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This work studies the impact of the non-parabolicity on the formation of multi-subband plas-
mons. We explore three semi-classical optical response models, and compare their predictions to
temperature-dependent absorption measurements from three structures: all doped GaAs/AlGaAs
quantum wells with continuously varied parabolic binding potentials. We show that qualitative
improvement in the prediction of the plasmon absorption peak can only be obtained by including
both the energy and wavefunction dependence on the in-plane wavevector. Our model, developed to

include both these dependencies, uses a k⃗ · p⃗-derived current density operator (instead of the usual
scalar effective mass one). The model should be readily generalizable to a wide set of nanostruc-
tures, such as asymmetric half-parabolic wells or narrow band materials nanostructures beyond the
quasi-Kohn regime.

I. INTRODUCTION

Recently, harmonic continuously graded alloy semicon-
ductor quantum wells have been examined in Ref. 1. The
system exhibits a single absorption peak up to room tem-
perature and remarkably small relative linewidths (5.6%)
at liquid helium temperature. The existence of a single
strong peaka superposition of underlying subband-pair
resonators is called the multi-subband plasmon (MSP)2.
The absorption frequency is largely independent of dop-
ing and temperature, remaining very close to target fre-
quency 3 THz. However, while the temperature redshift
is small (being basically a small order correction in the
case of a nearly perfect parabolic confinement), it is in
stark qualitative contrast to the blueshift predictions of
the MSP formation model. As pointed out in the ref-
erenced work Ref. 1, further effort is needed to get the
model details right.

A simple model of QW was given in Ref. 3, in the
case of a single absorption mode coming from a single
inter-subband (ISB) electron transition. This model in-
cludes the depolarisation shift4, but it does not account
for the superposition effects of different inter-subband
resonators. To describe the formation of MSPs, two main
classes of models have been used thus far, one quantum
and one semi-classical.

The quantum model5–8 employs a light-matter interac-

a In fact, what one directly gets from our model are the effective
permittivity and the absorption coefficient. For the purpose of
this work, as long as there is only one absorption peak present
with a single maximum (which is always the case for the results
presented in this work), it is interpreted as the MSB.

tion Hamiltonian, second-quantized in the electric dipole
gauge, describing the interaction in terms of the elec-
tric displacement field and polarization density. Using
a Bogoliubov-style diagonalization procedure twice, it
yields first the depolarization shift (as a self-interaction
transition effect) and then the multi-subband modes. Fi-
nally, the light-matter coupling part of the Hamiltonian
is given, using effective plasma frequencies and overlap
factors for the MSP modes. In the quantum model
for the square QWs all the ISB transitions can be as-
sumed to have the same constant effective length6,9. This
simplification allows the model to be extended to non-
parabolic subbands, and an effective dielectric tensor can
be calculated10. This approach mirrors much earlier work
by Warburton et al. who showed an absorption con-
centration effect in heavily doped InAs/AlSb QWs sim-
ilar to the MSP mode concentration11. Unfortunately,
this assumption holds only for the adjacent transitions
in square QWs, it does not hold for parabolic quantum
wells (PQWs) or other potential shapes in general. For
instance, for non-adjacent transitions in square wells, one
must revert to the full diagonalization procedure of the
quantum model to obtain the correct results6.

The quantum method has been used quite successfully
for square wells, and almost certainly could be extended
to treat non-parabolic subbands more generally in the

context of k⃗ · p⃗ theory. However, at present it is not
obvious how best to tackle such an extension in a com-
putationally feasible manner. Instead, we turn to a semi-
classical approach, based on the work of Alpeggiani and
Andreani, Ref. 12. Here, the “workhorse” is the non-local
susceptibility tensor, as obtained in Refs. 13–15 using a
Green function formalism. It has been used to study
the light-matter coupling for both ISB transitions13–16

and exciton-polaritons17. The derivation of the model is



2

given in Sec. B.

Motivated by previous experimental work, we look here
at an example case of PQWs, which have the inter-
esting property that in the superposition of underlying
subband-pair resonators certain effects appear to cancel
out. Let us imagine an undoped system with perfectly
parabolic (in-plane) single electron energy subbands as
a starting point. As the doping is increased and the
conduction bands start to be occupied, two things will
happen: (1) the electron-electron interaction will deform
(bend) the bands resulting in a redshift in inter-subband
transition energies and (2) the ISB resonators will inter-
act resulting in a general blueshift of the MSP mode with
respect to individual inter-subband modes. Those two
effects should shift the energy of the renormalized MSP
mode exactly oppositely, effectively canceling both con-
tributions out. That is, the MSP transition energy should
be the same as the inter-subband transition energy of
the single electron. This well known effect is called the
Kohn theorem18 and it also takes place in semiconductor
systems19.b In the time-dependent DFT community, its
generalization is known as the Harmonic Potential The-
orem, see Ref. 20. In the case of a system where single
electron subbands are nearly parabolic, like our PQW,
one should expect that the MSP energy will be nearly
unaffected, with a possible energy shift being a smaller-
order effect.

Importantly, though, real-world PQWs do not conform
perfectly to the Kohn theorem. Among the departures
from ideal parabolicity of the electron bands we have: (1)
the truncation of the PQW potential due to finite thick-
ness of the wells, (2) the limited knowledge of the mate-
rial parameters resulting in only quasi -ideal growth con-
ditions, and (3) the mixing between the conduction and
valence bands due to the spin-orbit interaction. These
effects will result in small departures from the behaviour
of an ideal parabolic potential.

PQWs are thus an interesting test case for these
smaller effects. The electron interactions which would
typically dominate are mostly cancelled out, leaving us
in a quasi-Kohn regime where these smaller effects are
more visible. Furthermore, we should expect that in-
plane non-parabolicity due to the spin-orbit interaction
(not to be confused with non-parabolicity of the PQW
potential in the growth direction), will play an increasing
role as the temperature is pushed towards room tempera-
ture. The higher we move above cryogenic temperatures,

the more occupation we will see at k⃗∥ values far from the
Γ point. Therefore, we should not expect that we can

b Strictly speaking, the Kohn theorem is about the cancellation of
electron-electron interactions in cyclotron systems. The analo-
gous effect in quantum well systems like ours, leaving the res-
onance frequency almost completely independent of the charge
distribution, is described in the latter work cited. However, we
have decided to nevertheless use the term Kohn theorem due to
its prevalence in the field.

assume the transition energies nor the wavefunctions to

be constant for all k⃗∥.
In principle, the linear response of the non-parabolic

system can be obtained within the scope of the self-
consistent time-dependent local-density approximation.
For example, the finite wave-vector intersubband col-
lective excitation spectra in wide parabolic wells were
obtained at low two-dimensional electron densities, in
Ref. 21. It is important, however, to develop a compu-
tationally feasible model of MSP absorption which can
correctly account for these effects in non-square QWs in
a way that is practical for nanodevice design, something
which has thus far been lacking. In particular the com-
putational time is an important factor in device design.
For this reason, this work is focused on correctly incor-

porating the small in-plane non-parabolicity effect into
the semi-classical MSP model for PQW absorption. The
experimental data (Sec. III) come from a set of three
PQW samples, two of which were previously discussed in
Ref. 1. The MSP energy of the samples has been mea-
sured in a multipass absorption experiment over a range
of different temperatures from liquid helium to room tem-
perature. The position of the MSP peak, and more im-
portantly its temperature shift, is extracted with the help
of the transfer matrix method. On the theoretical side,
we approach the system from the point of view of the
Kohn theorem, treating the ”energy-locked MSP” as a
unperturbed system.
We then develop the theory in stages from there, pro-

ducing three models of increasing sophistication. As a
first step, we employ a simple model, which takes into
account only the temperature variation of the mate-
rial parameters, but still works with ideally parabolic
bands (Sec. II C). We refer to this as the “parabolic
model.” The second step takes into account the calcu-
lated non-parabolicity of the energy bands but still as-
sumes that the corresponding wavefunctions are iden-
tical in the whole momentum plane to these at the
Γ point (Sec. IID). We refer to this as the “hybrid
model.” The third and ultimate approach uses the in-
plane wavevector-dependent energies and wavefunctions

of the 8-band k⃗ · p⃗ Hamiltonian (Sec. II E). We refer to

this as the 8-band k⃗ · p⃗ model.
It should be noted that the parabolic model already

existed in the literature (Ref. 12), although we do pro-
vide some additional generalization to non-symmetric
QW systems. The other two approaches extend this
model to include in-plane non-parabolicity, with signif-

icant new theoretical additions in the 8-band k⃗ · p⃗ model.
Further, it is shown that this full model is the only one
able to qualitatively (and quantitatively, but with uncer-
tainty coming from the limited knowledge of the material
parameters) predict the temperature shift of the PQW
systems. In particular, the in-plane parabolic model, in
which the temperature comes only through the variation
of the material parameters, leads in some instances to the
opposite prediction: i.e. a blueshift instead of a redshift
of the MSB energy as T increases.
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We see the usefulness and the interest of our work pri-
marily in: (I) the successful application of the models
– which were in principle derived only/primarily with
parabolic dispersions in mind – to the system, where the
non-parabolicity is of importance, and which is itself a
breakthrough in the MBE growth techniques, and (II)
in the successful ”gluing together” in a coherent fashion

the k⃗ · p⃗ and the ISB models, which overcomes a series
of difficulties: both methodological and – primarily – of
the computational complexity nature, with the minimal
set of the necessary approximations/simplifications.

II. METHOD

A. System

Though our theoretical model is quite general, we con-
sider some specific examples of parabolic quantum well
(PQW) systems in AlxGa1−xAs. We grew three PQW
samples with molecular beam epitaxy (MBE), using a
continuous grading technique which allows the desired
composition profile to be followed precisely22,23. The
first two samples, G0489 and G0490, are PQW arrays
designed to have an absorption frequency around 3THz.
G0489 has 18 PQWs doped at 3 × 1011 cm−2 per well,
and G0490 has 54 PQWs doped at 1×1011 cm−2 per well.
The two structures are identical aside from the number
of wells and doping level. The PQWs in G0489/G0490
are formed from continuously graded AlxGa1−xAs with
composition ranging in 0.02 ≤ x ≤ 0.30. As shown in
Fig. 1 (left), the PQWs are 103.8 nm wide, separated by
4/2/4 nm barriers of Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As.
Si doping is placed into the GaAs region of the barrier
to avoid the formation of DX-centres and ensure ioniza-
tion of the dopants24. The absorption characteristics of
G0489 and G0490 were studied experimentally in Ref. 1.

The third sample, G0643, targets a lower frequency of
2.1THz. This sample was, again, grown in continuously
graded AlxGa1−xAs, but with a lower barrier compo-
sition, ranging in 0.02 ≤ x ≤ 0.20. As such, no doping
wells were used in this sample. G0643 includes a periodic
array of 8 PQWs doped at 1 × 1011 cm−2 per well. The
wells are 130.7 nm wide, separated by 20 nm Al0.2Ga0.8As
barriers. (Again, shown in Fig. 1.)

B. The nextnano++ simulation

From the computational perspective, the process starts
with obtaining the eigenenergies En(z) and eigenfunc-
tions ψn(z) of the Schrödinger-Poisson equation system
with the help of the nextnano++ software, see Ref. 25.
Note that in the case of the one-band parabolic model
(Sec. II C), only the solution at the Γ point is needed, as

the wavefunctions do not depend on k⃗∥ and the depen-

dence of the energy is trivial, while in the case of k⃗ · p⃗

simulation a custom k⃗∥-mesh is defined, as described in
Sec. II E. Periodic boundary conditions are used in the
growth z direction. The pseudomorphic strain of the sys-
tem is included in the calculation.26

In the cases of the G0489 and G0490 samples (the
3 THz system) the width of the periodic cell is WS =
113.8 nm (QW + separation + doping well) and the grid
spacing is ∆z = 0.25 nm. The number of eigenstates
taken into account in the simulation is 17. The nex-
tano++ default parameter values were used, with the
exception of the linear dependence of bandgap on compo-
sition, which was adopted after Ref. 27, slightly corrected

for strain [(Eg)
AlAs
T=0 = 2.9107 eV], with a temperature

dependent bandgap and band-offset ratio of 0.60 at zero
temperature.c The n-Si in GaAs doping is introduced
through a doping well with width of 2.0 nm per period,
assuming full ionization.
For the ∼2 THz system (sample G0642/G0643) the

width of the period is WS = 150.75 nm and the sim-

ulation includes 14 electron eigenstates. (Eg)
AlAs
T=0 =

2.922 eV is used, with a linear dependence of (Eg)T=0
on composition and band-offset ratio of 0.60 at zero tem-
perature, as previously described. In the case of one-band
and hybrid models the asymmetric delta doping profile
in introduced in the simulation as-is. In the case of the
k⃗ · p⃗ model, the doping profile needed to be symmetrized,
resulting in WS = 153 nm.

In the simulation for the 8-band k⃗·p⃗model, (Eg)
AlAs
T=0 =

2.922 eV is used; 20 electron wavefunctions and 16 hole
ones are included; the doping well potential is omittedd

and the default S = 1 re-scaling is used in order to avoid
spurious solutions.

