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Pulsated Herschel-Bulkley flows in two-dimensional channels: a model for mucus clearance devices

Pressure oscillations applied to human airways can help patients to evacuate bronchial mucus, a highly non-Newtonian gel. To explore the fluid mechanics aspects of these therapies, we perform numerical simulations of pulsated non-Newtonian fluids in two dimensional channels. The fluid rheology is modeled by the Herschel-Bulkley law, reproducing two essential non-linear mechanical properties of the mucus, namely the yield-stress and shear-thinning/thickening properties. The flow dynamics is simulated using the lattice-Boltzmann method over large ranges of the three main non-dimensional parameters, i.e. the pulsation rate or Womersley number α, the flow index n quantifying the shear-thinning/thickening effect and the Bingham number controlling the yield stress. The ratio between the fluctuating and average parts of the oscillatory forcing is examined through three typical cases: a purely oscillating flow, a weakly oscillating flow and a strongly oscillating flow. For each configuration, specific sets of parameters are found to have a drastic effect on the dynamics of mucus plugs, which suggests new therapeutic strategies for patients suffering from bronchial obstructions.

I. INTRODUCTION

Mucus is a complex biological fluid covering the human respiratory tract and protecting the bronchial epithelium from fine particles and pathogens [START_REF] Chilvers | Local mucociliary defence mechanisms[END_REF][START_REF] Knowles | Mucus clearance as a primary innate defense mechanism for mammalian airways[END_REF][START_REF] Strombeck | Binding of cholera toxin to mucins and inhibition by gastric mucin[END_REF]. It is evacuated towards the trachea through the active beating of bronchial epithelial cilia, a process called mucociliary clearance [START_REF] Bottier | A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part ii, modeling[END_REF][START_REF] Chateau | Transport efficiency of metachronal waves in 3d cilium arrays immersed in a twophase flow[END_REF]. The impairment of this self-defense mechanism is related to a number of respiratory pathologies, such as severe asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. In cystic fibrosis, the bronchial mucus typically tends to dehydrate, becoming viscous, sticky and difficult to evacuate by natural mechanisms [START_REF] Boucher | Airway surface dehydration in cystic fibrosis: pathogenesis and therapy[END_REF][START_REF] Robinson | Mucociliary clearance in cystic fibrosis[END_REF]. To assist patients in evacuating bronchial mucus, a number of medical devices have been developed [START_REF] Rogers | Physiological principles of airway clearance techniques used in the physiotherapy management of cystic fibrosis[END_REF][START_REF] White | The role of thoracic expansion exercises during the active cycle of breathing techniques[END_REF][START_REF] Oermann | Comparison of high-frequency chest wall oscillation and oscillating positive expiratory pressure in the home management of cystic fibrosis: a pilot study[END_REF], e.g. vibrating vests or mouth pressure generators [START_REF]Physio-Assist Web Site[END_REF][START_REF] Pryor | Beyond postural drainage and percussion: Airway clearance in people with cystic fibrosis[END_REF]. All these devices rely on mechanical stresses applied on the bronchi and on the mucus, eventually promoting its expectoration. In particular, mouth pressure generators create internal pressure oscillations propagating along the bronchial tree and presumably altering the mechanical properties of the mucus. Yet, the mechanisms involved in the interactions between this complex fluid and such oscillatory perturbations remain unclear.

Performing experiments on real mucus is challenging, because mucus is difficult to collect and it may exhibit variable mechanical properties from one patient to the other. Alternatively, measurements can be done on synthetic fluid models, as in our previous works [START_REF] Lafforgue | Thermo-physical properties of synthetic mucus for the study of airway clearance[END_REF][START_REF] Lafforgue | Rheological properties of synthetic mucus for airway clearance[END_REF] and commonly seen in other physical contexts [START_REF] Federico | Gravity-driven flow of herschel-bulkley fluid in a fracture and in a 2d porous medium[END_REF]. However, the rheological properties of synthetic fluid models are not always straightforward to characterize and/or to control, and their similarities with real mucus properties are difficult to establish. In this context, numerical simulation is a powerful tool as it allows one to freely investigate the effect of selected and well-controlled rheological properties, which are described through generic mathematical models.

Even though mucus properties generally vary from patient to patient and from one health condition to another [START_REF] Robinson | Mucociliary clearance in cystic fibrosis[END_REF], it has often been described as a yield-stress shear-thinning fluid [START_REF] Banerjee | Effect of phospholipid mixtures and surfactant formulations on rheology of polymeric gels, simulating mucus, at shear rates experienced in the tracheobronchial tree[END_REF][START_REF] Nordgård | Oligosaccharides as modulators of rheology in complex mucous systems[END_REF][START_REF] Tomaiuolo | A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties[END_REF]. Shear-thinning fluids have an effective shear-viscosity that tends to decrease as a function of the shear-stress magnitude. In some conditions, mucus can also be a shear-thickening material [START_REF] Dawson | Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport[END_REF]; in this case, its effective viscosity increases as a function of the shear-stress magnitude. These non-Newtonian fluids can thus be described as Newtonian fluids with non-uniform viscosity, often called generalized Newtonian fluids. As a yield-stress fluid, mucus only flows if the applied shear-stress magnitude is larger than a critical stress; otherwise, it exhibits a solid-like behavior. This property can also be modelled in a generalized Newtonian framework, by considering a viscosity that goes to infinity for stresses smaller than the yield stress. Although the mucus typically exhibits additional complex properties as elasticity [START_REF] Lai | Micro-and macrorheology of mucus[END_REF] and thixotropy [START_REF] Tomaiuolo | A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties[END_REF], the present work aims at focusing first on these generalized-Newtonian properties, to further understand their role in the mucus dynamics.

