Dust charge distribution in a plasma afterglow
Igor Denysenko, Maxime Mikikian

To cite this version:

HAL Id: hal-03863321
https://hal.science/hal-03863321
Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dust charge distribution in a plasma afterglow

I. B. Denysenko1,2,3, M. Mikikian2

1School of Physics and Technology, V. N. Karazin Kharkiv National University, Ukraine
2GREMI, UMR 7344 CNRS/Université d’Orléans, F-45067 Orléans, France
3Le Studium, Loire Valley Institute for Advanced Studies, Orléans & Tours, France

Discharging of dust particles in an argon plasma afterglow was investigated. The study was carried out using different approaches. First, we obtained the dust charge distribution function (DCDF) \(F_k \) by solving numerically the master equation \[1\]:

\[
\frac{d}{dt} F_k = v_{ed}^{k+1} F_{k+1}^{ed} - v_{id}^{k} F_{k}^{id} - (v_{id}^{k} + v_{m}) F_{k}^{id} + (v_{id}^{k-1} + v_{m}) F_{k-1}^{id},
\]

where \(t \) is the afterglow time, \(v_{ed}^{k} \) and \(v_{id}^{k} \) are the frequencies with which a particle with charge \(Z_d^k = ke \) collects electrons and ions, respectively, \(k \) is an integer and \(e \) is the elementary charge. \(v_{m} \) is the frequency describing electron emission from the dust surface at collisions of dust particles with argon atoms in excited states. The DCDF is normalized by \(\sum_k F_k = 1 \).

We also calculated the mean dust charge \(Z_d \) using the following expression

\[
\frac{\partial Z_d}{\partial t} = v_{id} + v_{m} - v_{ed},
\]

where \(v_{id} \) and \(v_{ed} \) are, respectively, the frequencies describing collection of ions and electrons by a dust particle with the charge \(Z_d \).

We also compared the DCDF calculated from Eq. (1) with the Gaussian distribution \[1\]:

\[
F_{Gk} = \frac{1}{(2\pi\sigma_z^2)^{1/2}} \exp\left[-\frac{(-Z_d^k + Z_d)^2}{2\sigma_z^2} \right],
\]

where \(Z_d \) is determined by Eq. (2), and the variance \(\sigma_z^2 \) as a function of time is found from the following equation \[1\]:

\[
\frac{d\sigma_z^2}{dt} \approx -\alpha'_z \sigma_z^2 + \alpha_2,
\]

where \(\alpha'_z = 2(v_{id}' - v_{ed}') \) with primes indicating derivatives with respect to \(Z_d \), \(\alpha_2 = v_{ed} + v_{id} + v_{m} \).

Using Eqs. (1) - (4), we calculated the dust charge distribution function, mean dust charge and variance in an argon afterglow plasma, as functions of time. The calculations were...
carried out for the plasma with radius $R=2$ cm and height $L=3$ cm (the plasma sizes here are the same as in [2]). It was assumed that the plasma contains electrons with density n_e, singly charged positive argon ions with density n_i, ground-state argon atoms with density n_a, metastable argon atoms (Ar_m) with density n_{m}, argon atoms in the resonance 4s states (${}^3\text{P}_1$ and $^1\text{P}_1$) (Ar_r) with density n_r as well as argon atoms in 4p states (Ar_{4p}) with density n_{4p}. We assumed that at $t = 0$, $n_e = n_i = 5 \times 10^9$ cm$^{-3}$ and that the plasma contains dust particles with density $n_d = 5 \times 10^4$ cm$^{-3}$, as in [2], and radius a_d. The results were obtained for different dust radii. The study was carried out taking into account for the transition from ambipolar to free diffusion in the plasma afterglow. The electron diffusion was described in the same manner as in [3], while the ion diffusion as in [4]. The neutral gas pressure was taken to be $P = 0.3$ Torr, as in [2]. In [5], one can find the results for the $P = 0.9$ Torr case additionally.

The results were obtained taking into account secondary electron emission in the collisions of excited argon atoms Ar^* (Ar_m, Ar_r and Ar_{4p}) with dust particles (for the secondary emission yield $\gamma_m = 0.035$), as well as neglecting by this process ($\gamma_m = 0$). Since the value of γ_m is not known for the conditions considered here, we used in our simulations the value leading to a good agreement with experimental data [2]. More details on our model can be found in [5].