C. ISB formation: the parabolic model

In this section, we present the semi-classical
Alpeggiani-Adreani model of the ISB formation of Ref. 12
– henceforth AA – which is the starting point for our
analysis of the ISB formation. The model is used as-is
within the parabolic approximation and is a basis for fur-

ther development of the hybrid (Sec. IID) and the k⃗ · p⃗
(Sec. II E) ones. Please note that a more detailed and
more general derivation is provided in Appendix, Sec. B.
We start by defining the non-local susceptibility in the

growth z direction χzz(ω,q; z, z
′) by the following rela-

c Note that the exact band-offset ratio has remained difficult to pin
down exactly experimentally. See, for example, the wide range
of offsets reported in Ref.28.

d The wavefunctions are generally localized entirely in the
parabolic QW or in the doping well, due to their separation.
However, hybridization can happen in the case of a coincidental
degeneracy for a given n and k⃗∥. As the k⃗ · p⃗ model model re-
quires following which orbital is which, it is easier to remove the
doping well, taking into account it had a small impact on the
QW solutions anyway.
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FIG. 1: Visualization of the experimental PQW systems studied here. The left panel shows the ∼ 3 THz system G0489/G0490
and the right panel shows the ∼ 2.1 THz system G0643, in the absence of doping. The solid lines show the AlxGa1−xAs
composition, x, as a function of position in the growth direction. The dotted vertical lines show the position of the Si-delta
doping layer.

tion between the electric E and the displacementD fields:

Dz(z) = ϵ0ϵs + ϵ0

∫
χzz(ω,q; z, z

′)Ez(z′) dz′ (1)

with ϵs the static permittivity of the semiconductor in
the absence of doping, and

χzz(ω,q; z, z
′) =

∑
α

χα(ω,q)ξα(z)ξα(z
′) (2)

where ω,q are the frequency and wavevector of the tran-
sition, respectively, and the index α ≡ n→ m stands for
the transition from subband n to subband m.e The ξα’s
are called ISB transition current densities, and they are
defined by

ξα(z) =
h̄e

2m∗(z)
[ψm(z)∂zψn(z)− (∂zψm(z))ψn(z)], (3)

where ψn(z) are the envelope eigenvectors of the one-
band Schrödinger-Poisson equation system, assumed to
be real, and m∗ is the effective mass. The single-particle
susceptibility χα(ω), in the long wavelength limit q→0,
is given by

χα(ω) = − 1(
ω + iγIB

2

)2

4

ϵ0h̄ωαs

∑
k⃗∥

∆fα(k⃗∥)

×

1 + ωα(k⃗∥)ωα(0)(
ω + iγIB

2

)2

− ωα(k⃗∥)2

 (4)

e In AA the corresponding notation is α ≡ n→ n′, however there
is also the α′ index. While we tried to mimic the notation of that
work as far as possible, for ease of the reference of the reader, we
use α ≡ n → m and α′ ≡ n′ → m′. This also allows us to use
the α′, β′, σ′, k′∥ set of indices in a consistent way below.

where ωα(k⃗∥) = Em(k⃗∥)−En(k⃗∥) is the transition energy

from subband n → m at in-plane wave vector k⃗∥, and

∆fα(k⃗∥) = fn(k⃗∥) − fm(k⃗∥) is the difference in Fermi
occupation probability. s is the in-plane surface area.

Please note here that the broadening parameter γIB is
artificially introduced to the model by evaluating the sus-
ceptibility at ω → ω+ iγIB/2. In principle, γIB

α,⃗k∥,T
would

be the FWHM of each individual inter-subband oscillator
α at k⃗∥ position in the wavevector space and at temper-
ature T . However, taking into account all this variability
leads to enormous number of arbitrarily valued parame-
ters. One could argue that, in principle, gamma could be
calculated theoretically29,30, but since certain scattering
mechanisms like interface roughness will be MBE growth
dependent, this is practically quite challenging. In this
work, to keep things simple, a transition-independent and

k⃗∥-isotropic parameter is used, dropping the α, k⃗∥ indices.
Furthermore, in the case of the parabolic model as well
as in the case of the hybrid one (see Sec. IID) the γIB

of individual transitions translate directly to the result-
ing linewidth of the ISB peak, with no coupling between
this parameter and the frequency of the absorption max-
imum. This means that it is here an external parameter
to the model and the model cannot be used to study
i.e. the linewidth dependence on temperature, quantum
well size or sample doping. Consequently, we focus on
the frequency of the absorption maximum in this work.
This also means that we can use any reasonable non-zero
value of γIB and the T index can also be dropped. The

situation is different in scope of the 8-band k⃗ · p⃗ model,
see the discussion of the Eq. (26) in Sec. II E.

Assuming that the subbands are two-fold spin-
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degenerate and isotropic in-plane, one obtains:

χα(ω) = − 1

(ω + iγIB

2 )2

4

ϵ0h̄ωαπ

∫ ∞

0

∆fα
(
k∥
)

×

1 + ωα

(
k∥
)
ωα(0)(

ω + iγIB

2

)2

− ωα

(
k∥
)2

k∥ dk∥ . (5)

Solving the Maxwell’s equations for TM waves in a
layered structure, with a quantum well layer sandwiched
inside a metal-insulator-metal (MIM ) cavity31–39 and as-
suming ϵxx = ϵyy = ϵ∥, one shows that theDz field within
the QW region obeys the integro-differential equation:

(
∂2z + k2z

)
Dz = −

∑
α

χα(ω, qx)

ϵs
ξα(z)

×
∫
ξα(z

′)
(
∂2z′ + ϵxxk

2
0

)
Dz(z

′) dz′ (6)

where kz is defined by

k2z = ϵ∥k
2
0 −

ϵ∥

ϵs
q2∥ (7)

with k20 = ω2/c2 and q∥ being the in-plane wave number.
The general solution to this equation has the form

Dz(z) = A cos(kzz) +B sin(kzz)

+ q2∥
∑
α

χα

ϵs

(
AFA

α +BFB
α

) ∫
ξα(z

′)g(z, z′) dz′ (8)

where A,B are arbitrary coefficients which will be deter-
mined by the boundary conditions of the layer. g(z, z′) is
the Green’s function sin(kz|z − z′|)/2kz The FA

α , F
B
α co-

efficients can be calculated through the following matrix
relationships:

FA
α = CA

α −
∑
α′

χα′

ϵs
FA
α′

[
Iα,α′ + q2∥Dα,α′

]
(9)

FB
α = CB

α −
∑
α′

χα′

ϵs
FB
α′

[
Iα,α′ + q2∥Dα,α′

]
(10)

with

Iα,α′ =

∫
ξα(z)ξα′(z) dz

CA
α =

ϵ∥

ϵs

∫
cos(kzz)ξα(z) dz

CB
α =

ϵ∥

ϵs

∫
sin(kzz)ξα(z) dz

Dα,α′ = −
ϵ∥

ϵs

∫
ξα(z)g(z, z

′)ξα′(z′) dz dz′ . (11)

From these, it is possible to calculate the transfer matrix
for the QW region. Unlike in AA, we have not assumed
symmetric quantum wells, and we have not assumed that
ϵ∥ = ϵs.

Taking advantage of the long-wavelength limit
(qx, k0, kz ≈ 0) allows us to define an effective local per-
mittivity for the QW stack. Intuitively, since the electric
field is approximately constant on the scale of a single
QW, we are able to replace each QW period with an
effective medium.
The basic approach (see Ref. 3), is to take an average

of the Dz and Ez fields over a single QW period of length
L. Then, the effective permittivity (in the z direction) is
given by

ϵzz,eff =
⟨Dz⟩
ϵ0 ⟨Ez⟩

≈ ϵs

[
1−

∑
α

χα

ϵ∥
FA
α ⟨ξα⟩

]−1

(12)

where ⟨·⟩ denotes an average over the entire QW region
in the z direction:

⟨ξα⟩ =
1

L

∫
ξα(z) dz (13)

where L is the thickness of the quantum well region. Fur-
thermore, since we are using the long-wavelength limit,
we can use that to simplify our equation for the FA

α ’s to:

FA
α ≈ L ⟨ξα⟩ −

∑
α′

χα′

ϵs
FA
α′Iα,α′ ≡

∑
α′

Cα,α′FA
α′ . (14)

From the QW transition current densities, ξα(z), we
solve the matrix Eq. (14) to get the FA

α coefficients, from
which we can calculate the effective permittivity ϵzz,eff.

D. ISB formation: the hybrid model

In the scope of the hybrid model, the dependence of

the wavefunctions on k⃗∥ is omitted, but the k⃗∥ disper-
sion is partially taken into account by using a mixture

of effective mass and 3-band k⃗ · p⃗ modelling. Following
Warburton et al., Ref. 11, the subband energy dispersion
En(k∥) is given implicitly by

Ĥhψn(z) = En(k∥)ψn(z), (15)

with

Ĥh = − h̄2

2m∗(z)
k2∥ −

∂

∂z

h̄2

2m∗(z)

∂

∂z
+ Eg(z)− δ(z) (16)

and

1

m∗(z)
=

EP

3me

(
2

En(k∥) + δ(z)
+

1

En(k∥) + ∆(z) + δ(z)

)
+ (1 + 2F ). (17)

Here me is the bare electron mass. Eg, EP , F,∆, δ, and
F are the band gap, Kane energy, F -parameter, spin-
orbit splitting and valence band offset, respectively. The
values of the parameters are taken from Ref. 28.
Instead of solving the Schrödinger-Poisson system self-

consistently using Ĥh of Eq. (16), we assume that the
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wavefunctions calculated in the self-consistent one-band
effective mass approximation are reasonably close to the
actual wavefunctions. Given the effective mass wavefunc-
tions, ψn(z), we can then estimate the 3-band k⃗ ·p⃗ disper-
sion by choosing En(k∥) so that it minimizes the overlap
error ∫ [

ψ∗
n(z)Hψn(z)− En(k∥)|ψn(z)|2

]
dz . (18)

We confirmed that, while this approach does not give
us the full wavefunction spinors, it at least gives a good
approximation of the subband energy dispersions, as long

as one is concerned with a single k⃗∥ orientation along
[100] / [010] without the spin degeneracy of orbitals being
lifted.

The resulting energy dispersions are used in Eqs. (5),
then (14) and finally (12).

E. ISB formation: the 8-band k⃗ · p⃗ model

The model that follows is our generalization of AA,
which takes into account non-parabolicity by including

the k⃗∥-dependence of both the eigenenergies En,⃗k∥
and

the eigenfunctions ψn,⃗k∥
. Apart from the orders of mag-

nitude larger computational complexity, the main chal-
lenges of the extension of the model come from these
sources: (I) the simple kz-dependent definition of the
transition current densities – see Eq. (3) – does not work
for the 8-component ψn,⃗k∥

, so a new definition needs to

be provided, which we base on the proper definition of the
probability current density, presented in Sec. II F, (II) the
transition current densities are non-trivially complexf,
which renders several approximations in AA invalid, see
Secs. D and F, (III) the simple one-band notion of an
scalar effective mass m∗ of an electron, as present e.g. in
AA, cannot be used.
This section contains the presentation of the model.

Where possible, the parallels and the differences between
our model and AA are indicated and briefly discussed.
For the in-depth discussion, which may require earlier
reading or simultaneously following significant external
material, see Secs. D, E and F in Supporting Material.

The Schrödinger-Poisson equation system is solved
self-consistently with the help of nextnano++ software

in the scope of the 8-band k⃗·p⃗ model. The computa-
tional process is largely kept default, but uses the linear
bandgap to composition relation plus the valence band
offset re-calibration, as described previously in Sec. II B,

and also the custom-defined k⃗∥ mesh, as follows. The
output: eigenenergies En,⃗k∥

and eigenfunctions ψn,⃗k∥
are

f By ”non-trivially complex” we mean that they cannot be made
real-valued by any set of phase rotations.

obtained on a k⃗∥-space mesh with 11 mesh points along
each of two directions n̂, [100] and [110], and mesh spac-
ing dk∥ = 0.05 nm−1, starting from the Γ point.
For a nanosystem, which is itself symmetric with re-

spect to reversing the z axis, realized in material of zinc-
blende crystal structure each octant of the k∥ space is
equivalent. Hence, any sum over the k∥ space can be re-
duced to sum over single octant. Due to computational
complexity, we effectively represent the relevant octant
by an average of its two limiting lines:

∑
k∥

→ 1
2

∑
n̂,k∥

,

where n̂ ∈ {[100], [110]}.
In our model, the eigenfunctions ψn,⃗k∥

are represented

in the Bloch basis U⃗ of

U⃗ =

(∣∣∣∣S,−1

2

〉
,

∣∣∣∣S,+1

2

〉
,

∣∣∣∣32 ,+1

2

〉
,

∣∣∣∣32 ,+3

2

〉
,∣∣∣∣32 ,−3

2

〉
,

∣∣∣∣32 ,−1

2

〉
,

∣∣∣∣12 ,−1

2

〉
,

∣∣∣∣12 ,+1

2

〉)
, (19)

where∣∣∣∣S 1

2
,−

1

2

〉
= |S ↓⟩ ,

∣∣∣∣S 1

2
,
1

2

〉
= |S ↑⟩ ,∣∣∣∣32 , 32

〉
=

i
√
2
(|X ↑⟩+ i |Y ↑⟩) ,

∣∣∣∣32 ,−3

2

〉
=

−i
√
2
(|X ↓⟩ − i |Y ↓⟩) ,∣∣∣∣32 , 12

〉
=

−i
√
6
(|X ↓⟩+ i |Y ↓⟩) + i

√
2

3
|Z ↑⟩ ,∣∣∣∣32 ,−1

2

〉
=

i
√
6
(|X ↑⟩ − i |Y ↑⟩) + i

√
2

3
|Z ↓⟩ ,∣∣∣∣12 ,−1

2

〉
=

−i
√
3
(|X ↑⟩ − i |Y ↑⟩) +

i
√
3
|Z ↓⟩ ,∣∣∣∣12 , 12

〉
=

−i
√
3
(|X ↓⟩+ i |Y ↓⟩)−

i
√
3
|Z ↑⟩ , (20)

with the spin quantization axis oriented along the growth
direction z. The k∥ index refers to the corresponding
mesh point of the in-plane quasi-momentum and the
quantum number n refers to the spin-orbitals of the sub-
bands as ordered by their energy around Γ point. The
inter-subband transitions are described by α = (n,m),
where m > n, m and n have the same spin orientation
and adjacent orbitals.
It was pointed out in the last paragraph of the Sec. II C

that the model is solved in the following sequence: tran-
sition current densities ξα(z) → matrix Cα,α′ → FA

