiotic-
resistant bacteria that are transmissible between humans and 
wildlife. Birds were handled and sampled under the supervi-
sion of two registered bird banders from the Museum National 
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d’Histoire Naturelle, Paris (Thomas Blanchon and Antoine 
Arnaud). Permits for fieldwork were issued by the municipality of 
Port-Saint-Louis and the Communauté d’Agglomération Toulon 
Provence Méditerranée.

2.2  |  Isolation of bacteria

Immediately after sampling, the cloacal swabs were placed in Oxoid 
Tryptone Soya Broth (Thermo Scientific), transported in a cooler to 
the laboratory, and incubated at 37°C overnight. Following incuba-
tion, a loopful was streaked on agar plates with different media, as 
follows:

1.	 MacConkey without Cristal Violet (Bio-Rad reference 3564154) 
agar supplemented with an Ofloxacin antibiotic (10  µg/ml) 

(McC+O, Sigma ref. O8757-1G) for selective isolation of 
Enterobacteriaceae at broad-spectrum, first-generation bacte-
ricidal fluoroquinolone.

2.	 Selective chromogenic medium for the screening of 
carbapenemase-producing Enterobacteriaceae, primarily KPC 
and metallo-carbapenemase-type CPE (CARBA O), and OXA-48 
type CPE (CARBA T) (bioMérieux ref. 414685).

3.	 3GC agar for selective isolation medium (3GC B: Drigalski with 
Cefotaxime [15 µg/ml] and 3GC R: MacConkey with Ceftazidime 
[20  µg/ml]) (bioMérieux ref. AEB525770) for screening 3GC-
resistant Enterobacteriaceae. These two media select for 3GC-
resistant enterobacteria, hereafter referred to as 3GC B and 3GC R.

Bacteria were incubated for 24–48 h depending on the observa-
tion of bacterial colonies (presence [1]/absence [0]) on each medium 
(Table S1).

2.3  |  Whole-genome sequencing

Whole-genome DNA was isolated using the DNA blood and tis-
sue kit (Qiagen) according to the manufacturer's instructions, and 
DNA concentration was estimated using a Qubit 2.0 fluorometer. 
Whole bacterial genome library preparation and sequencing into 
two NextSeq High-Output multiplexed 2  ×  150  bp paired-end 
runs (Illumina) were performed by FISABIO Genomics Service. 
Bacterial isolates were specifically assigned according to the 16S 
rRNA sequences by FISABIO. Thirty-six bacterial DNA extracts 
were of insufficient quality to be sequenced and were thus ex-
cluded from subsequent analyses. Thus, out of 100 3GC-resistant 
isolates, the genomes of 64 3GC-resistant bacterial isolates were 
completely sequenced and considered for further analyses (see 
detailed information on these isolates in Table S2). For the de 
novo genome assembly of each bacterial isolate, right-tail qual-
ity trimming (with a minimum quality threshold of 20) was per-
formed using the FASTX-Toolkit v  0.0.14 (http://hanno​nlab.cshl.
edu/fastx_toolk​it/).

PRINSEQ v 0.20.4 (Schmieder & Edwards, 2011) was next used to 
remove reads containing undefined nucleotides (“N”), those shorter 
than 75 bps, and those left without a pair after the read cleaning 
process. The remaining reads were assembled using SPAdes v 3.10.1 
(Schmieder & Edwards, 2011), which entailed performing read error 
correction and mismatch correction with k-mer lengths of 33, 55, 
77, and 99. From the resulting contigs, those that were shorter than 
200 bp were dropped.

2.4  |  Resistome analysis

We refined the analysis by determining the list of AMR gene fami-
lies and genes present per isolate. The Comprehensive Antibiotic 
Resistance Database (CARD) (Jia et al., 2017) was used to identify 
and analyze the antimicrobial-resistant gene families and genes. 