In a modeling perspective, pressure waves generated by mucus clearance devices can be thought as harmonic pressure fluctuations driving non-Newtonian mucus flows in pipe or channel configurations. These oscillatory flows are known as Womersley flows in the Newtonian case. Park and Liu [START_REF] Park | Oscillatory pipe flows of a yield-stress fluid[END_REF] studied the flow of a viscoelastic yield-stress fluid driven by an oscillating pressure gradient, based on experimental and analytical approaches. They emphasized the significant importance of yield-stress and elastic effects in such flows, but their study only addressed limited ranges of physical parameters and did not address the shear-thinning or thickening properties that characterize mucus flows. Womersley flows and non-Newtonian fluids have been widely studied in the context of blood flow modeling. These studies, even though dedicated to systems similar to the one addressed in the present work, cannot be directly used to understand mucus flows since they were performed on ranges of physical parameters (oscillation frequency, flow properties) that were designed to match typical blood flow configurations. We nevertheless cite the works that inspired this work. Sankar and Hemalatha [START_REF] Sankar | Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries-A mathematical model[END_REF] studied numerically the flow of a non-Newtonian fluid in an artery with a catheter, modelled by different generalized-Newtonian models. They used a perturbation method to calculate the flow velocity and the plug size (size of the central solid part), for different oscillation frequencies, controlled through the non-dimensional Womersley number α, and various fluid properties. They showed that the plug size increases as the yield stress value increases. Furthermore, Sankar and Lee [START_REF] Sankar | Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries[END_REF] studied similar flows in a reduced cross-section (stenosed) artery and found that the plug core radius, the pressure drop and the wall shear stress increase with the increase of stenosis heights.

In order to further understand non-Newtonian oscillatory flows relevant in the context of mucus clearance, we explore through two-dimensional numerical simulations the dynamics of a generalized Newtonian fluid driven by an oscillatory body force in a channel. The fluid is modeled by a Herschel-Bulkley law and the simulations are based on a lattice-Boltzmann method. Simulations are performed over wide ranges of non-dimensional frequency (or Womersley number), Bingham number (quantifying the yield-stress effect) and flow index (quantifying the shear-thinning/thickening effect). A focus is placed on three typical configurations, depending on the composition of the oscillatory force signal: (i) a purely oscillating signal (zero-mean body force), (ii) a weakly oscillating signal and (iii) a strongly oscillating signal. The system dynamics is systematically explored through the analysis of time-space velocity/viscosity patterns and the study of the instantaneous and time-averaged flow rates.

This paper is organized as follows. The mathematical formulation of the present system is first introduced in §II and the lattice-Boltzmann method employed to performed the numerical simulations is detailed in §III. The results are then presented and analyzed in §IV. Finally, the main aspects of this work are summarized in §V. Let us consider the oscillatory flow of a Herschel-Bulkley fluid in a 2D channel, as schematized in figure 1. In the following, the oscillating pressure gradient is replaced by an oscillating body force. Assuming that the flow velocity remains parallel to the x axis and that horizontal gradients ∂ /∂ x vanish, the flow dynamics is governed by the one-dimensional momentum equation

II. MATHEMATICAL FORMULATION A. Governing equations

ρ ∂ u x ∂t = ∂ τ ∂ y + F x , (1) 
where u x is the velocity along the x axis, F x is the body force, τ is the viscous shear stress and ρ is the density. The constitutive equation of a Herschel-Bulkley fluid is given by:

τ = τ 0 + K γ(| γ|) n-1 f or |τ| > τ 0 γ = 0 f or |τ| < τ 0 ( 2 
)
where γ is the shear rate ∂ u x /∂ y, τ 0 is the yield stress, K is the consistency parameter (units Pa.s n ) and n is the flow index. This equation can model two types of behavior depending of the value of n. If n < 1, the fluid exhibits a shear-thinning behavior (i.e. the viscosity decreases when the shear stress increases) and if n > 1 the fluid is shear-thickening (i.e. the viscosity increases when the shear stress increases). When τ < τ 0 , the shear vanishes and the "fluid" medium behaves like a "solid". Following a generalized-Newtonian approach, the shear stress is modelled as

τ = µ(| γ|) γ (3)
where µ is the apparent fluid viscosity, that takes a limit but large value in solid-like regions (eq.4). In the following, the Herschel-Bulkley model is adapted to our numerical framework by introducing a very high viscosity associated with the solidlike regions of the flow:

   µ liq e f f = τ 0 γ + K(| γ|) n-1 for | γ| > γ0 µ sol e f f = µ sol for | γ| < γ0 (4) 
where µ liq e f f ≪ µ sol e f f and γ0 is the characteristic shear rate related to the yield stress τ 0 . In many numerical studies, infinite viscosities are avoided by using a regularized Herschel-Bulkley law [START_REF] Papanastasiou | Flows of materials with yield[END_REF]. In the present work, a simple truncation is employed and no significant alteration of the results has been observed.

The oscillatory force driving the flow is expressed as

F x = g x (ξ 1 + ξ 2 cos (ωt)) (5) 
where g x is the characteristic magnitude of the force, ξ 1 and ξ 2 are two non-dimensional parameters controlling the form of F x and ω is the pulsation. Based on this definition, three typical cases are considered, namely the purely oscillating force (ξ 1 = 0), the weakly oscillating force (ξ 1 ≫ ξ 2 ) and the strongly oscillating force (ξ 1 ≪ ξ 2 ). Equation ( 1) can be made dimensionless by defining the following non-dimensional quantities:

u * x = u x U 0 , y * = y H , t * = ωt, τ * = τ τ re f (6) 
where U 0 is defined by U 0 = g x H/ρ and τ re f = µ re f γ0 is the reference shear stress with µ re f a reference viscosity. Using equation [START_REF] Chateau | Transport efficiency of metachronal waves in 3d cilium arrays immersed in a twophase flow[END_REF] and dropping the stars, equation (1) becomes

α 2 ∂ u x ∂t = Re(ξ 1 + ξ 2 cos (t)) + ∂ τ ∂ y ( 7 
)
where α is the Womersley number defined by α = H ρω µ re f , the Reynolds number is defined by Re = ρU 0 H µ re f [START_REF] Park | Oscillatory pipe flows of a yield-stress fluid[END_REF].

