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ABSTRACT
The magmatic-hydrothermal transition is key in controlling the fate of many economically 

important elements due to the change in partitioning when melt and magmatic fluid coexist. 
Despite its increasing economic importance, the behavior of lithium (Li) in such environments 
remains poorly known. We illustrate how compositionally unusual biotites from the rhyolitic 
Bishop Tuff (California, USA) and Kos Plateau Tuff (Greece) may contain a magmatic volatile 
phase trapped between layers of biotite crystals. Despite originating in pristine deposits and 
showing the expected X-ray diffraction spectra, these biotites return low (<95 wt%) analytical 
totals via electron microprobe (EMP) consistent with the presence of considerable amounts 
of light elements (non-measurable by EMP). Lithium contents and isotope ratios in these 
biotites are remarkable, with abundances reaching >2300 ppm, exceptionally light Li isotopic 
compositions (δ7Li as low as –27.6‰), and large isotopic fractionation between biotite and 
corresponding bulk samples (Δ7Libt–bulk as low as –36.5‰). Other mineral phases, groundmass 
glass, and melt inclusions from the same units do not support an extremely Li-rich melt prior 
to eruption. Biotites from phonolitic systems (Tenerife [Canary Islands] and Campi Flegrei 
[Italy]) do not show such extreme compositional differences, with biotite and melt showing 
roughly equivalent Li contents, underscored by significantly reduced Δ7Libt–bulk to a maximum 
of –10.9‰. We ascribe the difference in behavior to the near-liquidus appearance of biotite in 
alkaline magmatic suites, before widespread exsolution of a magmatic volatile phase in the 
magma reservoir, while in rhyolitic suites, biotite crystallizes at low temperature, trapping 
the coexisting exsolved fluid phase in the reservoir.

THE MAGMATIC-HYDROTHERMAL 
TRANSITION

The ‘Green Revolution’ to address current 
global climate change, and growing demand for 
energy storage in batteries (e.g., for electric ve-
hicles) have focused attention on the occurrence 
and global cycling of the elements required for 
this technology, such as lithium, cobalt, or tellu-
rium. Although lithium (Li) found in economic 
deposits is generally thought to be sourced from 
silicic magmatism (Hofstra et al., 2013; Benson 
et al., 2017; Ellis et al., 2021), the actual mecha-
nisms by which Li is enriched and ultimately 
removed from these magmas remain poorly con-
strained. Many economically important metals 
are concentrated by processes such as partition-

ing between silicate melt and magmatic fluids 
occurring at the magmatic-hydrothermal transi-
tion; therefore, understanding these processes 
has been a topic of intense interest from both 
experimental perspectives (e.g., Webster et al., 
2004; Iveson et al., 2019) and natural samples 
(Zajacz et al., 2008). Most studies of natural 
materials have focused on quartz-hosted melt 
and fluid inclusions. However, these studies 
require samples in which both inclusion types 
were synchronously trapped, which is rare in 
nature (Fiedrich et al., 2020), and are compli-
cated by the diffusivity of many phases through 
their host minerals, which can modify initial 
concentrations (e.g., Audétat et al., 2018). We 
investigated the mineral biotite as a recorder of 

the magmatic-hydrothermal transition in a suite 
of samples from rhyolitic and phonolitic mag-
mas. Specifically, we focused on the abundance 
and isotopic composition of Li in biotites from 
the rhyolitic Bishop Tuff (California, USA) and 
Kos Plateau Tuff (Greece) previously inferred to 
contain magmatic fluids (Hildreth, 1977; Bach-
mann, 2010). These biotites yield low electron 
microprobe totals (<95 wt%) and are hereafter 
termed “low-total biotites” (LTBs). For compari-
son, we also investigated biotites that yielded 
normal (95–97 wt%) analytical totals (hereafter 
abbreviated to NTBs) from a rhyolitic system 
with involvement of cumulate melts (Caetano 
Tuff, Nevada, USA; Watts et al., 2016) and alka-
line suites (Astroni pyroclastics and Campanian 
Ignimbrite from the Campi Flegrei, Italy [Forni 
et al., 2018] and the Granadilla ignimbrite from 
Tenerife, Canary Islands [Bryan, 2006]).