α co-
efficients → effective permittivity ϵzz,eff. The same order
applies in this case and the first step of the calculation
is to obtain the inner functions and matrix elements of
a new k⃗ · p⃗-compatible probability current operator Ĵz
(which is itself defined in Sec. II F):

J n̂
α,1,k∥

(z) = ψn̂
n,k∥

(z)Ĵz
[
ψn̂
m,k∥

(z)
]∗

−
[
ψn̂
m,k∥

(z)
]∗
Ĵzψ

n̂
n,k∥

(z),

J n̂
α,2,k∥

(z) =
[
J n̂
α,1,k∥

(z)
]∗

; J n̂
α,1,k∥

=

∫
J n̂
α,k∥

(z) dz , (21)

which are analogous to ξα(z) in AA. For more details
on the ξα(z) → J n̂

α,σ,k∥
(z) substitution, see discussion in

Sec. E of the Supporting Material. The σ index, which
is absent in AA, is a result of the non-trivially complex
wavefunctions – and transition current densities, as ex-
plained later in Sec. D – compare the two contributions
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in Eqs. (D1) and (D2). The next step is to obtain the
inter-transition current elements

I n̂α,σ,k∥,α′,σ′,k′
∥
=

∫
J n̂
α,σ,k∥

(z)
[
J n̂
α′,σ′,k′

∥
(z)

]∗
dz , (22)

which are analogous to Iα,α′ in AA. In the two last equa-
tions n̂ ∈ {[100], [110]} and both k∥ and k′∥ are oriented

along n̂.
It is convenient to define a new index β = (α, σ), where

σ ∈ {1, 2} and

J n̂
β,k∥

≡ J n̂
α,σ,k∥

; I n̂β,k∥,β′,k′
∥
≡ I n̂α,σ,k∥,α′,σ′,k′

∥
, (23)

and to introduce

Ĩ n̂β,k∥,β′,k′
∥
=

I n̂β,k∥,β′,k′
∥

J n̂
β,k∥

(
J n̂
β′,k′

∥

)∗ . (24)

We want our model to be a simple extension of AA
and as analogous to that model as reasonably possi-
ble. Please note that there are no k∥-dependent terms
in Eq. (14) – only the k′∥-dependent ones are present,

implicitly, through the sum in Eq. (4). In order to elim-
inate the k∥ index, in the further calculation we will use

the Ĩα,α′,k′
∥
elements, which are averaged over the k∥-

space, with the (n,m) occupation difference serving as

the weight – or alternatively the Ĩβ,β′ elements, averaged
symmetrically over both k∥ and k′∥-spaces (see Support-

ing Material Sec. D for the discussion of the two ways of
averaging):

Ĩ n̂β,β′,k′
∥

=

∑
k∥

Ĩ n̂β,k∥,β′,k′
∥
∆f n̂

β,k∥
k∥ dk∥∑

k∥
∆f n̂

β,k∥
k∥ dk∥

Ĩ n̂β,β′ =

∑
k′
∥

∆f n̂
β′,k′

∥
Ĩ n̂β,β′,k′

∥
k∥ dk∥∑

k′
∥

∆f n̂
β′,k′

∥
k∥ dk∥

, (25)

where ∆f n̂β,k∥
= f n̂k∥,n

−f n̂k∥,m
and f n̂k∥,n

≡ f
(
En̂

k∥,n
, T

)
is

the Fermi-Dirac distribution function. Please also note
that it is the necessity of this averaging which leads us
to use Ĩ n̂β,k∥,β′,k′

∥
of Eq. (24) instead of I n̂β,k∥,β′,k′

∥
, as it

turned out in practice that the dependence of the former
on k∥ is weaker than that of the latter.
The left hand side matrix, corresponding to the Cα,α′

in Eq. (14) of the parabolic model, is derived in Sec. D,
and defined as follows:

C̃β,β′ = δβ,β′ −
4

ω2ϵs

∑
n̂,k′

∥

X n̂
β′,k′

∥
J n̂
β′,k′

∥

(
J n̂
β′,k′

∥,

)∗

× Ĩn̂β,β′,k′
∥
k′∥ dk∥

′ ,

X n̂
β′,k′

∥
=

−p(β′)f n̂
k′
∥,ν(β

′)

E
+

1
2
∆f n̂

β′,k′
∥

p(β′)(ω + i
2
γIBT )− ωn̂

β′,k′
∥

(26)

where ωn̂
β′,k′

∥
= En̂

k′
∥,m

′ − En̂
k′
∥,n

′ is the transition energy

from subband n′ → m′ at in-plane wave vector k⃗′∥, the

p(β) ≡ p(σ) = −1σ, ν(β) ≡ ν(σ) = (σ− 1)m′ +(2− σ)n′

and E can be either En̂
k′
∥,m

′ − En̂
k′
∥,n

′ or EΓ,m′ − EΓ,n′ ,

depending on the version of the model (see below).

For a moment we will focus our attention on Eq. (26)
and how it compares to Eq. (14). Firstly, one should
take into account the straightforward renormalization of
Eq. (D3), done to allow us to work with Eq. (24), which

leads to Eq. (D5) and dimensionless: F̃ coefficients and

C̃ matrix. Secondly, the sum over k⃗′∥ space, implicitly

present in Eq. (14) through the χα definition Eq. (4), in

our case is taken outside the now k⃗′∥-dependent J and

I quantities. The X part corresponds to the part of
χα under this summation, but again one needs to re-
member that the p and ν symbols, dependent on the σ
index, come from non-trivially complex wavefunctions –
and transition current densities, see the corresponding
minus signs and occupation index changes between the
two components of Eqs. (D1) and (D2) in Sec. D. Finally,
the simple relation between the wavefunctions, energies
and effective mass of parabolic model cannot be directly
used, which prompted us to postulate the two versions of
the E expression, see the discussion in Sec. F 4.

Let us now digress a little bit and focus on the role
of the homogeneous broadening in this model. In order
to do so, we need to refer to some conclusions drawn
from the results we have already obtained and will be

later discussed in Sec. IV. In Eq. (26) the sum over k⃗∥

space is done over both k⃗∥-dependent transition ener-

gies ωn̂
β′,k′

∥
and the k⃗∥-dependent transition current den-

sities, as a consequence of taking into account both the

k⃗∥-dependence of the eigenenergies and of the eigenfunc-

tions. Thus the γIBT parameter and the frequency of

the absorption maximum are coupled in the 8-band k⃗ · p⃗
model, with increasing γIBT leading to a small redshift in
that frequency, keeping other parameters constant. This
means that in principle, contrary to the parabolic and
the hybrid models, the temperature dependence of γIBT
needs to be known. In practice however, it was con-
firmed that this linewidth increase → redshift depen-
dence is small and certainly does not account for most of
the redshift observed experimentally given the linewidth
increase measured. In addition to that, the relation be-
tween the γIBT and the resulting FWHM of the ISB peak
is not longer 1:1. In this model the relation is linear
with FWHMISB = aγIBT + b, where a̸=1 and b ̸=0, which

is a sign of some additional k⃗∥-dependent dynamics in
the combination of the individual intersubband absorp-
tion peaks while forming the ISB plasmon one. However,
taking into account all of that, we decided to treat the
γIBT as an approximately free parameter.

If using the two dimensional k∥ and k′∥ averaging of

transition current densities, one should replace Ĩ n̂β,β′,k′
∥

with Ĩ n̂β,β′ in Eq. (26).

Finally, the following system of linear equations can be



8

solved

C̃β,β′ F̃β′ = [1, 1, ..., 1] (27)

and εzz obtained from the solution ⃗̃F is as follows:

ε−1
zz = 1+

4

Lω2ϵs

∑
β,k∥,n̂

X n̂
β,k∥J

n̂
β,k∥

(
J n̂
β,k∥

)∗
F̃βk∥ dk∥ (28)

F. Probability current operator

In order to get the correct operator for the z-
component of probability current, Ĵz, the technique of

Ref. 40 is employed on the k⃗ · p⃗ Hamiltonian defined as in
Ref. 41. The derivation in Ref. 40, leads to conclusion,
that the Ĵα can be obtained the following way:

Ĵα =
1

h̄

∂Ĥ

∂kα
. (29)

Please note that the explicit equations for Ĵx, and Ĵy,
Eq. (18a) and (18b) in Ref. 40, contain a few typograph-
ical errors and are inconsistent with this formula. How-
ever, its validity is confirmed e.g. in Eq. (18) of Ref. 42,
which gives the very useful ”sum rule”:(

ĤK

)
jj′

=
h̄

2
ˆ⃗
Jjj′ · k⃗, (30)

where ĤK is the kinetic part of the Hamiltonian. The

simpler version of the k⃗ · p⃗ Hamiltonian:

Ĥ1 =
p⃗2

2m0
+V0(r⃗)+

h̄2k⃗2

2m0
+

h̄

m0
k⃗·p⃗+

h̄

4m2
0c

2
(∇V0)×p⃗·σ⃗, (31)

is considered, omitting the h̄2

4m2
0c

2 (∇V0) × k⃗ · σ⃗ term.

Applying the Eq. (29) to Hamiltonian Ĥ1 spanned on
the basis of Eq. 19 leads to matrix presented in Table I.
The symbols S,B, P0 stand for corresponding Kane pa-
rameters and γ1, γ2, γ3 stand for modified Luttinger pa-
rameters. The in-plane wave components are defined:
k± = kx ± iky, so in the case of [100] direction k± = k∥
and for [110] direction: k± = 1±i√

2
k∥.

G. k⃗ · p⃗ parameters of the model

The values of the k⃗ · p⃗ parameters used in this model
are presented in Table II.

The following transformation of the Luttinger γ pa-
rameters is used from the 6×6 Hamiltonian values to the
8×8 ones, according to the work of Pidgeon and Brown,
Ref. 44:

γ8×8
1 = γ6×6

1 − EP

3Eg
, γ8×8

2 = γ6×6
2 − EP

6Eg
,

γ8×8
3 = γ6×6

3 − EP

6Eg
. (32)

In the formula above, the energy gap Eg is dependent on
temperature according to the Varshni formula, Ref. 45:

Eg(T ) = Eg(T = 0)− αT 2

β + T
. (33)

Moreover, if the S parameter is set to a value different
from the default S0 in order to avoid spurious solutions,
the Kane energy EP needs to be rescaled from the default
value E0

P as follows:

EP (T ) = E0
P − Eg(T )(Eg(T ) + ∆)

Eg(T ) +
2
3∆

(S − S0) (34)

which makes EP also dependent on temperature, please
compare Eqs. (3.62), (3.158) and (3.159) in Ref. 26. Usu-
ally, the values of either S = 0 or S = 1 are used.
In the original AA, the probability currents are medi-

ated by the kinetic momentum operator, which is pro-

portional to k̂z with the proportionality constant h̄
m0m∗ .

This corresponds to the [1, 1] and [2, 2] elements of the

Ĵz operator in Table I, i.e. h̄
m0
S k̂z, which are the diago-

nal components of the Ĵz operator matrix for the
∣∣S,± 1

2

〉
Bloch states. The other non-zero elements in Table I ex-
ist due to conduction-valence band mixing. Of these, the
ones that affect the conduction bands directly (first two
rows / columns in Table I) are proportional to either Bk±

or the Kane parameter P0 = h̄
√

EP

2m0
. At the vicinity of

the Γ point the former ones vanish, leading to the inter-
play between the S and P0 as the dominating factors of
the probability current dynamics.
Using the S = 1 renormalization in nextnano++ is

necessary to avoid spurious solutions. However, it was
verified that neither using S = 1 nor S = S0 works in our
ISB model, with the first one completely underestimating
and the latter one completely overestimating the magni-
tude of the current elements. This is not unexpected,
as the S = 1 renormalization changes the mentioned dy-
namic between S and P0 in a way that may yield correct
eigen-solutions for Ĥ but not for Ĵz as defined in Eq. (29).
Introduction of some effective parameter, which we will

call A, is necessary as the correction to the S ↔ P0 bal-
ance. We postulate it as a material-structural parameter,
in a sense that we hope that one fitted value of A will
work for a sufficiently broad class of structurally similar
systems realized in the same materials. This assumption
will be tested in the Sec. IV by a comparison with the
experimental data and the simpler versions of the ISB
formation model.
We postulate a scalar A governing the renormalization

of the parameters as follows. In case of A = 0 the default

k⃗·p⃗ values of S = S0 = −2.88 for pure GaAs and S =
S0 = 0.04 for pure AlAs are used (see Table II) with
linear interpolation. On the other end of the spectrum,
for A = 1, the reverse of the single-band effective mass
is used: S = 1

m∗ = 1
0.067 for pure GaAs and S = 1

m∗ =
1

0.15 for pure AlAs, also with linear interpolation. The
corresponding Kane energies, at zero temperature, are