Analytical solutions of equation ( 7) exist for particular cases. As an illustration, solutions for the steady Poiseuille non-Newtonian flow and the Womersley Newtonian flow will be examined in the next section.

B. Analytical solutions

Poiseuille non-Newtonian flow

If the flow is driven by a constant body forcing (ξ 1 = 1, ξ 2 = 0) the steady flow solution satisfies

0 = Re + ∂ τ ∂ y . ( 8 
)
Using the truncated Herschel-Bulkley law described by equation ( 4), the analytical solution reads [START_REF] Bird | The rheology and flow of viscoplastic materials[END_REF]     

u x = -n n + 1 Re 1 n -y + 0.5 - Bn Re n+1 n + n n + 1 Re 1 n 0.5 - Bn Re n+1 n for y ≤ y 0 u x = Re ⋆ 2 (y -y 2 ) + u x (y 0 ) for y 0 ≤ y ≤ 1 -y 0 ( 9 
)
where y 0 is the position of the interface between fluid-like and solid-like regions, Re ⋆ = ρU 0 H µ sol is the Reynolds number associated with the "solid" part and Bn = σ 0 K H U 0 n is the Bingham number σ 0 is the yield stress, quantifying the ratio between the yield stress and the viscous strain. The solution in the range y ≥ 1y 0 can be obtained by replacing -y + 0.5 -Bn/Re by y -0.5 -Bn/Re in the upper eq. II B 1. The analytic solution consists of two parts, the liquid part and the plug part. In the case of a solid with infinite viscosity, the position of the interface reads y 0 = 0.5 -Bn/Re. It is recalled that the plug part is not exactly solid, as it is described using a highly viscous fluid (see ( 4)). As a consequence, a correction O(Re ⋆-n ) appears in y 0 that is usually very small. The analytical flow described by equation (II B 1) is depicted in figure 2 for µ r = 2500, Re = 10, Bn/Re = 3/10 and n = 1. We define here µ r = µ sol /µ liq , the ratio between the reference viscosities of the solid-like and fluid-like regions. Details on the choice of µ r are given in section IV A. The two flow regions are clearly identified. In high-shear regions, close to the channel walls, the flow exhibits a fluid behavior. In the low-shear region, a plug develops and the flow exhibits a solid-like behavior. Note that the plug size increases as a function of Bn. Due to the fluid modeling of the solid region, the flow profile is not exactly flat accross the central plug. However, when the viscosity ratio µ r is large enough, the plug behavior is well reproduced, as shown in figure 2.

U x /U 0 y/H 

Womersley Newtonian flow

When the flow is Newtonian, equation ( 7) becomes:

α 2 ∂ u x ∂t = Re(ξ 1 + ξ 2 cos (t)) + ∂ 2 u x ∂ y 2 (10) 
and the analytical solution derived by Womersley [START_REF] Womersley | Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known[END_REF] is

U(y,t) = Reξ 1 2 (y -y 2 ) + Real Reξ 2 iω 1 - cosh t (y -0.5) α √ 2 cosh t 2 √ 2
. Figure 3 shows an example of the velocity profile for Re = 0.1 and α = 5 for a series of time steps t = nπ/8, with n = {0, ..., 15}, i.e. encompassing one oscillating period. In this example, ξ 1 = 0 and the flow profile is thus symmetrically reversed at each half period. When α is high, a phase shift develops between the velocities at the centre of the channel and those close to the walls.

U x /U 0 y/H Even though the above analytical solutions are well known, there is no analytical solution for non Newtonian fluids in Womersley flow, and therefore, a numerical strategy is proposed in the following.

III. NUMERICAL METHOD

In the following, the unsteady flow dynamics (1) is predicted on the basis of lattice-Boltzmann (LB) simulations. As the flow is expected to remain one-dimensional, simulations are performed in a two-dimensional periodic channel with only three nodes along the flow direction. In the LB method, the flow dynamics is described through the particle distribution function f (x x x, ξ ξ ξ ,t) which represents the density of fluid particles moving with velocity ξ at location x x x and time t. The dynamics of the distribution function is governed by the Boltzmann equation,

∂ f ∂t + ξ ξ ξ • ∇ f = Ω( f ) (11) 
where Ω is the collision operator. The discretization of equation [START_REF]Physio-Assist Web Site[END_REF] in velocity space, physical space and time leads to the lattice-Boltzmann equation. The velocity space is discretized on a set of velocity vectors {e i , i = 0, ...,Q -1} where Q is the number of discrete velocities. The discretization model used in the present work is the D 2 Q 9 scheme, in which the velocity space is discretized by nine velocities

e i =        (0, 0), i = 0, c cos ( π(i-1) 2 ), sin ( π(i-1) 2 ) , i ∈ [1, 4], √ 2c cos ( π(2i-9) 4 ), sin ( π(2i-9) 4 ) , i ∈ [5, 8], ( 12 
)
where c is the lattice velocity. The particle densities at velocities e i are represented by the particle populations f i (x,t). Time and space are discretized so that particle populations are transported from one node to the neighboring one during one time step, namely ∆x/∆t = ∆y/∆t = c. The spatial grid is Cartesian and uniform, namely ∆x = ∆y are constant. In the following all the quantities are normalized by c and ∆t, namely ∆x = ∆y = ∆t = 1. Using this normalization, the lattice-Boltzmann equation reads

f i (x + e i ,t + 1) -f i (x,t) = Ω i (x,t) + S i (x,t) (13) 
where S i is the contribution of an external body force term. The left-hand side of equation ( 13) is called the streaming step and the right-hand side is the collision. Equation ( 13) is explicit, and the streaming and collision steps can thus be treated separately.