F I G U R E  1 Diagram of analyses performed on 31 gull 
chicks sampled on Carteau islet. Sampling dates were D1: 
April 25, 2016, D2: May 5, 2016, D3: May 17, 2016. 3GC B & 
R: Extended-spectrum beta-lactamases; McC+O, MacConkey 
with Ofloxacin antibiotic; CARBA O, Carbapenemase-producing 
Enterobacteriaceae, mainly KPC and metallo-carbapenemase-type 
CPE; CARBA T, Carbapenemase-producing Enterobacteriaceae 
OXA-48 type CPE; AMR, antimicrobiological-resistant gene family; 
ARO, antibiotic resistance ontology determined according to 
protocols on the CARD website

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
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A novel genome analysis tool, Resistance Gene Identifier applica-
tion (RGI, version 5), was also used to identify antibiotic resist-
ance genes. Antibiotic Resistance Ontology (ARO) is at the core 
of CARD; it is organized into six branches giving details on antimi-
crobial compounds, resistance genes and mutations, drug targets, 
and resistance mechanisms (see more details in Jia et al., 2017). 
The data analyzed per contig were detections of antimicrobial-
resistant gene families and ARO. Indeed, while investigating which 
resistance genes were present from each individual chick, we used 
information obtained from the ARO. In addition, to investigate 
differences between 3GC-resistant isolates containing the same 
number of AMR gene families and AROs, all ARO sequences were 
aligned for comparison. This way we could determine whether all 
3GC-resistant isolates with the same numbers of AMR gene fami-
lies and AROs were in fact different.

2.5  |  Statistical analysis

2.5.1  |  Statistical analysis of bacteria grown on 
culture media

Using data from the isolates grown from the 54 swabs on each of 
the five different culture media, we tested the effect of chick age 
on the prevalence of bacteria resistant to each of the five selec-
tive media via generalized linear (binomial) mixed models. For each 
sample, bacteria were grown on N media, with N varying from 0 
to 5. We studied the variable N according to the sampling date by 
means of Wilcoxon signed-rank tests. We separately tested the 
differences between dates D1 and D3 and the differences be-
tween dates D2 and D3, since no individual chick was sampled on 
dates D1 and D2.

Cf Ea Ec Encl Ef Ek Ha Ka Kp Pm Total

D1 0 0 9 0 0 1 0 0 0 0 10

D2 0 0 15 1 1 0 0 0 0 1 18

D3 1 1 27 0 0 0 1 1 4 1 36

Total 1 1 51 1 1 1 1 1 4 2 64

Note: Sampling dates D1: 25 April 2016, D2: 5 May 2016, D3: 17 May 2016.
Abbreviations: Cf: Citrobacter freundii; Ea: Escherichia alberti; Ec: Escherichia coli; Encl: Enterobacter 
cloacae; Ef: Escherichia fergusonii; Ek: Enterobacter kobei; Ha: Hafnia alvei; Ka: Klebsiella aerogenes; 
Kp: Klebsiella pneumoniae; Pm: Proteus mirabilis.

TA B L E  1 Number of 3GC-resistant 
Enterobacteriaceae species by sampling 
date in gull chicks

F I G U R E  2 Absolute number (bottom) 
and corresponding prevalence in gull 
chicks for which any Enterobacteriaceae 
was isolated from the different selective 
media by sampling date (D1 to D3). The 
total number of chicks sampled in D1, D2, 
and D3 were 16, 15, and 23, respectively. 
Error bars are exact binomial 95% 
confidence intervals

3 3 18 3 2 13 14 13 23 13 14 23 9 15 23
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2.5.2  |  Statistical analysis of the temporal 
patterns and spatial distribution of AMR gene diversity 
in gull chicks

We studied whether the presence of ARO and AMR tended to 
vary according to chick age using genetic data. For each isolate, we 
counted the number of resistance genes (ARO) and also the number 
of AMR gene families present with at least one gene in the isolate 
genome. We then compared values from the three sampling dates 
using Poisson generalized linear mixed models with chick as a ran-
dom effect.

The spatial distribution of 3GC-resistant Enterobacteriaceae 
isolated from chicks was determined as follows. First, we used a 
permutation test to determine whether isolates from the same 
bird (respectively nest) displayed closer resistance profiles than 
isolates from different birds (respectively nests). The distance 
between the repertoires of AMR genes in each pair of isolates 
was the Jaccard distance computed on the ARO profiles (includ-
ing AMR genes and their mutations). Then, for each pair of nests 
A and B, we computed the geographic distance d (A, B) between 
them and the minimum Jaccard distance g (A, B) between each 
of the pairs of bacteria, one from nest A and the other from nest 
B. The correlation between distances d and g was assessed via a 
Mantel test. Details of the statistical procedures can be found in 
the Appendix S1. All computations were performed with R soft-
ware (R Core Team, 2020).