9∣∣S 1
2
,− 1

2

〉 ∣∣S 1
2
, 1
2

〉 ∣∣ 3
2
, 1
2

〉 ∣∣ 3
2
, 3
2

〉 ∣∣ 3
2
,− 3

2

〉 ∣∣ 3
2
,− 1

2

〉 ∣∣ 1
2
,− 1

2

〉 ∣∣ 1
2
, 1
2

〉〈
S 1

2
,− 1

2

∣∣ h̄
m0

S k̂z 0 1√
6

B
h̄
k− 0 − 1√

2

B
h̄
k+ −

√
2
3

P0
h̄

− 1√
3

P0
h̄

1√
3

B
h̄
k−〈

S 1
2
, 1
2

∣∣ 0 h̄
m0

S k̂z −
√

2
3

P0
h̄

− 1√
2

B
h̄
k− 0 1√

6

B
h̄
k+ − 1√

3

B
h̄
k+

1√
3

P0
h̄〈

3
2
, 1
2

∣∣ 1√
6

B
h̄
k+ −

√
2
3

P0
h̄

− h̄ (γ1+2γ2)
m0

k̂z −
√

3 h̄ γ3
m0

k+ 0 0 3√
2

h̄ γ3
m0

k− 2
√

2 h̄ γ2
m0

k̂z〈
3
2
, 3
2

∣∣ 0 − 1√
2

B
h̄
k+ −

√
3 h̄ γ3

m0
k− − h̄ (γ1−2γ2)

m0
k̂z 0 0 0

√
3
2
h̄ γ3
m0

k−〈
3
2
,− 3

2

∣∣ − 1√
2

B
h̄
k− 0 0 0 − h̄ (γ1−2γ2)

m0
k̂z

√
3 h̄ γ3

m0
k+

√
3
2
h̄ γ3
m0

k+ 0〈
3
2
,− 1

2

∣∣ −
√

2
3

P0
h̄

1√
6

B
h̄
k− 0 0

√
3 h̄ γ3

m0
k− − h̄ (γ1+2γ2)

m0
k̂z −2

√
2 h̄ γ2

m0
k̂z

3√
2

h̄ γ3
m0

k+〈
1
2
,− 1

2

∣∣ − 1√
3

P0
h̄

− 1√
3

B
h̄
k−

3√
2

h̄ γ3
m0

k+ 0
√

3
2
h̄ γ3
m0

k− −2
√

2 h̄ γ2
m0

k̂z − h̄ γ1
m0

k̂z 0〈
1
2
, 1
2

∣∣ 1√
3

B
h̄
k+

1√
3

P0
h̄

2
√

2 h̄ γ2
m0

k̂z

√
3
2
h̄ γ3
m0

k+ 0 3√
2

h̄ γ3
m0

k− 0 − h̄ γ1
m0

k̂z

TABLE I: The Ĵz z-component of probability current operator for Ĥ1 Hamiltonian.

parameter GaAs value AlAs value units source
Eg(T = 0) 1.519 3.099 eV Ref. 28

α 0.5405 0.885 meV/K Ref. 28
β 204 530 K Ref. 28
S0 −2.88 0.04 1 Ref. 28
m∗ 0.067 0.15 1 Ref. 28
E0

P 28.8 21.1 eV Ref. 28
∆ 0.341 0.28 eV Ref. 28
B 3.9895 2.7955 hartree ∗ bohr2 Ref. 43

γ6×6
1 6.98 3.76 1 Ref. 28

γ6×6
2 2.06 0.82 1 Ref. 28

γ6×6
3 2.93 1.42 1 Ref. 28

TABLE II: The values of the k⃗ · p⃗ parameters.

equal to EP = E0
P for A = 0 and EP = 0 for A = 1,

see Eq. (34).

III. MULTIPASS ABSORPTION
MEASUREMENT

As in Ref. 1, THz absorption measurements were per-
formed in a multi-pass geometry with 45° facets [the
same geometry shown in Ref. 46, Fig. 7(a)]. The sam-
ples were placed inside a continuous-flow cryostat specif-
ically designed to fit the tight space inside the chamber
of a Fourier transform infrared spectrometer. Polarized
THz light from the FTIR thermal globar source (Silicon
carbide) was focused at the input facet of the sample.
The transmitted light was detected with a liquid-Helium
cooled Silicon bolometer. Since the quantum wells only
absorb TM (transverse magnetic)-polarized light, a TE
(transverse electric)-polarized measurement was used as
a reference. The ratio of the TM spectra to the TE spec-
trum provides the quantum well absorption, after correc-
tion for the source elliptical polarization. Note that, in
the case of high temperatures T > 200 K for the G0643
sample, the signal to noise ratio was too small to unam-
biguously identify the frequency of the absorption maxi-

mum. (This sample had fewer quantum wells compared
to the other samples, and thus yields a weaker overall
absorption.)
The derivation of our mathematical model for multi-

pass absorption through a quantum well is presented in
Sec. C. The frequencies of the ISB plasmon absorption
peak maxima and the corresponding FWHM obtained
with the help of that model are shown in Table III.

IV. RESULTS

A. Temperature dependence of the frequency of
absorption maximum for each of the samples

As explained in Sec. IIG, the 8-band k⃗ · p⃗ model (see
Sec. II E) uses the introduced A parameter, which needs
to be fitted. Our intention was to use experimental data
for one sample in order to fit this parameter and to test
the performance of thus calibrated model on other two
samples. We designated the G0490 sample as a fit sample
as it is the system with the best performance in terms of
the linewidth, while the G0489 and G0643 samples were
designated as test samples (see Sec. IIA for a detailed
description of the samples). The parameter was fitted
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temperature G0490I – F G0490I – L G0490II – F G0490II – L G0489 – F G0489 – L temperature G0643 – F G0643 – L
10 2.939 0.110 2.935 0.164 4 2.193 0.086
78 2.891 0.117 2.888 0.182 2.845 0.355 8 2.188 0.088
100 2.876 0.141 2.873 0.214 2.833 0.379 15 2.186 0.089
150 2.850 0.239 2.842 0.287 2.812 0.435 40 2.169 0.099
200 2.832 0.371 2.822 0.405 2.790 0.642 60 2.145 0.108
250 2.811 0.535 2.803 0.555 2.776 0.732 80 2.128 0.122
293 2.791 0.715 2.777 0.711 2.779 0.813 100 2.111 0.148

150 2.075 0.241
200 2.050 0.273

TABLE III: The frequencies (the F columns) and the corresponding FWHM (the L columns) of the ISB plasmon absorption
peak maxima in THz versus the measurement temperature in K from the multipass absorption experiment. The G0490I and
G0490II columns are for the first and the second independent measurements of the G0490 sample. Please note that the data
in columns G0490I and G0489 were presented first in Ref. 1

in respect to the data-set consisting of 6 frequencies of
the absorption peak maxima obtained from the multi-
pass absorption experiment (see Table III) of G0490 for
T ∈ (75, 300) K, averaged between the two independent
measurements.

Because we use these data for a posteriori calibration,
the measured FWHM values at each temperature were
used as a reference for the γIBT parameter in Eq. (26).
Conversely, we do not assume to know the correct tem-
perature dependence of γIBT in the test cases, beyond gen-
eral range of relevant values. This situation corresponds
to a setup in which the model would be put to a practical
use: predicting the characteristics of a proposed system,
the growth of which we are only considering. To keep
things simple, in the test cases we use constant γIB corre-
sponding to experimental FWHM at T = 78 K, which al-
lows us to avoid introducing additional error from a sup-
posedly off guess, while still not putting the γIBT = f(T )
as a given.

The effective permittivity ϵzz,eff was calculated for dif-
ferent values of A, from which the frequency of the ab-
sorption maximum was obtained. The value A = 0.7336
minimizes the total squared error of the predicted fre-
quencies in respect to the measured ones in the relevant
temperature range. Please note that, as has been ex-

plained in Sec. IIG, A = 0 means that the default k⃗·p⃗
values of S and EP are used, while for A = 1, the re-
verse of the single-band effective mass is used: S = 1

m∗

and EP = 0. The fitted A = 0.7336 might be inter-
preted as a significant shift towards greater impact of the
parabolic-model-like kinetic term and lower impact of the
conduction-valence band mixing in the transition current
densities. However, caution must be taken, as this is a
correction to the Schrödinger-Poisson results that were
themselves obtained with S = 1 renormalization.

The experimental points are marked in Fig. 2 with
black circles, with (a) corresponding to the test sample.
The frequencies of the absorption peak maxima for the

8-band k⃗ · p⃗ model with fitted A are presented in Fig. 2
by the blue squares. The corresponding values yielded by
the parabolic (see Sec. II C) and the hybrid (see Sec. IID)

models are shown by green pointing-up triangles and by
red pointing-down triangles, respectively. The experi-

mental and the 8-band k⃗ · p⃗ points are accompanied by
error bars. In case of the measured values, they come
from the finite frequency resolution of the experiment
in Fig. 2(a,b,c). Additionally, as the sample G0490 was
measured twice over the whole range of temperatures,
the difference between the obtained frequencies at each
temperature also contributed to the uncertainty. In case

of the 8-band k⃗ · p⃗ points the bars show an estimate of the
variation of the model predictions depending on the 1D vs
2D averaging of Ĩ n̂β,k∥,β′,k′

∥
[see Eq. (25) and discussion in

Sec. D] and the E = En̂
k′
∥,m

′−En̂
k′
∥,n

′ vs E = EΓ,m′−EΓ,n′

variants [see Eq. (26) and discussion in Sec. F 4].g More-
over, the Schrödinger-Poisson system was solved twice
with the help of two versions of nextnano++ in the case
of G0490 sample to control for the imperfect convergence
of the self-consistent simulation. This gave a small addi-
tional contribution in that case.

In Fig. 2(a), it can be seen that of the three mod-
els considered, the parabolic model does the worst job in
describing the experimental data. Not only are the differ-
ences between the measured and predicted frequencies of
the absorption maxima the biggest at each temperature,
but also their general trend vs temperature is reversed:
increasing T results in a redshift as observed experimen-
tally, but the parabolic model predicts a blueshift. With
the inclusion of the non-parabolic dispersion in the scope
of the hybrid model, the prediction gets better, with all
the predicted peak positions moving towards lower fre-
quencies. Moreover, the temperature trend changes to
a neutral one. Finally, the data points are visibly best

described by the 8-band k⃗ · p⃗ model, both on a level of

g To be specific, the predicted frequency spread at each temper-
ature was calculated and – as they seem to variate erratically
with temperature – the largest one was used for a given sample.
In practice, we found that the impact of the averaging mode is
negligible in comparison to the E one.
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FIG. 2: The dependence of frequency of the absorption maximum on temperature for: (a) G0490, (b) G0489 and (c) G0643.
The black circle points show the multipass measurement values, the green pointing-up triangles represent the parabolic model

predictions, the red pointing-down triangles – the ones of the hybrid model and the blue squares – of the 8-band k⃗ · p⃗ model.
The lines show the linear fits to the data points from which the average slopes were obtained (see text). The black error bars
come from the experimental uncertainty estimate, while the blue ones from the differences between 1D vs 2D averaging and

the E variants of the k⃗ · p⃗ model.

the individual frequencies, as well as in respect to the
temperature redshift that this model predicts.

In order to quantify the mentioned trends, the average
slope of frequency of the absorption maximum vs tem-
perature was calculated for the experimental data as well
as for the predictions of the three models of Fig. 2(a).
The slopes are: −0.46GHz

K for the experiment, 0.19GHz
K

for the parabolic model, −0.07GHz
K for the hybrid model

and −0.43GHz
K in case of the 8-band k⃗ · p⃗ model. Please

note that the slope of the last model is quite close to the
one of the experimental data, while the parabolic and the
hybrid models yield a reversed (positive) and a neutral
slope, respectively.

The validity of the A = 0.7336 fit itself is thus con-
firmed in Fig. 2(a), as there is a value of this scalar pa-
rameter which predicts reasonably well the frequencies of

the absorption maxima for all temperatures in the range
T ∈ (75, 300) K – which was not a given at all in the
first place. But this does not inform us about the appli-
cability of the A as a postulated material-structural pa-
rameter, that is if it will work reasonably well for other
systems of a similar structure. In order to check this,
in Fig. 2(b) and (c) the frequencies of the absorption
maxima are presented for samples G0489 and G0643, re-
spectively. Please recall that the former sample is basi-
cally the same system as the fit sample but doped three
times more strongly, while the latter sample has signif-
icant structural differences in terms of size, the maxi-
mal aluminium concentration used and doping – both
the mode and the amount – in respect to G0490.

The corresponding results for the highly-doped G0489
are shown in Fig. 2(b). In this case the difference be-
tween the predictions of both the parabolic and the hy-
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brid models and the experimental data is much larger,
while the two models yield similar frequency values and
a similar positive average slope: 0.28GHz

K and 0.15GHz
K ,

respectively. One can see that also here the hybrid model
is an improvement in respect to the parabolic one, both
in the terms of individual frequencies as well as in case
of the average slope, if just a slight one. The predictions

of the k⃗ · p⃗ model also do not fit the experimental data as
well as in the case of G0490, which is to be predicted as
that was the fit system. However, at each of the temper-
ature values considered, the error is significantly smaller
that in the case of the two other models. Additionally,
it is the only model yielding a negative average slope of
−0.46GHz

K , with the experimental value of −0.32GHz
K for

comparison.
The hardest test for our model is the 2 THz system

G0643, significantly more different from the G0490, for
which the results are shown in Fig. 2(c). Here, the errors
in predictions are visibly smaller in case of lower temper-
atures for both the parabolic and the hybrid models in

comparison to the k⃗ ·p⃗ model, while the situation reverses
in case of higher temperatures. As no model is universally
and obviously better, like it was the case in Fig. 2(a) and
(b), a numerical estimate of total error needs to be used.
After comparing the total absolute difference between the
experimental frequencies and the ones predicted by each
of the models, it turns out that the parabolic model value

is 1.92 times the one of the k⃗ · p⃗ model, while the hybrid

model value is 1.28 times the one of the k⃗·p⃗model. In case
of this sample, each of the models yields a negative av-
erage slope, namely −0.25GHz

K , −0.38GHz
K and −0.51GHz

K

for the parabolic, hybrid and k⃗ · p⃗ models, respectively,
as compared to −0.65GHz

K experimental average slope.

B. General conclusions about the models

We find that we can only achieve qualitative improve-
ment in the prediction by using the model which includes
both the dependence of the energy dispersion and of the

wavefunction on k⃗∥. We see this conclusion as the main
result of our work. In order to get the right slope and
energies it turned out to be necessary to deviate from one
or zero in the S renormalization method and to introduce
a k⃗ · p⃗-derived current density operator. Unlike some sim-
pler (e.g. few-band, parabolic or single-particle) systems,
the off-Γ dynamic of the wavefunctions, and specifically
their transition current elements, can in fact qualitatively
change the behaviour of our multi-subband collective sys-
tem. In fact, we tried to include only the off-Γ energy dis-
persions first and we have shown that it is not enough.