The macroscopic quantities, ρ the density and u the velocity, are computed as moments of the particle functions in the velocity space [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF] 

ρu = 8 ∑ i=0 f i e i + 1 2 S i (14) 
with S i expressed as

S i = 1 - 1 2τ w i e i -u c 2 s + (e i u)e i c 4 s F, (15) 
where F F F = (F x , 0) is the macroscopic body force, c s is the lattice sound speed equal to 1/ √ 3 using the present normalization and w i are the weights specific to the velocity set. In the present case (D 2 Q 9 ), w 0 = 4/9, w i = 1/9 for i = 1, 2, 3, 4 and w i = 1/36 for i = 5, 6, 7, 8.

The collision operator relaxes the distributions { f i } towards the equilibrium distributions f eq i (ρ, u u u) defined as

f eq i (x,t) = w i ρ 1 + e i • u c 2 s + (e i • u) 2 2c 4 s - u 2 2c 2 s ( 16 
)
In this work, a two-relaxation-time collision operator is employed,

Ω i = - 1 τ + ( f + i -f eq+ i ) - 1 τ -( f - i -f eq- i ), (17) 
where τ + and τ -are two relaxation times associated with the relaxation of symmetric and anti-symmetric populations, defined as

         f + i = f i + f i 2 , f - i = f i -f i 2 , f eq+ i = f eq i + f eq i 2 , f eq- i = f eq i -f eq i 2 .
(

) 18 
The symmetric relaxation time τ + determines the macroscopic kinetic fluid viscosity ν = c 2 s (τ + -1 2 ). The anti-symmetric relaxation time τ -is a free numerical parameter. The latter is controlled through the parameter Λ = (τ + -0.5)(τ --0.5), which should be kept constant locally in order to ensure the viscosity-independence of the bulk flow dynamics [START_REF] Gsell | Lattice-boltzmann simulation of creeping generalized newtonian flows: Theory and guidelines[END_REF][START_REF] Humières | Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to "magic" collision numbers[END_REF]. In the following, Λ is set to 1/4 [START_REF] Ginzburg | Optimal stability of advection-diffusion lattice boltzmann models with two relaxation times for positive/negative equilibrium[END_REF].

The non-Newtonian behavior of the fluid is modelled through local variations of the shear-dependent fluid viscosity. In LB simulations, the shear rate can be computed locally through [START_REF] Krüger | The lattice boltzmann method[END_REF] 

S αβ = - 3 2ρτ + 8 ∑ i=0 f neq i e lα e lβ (19) 
where f neq i is the non equilibrium part of the particle functions defined as f neq i = f if eq i . In non-Newtonian simulations, τ + may be time-dependent; in this case the value of τ + issued from the previous time step is used in equation [START_REF] Dawson | Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport[END_REF]. Based on the generalized-Newtonian constitutive equation (4), the local relaxation time is

τ + (x,t) = τ 0 γ-1 + K γn-1 ρc 2 s + 1 2 , ( 20 
)
where γ = 2(S 2 11 + 2S 2 12 + S 2 22 ). At each time step, the value of τ + is determined according to equation ( 20) and τ -is updated is order to keep Λ constant.

Simulations are performed in a periodical channel and the no-slip condition at the walls is ensured by a non-equilibrium bounce-back scheme [START_REF] Zou | On pressure and velocity boundary conditions for the lattice boltzmann bgk model[END_REF]. Among all the performed simulations, the range of the viscosity at the wall is µ e f f ∈ [0.0033, 8.33] but the velocity slip remains low U wall ≤ 10 -5 .

IV. NUMERICAL RESULTS

The first part of this section focuses on the validation of the numerical solver using the two test cases presented in §II. The second part is dedicated to the study of the oscillatory flow of a Herschel-Bulkley fluid in a 2D channel for three different configurations: a purely oscillatory flow, a weakly oscillating flow and a strongly oscillating flow.

A. Validation of the solver

We first consider the simulation of a Herschel-Bulkley flow driven by a constant body force. The impact of the viscosity ratio µ r involved in the generalized-Newtonian rheology (4) is examined in figure 4. In these simulations, the value of τ min (minimal relaxation time) is equal to 0.51 and τ max (maximal relaxation time) is varied through µ r . The value of µ r is derived by obtaining µ liq as µ liq = c 2 s ρ (τ min -0.5). The optiminal ratio µ r is defined in the following. As already discussed in figure 2, the flow exhibits a nearly-solid plug at the centre of the channel. The numerical accuracy in the plug region is closely related to the value of µ r . When µ r is small, a shear clearly appears in the plug region. Even though the present numerical approach is accurate over large range of viscosities, numerical errors are expected to emerge for very large viscosities [START_REF] Gsell | Lattice-boltzmann simulation of creeping generalized newtonian flows: Theory and guidelines[END_REF]. This error is illustrated in the figure 4, when µ r is too large (µ r = 3500), it deteriorates the value of the velocity because the value of the maximal truncation τ max becomes likely too high. For example, in case of µ r = 3500 the value of τ max is equal to 35.5. In this case, the value of the relaxation time becomes too high and the accuracy decreases. The optimal value of µ r is found to be µ r = 2500, resulting in a non-sheared plug region without discontinuity. The mesh resolution must be sufficient to capture the sharp viscosity variation between the solid-like and fluid-like regions. In the following, the grid spacing is set to ∆x/H = 0.01 after a convergence study indicating that for lower values of ∆x/H, the velocity profile remains unaltered.