METHODS
Pure biotite fractions were separated from 

bulk samples by crushing and handpicking under 
a binocular microscope. For in situ mineral anal-
ysis (all carried out at the Institute of Geochem-
istry and Petrology, ETH Zürich, Switzerland), 
biotites and groundmass glasses were embed-
ded in epoxy, polished, and carbon coated prior 
to imaging using a JEOL JSM-6390 scanning 
electron microscope (SEM). Following imaging, 
samples were analyzed using JEOL JXA 8200 
and 8230 Superprobe electron microprobes with 
conditions similar to those reported by Neu-
kampf et al. (2019) for groundmass glass and 
biotites analyzed with operating conditions of 
15 kV, 15 nA, and a 10 µm spot. Laser ablation–
inductively coupled plasma–mass spectrometry 
(LA-ICPMS) trace elemental analyses were car-
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ried out following the methods of Neukampf 
et al. (2021). In addition to the traditional spot 
analyses, we performed rastering analyses to 
minimize the depth of ablation.

For bulk-mineral analyses, crystal sepa-
rates were isolated from the bulk-rock samples, 
milled, and then analyzed with X-ray diffraction 
(XRD) using an AXS D8 Advance diffractom-
eter equipped with a Lynxeye superspeed de-
tector at the Institute of Geochemistry and Pe-
trology, ETH Zürich. Oxygen isotope analyses 
were performed at the University of Cape Town 
(South Africa) using conventional analyses on 
bulk samples of 50–100 mg and laser fluorina-
tion for biotites following the methods described 
by Ellis et al. (2021). Lithium isotopic measure-
ments were carried out at the Czech Geologi-
cal Survey in Prague (Czech Republic) follow-
ing methods outlined in Magna et al. (2004). 
Different aliquots of the same samples (picked 

material and full dissolution) were analyzed to 
ensure the robustness of the results. Final values 
are expressed relative to the standard reference 
material for Li isotopes, L-SVEC, with the ana-
lytical uncertainty better than 0.5‰ (2 s.d. [stan-
dard deviation]). All new data from this study, as 
well as the results from reference materials, are 
provided in the Supplemental Material1.

BIOTITE APPEARANCE AND 
COMPOSITION

Biotite from all samples lacks visible altera-
tion in hand specimens and under the binocular 

microscope. In backscattered electron imaging, 
the LTBs have distinctly swirly textures with 
irregular zones of brightness, while the NTBs 
are typically homogeneous (Fig. 1). Our data 
(Fig. 1) agree well with those of previous stud-
ies for both LTBs (Kos Plateau Tuff [KPT]) and 
NTBs (Caetano Tuff). In contrast to previous 
studies (Bachmann, 2010), we did not observe 
the high Na2O (to values >3 wt%) in LTBs from 
the KPT, but damage to biotite crystals is observ-
able following microprobe analysis. Structural 
measurements using XRD reveal near-identical 
patterns between the NTBs and LTBs and indi-
cate no additional crystalline or alteration phases 
are present. The broadening of the peaks in the 
LTB samples is consistent with a less structural-
ly coherent biotite and consistent with the lower 
K + Na (a.p.f.u.[atoms per formula unit]) in the 
LTBs (Fig. S1 in the Supplemental Material). 
These data together with O isotopic composi-
tions that indicate high-temperature equilibrium 
(Bachmann, 2010) argue against post-eruptive 
processes (e.g., Ellis et al., 2018) being respon-
sible for the LTB compositions (Fig. S2).

LITHIUM SYSTEMATICS
Bulk-rock Li contents are unremarkable 

(Fig. S3), ranging from 10.7 to 33.3 ppm, and 
are unrelated to the biotite type (LTB versus 
NTB). The Li abundances of the groundmass 
glasses range from 2 to 70 ppm, with the highest 
values observed in the Astroni samples that con-
tain NTBs and no relationship between ground-
mass Li content and biotite type (Fig. 2).

The Li contents of the LTBs are high, with the 
Kos samples ranging between 106 and 293 ppm 
(pumice) and between 180 and 510 ppm (granit-
ic block) while the Bishop Tuff LTBs range from 
848 to 2314 ppm. The elevated Li abundances in 
the LTBs were tested by both traditional point 
analyses and by rastering the laser across the 
biotite surfaces to minimize the depth effect of 
ablation. These methods yielded identical re-
sults (Fig. S4) without a clear relationship be-
tween biotite appearance and Li content. Bishop 
Tuff LTBs also contain elevated Cs (as much 
as 78 ppm), a feature previously interpreted as 
indicative of fluid involvement (Hildreth, 1977). 
In contrast, the NTB samples have significantly 
lower Li abundances (typically <25 ppm across 
the four NTB suites) and a more restricted range 
(Fig. 2A). The elevated Li contents in the LTBs 
are accompanied by remarkably low δ7Li, as low 
as −27.6‰ and never exceeding −18.3‰, while 
the NTB samples have δ7Li between −9.5‰ and 
0.7‰ (Fig. 3). Within the KPT suite, the δ7Li 
of volcanic and granitic samples varies in bulk 
rocks by ∼7.5‰ and in biotites by ∼7‰, which 
may reflect the different degassing regimes of 
these samples and highlight the complexity of 
Li studies in the magmatic environment. The 
Δ7Libt–bulk (the difference between the δ7Li values 
of biotite and bulk rock) ranges from −18‰ to 