We conclude that the k⃗·p⃗model describes both the val-
ues and the temperature change of the absorption max-
ima frequency better than the other models in case of all
three samples presented in Fig. 2. However, the relative
performance of this model, in relation to its competitors,
decreases from the fit system (G0490), to one structurally

identical with a different doping (G0489), to one struc-
turally similar but with different parameters (G0643).
In the first case, Fig. 2(a), the difference between predic-
tions of the model and the experimental data stay within
or close to the experimental uncertainties. In the second
case, Fig. 2(b), the error is larger, but still the predic-

tions of the k⃗ · p⃗ model are consistently and visibly the
best for any T ∈ (75, 300) K. In the third case, Fig. 2(c),

only the overall error is the smallest for the k⃗ · p⃗ model.
Similarly, the average temperature slope of absorption
maximum frequency for that model is always closest to
the one for the experimental data, but while it is the only
one in a qualitative agreement with the latter for G0490
and G0489, in the case of G0643 we can only say that its
value is quantitatively the best one.

The partially qualitative character of the results is not
unexpected, as many parameters of the system are not
precisely known. For example, the proportion in which
the difference in the energy gap between gallium and alu-
minum divides between the conduction and the valence
bands was taken as 60 : 40 at zero temperature, resulting
in a valence band offset parameter which is assumed not
to depend on temperature or any other variable. This
may not necessarily be the case. For another instance,
the Schrödinger-Poisson computation is done with peri-
odic boundary conditions in the growth direction which
would strictly speaking correspond to an infinite super-
lattice of quantum wells. In reality, we have a finite num-
ber of wells, which can also differ between the samples.
Different well positions within the superlattice are not
equivalent, due to band bending at the edges of the sam-
ple. Furthermore, while the total amount of the donor
centers can be estimated from the MBE growth parame-
ters up to about 10% uncertainty, it is not certain if all of
the centers are ionized or if all of the electrons are avail-
able for the plasmon formation. Additionally, the ho-
mogeneous broadening parameter γIB was simplistically
assumed to be an uniform scalar. All the uncertainties
above likely weaken our ability to accurately estimate
the A parameter, which is only supposed to quantify the
S ↔ P0 balance. Having pointed out all of that, we still
have found that an overall improvement can be achieved

by including the 8-band k⃗-dependent wavefunctions and
dispersion relations as well as replacing the current den-
sity operator in the transition current density Eq. (3)

with the one corresponding to k⃗ · p⃗ Hamiltonian. We in-
terpret that as a success in capturing at least some of the

targeted k⃗∥-dynamics.

Apart from that, we also conclude that the hy-
brid model provides a consistent improvement on the
parabolic model, with only a small additional compu-
tational cost. Furthermore, we observe that the linear fit
agrees with the experimental data within the uncertainty
estimates and always gives a negative slope of a fraction
of GHz/K order of magnitude. Consequently, we can say
that our parabolic quantum well systems experience a
linear redshift in the energy with rising temperature.
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V. FUTURE OUTLOOK

As for the further developments of the model, the low-
temperature limitation of the model applicability (see the
discussion in Sec. G) could likely be improved with a
more sophisticated implementation. Reducing kmax

∥ for

lower T might be a way to decrease ∆k∥ without increas-
ing the size of the mesh. One could, for example, run the
nextnano++ computation, then based on the dispersion
obtained, automatically or manually optimize the mesh
size in each case, re-run the nextnano++ simulation with
the mesh thus obtained and finally use the latter results
in the ISB formation model.

More interesting, of course, would be the application
of our model to other structures. Extension to a wide
set of zincblende-based nanostructures should be readily

achievable. For example, while the k⃗ · p⃗ model model
as it is now has been simplified to wells with symmetric
binding potential, it could be readily extended to asym-
metric structures too. Furthermore, in GaAs/AlGaAs
the primary use of this theory is for quasi-Kohn regime

systems, where the not so strong k⃗∥-non-parabolicity can
be visible. However, this model can be extended to nar-
row band materials like InSb, where the inclusion of non-
parabolicity due to conduction-valence mixing would be
important even for non parabolic-shaped quantum wells.

While the effect of the non-parabolicity on the po-
sition of the absorption maximum is interesting in it-
self, this result could be also useful in further theoretical
work e.g. on well-in-cavity light source based on opti-
cal parametric oscillation of ISB polaritons. Among fur-
ther research goals that have yet to be realized in this
area are: (I) the theory of nonlinear processes involving
polaritons and (II) the microscopic model of polariton-
polariton interaction. Subject (I) has been studied in
the context of ISB transitions (as opposed to MSB plas-
mons) in Ref. 47, where a generalized Gross-Pitaevskii
model was used to study intersubband polariton lasing.
The work, while preserving time locality, studied the im-
portance of non-Markovian character of the decay of cav-
ity polariton modes to the external radiation occurring
due to Bragg scattering. The nonlinear optical amplifica-
tion of the pump-signal-idler polaritonic scattering type
was demonstrated. Subject (II) has been addressed in
Ref. 48, where the time-dependent Schrödinger-Poisson
equation was solved for a system with a single-band scalar
effective mass and a square well potential. The transi-
tion frequency and the electric dipole were inferred as
two simple functions of the excitation level from the re-
sponse of the system to a given electric field pulse drive
ϵ(t).

Such works have thus far relied on the approximation
that the quantum oscillator can be interpreted as an in-
dividual ISB transition, strictly connected to a single en-
ergy difference between two given QW subbands. Some
collective effects are captured by assigning both a de-
polarization blueshift and a non-linear optical redshift.

However, for cases where the more complex behaviour of
MSP modes plays an important role, it could be inter-
esting to treat the formation of MSP modes first, using
a similar approach to the one described in the present
work. Afterwards, the coupling of the quantum oscilla-
tor to the cavity modes could be applied. This could
be of particular interest in the the quasi-Kohn regime,
where the blueshift and the redshift strongly suppress
each other. Further, using an approach like that of the
present work to incorporate effects like nonparabolicity
could help hone modelling for the future development of
non-linear optical devices.

Appendix A: Single particle levels and occupation

The first step in the calculation process is to obtain
the dispersion of subband energy levels for a single elec-
tron in the conduction band with a Schrodinger-Poisson
solver. We employed the nextnano++ software. While
the dispersions (and the wavefunctions) of a significant
part of the Brillouin zone are taken into account in the

k⃗ · p⃗ model, only the energies at the Γ point are pre-
sented in the Fig. 3(a) as a function of temperature to
illustrate the general character of the system. The dots
show the values from nextnano++ calculation, while the
lines show the polynomial fit of the lowest possible degree
as the interpolation.
In the case of the G0490 (fit sample) – the red lines –

the Fermi level (green horizontal line, zero on the energy
scale) lies between the energies of the first and the sec-
ond subbands at low T . The former crosses the EF at
∼ 49 K, and the levels lie increasingly further above the
EF as temperature rises. In the case of G0489 (3 THz
test sample) – the black lines, offset by 125 meV for clar-
ity – the Fermi level lies between the second and the third
subband energy level for T→0. The second level crosses
the Fermi level at ∼ 46 K, then the first one for ∼ 90 K,
and then the levels continue to increase in energy as T
grows. For the 2 THz system (the G0643 sample) – the
blue lines, offset by 250 meV – in the temperature range
considered, all the levels are already significantly above
the EF .
Fig. 3(b-d) show how these dispersions translate into

normalized occupation differences of the individual α res-

onators at the Γ point: ∆fα(Γ)∑
α ∆fα(Γ) , for the three sam-

ples. In the parabolic model, the shown occupation dif-
ferences are weights governing the impact of the res-
onator corresponding to an individual transition between
the neighboring subbands, see Eq. (4). In the hybrid and

k⃗ · p⃗ models, the situation is more complex, as the dif-

ferences are non-trivially k⃗∥-dependent, but a detailed
multi-parameter analysis of this is clearly beyond the
scope of the simple explanation given in this appendix.
In (b) and (c), the occupation differences for low T are

dominated by one transition: the α = 1 in the case of
G0490 and α = 2 in the case of G0489. For T ∼ 300 K
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FIG. 3: (a) The energy dispersion of the subband levels vs
T . Red color is for G0490, black for G0489 and blue for
G0643. Symbols are the nextnano++ results and the lines
are a polynomial fit. The green horizontal line is the EF for
each of the samples, which are offset for clarity. (b-d) The
normalized occupation differences for individual α resonators
at the Γ point vs T . The (b) is for G0490, (c) for G0489 and
(d) for G0643.

however, the values become comparable, which enables
multiple α to participate in the MSP formation. In the
case of the 2 THz system shown in Fig. 3(d), the values
for different α are relatively even more comparable in the
whole temperature range considered, with the relative
differences diminishing as the temperature rises. The re-
sults of Fig. 3(b,c) clearly indicate a qualitative transition
between an ISB plasmon and a MSP as the temperature
rises. The same effect could be suspected in the (d) case,
if the temperature range considered was broader.
There is some additional dynamics in the intermediate

range of temperature. For example, the crossing of the
α = 1 and α = 2 values for G0489 in (c) at Tc ∼ 56 K or
the fact that the value that starts second largest for low
T [i.e. α = 2 in (b,d) and α = 1 in(c)] has a maximal
value at some point [Tm ∼ 138 K in (b), Tm ∼ 67 K in
(c), Tm ∼ 75 K in (d)] and then they start to diminish –
which would probably also happen to next largest ones
at sufficiently large temperature. However, in general the
impact of the normalized occupation differences should
not be overestimated. While it is significant, in the end
it turned out that in order to explain the behavior of the

system, not only including the k⃗∥ non-parabolicity of the
energy dispersion is needed, but also taking into account
the change of the wavefunctions beyond the Γ point.

Appendix B: Electromagnetic derivations for the
semiclassical model

In this section the solutions to the electromagnetic field
equations for the semiclassical plasmon model will be de-
rived, filling in some gaps of the derivation in AA, and
also generalizing their results to QW that might not have
inversion symmetry. Finally, an expression for a local
effective permittivity tensor in the long-wavelength ap-
proximation is obtained.

1. Electromagnetic fields in the quantum well
region

The Maxwell’s equations, in the case of no sources and
no magnetic materials, have the form of:

∇× E = −µ0∂tH, (B1)

∇×H = ∂tD, (B2)

∇ ·D = 0, (B3)

∇ ·B = 0. (B4)

E ,D,H,B are the electric field, electric displacement
field, magnetic field, and magnetic flux density, respec-
tively. In general, we would like to solve full structures
such as theMIM cavities31–39, however we will focus here
on the QW region, which includes a non-local suscepti-
bility tensor in the growth direction (z). Once we have
an effective permittivity for this region, the other regions
can be solved using a standard electromagnetic solver.
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We assume that the QW region is time-invariant and
spatially invariant in the x − y plane. This will al-
low us to replace ∂t → iω, ∂x → iqx, ∂y → iqy in the
following, where qx and qy are the spatial wave num-
bers. (This is equivalent to taking Fourier transforms of
Maxwell’s equations.) For brevity of notation, we will
continue to use the same field symbols, but we will as-
sume from this point on that all fields have been Fourier
transformed along these coordinates and are functions
of ω, qx, qy. For example, Dz(z) ≡ Dz(ω, qx, qy, z) ≡
Fx,y,t{Dz(x, y, z, t)}.

Further, we can always split the field into two types of
modes:49

• TM modes where Hz = 0

• TE modes where Ez = 0

The TE modes are not of interest here, since they will
not couple to the quantum well and can be solved using
standard techniques. We will restrict ourselves to TM
modes.

For a TM mode, since Hz = 0 by definition, we can
write the magnetic field as

H = Hy(z)ŷ. (B5)

In principle, the TM mode could have both x and y com-
ponents, but, since we have assumed invariance in the
x− y plane, we can always rotate our coordinate system
so that Hx = 0.h

For a material with a constant magnetic permeability,
Eqs. (B4) and (B5) give

qyHy(z) = 0 =⇒ qy = 0, (B6)

showing that there is no spatial variation in the y di-
rection. In other words, rotating our coordinate system
so that Hx = 0 is equivalent to rotating our coordinate
system so that the wave is travelling in the x− z plane.

Using Eq. (B5) we can write Eq. (B1) as

iqxEy = 0, (B7)

−∂zEy = 0, (B8)

∂zEx − iqxEz = −iωµ0Hy (B9)

and Eq. (B2) as

iqxHy = iωDz, (B10)

−∂zHy = iωDx. (B11)

We are particularly interested in solving for the z com-
ponent of the electric field, which is what couples to the

h Because of this, in the current section, qx plays the role of q∥ of
Sec. II C – see below.

QW. We can rearrange Eqs. (B9), (B10), and (B11) to
obtain

qx∂zEx − iq2xEz = −iω2µ0Dz, (B12)

qxDx = i∂zDz. (B13)

To solve these, we need a relationship between D and
E . We use a non-local, anisotropic susceptibility so that

Dx = ϵ0ϵxxEx, (B14)

Dz = ϵ0ϵsEz + ϵ0

∫
χzz(ω,q; z, z

′)Ez(z′) dz′ , (B15)

where ϵxx is the in-plane permittivity and ϵs is the back-
ground permittivity of the undoped semiconductor. In
the simplest case, we would have ϵxx = ϵs = constant.
However, in general, they could be different from each
other and dependent on ω to account for in-plane plasma
oscillations50 and/or the frequency dependent permittiv-
ity of the background semiconductor (e.g., from optical
phonons).
In the z direction, let us simplify the notation for the

time being by writing

Dz = ϵ0(ϵs + χzz)Ez, (B16)

with the understanding that χzz is acting as a linear op-
erator. Plugging these in to Eq. (B12) and simplifying,
(assuming ∂zϵxx = 0) we get

qx(ϵs + χzz)∂zDx − iq2xϵxxDz = −iω2µ0ϵ0ϵxx(ϵs + χzz)Dz.
(B17)

Then, using Eq. (B13), we get

(ϵs + χzz)∂
2
zDz − q2xϵxxDz = −k20ϵxx(ϵs + χzz)Dz,

(B18)

where k20 = ω2µ0ϵ0 = ω2

c2 . Rearranging, we get(
ϵs∂

2
z + ϵxxϵsk

2
0 − ϵxxq

2
x

)
Dz = −χzz

(
∂2z + ϵxxk

2
0

)
Dz.