U
Figures 5(a The reliability of the solver in simulating oscillatory flow in the Newtonian case is illustrated in figures 6(a) and 6(b), where numerical simulations are compared to analytical ones for two values of the Womersley number α. An excellent agreement is noted in both cases. The numerical time step is fixed for each simulation to satisfy the stability constraints of the lattice Boltzmann method [START_REF] Krüger | The lattice boltzmann method[END_REF]. The number of time iterations of the solver is larger than 200000 per oscillation period.

We have performed additional simulations to confirm that the flow is not affected by the periodic boundary conditions along the x direction. In particular, simulation performed with a channel length L = 10H, α = 7 and large Bingham numbers have shown that the flow remains one dimensional. In the following simulations, a quasi-1D channel is thus considered, with L is equal to three nodes. 

B. Results and discussion

In the following, we examine the numerical results for three typical flows corresponding to (i) a purely oscillating flow, (ii) a weakly oscillating flow and (iii) a strongly oscillating flow. A focus is placed on the case Re = 0.1 and n = 1.3. Results obtained for n = 0.7 are presented in appendix A. In the following, the Reynolds number is fixed to Re=0.1 and the Bingham number is varied through the ratio Bn/Re. Indeed, equation II B 1 shows that this ratio controls the plug size in the steady flow case. In particular, the flow completely vanishes when Bn/Re ≥ 0.5. This parameter is thus chosen as the relevant one to characterise the competition between the driving force and the yield stress. 0 , as shown by the analytical solution (II B 1). Based on a pseudo-steady approach, one might thus expect the plug size in unsteady flows to vary as a function of the instantaneous nominal velocity U 0 (t) ∼ F(t). This is qualitatively observed in figures 7(a) and 7(b), where the plug size tends to be larger during low-velocity periods, i.e. when the instantaneous oscillating force F(t) is small. The peak velocity in the channel also tends to decrease at large pulsation rates; consequently, the plug size tends to be larger in these cases.

α Bn/Re A broader visualization of the time-evolution of the flow velocity as a function of the Bingham number and pulsation rate is proposed in figure 8. For each value of the [α, Bn/Re] parameter space, the flow is visualized using iso-contours of the velocity as a function of time and space, over one oscillating period. Each space-time diagram is obtained by considering one line perpendicular to the flow direction, coloring the value of interest (velocity or viscosity) and assembling horizontaly the evolution of the line over time. In this plot and in the following, the time axis is set so that the driving force is maximal at t = 0. As expected from the analytical solution in the steady case (II B 1), the peak velocity in the channel significantly decreases as the yield stress τ 0 increases (i.e. Bn/Re increases). As commented above, the plug size is expected to vary as a function of the instantaneous nominal velocity related to the oscillating force. When the oscillating force is small enough, the plug extends across the whole channel, resulting in temporary quiescent flows emphasized by the white regions in figure 8. The typical duration of these quiescent periods increases as a function of Bn/Re; for Bn/Re ≥ 1/2, the flow completely vanishes.

α Bn/Re The effect of the physical parameters on the plug dynamics is further examined in figure 9, which shows iso-contours of the effective viscosity over time and space, for different values of α and Bn/Re. In this figure, blue regions indicate solid-like parts of the flow. The time-evolution of the plug size, already commented above, is clearly noted in the figure. All simulations exhibit a transient quiescent state, whose duration increases as a function of Bn/Re. The plug size is also generally larger at high pulsation rates, as previously observed in figures 7(a) and 7(b). When the flow is quasi-steady, the position of the fluid-solid interface can be predicted based on the analytical solution given by equation (II B 1). The quasi-steady interface position (red lines in Fig. 9) is y i0 (t) = 1/2 -Bn i (t)/Re i (t), where Bn i and Re i are the instantaneous Bingham and Reynolds numbers based on the instantaneous nominal velocity U 0 (t) = F x (t)H/ρ. As shown in figure 9, y i0 accurately predicts the plug dynamics for small values of α. In contrast, unsteady effects are clearly noted for α ≥ 2.5; these effects are especially characterized by the emergence of a cross-flow phase shift in the viscosity dynamics.

In the present configuration, the time-averaged body force vanishes and so does the time-averaged flow rate. Yet the instantaneous flow rate can significantly depart from zero and its maximum value is affected by the physical parameters. This is examined in figures 10(a) and 10(b), where the maximum flow rate is plotted as a function of Bn/Re, for different values of α and n. It is compared to the corresponding quasi-steady flow rate, i.e. the flow rate of a steady Poiseuille flow with the same values of Bn/Re and n. Overall, the maximal flow decreases when the Womersley number increases and when the yield stress increases. When α = 1 the max flow rate nearly matches the pseudo-steady flow rate. In contrast, an increase of the oscillation frequency leads to substantial deviations from the quasi-static case, and the maximal flow rate tends to vanish. This effect can be understood as a result of the short time scale separation between the oscillating force and the fluid inertia. The maximal flow rate also tends to vanish as Bn/Re increases, as a result of the plug size growth. It can be noted that the maximal flow rate is 10 times lower for n = 0.7 compared to n = 1.3. For low Reynolds number, here Re = 0.1, the shear-thickening fluid thus flows faster than the shear-thinning one. Moreover the impact of the oscillation is reduced for n = 0.7: the maximal ratio between the pseudo-steady and unsteady flow rates is 1.6, against 9 for n = 1.3.