3  |  RESULTS

3.1  |  Temporal patterns of multiresistant 
Enterobacteriaceae isolated on selective media

We recovered 189 resistant bacterial isolates using the 5 selective 
solid media: 47 on MacConkey supplemented with Ofloxacin, 42 
on CARBA O and T, and 100 on 3GC B and R media. The pres-
ence/absence of bacterial colony growth on each media for each 
swab collected is indicated in Table S1. The most common bacterial 
isolates for all three sampling dates were those resistant to 3GC 
(Table 1). The number of 3GC-resistant enterobacteria isolates 
collected per gull chick varied from one to four (Figure 2). There 
was a significant increase with time in the proportion of resistant 
bacterial isolates for CARBA O (p ≤ .0001), CARBA T (p ≤ .0001), 
McConkey+O (p ≤ .0001), and 3GC R (p ≤ .0001). The increase was 
not statistically significant for 3GC B (p = .11). There was also an 
increase in the detection of resistant Enterobacteriaceae over time 
(Figure 3). For chicks sampled twice (n  =  23), we found that the 
number of selective media in which resistant bacteria were able 
to grow increased with time (paired Wilcoxon signed-rank test; 
p = .00098 for chicks sampled at D1 and D3, p = .0015 for chicks 
sampled at D2 and D3).

3.2  |  Genetic diversity, spatial and temporal 
structure of 3GC-resistant Enterobacteriaceae in 
gull chicks

3.2.1  |  Enterobacteriaceae species

Based on their 16S rRNA sequences, the 64 3GC-resistant isolates 
sequenced belonged to one of ten species: Citrobacter freundii (1), 
Enterobacter cloacae (1), Enterobacter kobei (1), Escherichia albertii 
(1), Escherichia coli (51), Escherichia fergusonii (1), Hafnia alvei (1), 
Klebsiella aerogenes (1), Klebsiella pneumonia (4), and Proteus mirabilis 
(2). Details of the numbers of different enterobacteria species iden-
tified by sample date are shown in Table 1.

3.2.2  |  Spatial and temporal genetic diversity of 
3GC-resistant isolates

We sampled 20 nests with one to three gull chicks per nest. The 
numbers of bacterial-resistant isolates detected over time were 
as follows: 10 3GC-resistant bacterial isolates for 9 chicks from 
8 nests on D1; 18 3GC-resistant isolates for 10 chicks from 8 
nests on D2; and 36 3GC-resistant isolates for 19 chicks from 15 
nests on D3 (linear trend test; number of isolates per bird, p = .22) 
(Figure 4).

F I G U R E  3 Box-and-whiskers plots of the number of selective 
media per swab for which any Enterobacteriaceae colony was 
detected, by sampling date (16 chicks sampled on D1, 15 on D2, 
and 23 on D3). D1: April 25, 2016; D2: May 5, 2016; D3: May 17, 
2016. The bold line indicates the median, the box extends from the 
1st to the 3rd quartile, and the whiskers extend to 1.5 times the 
interquartile width
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The entire genome of 64 3GC-resistant bacterial isolates from 
gull chicks were sequenced from 1027  million total reads (aver-
age of 16  million per isolate; range values are min  =  4,310,105, 
max = 50,502,127). Using the CARD application, we could identify 
135 different AROs belonging to 44 AMR gene families in the 64 
bacterial isolates. The list of AROs detected for each identified gene 
family is presented in Table S3. The estimated prevalence of ARO in 
bacterial isolates from the 31 chicks varied between 0.03 and 1.00 
(Table S4).

Among the resistance genes observed, those of clinical impor-
tance include the beta-lactamase genes CTX-M, SHV, TEM, and 
CMY. They were mostly carried by E. coli isolates (see prevalence 
in Table S4). We also identified two P. mirabilis carrying a CMY-2 
beta-lactamase gene as well as another P. mirabilis isolate carrying 
both the CTX-M 15 and TEM-1 genes. Another subset of the 135 
AROs observed were more common genes that are of less concern 
but that are not shared by most of the isolates, such as sulfonamide 
resistance genes (sul1, sul2, and sul3) or trimethoprim-resistant di-
hydrofolate reductase genes (drf-A1, A5, A1, and A17).

The number of AMR gene families was significantly greater in 
E. coli genomes than in other Enterobacteriaceae species (Poisson 
GLMM, p = .0013) (Figure 5). If we consider the distribution of AMR 

abundance by date, sampling date were not significantly associated 
with the number of AMR gene families (Poisson GLMM, p  =  .23). 
More specifically, E. coli was the only species present on all three 
sampling dates (median numbers of AMR for the three dates = 18, 
19, and 18) while other species were scarce.