(B19)

Defining

k2z = ϵxxk
2
0 − (ϵxx/ϵs)q

2
x (B20)

and writing out the χzz operator explicitly, we get the
final resulti(
∂2
z + k2

z

)
Dz = −

∫
χzz(ω,q; z, z′)

ϵs

(
∂2
z′ + ϵxxk

2
0

)
Dz(z′) dz′ .

(B21)

i Note: our definition of kz reduces to that of AA when ϵxx = ϵs.
Care must be taken when applying boundary conditions in the
case ϵxx ̸= ϵs, because in that case this kz in the QW region will
not be equal to kz in the regions outside the well.
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Finally, using Eq. (2), we obtain the result of Eq. (6)
of AA:

(
∂2z + k2z

)
Dz = −

∑
α

χα(ω, qx)

ϵs
ξα(z)

×
∫
ξα(z

′)
(
∂2z′ + ϵxxk

2
0

)
Dz(z

′) dz′ . (B22)

2. A general solution

We can “guess” a solution to Eq. (B22) of the following
form:

Dz(z) = A cos(kzz) + B sin(kzz)

+ q2x
∑
α

χα

ϵs

(
AFA

α + BFB
α

)∫
ξα(z′)g(z, z′) dz′ (B23)

with the Green’s function

g(z, z′) = − sin(kz|z − z′|)/2kz. (B24)

This is quite similar to Eq. (8) in AA, however, their
solution only works for adjacent transitions in symmetric
quantum wells, where it can be assumed that ξα(z) is
even with respect to z. What follows, allows to solve the
equation without making such an assumption.

Please note that(
∂2z + k2z

)
cos(kzz) = 0, (B25)(

∂2z + k2z
)
sin(kzz) = 0 (B26)

and
(
∂2z + k2z

)
g(z, z′) = −δ(z − z′). (B27)

Applying
(
∂2z + k2z

)
to both sides of Eq. (B23) gives us

(
∂2z + k2z

)
Dz(z) = −q2x

∑
α

χα

ϵs

(
AFA

α +BFB
α

)
ξα(z).

(B28)

Comparing to (B22), we see that our guess for Dz(z) will
be a solution if

AFA
α +BFB

α =
1

q2x

∫
ξα(z

′)
(
∂2z′ + ϵxxk

2
0

)
Dz(z

′) dz′ .

(B29)

At this point, our solution is self-referential, but it turns
out that it is possible to solve for the FA

α and FB
α coeffi-

cients without knowing Dz first.j

j We will still be left with two unknowns A and B in the solution,
but this is not surprising because we are searching for a general
solution in the QW region, with unspecified boundary condi-
tions. A and B will eventually be determined by the boundary
conditions for a particular problem.

3. Solving for the F coefficients

From Eq. (B20) we have(
∂2z + ϵxxk

2
0

)
Dz =

ϵxx
ϵs
q2xDz +

(
∂2z + k2z

)
Dz, (B30)

which, after using Eq. (B28), becomes(
∂2z + ϵxxk

2
0

)
Dz =

ϵxx

ϵs
q2xDz − q2x

∑
α

χα

ϵs

(
AFA

α +BFB
α

)
ξα(z).

(B31)

Plugging this into Eq. (B29) gives

AFA
α +BFB

α =
ϵxx
ϵs

∫
ξα(z

′)Dz(z
′) dz′

−
∑
α′

χα′

ϵs

(
AFA

α′ +BFB
α′

)
Iα,α′ dz , (B32)

where

Iα,α′ =

∫
ξα(z)ξα′(z) dz . (B33)

Furthermore, by applying (ϵxx/ϵs )
∫
dz′ ξα(z

′) to
Eq. (B23), we see that

ϵxx
ϵs

∫
ξα(z

′)Dz(z
′) dz′ = ACA

α +BCB
α

− q2x
∑
α′

χα′

ϵs

(
AFA

α′ +BFB
α′

)
Dα,α′ , (B34)

where we have defined for convenience

CA
α =

ϵxx
ϵs

∫
cos(kzz)ξα(z) dz , (B35)

CB
α =

ϵxx
ϵs

∫
sin(kzz)ξα(z) dz (B36)

and Dα,α′ = −ϵxx
ϵs

∫
ξα(z)g(z, z

′)ξα′(z′) dz dz′ .

(B37)

Plugging Eq. (B34) into Eq. (B32), we obtain

AFA
α +BFB

α = ACA
α +BCB

α

− q2x
∑
α′

χα′

ϵs

(
AFA

α′ +BFB
α′

)
Dα,α′

−
∑
α′

χα′

ϵs

(
AFA

α′ +BFB
α′

)
Iα,α′ . (B38)

Finally, we have an equation for the Fα’s which does not
depend self-referentially on the field Dz(z). Our inten-
tion is that the A and B coefficients will depend on the
boundary conditions, so we would like a solution for the
Fα’s that works for any and all values of A and B. As
such, the A and B parts of the equation must be satisfied
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independently of each other, and we obtain the following
two conditions:

FA
α = CA

α −
∑
α′

χα′

ϵs
FA
α′

[
Iα,α′ + q2xDα,α′

]
, (B39)

FB
α = CB

α −
∑
α′

χα′

ϵs
FB
α′

[
Iα,α′ + q2xDα,α′

]
. (B40)

Note that these can be written concisely as matrix equa-
tions:

MFA = CA, (B41)

MFB = CB , (B42)

with both equations using the same M matrix:

Mα,α′ = δα,α′ +
χα

ϵs

[
Iα,α′ + q2xDα,α′

]
. (B43)

In summary, we have derived matrix equations for
FA
α , F

B
α which do not depend on Dz(z). We can cal-

culate M, CA, and CB , only requiring knowledge of χα

and ξα(z), which can be calculated from the Schrödinger-
Poisson solution for the quantum well. Then, by solving
the matrix equations, we obtain the FA

α , F
B
α coefficients,

which can be used to construct the Dz(z) field solution
Eq. (B23). The two remaining unknowns A,B will be
determined by the boundary conditions. We could, for
example, construct a transfer matrix similar to AA.

Finally, note that if ξα(z) is even (as would be the case
for adjacent n→ n+1 transitions in a symmetric QW ),
then we will have CB = 0. In that case, we will always
have FB = 0 as a valid solution. Then, if we also assume
ϵxx = ϵs, we see that we recover the same solution as AA
in the case of inversion-symmetric quantum wells.

4. Effective permittivity

Now that we have a solution for Dz, we can try to con-
struct an effective local permittivity tensor. We will do
this by calculating the Ez field from Dz using Maxwell’s
equations, and then compare the two. As we will see, a
local permittivity is only possible in the long-wavelength
limit.

To find the Ez field from the Dz field, we can use
Eqs. (B12), (B13), along with Dx = ϵ0ϵxxEx. After sim-
plifying, we get

Ez(z) =
1

q2xϵ0ϵxx

(
∂2z + ϵxxk

2
0

)
Dz(z) (B44)

which, using Eq. (B20), can also be written as

Ez(z) =
Dz(z)

ϵ0ϵs
+

1

q2xϵ0ϵxx

(
∂2z + k2z

)
Dz(z). (B45)

Taking into account Eq. (B28), we obtain an expression
for the Ez field:

Ez(z) =
Dz(z)

ϵ0ϵs
− 1

ϵ0ϵxx

∑
α

χα

ϵs

(
AFA

α +BFB
α

)
ξα(z).

(B46)

Comparing this to our Dz field expression Eq. (B23),
it is clear (unsurprisingly) that we do not have a simple
proportional relationship between the Dz and Ez fields
with which to define a permittivity. However, we can
define an effective permittivity in the long-wavelength
limit by averaging the fields over z and taking a ratio
⟨Dz(z)⟩ / ⟨Ez(z)⟩ (a similar approach to Ref. 3). For THz
QW, the long-wavelength limit is quite reasonable, since
we have well widths <∼ 100 nm and electromagnetic wave-
lengths >∼ 10 µm, even after accounting for the refractive
index of the semiconductor.

In the long-wavelength limit, we take qx, k0 → 0 (which
also implies kz → 0). Then our expression Eq. (B23) for
the Dz field becomes simply

Dz(z) ≈ A. (B47)

We also have CB
α ≈ 0 for all α, which means that FB

α ≈ 0
as well. Our expression (B46) for the Ez field becomes

Ez(z) ≈
A

ϵ0ϵs
− A

ϵ0ϵxx

∑
α

χα

ϵs
FA
α ξα(z). (B48)

We can define our effective permittivity (in the z direc-
tion) as

ϵzz,eff =
⟨Dz⟩
ϵ0 ⟨Ez⟩

≈ ϵs

[
1−

∑
α

χα

ϵxx
FA
α ⟨ξα⟩

]−1

, (B49)

where ⟨·⟩ denotes an average over the entireQW region in
the z direction. Furthermore, since we are using the long-
wavelength limit anyway, we can also use it to simplify
our equation for the FA

α ’s:

FA
α ≈

∫
ξα(z) dz −

∑
α′

χα′

ϵs
FA
α′Iα,α′ , (B50)

finally reaching the Eq. (14).
It turns out that in the long wavelength limit, the prob-

lem is greatly simplified. Once we solve the matrix equa-
tion to find the FA

α ’s, we can directly calculate an effec-
tive permittivity tensor which can be used in a standard
electromagnetic solver.
As a final note, one must be slightly careful with the

definition of L. Typically, L should be the width of the
region simulated by Schrödinger-Poisson. For example, a
common case might be a periodic stack of QW separated
by barriers. If one performs a Schrödinger-Poisson simu-
lation of the entire stack, then L should be the length of
the entire stack. If one performs a simulation of a single
well with periodic boundary conditions, then L should
be the length of the period. There is some arbitrariness
here, but it is important to have consistency between the
Schrödinger-Poisson equations, the calculation of the ef-
fective permittivity, and in the length of material which
is assigned this effective permittivity in the final electro-
magnetic simulation.
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Appendix C: Mathematical model of multipass
absorption

In this section an expression for multipass absorption
through a quantum well is derived. This approach was
used to fit the experimental data in Sec. IV. We consider
a sample with three key regions: a substrate, an active
region, and a metallic coating. For this model, we treat
the metal as a perfect electric conductor, and the sub-
strate as having a constant, real permittivity ϵsub. We
model the active region with an effective complex per-
mittivity tensor. For this work, where the active region
comprises a stack of quantum wells, we assume that the
growth-direction component ϵzz takes the form of

1

ϵzz(ω)
=

1

ϵs

(
1 +

ω2
P

ω2 − ω2
0 + iγω

)
(C1)

and that ϵxx = ϵyy = ϵs. However, the electromagnetic
derivation that follows is general and does not depend on
the particular form of the permittivity tensor, so more
sophisticated models could be used.

The main restriction here is that each individual quan-
tum well must be small compared to the wavelength of
light, so that the stack can be treated as an effective
medium from the perspective of the electromagnetic field.
In the case of IV, we are working with free-space wave-
lengths on the order of 100µm, which will give a growth-
direction wavelength of around λ ≈ 40 µm in GaAs at 45°
incidence. The individual quantum wells, which have a
width on the order of 0.1 µm, are quite small compared
to the wavelength.

It should be emphasized, though, that this does not
mean the stack as a whole is negligibly thin. In the case
of the 54-well stack, the total thickness of the active re-
gion is around 6 µm, which is an appreciable fraction of
the wavelength. On the other extreme, the substrate
thickness (∼500 µm) is quite large compared to the wave-
length, and we will neglect it: effectively treating it as
an incoherent reflector. As such, we assume that each
reflection off the active region side of the substrate can
be treated independently. Then, if we can find the power
absorption spectrum for a single bounce, we can multiply
to find the total absorption through the structure.

1. The single-pass reflection coefficient

Let z be the growth direction, and let the active region
lie in 0 < z < La with a perfect conductor for z < 0. At
z > La there is substrate with permittivity ϵsub. We
assume that the light arrives at the active region from
far away in the substrate, so we can treat the substrate
as a semi-infinite slab.

For TM light, let’s assume the magnetic field, H, is
pointing in the y direction. Then H can be written in
the active region 0 < z < La and substrate z > La,

respectively, as

Hy,a =
(
H−

a e
−ikz,az +H+

a e
+ikz,az

)
eiqx,ax (C2)

and Hy,s =
(
H−

s e
−ikz,s(z−La) +H+

s e
+ikz,s(z−La)

)
eiqx,sx.

(C3)

Using Maxwell’s equations, we obtain

iωϵ0(ϵ · E) = ∇×H = (∂xHyẑ− ∂zHyx̂), (C4)

which leads, in the active region, to

Ez,a =
qx,a
ωϵzzϵ0

(
H−

a e
−ikz,az +H+

a e
+ikz,az

)
eiqx,ax, (C5)

Ex,a =
kz,a
ωϵxxϵ0

(
H−

a e
−ikz,az −H+

a e
+ikz,az

)
eiqx,ax (C6)

and in the substrate region to

Ez,s =
qx,s

ωϵsubϵ0

(
H−

s e
−ikz,s(z−La) + H+

s e
+ikz,s(z−La)

)
eiqx,sx,

(C7)

Ex,s =
kz,s

ωϵsubϵ0

(
H−

s e
−ikz,s(z−La) −H+

s e
+ikz,s(z−La)

)
eiqx,sx.