As commented in figure 3, high-frequency oscillations of the driving force can lead to substantial variations of the velocity phase across the channel. This mechanism is associated with the emergence of a phase difference between the overall flow rate in the channel and the driving force. This is illustrated in figure 11, where the phase difference is plotted as a function of α and Bn/Re. Here the phase lag is determined based on the Fourier transform of the flow rate signal, using the force signal as the reference phase. As in the Newtonian case, the phase shift is found to increase with α. Moreover, it is noted that the phase difference significantly decreases as a function of Bn/Re: the yield-stress effect tends to synchronize the flow with the driving force. This can be understood by considering the fact that the yield-stress effect tends to increase to the overall fluid viscosity across the channel, decreasing the effective Womersley number and the associated phase difference. Figure 11: Phase lag (in degree) between the driving force and the flow rate for each couple of (α,Bn/Re) and n = 1.3.

Weakly oscillating flow

In the following, we consider a driving oscillatory force composed of a large time-averaged contribution and a small fluctuating part. This is achieved by setting ξ 2 /ξ 1 = 0.3, where ξ 1 and ξ 2 are defined in equation ( 5). An overview of the time-evolution of the flow velocity as a function of α and Bn/Re is provided in figure 12. As a result of the weakly oscillating form of the driving force, the flow velocity remains always positive in the channel (hence velocity contours are plotted using a sequential color scheme in the figure). As already observed in the purely oscillatory case, the amplitude of velocity fluctuations tends to α Bn/Re decrease with α. At large pulsation rates, velocity variations become negligible compared to the time-averaged part of the flow, and the flow thus becomes nearly steady. Even though the time-averaged force prevents the emergence of negative velocities, the yield stress effect can be strong enough to develop plugs that periodically stop the flow, as emphasized by the zero-velocity (white) regions in figure 12. This is confirmed in figure 13, where a channel-size plug is observed for Bn/Re = 0.375 at small pulsation rates. In other cases, the solid-like region is only observed at the centre of the channel, with a width that depends on α and Bn/Re and that may vary as a function of time. As observed for the velocity contours in figure 12, the flow tends to become steady at large pulsation rates, resulting in a steady central plug.

Bn/Re

The evolution of the time-averaged flow rate is plotted in figures 14(a) and 14(b). When the flow dynamics is linear, i.e.

when Bn = 0 and n = 1, the superposition principle implies that the average flow rate should be equal to a linear combination of contributions related to the mean and fluctuating parts of the driving force. Since the latter contribution vanishes on average, in linear dynamics the time-averaged flow rate should be equal to the flow rate resulting from the time-averaged force. Here, even though the dynamics of the flow is non-linear, the oscillating part of the driving force is too small to result in significant nonlinear effect. This is clearly observed in figures 14(a) and 14(b), where the flow rate remains close to the steady one, although small deviations are noted for strongly non-linear flows (i.e. large values of Bn/Re). The value of the flow index n has no effect on this behavior; however, the mean flow rate is drastically larger for shear-thickening fluids. tional, depending on the oscillation rate. The evolution of the flow velocity is shown in figure 15. As observed in the weakly oscillating case, the oscillatory part of the flow tends to vanish for large values of α due to inertial effects. In this case, the flow remains positive over the oscillation period. Figure 16 shows that the plug dynamics strongly depends on α and Bn/Re. For small values of α, the plug size varies as a function of time and it periodically extends over the whole channel. For large values of α, small values of Bn/Re result in a nearly steady dynamics similar to that observed in the weakly oscillating case, and large values of Bn/Re lead to a strongly non-linear dynamics with important phase shifts across the channel. The non-linear flow properties have a major effect on the time-averaged flow rate. This is examined in figures 17(a) and 17(b), where it is noted that the flow rate can substantially depart from the linear flow rate, i.e. the flow rate resulting from the time-averaged driving force. The effect of the force fluctuations on the flow rate depends on the oscillation frequency and fluid properties. In the shear-thickening case (n = 1.3), force fluctuations tend do decrease the flow rate for small values of Bn/Re. The largest flow rate is thus obtained for large values of α, i.e. in the case where the fluctuating part of the flow is small. A regime transition occurs between Bn/Re = 0.1 and Bn/Re = 0.2; for large values of Bn/Re, force fluctuations result in a major increase of the flow rate. Largest flow rates are achieved when the pulsation rate is small, indicating that this amplification mechanism might be mostly related to a pseudo-static effect. In fact, the amplification mechanism can be understood by considering the case Bn/Re = 0.5 as an illustrative example. For this value of Bn/Re, the time-averaged body force is not strong enough to overcome the yield stress; therefore, the corresponding steady flow rate is equal to zero in figure 17(a). However, force fluctuations may be large enough to produce an instantaneous flow. In particular, positive force fluctuations, whose amplitude is added to the positive mean force, are likely to produce a positive flow. In contrast, negative force fluctuations that are opposed to the mean force must achieve higher amplitudes to overcome the yield stress, and they may even not be able to produce any negative flow, as seen in figure 15 for α = 7 and Bn/Re = 0.375. This ratchet process resulting from the yield-stress property thus provides a simple mechanism that substantially increases the mean-flow rate through flow oscillations. A similar phenomenon is observed for the shear-thinning case shown in figure 17(b). However, no regime transition is observed in this case: the flow rate amplification mechanism is observed for all values of Bn/Re. Moreover, the maximal flow rate is achieved for α = 2.5, suggesting the existence of an optimal pulsation rate maximizing the fluid transport. The phase difference between the oscillatory force and the instantaneous flow rate is plotted in figure 18 for the shearthickening case. The phase difference is mostly determined by the pulsation rate; similarly to the Newtonian case, the phase lag increases as a function of α. The phase difference also slightly decreases as a function of Bn/Re. This trend is similar to that observed in the purely oscillating flow (see figure 11), even though less pronounced in this case. The non-linear flow response to the harmonic body forcing is clearly non-sinusoidal, as one can note in figures 15 and 16.