As observed for AMR gene families, E. coli isolates carried signifi-
cantly more AROs than other isolates (Poisson GLMM, p ≤  .0001). 
Considering the number of ARO per isolate by sampling date, there 
was a significant positive linear trend over time (Poisson GLMM, 
p =  .0026) (Figures S2 and S3). All 3GC-resistant isolates with the 
same numbers of AMR gene families and AROs were different ex-
cept for isolates Ec39 (D3, nest 14) and Ec51 (D3, nest 29), which 
were genetically identical in all ARO sequences.

The Jaccard distances between AROs in two isolates from the 
same nest were not significantly smaller than the distances between 
two isolates from different nests (permutation test, one-sided alter-
native, p  =  .53). The same conclusion was reached when compar-
ing isolates from the same bird versus isolates from different birds 
(p  =  .17). Jaccard distances between pairs of Enterobacteriaceae 
isolates were used to compute a neighbor-joining classification tree. 
This classification tree shows that most species other than E. coli 
were clustered into two close nodes (red ellipse in Figure 6). Finally, 

F I G U R E  4 Location and distribution of 
Enterobacteriaceae isolates sampled from 
gull chicks per nest on Carteau islet. Only 
nests and chicks with Enterobacteriaceae 
isolates whose genomes were completely 
sequenced are indicated. D1, D2, and 
D3: sampling dates; N: nest number; 
C: gull chick number; black full circles: 
sampled chick with 3GC-resistant isolates; 
black empty circles: sampled chick 
without 3GC-resistant isolates; black 
empty triangles: non-sampled chick. The 
Enterobacteriaceae species are indicated 
in parentheses: Cf, Citrobacter freundii; 
Ea, Escherichia alberti; Ec, Escherichia coli; 
Encl, Enterobacter cloacae; Ef, Escherichia 
fergusonii; Ek, Enterobacter kobei; Ha, 
Hafnia alvei; Ka, Klebsiella aerogenes; 
Kp, Klebsiella pneumoniae; Pm, Proteus 
mirabilis. The AMR and ARO abundances 
of each Enterobacteriaceae species are 
shown in Table S2
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there was no correlation between geographical distances between 
nests and distances based on the presence or absence of ARO genes 
(Mantel permutation test, 500 simulations, p = .14).

4  |  DISCUSSION

Ramey and Ahlstrom (2020) encouraged the study of bacteria carried 
by synurbic gulls that should include a detailed search for the pres-
ence of resistance genes combined with precise data on the bird's 
ecology. Using this approach, our study revealed the wide diversity 
of resistance genes present in bacteria carried by yellow-legged gull 
chicks. An important originality of this work is the implementation 
of three sampling periods, which allowed us to follow the tempo-
ral progression of resistant isolates. Moreover, monitoring chicks by 
nest brought us spatial information that is usually lacking in studies 
focusing on AMR in wildlife, especially those conducted on gulls.

One important result of this study is the clear increase in the di-
versity of resistant enterobacteria over time between chick hatching 
and fledging. This phenomenon was accompanied by an increase in 
the proportion of individuals carrying AMRB. Thus, carrying is not 
constant in the population, but highly dependent on the species’ 
phenology. From these findings, one might hypothesize either that 
AMR are rapidly and positively selected in chicks and/or that AMR 
accumulate over time. This could occur because the parents’ food 

supply changes with chick age (Ramos et al., 2009) and/or because 
parents, through time, are more likely to have foraged in different 
areas (Méndez et al., 2020; Ramos et al., 2009). Another possible 
contributing factor could be the increasing number of exchanges 
with other chicks, since older individuals frequently leave the nest 
(Martínez-Abraín et al., 2003; Tinbergen, 1989). These frequent 
exchanges combined with shared sources of food from the parents 
could contribute to explaining the lack of spatial structure that we 
observed. Considering our relatively small sample size (54  cloacal 
swabs collected from 31 chicks), it would be interesting to extend 
this study to other landfill-foraging gull colonies to see if the same 
patterns are observed.

These findings also highlight the importance of considering inter-
individual differences when sampling wildlife, notably related to age. 
In our case, if one wishes to highlight the diversity of the resistome 
carried by the studied population, the oldest chicks will be more 
representative. In situations like this, where the capture of adults is 
difficult, another way to investigate resistomes would be to collect 
droppings. We have not used this method because the number of 
individuals being considered would remain unknown, and thus the 
proportion of birds carrying the bacteria of interest would also be 
unknown. However, it would be interesting to compare the diversity 
of resistomes observed using the two methods. Indeed, if the spe-
cies is to be studied as a sentinel of environmental contamination 
and used to document sources of this contamination, the two ways 
of obtaining samples could be complementary.