(C8)

Because of the conductor boundary condition, we must
have Ex,a = 0 at z = 0, which gives

kz,a
ωϵxxϵ0

(
H−

a −H+
a

)
eiqx,ax = 0 (C9)

or H−
a = H+

a := Ha. The fields in the active region are
given by

Hy,a = 2Ha cos(kz,az)e
iqx,ax, (C10)

Ez,a = 2Ha
qx,a
ωϵzzϵ0

cos(kz,az)e
iqx,ax (C11)

and Ex,a = −2iHa
kz,a
ωϵxxϵ0

sin(kz,az)e
iqx,ax. (C12)

The second boundary condition is that the tangential E
and H fields must be continuous across the boundary at
z = La. Firstly, this enforces that qx,s = qx,a. Secondly,
it gives

2Ha cos(kz,aLa) =
(
H−

s +H+
s

)
, (C13)

−2iHa
kz,a
ωϵxxϵ0

sin(kz,aLa) =
kz,s

ωϵsubϵ0

(
H−

s −H+
s

)
.

(C14)

Eliminating Ha, we get

ωϵxxϵ0
−ikz,a

cot(kz,aLa) =
ωϵsubϵ0
kz,s

H−
s +H+

s

H−
s −H+

s
, (C15)

which becomes

i
ϵxxkz,s
kz,aϵsub

cot(kz,aLa) =
1 + r

1− r
, (C16)
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where r = H+
s /H−

s is the complex reflection coefficient.
Solving for r in the above, we find

r =
−kz,aϵsub + ikz,sϵxx cot(kz,aLa)

kz,aϵsub + ikz,sϵxx cot(kz,aLa)
. (C17)

To actually calculate r, we still need to know the
wavenumbers in the substrate and active region. The
wavenumbers in the substrate region must obey

q2x,s + k2z,s = ϵsub
ω2

c2
= ϵsubk

2
0, (C18)

so we can writek

qx,s =
√
ϵsubk0 sinϕ; kz,s =

√
ϵsubk0 cosϕ (C19)

where, ϕ is the incidence angle, measured relative to the
growth axis.

The wavenumbers in the active region are a bit trickier
because of the anisotropy, but it can be shown (using
∇× E = −iωµ0H) that

q2x,a
ϵzz

+
k2z,a
ϵxx

=
ω2

c2
= k20 (C20)

Recall from before that we have qx,a = qx,s. Solving for
kz,a in terms of k0, we get

k2z,a = ϵxx

[
1− ϵsub

ϵzz
sin2 ϕ

]
k20 (C21)

These expressions for kz,s and kz,a can be used in
Eq. (C17) to calculate the complex reflection coefficient
for the active region against a gold coating.

2. Multipass absorption

In a multipass configuration (again, where we are as-
suming incoherent reflections off the bottom of the sub-
strate so that each reflection is independent), the total
transmission through the structure can be calculated as

T (ω) = |r(ω)|2Npass , (C22)

where Npass is the number of passes through the active
region (i.e., the number of reflections). This can be ap-
proximately calculated51 using

Npass =
Lsub

Dsub
cotϕ, (C23)

k Note we have implicitly assumed qx,s and kz,s to be real here,
since we are assuming that the other substrate boundary is far
off and thus the incoming light can be treated as a plane wave.
If the substrate thickness were not very large compared to the
wavelength, we could not necessarily assume that qx,s and kz,s
are real, and we would need to consider waveguide modes.

where Lsub and Dsub are the length and thickness of
the sample, respectively, and ϕ is the incidence angle.
However, this is only an approximation. In reality, the
number of passes may depend on where the light hits
the facet. In general, one would need to know the dis-
tribution of light across the facet to calculate the total
transmission. In practice, it is quite difficult to know this
value exactly, which translates to an uncertainty in the
total magnitude of the absorption.
Further, note that we have neglected the reflection off

the entry and exit facets: i.e., only a certain fraction of
the incoming light will actually enter the sample in the
first place. In practice, however such complications are
mitigated by dividing the TM absorption measurement
by an identical TE measurement. This cancels out any
losses which are common to both TM and TE light, iso-
lating the effect of the active region, which is anisotropic
and only absorbs TM light.

Appendix D: Derivation of the Eq. (27) matrix

In this section the connection between AA and our
model using the k⃗ · p⃗-compatible definition of current
operator will be discussed. The notation of the men-
tioned work is adopted for this derivation, with the
exception of α ≡ n → m, and additionally defining
Jα =

∫
ξα(z) dz = L ⟨ξα⟩.

Firstly, one should note that the following simplifica-
tion is used in AA:[

1

2

fn,k⃗ − fm,k⃗+q⃗

(ω + iδ) − ωα(k⃗, q⃗)
−

fm,k⃗+q⃗

ω0
α

]

+

[
1

2

fn,k⃗ − fm,k⃗+q⃗

−(ω + iδ) − ωα(k⃗, q⃗)
+

fn,k⃗

ω0
α

]

→
fn,k⃗ − fm,k⃗+q⃗

ω0
α

[
1 +

ωα(k⃗, q⃗)ω0
α

ω2 − ω2
α(k⃗, q⃗)

]
(D1)

However, from the linear response theory, one in fact
gets the following expression (see Sec. F and also Sec. 4.3
Current-response of a Q2DEG of Ref. 15 plus Sec. 3. The
(001) SURFACE OF InSb of Ref. 13 for reference)[

1

2

fn,⃗k − fm,⃗k+q⃗

(ω + iδ)− ωα(k⃗, q⃗)
−
fm,⃗k+q⃗

ω0
α

]
ξα,⃗k(z)ξ

∗
α,⃗k

(z′)

+

[
1

2

fn,⃗k − fm,⃗k+q⃗

−(ω + iδ)− ωα(k⃗, q⃗)
+
fn,⃗k
ω0
α

]
ξ∗
α,⃗k

(z)ξα,⃗k(z
′),

(D2)

which only in the case of real ξα,⃗k(z) can be simplified to

the RHS of Eq. (D1) times ξα,⃗k(z)ξα,⃗k(z
′). In our case,

we have retained the expression Eq. (D2), which is the
origin of the σ index in Eqs. (21), (22) and (23) – and
further as as part of the β index – and also the origin of
the p(β) ≡ p(σ), ν(β) ≡ ν(σ) symbols in Eqs. (26) and
(28).
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Secondly, using the following set of substitutions:

Fα → F̃αJα,

Iα,α′ → Ĩα,α′JαJ
∗
α′ ,

χα → χ̃α

JαJ∗
α

, (D3)

on the set of linear equations for Fα:

Fα = Jα −
∑
α′

χ′
α

ϵs
Iα,α′Fα′ , (D4)

which is equivalent to Eq. (14), one obtains dimensionless
equation

F̃α = 1−
∑
α′

χ̃α′

ϵs
Ĩα,α′ F̃α′ . (D5)

Thirdly, one should note that as the Ĩα,α′ in our case

depend on k⃗′, the corresponding summation in ξα′ in
Eq. (3) in Ref. 12 should be taken outside. This leads to
expressions of Eqs. (22) and (26).

Finally, as the Ĩα,α′ will also depend on k⃗ in our
model, we introduced the averaging over this index, as in

Eq. (25). As the contribution in sum over k⃗′ in Eq. (26) is
approximately proportional to the occupation difference
between the subbands of α′ transition (see e.g. RHS of
Eq. D1), we adopted correspondingly the occupation dif-
ference between the subbands of α transition as weight
for the average. The objection can be made that the aver-

aging the transition current density over k⃗, while keeping

the k⃗′ free for the sum in the Eq. (26) introduces an ar-
bitrary unequivalence between the two dimensions. To
control for this effect, we also used the two-dimensional
averaging, see the second line in Eq. (25). Fortunately,
it turned out that the difference between the two ap-
proaches is minimal, not visible in the scale of the figures
presented in the Sec. IV.

Appendix E: Introduction of the Jz into the model

The workhorse of the ISB formation model of Ref. 12
are the transition current densities ξα, see Eq. (3). Please
note that the ∂

∂z operator in the latter can be interpreted
as a part of the one-band common probability current
definition:

jz =
h̄ei

2m∗

(
ψ
∂ψ∗

∂z
− ψ∗ ∂ψ

∂z

)
, (E1)

so that:

ξα = i [jz]α . (E2)

where ξα in contrast to Eq. (3) does not assume that the
wavefunctions are real:

ξα(z) =
h̄e

2m∗

[
ψ∗
m(z)

∂ψn(z)

∂z
− ψn(z)

∂ψ∗
m(z)

∂z

]
, (E3)

see Eq. (2.32) in Ref. 13 and Eq. (76) in Ref. 15. It is im-
portant to note that the latter expression is derived in the
cited sources with the help of the Kubo formula and the
Matsubara method (for the detailed implementation of
the latter in a similar context, see e.g. Ref. 14). This pro-
cedure was applied to a parabolic system with a isotropic
effective mass, as demonstrated e.g. by Eqs. (2.1)-(2.5)
and (3.1)-(3.3) in Ref. 13, by Eqs. (37)-(42) in Ref. 15
and by Eqs. (1)-(8) in Ref. 14.l There is, in general, no
easy way of including the k∥ dependent, non-parabolic
subbands spanned onto the Bloch basis of Eq. (19) into
the procedure. Instead, we postulate to replace the [jz]α
as per one-band definition with J n̂

α,σ,k∥
(z) of Eq. 21 – i.e.

the current density using the operator Ĵz proper for the

8-band k⃗ · p⃗ , as defined in Sec. II F, following the work
of Chao and Chuang, Ref. 40.
Our approach has a couple of advantages. Firstly,

the concept of a scalar effective mass m∗ as present in
Eq. (3), ill-fitting to a non-parabolic multi-band system
with the S/γ1/γ2/γ3 set of parameters depending on the
position via composition profile (see Table II), is auto-

matically incorporated into the definition of Ĵz. Sec-

ondly, there is a dependence on k⃗∥ – both magnitude
and orientation – present in the model, both on the level
of the individual wavefunctions ψn̂

n,k∥
(z) and the Ĵz op-

erator (which explicitly depends on k⃗∥).

Appendix F: Derivation of the Pzz(q⃗, z, z′, ω) in
Ref. 15

This section follows the derivation of the zz element
of the polarization function P as presented in work of
Wendler and Kändler, Ref. 15 – referenced with WK in
the text and the equations of this section, using their no-
tation. Here: α, β ∈ {x, y, z}, K and K ′ are subband
indices, φK(z) is the corresponding K-subband wave-
function, nF is the Fermi-Dirac distribution, ΩKK′ is
the ω0

α of AA. PKK′
(
q⃗∥, ω

)
roughly corresponds to χα

while gKK′(z) to ξα(z). The goal of this derivation is
to explain the origin of the Eq. (26) and to present the
problems arising when the eigenfunctions are not real and
when the simple relation between the eigenfunction and
eigenenergy cannot be used.

1. Introductory steps

Let’s start with Eq. (WK81):

l Strictly speaking, a kind of non-parabolicity is present in the
initial considerations of Sec. 2 Ref. 13, however: (I) it is still a
one-band model and (II) when the authors discuss an example
of aplication of the model in Sec. 3, they immediately assume a
parabolic system and real eigenfunctions.
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P
KK′
zz

(
q⃗∥, ω

)
= −

∑
k⃗∥

 h̄2PKK′
(
q⃗∥, k⃗∥, ω

)
4m2

e

+
h̄e2nF

(
K, k⃗∥

)
Am2

eΩKK′

 .

(F1)

and Eq. (77) in the same work, in the case of α = β =
z:

Pzz
(
q⃗∥, z, z

′, ω
)
=
∑
KK′

PKK′
zz

(
q⃗∥, ω

)
gKK′ (z)g∗KK′ (z

′)

=
∑
KK′

−∑
k⃗∥

 h̄2PKK′

(
q⃗∥, k⃗∥, ω

)
4m2

e

+
h̄e2nF

(
K, k⃗∥

)
Am2

eΩKK′




× gKK′ (z)g∗KK′ (z
′) = T1 + T2, (F2)

where

T1 = − h̄2

4m2
e

∑
KK′

∑
k⃗∥

PKK′

(
q⃗∥, k⃗∥, ω

)
gKK′(z)g∗KK′(z′)

T2 = − h̄e2

Am2
e

∑
KK′

∑
k⃗∥

nF

(
K, k⃗∥

)
ΩKK′

gKK′(z)g∗KK′(z′). (F3)

At this point, one can see that the first term is already
equivalent to the first term in Eq. (WK74) if one keeps
in mind that

FKK′

z

(
q⃗∥, k⃗∥, z

)
FKK′

z

(
q⃗∥, k⃗∥, z

′
)∗

= gKK′(z)g∗KK′(z′),

(F4)
see Eq. (75) in the same work. Thus, the following will be
an investigation on how the second term T2 of Eq. (F2)
compares to the second term of Eq. (WK74). Mirroring
the derivation in Section 3. The (001) surface of InSb in
work of Eguiluz and Maradudin Ref. 13, the derivative
of the term is taken:

d

dz
T2 =

d

dz

− h̄e2

Am2
e

∑
KK′

∑
k⃗∥

nF

(
K, k⃗∥

)
ΩKK′

gKK′ (z)g∗KK′ (z
′)


= −

h̄e2

Am2
e

∑
KK′

∑
k⃗∥

nF

(
K, k⃗∥

)
ΩKK′

[
d

dz
gKK′ (z)

]
g∗KK′ (z

′). (F5)

Using Eq. (WK84), one gets:

d

dz
T2 = − 2e2

Ame

∑
KK′

∑
k⃗∥

nF

(
K, k⃗∥

)
ηKK′(z)g∗KK′(z′).

(F6)
One can easily see, that Eqs. (WK83) and (WK85)

should now be used to move towards the form that the
second term takes in Eq. (74) of that work. However, the
equations are investigated here in detail.