This is further illustrated in figure 19(a), which shows the time evolution of the flow rate during one oscillation period. The non-harmonic form of the flow-rate signal is especially characterized by the emergence of quiescent-flow periods resulting from the yield-stress property of the fluid. In the Fourier space, these non-linear effects are associated with the growth of higher harmonics in the flow spectrum. Figure 19(b) presents the evolution of the total higher-harmonic energy in the flowrate spectrum normalized by total flow rate energy. Higher-harmonics are defined as the spectral contributions associated with frequencies larger than f 0 , where f 0 is the fundamental frequency equal to the body force frequency. The energy growth is clearly noted as the flow non-linearity increases. For low value of Bn/Re, the flow rate is close to the sinusoid so the energy in the harmonics is low. When the value of Bn/Re increases, the energy contained in the harmonics increases. For the case of α = 1, the value increases a lot because the instantaneous flow rate becomes zero (Figure 19(a)). The flow-response spectrum is further analyzed in figure 20 for different values of Bn/Re and α. In each case, the spatial distribution of the velocity spectrum is presented. At each position y/H, the spectral magnitude is normalized by the amplitude of the fundamental mode. As expected, the higher-harmonic frequency content tends to develop as Bn/Re increases; in particular, the frequency content becomes broader and the higher-harmonic amplitudes increase. In contrast, high-frequency contributions tend to decrease large pulsation rates. As already discussed, the whole fluctuating part of the flow tends to vanish when the pulsation rate increases, as an effect of fluid inertia. Here, one can see that this inertial damping behaves as a low-pass filtering process, where higher harmonics are damped faster than the fundamental component. The same mechanism may explain the space-dependent frequency content observed in figure 20. Largest high-frequency modes tend to appear close to the channel walls, where the flow is dominated by viscous stresses. In contrast, the central region of the channel, which is dominated by inertia, exhibits smaller harmonics. These features might be important in systems where complex interactions can occur between the flow and the no-slip walls, e.g. in the presence of elastic boundaries. the harmonic analysis may allow to develop a tool to modify the sinusoidal forcing to a more complex signal that will optimise the mucociliary clearance, for example by minimising the period when the mucus is in its solid state.

V. CONCLUSIONS

A parametric study of a pulsated Herschel-Bulkley fluid flow in a 2D channel has been carried out using a lattice Boltzmann method, addressing three configurations: purely oscillating flow, weakly oscillating flow and strongly oscillating flow. The effects of the yield-stress, through Bn/Re, and of the forcing signal frequency, through the Womersley number α, are characterized thoroughly.

The purely oscillating case illustrates the typical effects of force fluctuations on the non-Newtonian flow dynamics: timedependent solid-plug which may extend across the whole channel and stop the flow, strong phase differences in velocity and viscosity signals across the channel and inertial damping of high-frequency oscillations. The yield-stress can strongly alter these effects, especially by controlling the typical size of the solid-plug in the channel. When a time-averaged contribution is added to the body force, different dynamics can be observed depending on the relative magnitude of the fluctuating force. In the weakly oscillating case, the force fluctuations result in variations of the flow structure (e.g. time-dependent plug at the centre of the channel) but the global time-averaged flow dynamics remains mostly unaltered; in particular, the time-averaged flow rate is determined by the mean force component. In contrast, non-linear effects are considerable in the strongly oscillating case. At large Bingham numbers, a simple ratchet mechanism resulting from the yield-stress property drives a major amplification of the mean flow. The non-linear flow dynamics is also associated with the emergence of high-amplitude non-harmonic contributions in the flow-response spectrum, especially in the vicinity of the channel walls.

In the context of mouth pressure generator devices to assist patients in evacuating the mucus contained in their airways, this first parametric study allows one to identify some important aspects of the expected flow when the dynamics is governed by the yield stress and shear-thinning/thickening properties of the fluid. In particular, future developments will be oriented towards the control of the ratchet mechanism discussed above. The frequency content of the flow response might also be important in more complex systems involving time-dependent fluid properties and/or elastic walls. These systems will be addressed in future works. Figure 28, shows that the phase lag decreases with Bn/Re for all the values of α wheareas in the shear thickening case, the phase lag increases slightly for the α = 5 and α = 7 cases. Moreover, the value of the phase lag is always lower in the shear-thinning case than in the shear-thickening case.

Figures 29(a) shows the flow rate versus time over an oscillation. As Bn/Re increases, the evolution of the flow rate for α = 1 is comparable to that of a shear-thickening flow. The increase of the pulsation frequency does not allow to have a flow signal close to a sinusoidal signal. We can therefore see in figure 29(b) that the energy contained in the harmonics is greater than in the shear-thickening case.

Figure 30 corresponds to the same plot as figure 20 but in the case n = 0.7. Contrary to the latter, figure 30 does not allow us to say that the energy contained in the high harmonics increases with the increase in the value of Bn/Re. In the case α = 1, the energy contained in the high harmonics ( f / f 0 > 6) seems to decrease with the increase of Bn/Re. However, for the first harmonics ( f / f 0 < 6) the energy increases with Bn/Re. Moreover, the inertia-dominated central region of the channel exhibits smaller harmonics as for n = 1.3. Then, we notice that the energy decreases with the increase of α and is distributed on the first harmonics. However, when the value of Bn/Re increases, we notice an evolution of the frequency distribution identical to the case n = 1.3. pp. 1591-1598, 1997.
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 1 Figure 1: Scheme of the computational domain.
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 2 Figure 2: Analytical solution for the Herchel-Bulkley flow driven by a constant body force, Bn/Re = 3/10, n = 1 and µ r = 2500 see equation (II B 1).