F I G U R E  5 Box-and-whiskers plots of AMR gene families 
isolated from gull chicks. The AMR gene families shown have 
representatives in the complete genomes of Escherichia coli isolates 
(Ec) and other 3GC-resistant Enterobacteriaceae species isolates 
pooled (other). The pooled 3GC-resistant Enterobacteriaceae 
include Citrobacter freundii, Escherichia alberti, Enterobacter cloacae, 
Escherichia fergusonii, Enterobacter kobei, Hafnia alvei, Klebsiella 
aerogenes, Klebsiella pneumoniae, and Proteus mirabilis. See Figure 
4 legend for further details
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Another important finding of this study is the evidence that 
gull chicks carry multiresistant enterobacteria that can pose major 
clinical issues. We notably detected E. coli isolates carrying vari-
ous genes associated with β-lactamase production, including 10 
different genes of the CTX-M family that currently present major 
therapeutic and infection control challenges worldwide (Critchley 
et al., 2019; Devi et al., 2020; Livermore et al., 2007). It should be 
noted that this observed resistome only covers the enterobacteria 
that were selectively cultured on our media. Because there are so 
many studies focusing on E. coli isolates with antimicrobial-resistant 
genes, a core resistome shared by most (95%) E. coli isolates was 
identified by Goldstone and Smith (2017). In our study, this core re-
sistome represents 27 of the AROs observed in E. coli. Future studies 
using a high-throughput sequencing approach could allow further 
exploration of this resistome. However, it is difficult at this stage to 
determine the consequences of this percentage in terms of public 
and veterinary health threats. More work is required to effectively 
use yellow-legged gulls—or other landfill-foraging gull species—as 
sentinels for antimicrobial resistance. First, better knowledge of gull 
movements, movement variability, and determinants of movements 
is needed. The growing use of GPS-tracking will allow increasingly 
detailed data on these movements that will help to evaluate the risks 
posed by gulls carrying AMRB (e.g., Navarro et al., 2019).

The presence of 3GC-resistant enterobacteria includ-
ing Escherichia coli, Proteus mirabilis, Klebsiella pneumonia, and 
Enterobacter cloacae isolates has already been observed in this gull 
colony (Aberkane et al., 2017; Bonnedahl et al., 2009; Vittecoq et al., 
2017), so it seems that the presence of 3GC-resistant bacteria is the 
result of regular contamination rather than a one-time event. An al-
ternative explanation could be that 3GC bacteria have become part 
of the yellow-legged gull's common resistome, and these birds are 
now a maintenance host. A growing number of studies have shown 
that synurbic gulls are very frequent carriers of AMRB, including 
3GC-resistant enterobacteria (Dolejska et al., 2016; Hernandez et al., 
2013; Vergara et al., 2017). It has thus been proposed that synurbic 
gulls could be valuable sentinels of environmental AMRB and by ex-
tension of the environmental resistome (Ramey & Ahlstrom, 2020).

4.1  |  Concluding remarks

Over the last decade, wild species have been identified that could 
be efficient sentinels of environmental contamination (Ramey & 
Ahlstrom, 2020; Torres, Fernandes, et al., 2020). Landfill-foraging 
gulls, such as the yellow-legged gull, are among these sentinels. To 
use sentinels at their maximum potential—to identify where and 
how exchanges of AMRB occur among the environment, humans, 
and livestock, precise information concerning the wild individu-
als sampled and their use of the environment must be combined 
with genetic data to characterize the resistant bacteria they carry. 
Our study can be seen as a step toward the implementation of 
this approach, which, over the long term and by allowing com-
parisons between different geographical areas, will contribute 

to controlling the spread of antimicrobial resistance. In addition, 
sampling potential sources of gull exposure to AMRB at differ-
ent periods of the year (e.g., water surrounding the colonies or 
foraging areas, food sources) would allow a better understanding 
of how exchanges take place. Comparing AMRB and AMR genes 
carried by wildlife with those found in humans, livestock, and the 
environment using a “One Health” approach and including data on 
the spatiotemporal dynamics of the carrying patterns will be of 
great interest in the future.
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