1Supplemental Material. Supplemental Figures 
S1–S8 (additional compositional information relevant 
to this study), and a supplemental dataset (all new data 
for this study and reference materials). Please visit 
https://doi .org /10 .1130 /GEOL.S.17264996 to access 
the supplemental material, and contact editing@
geosociety .org with any questions.

Figure 1. Biotite compo-
sitional and structural 
data. (A) Analytical totals 
of biotites shown against 
magnesium number 
[Mg# = 100 × molar Mg/
(Mg + Fe)]. Literature data 
for the Caetano (Nevada, 
USA; Watts et al., 2016), 
Granadilla (Tenerife, 
Canary Islands; Bryan, 
2006), and Kos (Greece; 
Bachmann, 2010) systems 
are shown for comparison 
in pale colors. NTB—
normal-total biotite; 
LTB—low-total biotite; 
KPT—Kos Plateau Tuff. 
(B,C) Appearance of 
biotites from Astroni 
pyroclastics (Campi 
Flegrei, Italy) (NTB) and 
Kos Plateau Tuff (LTB) 
deposits illustrating dif-
ferent textures observed 
in backscattered electron 
imaging. (D) X-ray diffrac-
tion spectra of different 
biotites showing no other 
phases are included, with 
peak heights shown as 
arbitrary units (a.u.). 
Example biotite is sample 
R04144 from the RRUFF 
database (https://rruff 
.info).
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−36.5‰ in the LTBs, while it is ∼−10‰ at 
maximum in the NTB units (Fig. 3A).

NO EVIDENCE FOR LITHIUM-
ENRICHED MELTS

With lithium thought to be lost from the melt 
during syn-eruptive degassing (Neukampf et al., 
2021), melt inclusions may have the potential to 
constrain the Li content of the melt prior to erup-
tion. In the Bishop Tuff melt inclusions (Dun-
bar and Hervig, 1992; Wallace et al., 1999; My-
ers et al., 2019; Fig. 2B), Li and H2O contents 
broadly covary while showing little relationship 
to Rb contents (Fig. S5), suggesting that Li may 
be lost through the host quartz following entrap-
ment. Considering only inclusions with water 
contents >5 wt% (i.e., minimally degassed), the 
average Li content is 86.2 ± 30.2 ppm (n = 63, 
1 s.d.) with a maximum of 206 ppm. Melt inclu-

sions from the KPT are within a similar range, 
emphasizing that the systems producing the 
LTBs did not contain extremely Li-enriched 
melts prior to eruption (Fig. S5).

BIOTITE AS A FLUID TRAP
Although the Li abundance and δ7Li values 

of the LTBs are extreme compared to those of 
the NTBs, it is noteworthy that previous studies 
have suggested that fluids exsolved from silicic 
magmas (Richard et al., 2018; Fiedrich et al., 
2020) and pegmatites (Teng et al., 2006; Fan 
et al., 2020) trend toward high Li contents and 
low δ7Li. In pegmatites, Fan et al. (2020) inter-
preted the ranges of Li abundances and isoto-
pic ratios as resulting from melt-fluid separation 
whereby the Li-rich pegmatites were generated 
in a H2O-rich and silicate-poor system; they pro-
posed that 7Li was enriched in the more strongly 

bonded residual melt while 6Li was preferen-
tially removed into the fluid. We argue that a 
similar process occurs in the LTBs, entrapping a 
Li-rich fluid preferentially residing between the 
biotite layers. Such a scenario explains the fra-
gility of the LTBs under the microprobe beam, 
the unusual geochemistry, and the lack of readily 
visible fluid inclusions in conventional imaging. 
Bivariate plots of biotite compositions with Li 
(as a proxy of fluid involvement) against other 
elements are intriguing (Fig. S6). The variable 
behavior of elements of different geochemical 
affinities (e.g., potentially fluid-mobile elements 
such as Na, K, and Rb and those likely to be 
immobile such as La) indicates the complex-
ity of fluid-melt-crystal partitioning in silicic 
magmatic systems and warrants further scrutiny.