2. The case of real eigenfunctions

It is clear that, due to the completeness of φK basis,
the Eq. (WK83) should, if fact be as follows:∑

K

φK(z)φ∗
K(z′) =

∑
K

φ∗
K(z)φK(z′) = δ(z − z′) (F7)

and only for the real eigenfunctions, the original formu-
lation: ∑

K

φK(z)φK(z′) = δ(z − z′) (F8)

can be retrieved. Moreover, the Eq. (WK85) contains
the ηKK′(z)gKK′(z′) term instead of ηKK′(z)g∗KK′(z′)
that is present in our Eq. (F6). This suggest that, con-
trary to what they say in their work, authors assumed
φK ’s to be real when they went from Eq. (WK74) to

Eqs. (WK77)-(WK81). Furthermore, as the nF

(
K, k⃗∥

)
term is indexed by K and not K ′ in both Eq. (WK74)
and Eq. (F6), then the sum should be over K ′ instead.
We will start with:∑

K′

ηKK′(z)gKK′(z′) =

∑
K′

[φK(z)φK′(z)]

(
φK(z′)

dφK′(z′)

dz′
− φK′(z′)

dφK(z′)

dz′

)
= φK(z)φK(z′)

∑
K′

φK′(z)
dφK′(z′)

dz′

− φK(z)
dφK(z′)

dz′

∑
K′

φK′(z)φK′(z′). (F9)

In the case of the first term, the derivative works only
on the z′-dependent part of what is under the sum over
K ′:∑
K′

φK′(z)
dφK′(z′)

dz′
=

d

dz′

∑
K′

φK′(z)φK′(z′) =
d

dz′
δ(z − z′)

(F10)

and∑
K′

ηKK′(z)gKK′(z′) = φK(z)φK(z′)
d

dz′
δ(z − z′)

− φK(z)
dφK(z′)

dz′
δ(z − z′). (F11)

Using the distributional derivative property of Dirac
delta that d

dz′ δ(z − z′) = − d
dz δ(z − z′) one can further

write:∑
K′

ηKK′(z)gKK′(z′) = −φK(z)φK(z′)
d

dz
δ(z − z′)

− φK(z)
dφK(z′)

dz′
δ(z − z′). (F12)

Now, using the projective ability of the delta function
f(x)δ(x − y) = f(y)δ(x − y) twice on the second term
and finally obtain:∑

K′

ηKK′(z)gKK′(z′) =

− φK(z)φK(z′)
d

dz
δ(z − z′) − φK(z′)

dφK(z)

dz
δ(z − z′)

= −φK(z′)

[
φK(z)

d

dz
δ(z − z′) +

dφK(z)

dz
δ(z − z′)

]
= −φK(z′)

d

dz

[
φK(z)δ(z − z′)

]
. (F13)
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It can be easily shown that the minus sign difference be-
tween this result with respect to Eq. (WK85) is due to
summation over K ′ instead of K.
Combining Eq. (F6) with Eq. (F13) yields:

d

dz
T2 = −

2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(∑
K′

ηKK′ (z)gKK′ (z′)

)

= −
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
−φK(z′)

d

dz

[
φK(z)δ(z − z′)

])

=
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
φK(z′)

d

dz

[
φK(z)δ(z − z′)

])

=
d

dz

 2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)
φK(z′)φK(z)δ(z − z′)

 (F14)

and, after using the projective property again, one arrives
at:

d

dz
T2 = −

2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(∑
K′

ηKK′ (z)gKK′ (z′)

)

= −
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
−φK(z′)

d

dz

[
φK(z)δ(z − z′)

])

=
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
φK(z′)

d

dz

[
φK(z)δ(z − z′)

])

=
d

dz

 2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)
|φK(z)|2δ(z − z′)

 . (F15)

Having omitted the integration constant, which could
be argued to be zero (see the corresponding discussion in
Sec. 3 of Ref. 13), one obtains:

T2 = δ(z − z′)
2e2

Ame

∑
K

|φK(z)|2
∑
k⃗∥

nF

(
K, k⃗∥

) , (F16)

which is equal to minus the corresponding term in
Eq. (WK74) for α = β = z.
In fact, the derivation is done the other way in WK,

so the correct version of Eq. (F2) should be:

Pzz

(
q⃗∥, z, z

′, ω
)
= T1 − T2, (F17)

and Eq. (F1) should take the form of:

P
KK′
zz

(
q⃗∥, ω

)
= −

∑
k⃗∥

 h̄2PKK′
(
q⃗∥, k⃗∥, ω

)
4m2

e

−
h̄e2nF

(
K, k⃗∥

)
Am2

eΩKK′

 .

(F18)

This is the minus sign of the ”omega terms” in the
parabolic model of Eqs. (3) and (15) in Ref. 12 of the
q⃗∥ → 0 limit of the χ(q⃗∥, ω).

3. The case of complex eigenfunctions

If the φ functions are not real, then the relations of
Eq. (F7) can only be used, not of Eq. (F8). In addi-
tion, the ηKK′(z)gKK′(z′) term will be replaced with the

ηKK′(z)g∗KK′(z′) one, see Eq. (F6). With this in mind,
starting with:∑

K′

ηKK′(z)g∗KK′(z′) =

∑
K′

[φK(z)φ∗
K′(z)]

(
φ∗

K(z′)
dφK′(z′)

dz′
− φK′(z′)

dφ∗
K(z′)

dz′

)
= φK(z)φ∗

K(z′)
∑
K′

φ∗
K′(z)

dφK′(z′)

dz′

− φK(z)
dφ∗

K(z′)

dz′

∑
K′

φ∗
K′(z)φK′(z′) (F19)

and similarly to the case of real wavefunctions, one gets:∑
K′

φ∗
K′(z)

dφK′(z′)

dz′
=

d

dz′

∑
K′

φ∗
K′(z)φK′(z′) =

d

dz′
δ(z − z′)

(F20)
and∑

K′

ηKK′(z)g∗KK′(z′) = φK(z)φ∗
K(z′)

d

dz′
δ(z − z′)

− φK(z)
dφ∗

K(z′)

dz′
δ(z − z′). (F21)

With d
dz′ δ(z − z′) = − d

dz δ(z − z′) one obtains:

∑
K′

ηKK′(z)g∗KK′(z′) = −φK(z)φ∗
K(z′)

d

dz
δ(z − z′)

− φK(z)
dφ∗

K(z′)

dz′
δ(z − z′). (F22)

Until this moment the derivation was paralleling the pre-
vious (real) case. However, using the projective ability
correspondingly, yields:∑

K′

ηKK′(z)g∗KK′(z′) = −φK(z)φ∗
K(z′)

d

dz
δ(z − z′)

− φK(z′)
dφ∗

K(z)

dz
δ(z − z′) (F23)

and the conjugations of the first and the second term
on RHS do not match. It is easy to notice, that the
root of the problem is that the projective ability does
not swap the conjugation of the accompanying function,
which renders the next would-be step ”illegal”. It needs
to be underlined, that this means there is no possibility
of writing the Eq. (WK74) in a form of Eq. (WK77), on
which hinges the whole crucial idea of separation of χ(ω)
from ξ(z/z′) in nonlocal susceptibility of AA.
To proceed further somehow, we will for now pretend

that the conjugations in the first and the second term
agree. One could propose two versions, going with either
conjugation ordering of the first or of the second term.
They are, respectively:

(I)
∑
K′

ηKK′(z)g∗KK′(z′) = −φ∗
K(z′)

d

dz

[
φK(z)δ(z − z′)

]
,

(II)
∑
K′

ηKK′(z)g∗KK′(z′) = −φK(z′)
d

dz

[
φ∗

K(z)δ(z − z′)
]
.

(F24)
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Going with (I) yields:

d

dz
T2 = −

2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(∑
K′

ηKK′ (z)g∗KK′ (z
′)

)

= −
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
−φ∗

K(z′)
d

dz

[
φK(z)δ(z − z′)

])

=
2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)(
φ∗
K(z′)

d

dz

[
φK(z)δ(z − z′)

])

=
d

dz

 2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)
φ∗
K(z′)φK(z)δ(z − z′)

 (F25)

and, after using the projective property again, one arrives
at:

d

dz
T2 =

d

dz

 2e2

Ame

∑
K

∑
k⃗∥

nF

(
K, k⃗∥

)
|φK(z)|2δ(z − z′)

 ,

(F26)
so:

T2 = δ(z − z′)
2e2

Ame

∑
K

|φK(z)|2
∑
k⃗∥

nF

(
K, k⃗∥

) , (F27)

which is the same result, as the one for real wavefunc-
tions. It can be easily shown that, going with the second
version of the approximation also leads the same result.

4. The relation between the energy, mass and
current elements

The relation Eq. (WK84)

d

dz
gKK′(z) =

2meΩKK′

h̄
ηKK′(z), (F28)

can be easily shown to follow from the explicit form of the
Schrödinger equation of Eq. (WK40) and the definitions
of ηKK′ and gKK′ . The same relation was adopted in
AA.
The origin of thisme ↔ ΩKK′ and gKK′(z) ↔ ηKK′(z)

relation is the explicit one-band Hamiltonian, from which

the Schrödinger equation for 8-band k⃗ · p⃗ would be very
different. Thus a lot of additional mixing terms would
appear, which most probably prohibit the crucial χ(ω)
vs ξ(z/z′) separation anyway. There is no direct way to
address this problem and even if one retains the relation
of Eq. (F28) as-is, it is not obvious is it better to use the
EΓ,m′ − EΓ,n′ (as in AA) or En̂

k′
∥,m

′ − En̂
k′
∥,n

′ (including

the dependence of energy on k⃗∥) in place of ΩKK′ . For
this reason, we decided to use two versions of the relation
as approximations while checking the difference between
them as a rough estimate of error, with ΩKK′ → E in
Eq. (26).

Please also note that the relevant me symbols present
in WK, in our work are being embedded as a part of Jz
definition for k⃗ · p⃗.

Appendix G: The low-temperature limit of the

8-band k⃗ · p⃗ model usability

It is very probable that the reader would ask why only
limited temperature ranges were shown in Fig. 2 and
taken into account in this analysis, as compared to the
measured values in Table III. In the case of T < 78 K
temperatures for all the three samples, they are out of

the scope of applicability of our 8-band k⃗ · p⃗ model. This

is a consequence of the k⃗∥ mesh we have used in both the
nextnano++ and the ISB formation model, see Secs. II B
and II E, respectively.

Please note that there are four parameters describing

the mesh. First one is the number of k⃗∥ directions taken
into account. Thankfully, due to the symmetry of the
crystal lattice and for a system with a symmetry point

in the growth z direction, all the k⃗∥ variability can be
described by a single octant, let us say between the [100]
and [110] directions. However, the issue of how many

orientations NO
k⃗∥

of k⃗∥ take into account in that octant

remains. The second parameter is the maximal magni-
tude of the in-plane wavevector kmax

∥ taken into account.

Here, one wants to be sure that the part of the Bril-
louin zone that was cut off is sufficiently far away from
the Γ point that it contains no meaningful contribution.
The third parameter is the mesh spacing ∆k∥ , defining
the granularity of the mesh. The fourth parameter is
the total mesh size, which is given by the other ones as

NO
k⃗∥

kmax
∥
∆k∥

. Please note that the computational complexity

of the model is approximately proportional to the second
power of the mesh size.

With the computational complexity in mind, we al-
ready have taken the path of least resistance with NO

k⃗∥
=

2. After verifying that the dispersions and wavefunctions
of the [100] and [110] are relatively the most different in
the octant, while the intermediate orientations have in-
termediate dispersions and wavefunctions, we only took
into account these two cases. Additionally, we limited
the model to 20 conduction band subbands (10 orbitals
× 2 spin orientations) and took only the transitions be-
tween orbitals adjacent in energy into account.m With
all this, however, the mesh as defined and used by us is
already at the limit of practical usability.

Now, what is happening in the lower temperatures will
be discussed. As T→0 the Fermi-Dirac distribution fn,⃗k∥

becomes more rigid. Consequently, the occupation differ-
ences of adjacent orbital subbands ∆fα,⃗k∥

change signif-

icantly over progressively smaller k⃗∥ ranges. At some

m If the typical energy separation of adjacent orbitals is ωn,n+1,
then the typical energy separation of next-nearest neighbors will
be about ωn,n+2 ≈ 2ωn,n+1, which means that they would only
make a small, if not totally negligible contribution, to the ISB
plasmon formation.
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point, the granularity of the mesh becomes too big to
describe the dynamics of the ISB plasmon formation and
the model falls apart. We made an estimate based of the

calculated 8-band k⃗ · p⃗ dispersion relation for the [100]
direction of the G0490 sample, that we model cannot be
expected to work properly for T ≪ 78 K.

In principle, the lower temperature limit Tmin of the
model could be somewhat pushed, but the difficulty with
this push raises strongly non-linearly with lower Tmin,
putting the liquid helium range out of the question.
This non-linearity comes from two sources: (I) the way
how Fermi-Dirac function reacts to reducing tempera-
ture, (II) the upward drift of the Fermi level with re-
ducing temperature. As to the second point, in the es-
timate mentioned above, the Fermi level crosses the first
subband at the Γ point at about T = 53 K. Because

now some inter-subband transitions cross the Fermi level,
when the derivative magnitude of the Fermi-Dirac func-
tion is the biggest (in fact approaching infinity for T→0),
the model would need a minuscule ∆k∥ to work.

Please note that, while the measurement for G0643
was performed with more or less equidistant tempera-
tures, the ones for G0490 and G0489 have one point in
liquid-helium temperature range (T = 10 K) and the
next one is already the liquid nitrogen temperature. We
consider the second type of measurement more typical,
because if the measurement is done with the use of liquid
helium anyway, there seems to be no reason not to do it
in very low temperature. We had just accepted that the
scope of applicability of our model is the liquid-nitrogen
temperatures and above as opposed to the liquid-helium
temperature range.
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