Figure 3 :

 3 Figure 3: Analytical solution of the Newtonian oscillatory flow (Womersley flow) in a channel, for ξ 1 = 0, ξ 2 = 1, α = 5, Re = 0.1 at t=nπ/8 for n = [0 : 15], see equation (11).
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 4 Figure 4: Impact of the viscosity ratio on the velocity profile for Re = 0.1, Bn/Re = 0.15, n = 0.7, △: µ r = 500, •: µ r = 1500, black line: µ r = 2500 and red line: µ r = 3500.
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 5 Figure 5: Velocity profiles a) Re = 10, n = 1 and different Bn, Purple: Bn = 1, Green: Bn = 2, Blue: Bn = 3, Yellow: Bn = 4, b) Re = 10, Bn = 3, Purple: n = 0.7, Blue: n = 1, Green: n = 1.3. The lines represent the analytical solutions and the symbols the numerical ones.

Figure 6 :

 6 Figure 6: Newtonian oscillatory flow for (a) Re = 10, α = 1 and (b) Re = 10, α = 7: numerical (symbols) and analytical (solid lines) velocity profiles at times t = nπ/8 and n = {0, ..., 15}.

Figure 7 :

 7 Figure 7: Velocity profile for n 2π/10, for n being an integer number between 0 and 9 a) Re = 0.1, Bn/Re = 0.05, α = 1 and n = 1.3 b) Re = 0.1, Bn/Re = 0.05, α = 7 and n = 1.3.
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 8 Figure 8: Space-time diagram of the velocity field during one period for each couple of dimensionless numbers α, Bn/Re and n = 1.3. The velocity magnitude is indicated by the color bar. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel.
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 9 Figure 9: Space-time diagrams of dynamic viscosity during one period for each couple of dimensionless numbers α, Bn/Re and n = 1.3. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel. The blue part represents the "solid" behavior of the fluid while the white part represents the liquid part. The red line corresponds to the position of the interface y i0 (t)

Figure 10 :

 10 Figure 10: Maximal flow rate in lattice units (l.u) for each couple of (α, Bn/Re) and (a) n=1.3 and (b) n=0.7. Dotted line: Flow rate for Poiseuille Flow.

Figure 12 :

 12 Figure 12: Space-time diagrams of the velocity during one period of oscillation for each couple of α, Bn/Re and n=1.3.

Figure 13 :

 13 Figure 13: Space-time diagram of the dynamic viscosity during one period of oscillation for each couple of α, Bn/Re and n=1.3. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis is the position inside the channel. The blue part represents the "solid" behavior of the fluid while the white part represents the liquid part.

Figure 14 :Figure 15 :Figure 16 :

 141516 Figure 14: Mean flow rate for each couple of (α, Bn/Re) and (a) n = 1.3 and (b) n = 0.7. Dotted line: Flow rate for Poiseuille Flow

Figure 17 :

 17 Figure 17: a) Mean flow rate for each couple of (α, Bn/Re) and n = 1.3. b) Mean flow rate for each couple of (α, Bn/Re) and n = 0.7. dotted line: Flow rate for Poiseuille Flow.

Figure 18 :

 18 Figure 18: Phase lag between force and flow rate response for each couple of (α, Bn/Re) and n = 1.3.

Figure 19

 19 Figure 19: a) Flow rate over one period for n = 1.3. b) Energy of harmonic frequency modes for various couples (α,Bn/Re) and n = 1.3.

Figure 20 :

 20 Figure 20: Space-frequency diagrams of the spectral energy on the velocity for each couple of α, Bn/Re for n = 1.3. The x-axis corresponds to the dimensionless frequency and the y-axis is the position inside the channel.

Figure 21 :

 21 Figure 21: Space-time diagram of the velocity field during one period for each couple of dimensionless numbers α, Bn/Re and n = 0.7. The velocity magnitude is indicated by the color bar. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel.
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 2223 Figure 22: Space-time diagrams of dynamic viscosity during one period for each couple of dimensionless numbers α, Bn/Re and n = 0.7. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel. The blue part represents the "solid" behavior of the fluid while the white part represents the liquid part.

Figure 26 :

 26 Figure 26: Space-time diagram of the velocity field during one period for each couple of dimensionless numbers α, Bn/Re and n = 0.7. The velocity magnitude is indicated by the color bar. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel.

Figure 27 :

 27 Figure 27: Space-time diagrams of dynamic viscosity during one period for each couple of dimensionless numbers α, Bn/Re and n = 0.7. For each subplot, the x-axis corresponds to the temporal evolution and the y-axis gives the position inside the channel. The blue part represents the "solid" behavior of the fluid while the white part represents the liquid part.
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 2829 Figure 28: Phase lag between force and flow rate response for each couple of (α, Bn/Re) and n = 0.7.

Figure 30 :

 30 Figure 30: Space-time diagrams of the spectral energy on the velocity for each couple of α, Bn/Re for n = 0.7. The x-axis corresponds to the dimensionless frequency and the y-axis is the position inside the channel.
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Appendix A: Case of the shear thinning flow n = 0.7

Purely oscillating flow

Figures 21 and 22 represent the evolution of the velocity and the viscosity for n = 0.7. The increase in yield stress has the same impact on viscosity and velocity in the case of shear-thinning flows (n = 0.7) as in the case of shear-thickening flows (n = 1.3). Indeed, when Bn/Re increases, the duration when the channel is totally obstructed increases and the viscosity is equal to that of the "solid".

The evolution of the phase lag, shown in figure 23, is the same as in the case of a shear-thickening flow. Indeed, when the yield stress increases, the value of the phase lag decreases (for example for α = 2.5, the value goes from 7°(Bn/Re = 0.05) to 0°(Bn/Re = 0.375)). However, the value is always lower for the same parameters in the shear-thinning case than in the shear-thickening case (see Figs. 11).

Weakly oscillating flow

The time-evolution of the flow velocity is shows in 24. The flow remains always positive for all configurations. The effect of α and Bn/Re on the velocity and the viscosity is identical to the shear-thickening case (see Figs 12 and13).