RHYOLITES VERSUS PHONOLITES
Although medium- to low-K silicic magmas 

may or may not contain LTBs, such behavior has 
not been observed from high-K alkaline suites. 
In alkaline suites, biotite is typically a near-liq-
uidus phase, as experimentally shown for Tener-
ife phonolites in which it may be the liquidus 
phase (Andújar et al., 2008). At Campi Flegrei, 
biotite is recognized as a high-temperature phase 
in magmatic evolution (Stock et al., 2016; Forni 
et al., 2018; Fig. 4A). Indeed, we note that the 
results from the Astroni pyroclastics and Cam-
panian Ignimbrite samples are characteristic 
of the biotite-glass relationship in the Campi 
Flegrei, and data from 14 other deposits show 
similar features both for groundmass and biotite 
Li contents (Fig. S8).

In contrast, in medium- to low-K magmatic 
suites, biotite crystallizes much closer to the 
solidus, if at all. In a suite of water-saturated ex-
periments (diamonds and dotted line in Fig. 4B) 
using a medium-K Adamello batholith (Italy) 
tonalite as starting material, Marxer and Ulmer 
(2019) showed biotite appearance at ∼750 °C. 
To further investigate this behavior, we used rhy-

Figure 2. Lithium con-
tents of biotites and 
coexisting groundmass 
glasses. (A) Biotite com-
positions from low-total 
biotites (LTBs) showing 
highly enriched Li con-
tents (note logarithmic 
scale). Campi Flegrei 
(Italy) data are from this 
study and Forni et  al. 
(2018). KPT—Kos Plateau 
Tuff. (B) Groundmass 
glasses illustrating that 
LTBs do not coexist with 
strongly Li-enriched 
melts. The field of Snake 
River Plain (SRP; western 
North America) glasses in 
gray from Ellis et al. (2021) 

indicates typical Li contents of rhyolitic glasses. Also shown in pale colors are melt inclusion compositions from the Bishop Tuff (Dunbar and 
Hervig, 1992; Wallace et al., 1999; Myers et al., 2019) and Kos Plateau Tuff (Bachmann et al., 2009).

A B

Figure 3. Lithium isotopic compositions. (A) Biotite (open symbols) and bulk-rock (filled sym-
bols) δ7Li values showing extremely low δ7Li of low-total biotites (LTBs). NTB—normal-total 
biotite. Values in parentheses reflect Li abundance of sample. (B) Apparent partition coefficient 
(Kd) values calculated from dissolution inductively coupled plasma–mass spectrometry data 
showing the dramatic change in LTB samples. KPT—Kos Plateau Tuff.

A B
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olite-MELTS modeling software (Gualda et al., 
2012) to chart the relative appearances of biotite 
and a magmatic volatile phase (MVP) in mag-
matic systems containing the different biotite 
types (conditions for the models are provided 
in the Supplemental Material). As expected, in 
the alkaline suites, biotite appears at tempera-
tures significantly (on the order 100–150 °C) 
above H2O saturation (Fig. 4C). In the Caetano 
Tuff, melting of a sanidine-dominated cumulate 
(Watts et al., 2016) resulted in biotite crystalliza-
tion from a drier, low-Mg# [Mg# = 100 × molar 
Mg/(Mg + Fe)], high-Ba melt (Fig. 1; Fig. S7) 
likely in the absence of a separate MVP. In the 
LTB-bearing systems, the biotite crystallization 
is delayed, which results in biotite crystallizing 
dominantly in the presence of an exsolved MVP 
(Fig. 4C). This illustrates the potential of biotite 
to capture such potentially Li-enriched fluids.

IMPLICATIONS
The record of Li-rich fluids trapped in pris-

tine magmatic biotites from unmineralized, 
young volcanic deposits has important impli-
cations for the evolution of magmatic systems 

in the shallow crust and the transition from 
magmatic to hydrothermal conditions. First, 
the partitioning of Li into a MVP provides a 
mechanism to concentrate Li, and the fate of 
this MVP may be an important control on the 
generation of economic Li deposits as either 
brine deposits (Munk et al., 2016) or pegma-
tites (Troch et al., 2021). Second, the potential 
for biotites to contain “invisible” fluid inclu-
sions between crystal layers may play a role 
in the occurrence of “too-old” 40Ar/39Ar ages 
that have previously been reported both from 
the Kos Plateau Tuff (Bachmann et al., 2010) 
and elsewhere (Hora et al., 2010). Finally, the 
LTBs can provide unambiguous evidence of the 
presence of an exsolved, compressible MVP in 
the magma reservoir, with major consequences 
for many magmatic processes including the size 
and styles of potential eruptions from such res-
ervoirs (Huppert and Woods, 2002; Popa et al., 
2019).
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