Fig. 1 shows that the initial $|Z_d|$ increases if a_d becomes larger, because of larger surface collecting electrons from the plasma volume. The absolute value of mean dust charge decreases faster with time in the beginning of afterglow, if dust size is larger [Fig. 1 (a)], due to larger dust charging time (see Fig. 1 (c) in [3]). Moreover, at late afterglow times, the absolute value of mean dust charge may become larger for smaller a_d [Fig. 1(a)]. In particular, $|Z_d|$ for $a_d = 5$ nm is larger than the absolute values of mean dust charge for $a_d = 10$ nm and $a_d = 20$ nm. This is mainly due to smaller ν_{id} in the $a_d = 5$ nm case compared with the frequencies in the $a_d = 10$ nm and $a_d = 20$ nm cases. Note that the secondary emission in metastable-dust collisions affects more essentially the charge of larger dust particles. At late afterglow times ($t = 100$ ms), $|Z_d|$ is 2.37 (2.37), 4.61 (4.56), 3.36 (3.2), 3.59 (3.2), 6.8 (5.17), 10.7 (6.04), 16.61 (3.24) for $a_d = 1$ nm, 5 nm, 10 nm, 20 nm, 50 nm, 100 nm, 200 nm at $\gamma_m = 0$ ($\gamma_m = 0.035$), respectively. Thus, at $t = 100$ ms and $\gamma_m = 0.035$, the absolute value of mean dust charge for $a_d = 200$ nm is smaller than $|Z_d|$ for $a_d = 5$, 50 and 100 nm because of the secondary emission. It is not the case for $\gamma_m = 0.0$.

At late afterglow times, the mean charges of dust particles with different a_d may be nearly the same (see $|Z_d(t)|$ in Fig. 1 (a) for $a_d = 10$ nm, 20 nm and 200 nm), while the variances are very different [Fig. 1 (b)]. Similarly, the variances for different a_d may be nearly the same
(see σ_z^2 in Fig. 1 (b) for $a_d = 5$ nm and 10 nm), while the mean charges differ essentially [Fig. 1 (a)].

In our opinion, this is due to changing the dust charging time and the variance at a variation of a_d. For large dust particles ($a_d \geq 20$ nm) and $t \geq 0.3$ ms, the variance increases with growth of a_d [Fig. 1 (b)]. This conclusion can be also obtained using the OML approach for the steady-state case at $\gamma_m = 0$ ($\sigma_z^2 \approx \frac{(1 + v_{ed} / v_{id}) a_d T_\epsilon}{2e(\tau / (1 + \tau |z|) + v_{ed} / v_{id})} \propto a_d$, where $\tau = T_\epsilon / T_\iota$, T_ϵ and T_ι are the electron and ion temperatures, respectively, and $z = eZ_d / a_d T_\iota$). The variance depends also on γ_m, and at late afterglow times for large dust particles, σ_z^2 in the case of $\gamma_m = 0.035$ is larger than that in the case of $\gamma_m = 0$. At $t = 100$ ms, the variance is 0.83 (0.83), 2.34 (2.37), 2.21 (2.3), 1.28 (1.5), 2.67 (3.52), 4.51 (6.65) and 7.66 (12.57) for $a_d = 1$ nm, 5 nm, 10 nm, 20 nm, 50 nm, 100 nm and 200 nm at $\gamma_m = 0$ ($\gamma_m = 0.035$), respectively.

Fig. 1. The mean dust charge (a) and the variance (b) for $\gamma_m = 0.035$, and the dust charge distribution function obtained from Eq. (1) at $t = 100$ ms for $a_d = 1$ nm, 5 nm, 10 nm, 20 nm, 50 nm, 100 nm and 200 nm in the $\gamma_m = 0$ (c) and $\gamma_m = 0.035$ (d) cases.
Note that at late afterglow times, most dust particles in the $\gamma_m = 0$ case are negatively charged, independently on their size [Fig. 1(c)]. In the $\gamma_m = 0.035$ case, rather large amount of dust particles with $a_d = 200 \text{ nm}$ are positively charged, while the particles of smaller size are mainly negatively charged. This is due to the fact that for large dust particles, σ_z^2 is larger and $|Z_d|$ is smaller in the $\gamma_m = 0.035$ case compared with the corresponding values obtained at $\gamma_m = 0$ [5]. For small a_d ($\lesssim 10 \text{ nm}$), the DCDF in the $\gamma_m = 0.035$ case is nearly the same as the one obtained for $\gamma_m = 0$, because σ_z^2 and $|Z_d|$ are also nearly the same in the both cases.

We also calculated the dust charge distribution functions at $a_d = 190 \text{ nm}$ (as in the experiments [2]) and compared them with the measured DCDF [Fig. 2(a)]. It was found that the calculated DCDF agrees well with the one obtained in experiments [2], if our model accounts for the secondary emission with $\gamma_m = 0.035$ [Fig. 2(a)]. At $\gamma_m = 0$, the calculated DCDF is shifted to the region of smaller charge (larger $|Z_d|$) compared with the charge distribution function measured in the experiment. The charge distribution calculated from Eq. (1) at $\gamma_m = 0.035$ was also compared with the Gaussian distribution obtained using Eqs. (2)- (4). It was found that F_{Gk} approximates rather well the DCDF obtained from the master equation (1) [Fig. 2(b)].

Fig. 2. The normalized DCDFs calculated at $t = 100 \text{ ms}$ in the $\gamma_m = 0$ (dashed curve) and $\gamma_m = 0.035$ (dotted curve) cases and the DCDF obtained in experiments [2] (solid curve) (a). The dust charge distribution functions calculated at $\gamma_m = 0.035$ from Eq. (1) (dashed curve) and the Gaussian distribution obtained from Eq. (3) (solid curve). Here, $a_d = 190 \text{ nm}$ and F_{max} corresponds to the DCDF maximum.