Tayssir Touili

Register Automata for Malware Specification

Keywords: Malware detection, Model-checking, Automata, Pushdown Systems Tayssir Touili. 2018. Register Automata for Malware Specification. In ARES2022. ACM, New York, NY

With the huge impact that internet is having in our daily life, it is becoming urgent to have efficient malware detection techniques. In this paper, we present a new approach to perform malware detection. We use register automata to describe malware specifications, and pushdown systems to model the program. This allows to keep track of both the program's stack and the values of the registers. Indeed, both the stack and the registers are needed to have precise malware specifications. To check whether the program contains some malicious behavior, we perform a kind of product between the pushdown system and the register automaton describing the malicious behaviors. Whether the program is malicious or not is then reduced to reachability checking in pushdown systems. We implemented our techniques in a prototype and obtained encouraging preliminary results.

Introduction

Internet is taking more and more place in our daily life as it offers a huge number of services. Unfortunately, the internet can also be a source of threat to your computer or smart phone, as it vehiculates an enormeous number of malwares. Malwares can be very dangerous, for example, authorities investigating the 2008 crash of Spanair flight 5022 have discovered a central computer system used to monitor technical problems in the aircraft was infected with malware. Thus, it is crucial to have efficient up-to-date malware detectors. There are mainly two existing approaches for malware detection: signature scanning and code emulation. An antivirus based on signature scanning compares the content of a file with the entries of a dictionary that has the signatures of known viruses. If it finds a match, it is almost certain that the file is actually infected. The main disadvantages of such techniques are that it is possible for a user to be infected with a new virus for which there is not an existing signature, the signature dictionary must be kept up to date, and if some of the virus instructions change (even if it doesn't change its behaviour) its signature becomes obsolete. As for code emulation techniques, they will simulate the suspicious file and try to detect any malicious behavior. The main disadvantage of such techniques is that they cannot simulate the code indefinitely. If the malicious behavior shows itself quickly, it will be detected, but if it has to wait for a particular date, or the execution of an event, etc., the waiting could be too long and the emulation would have to terminate without detecting the malware. Thus, an efficient malware detector should try to detect the malware without executing the program, and should be more evolved than searching for syntactic signatures. It has to analyse the behavior of the program without executing it. Therefore, model-checking is a good candidate to perform malware detection as it allows to analyse the behaviors of a program without executing it.

Model-checking and static analysis techniques have been applied to detect malicious behaviors e.g. in [2-7, 9, 10, 12-15, 18]. However, all these works are based on modeling the program as a finite-state system, and thus they cannot accurately model the program's stack. Being able to track the program's stack is very important for malware detection as explained in [START_REF] Lakhotia | A Method for Detecting Obfuscated Calls in Malicious Binaries[END_REF]. For example, malware writers obfuscate the system calls by using pushes and jumps to make malware hard to analyze, because anti-viruses usually determine malware by checking function calls to operating systems.

To overcome this problem, [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | Pushdown Model Checking for Malware Detection[END_REF][START_REF] Song | LTL Model-Checking for Malware Detection[END_REF][START_REF] Song | PoMMaDe: pushdown modelchecking for malware detection[END_REF] proposed to use pushdown systems as program model when performing malware detection. However, these works don't involve the values of the registers of the program in the malware specifications. In several cases, the values of some registers are needed to determine whether some behavior is malicious or not. For example, several Windows viruses search for a file with a .EXE extension (a file ready to get executed), and overwrites the content of this file with their own code. To search for a file, the virus will typically call the interruption 21h with the value 4eh in the register ah, the searched file's attributs in the register cl, and a pointer to the path or the name of the searched file in dx. To write to a file, the virus will typically call the interruption 21h with a file handle in bx, the number of bytes to write in cx, and a pointer to the buffer that has the data to be written in dx. Another example of a Windows' virus behavior is the interruption hook, where the virus tries to fool DOS by making it think that it is calling an interruption whereas it is actually calling the virus. To do this, the virus will typically put a pointer to itself in the memory address where one should usually find a pointer to a particular interruption. One of the interruptions that can be hooked is 13h as it allows to write data to the boot sector of a disk. To this aim, this interruption need to be called with the value 301h set in ax, and 1 in cl to write the data pointed by bx to the boot sector of the disk defined by the value in dx. Thus, to check whether a program that calls these interruptions is a virus or not, it is crucial to know the values of the corresponding registers.

Therefore, keeping track of the values of the registers is important to accurately describe malware behaviors. Hence, we propose in this paper to use register automata to describe malware specifications, and to use pushdown systems to model the program. This allows to keep track of both the program's stack and the values of the registers. To check whether the program contains some malicious behavior, we perform a kind of product between the pushdown system and the register automaton describing the malicious behaviors. Whether the program is malicious or not is then reduced to reachability checking in pushdown systems. We implemented our techniques in a prototype and obtained encouraging preliminary results.

Outline. This paper is organized as follows. In the next section, we define register automata and show how they can be used to precisely specify malwares. Section 3 describes the translation from a binary code to a pushdown system, as malwares are executables and hence, are binary programs. Section 4 shows how malware detection is reduced to reachability checking in pushdown systems. We conclude the paper with a conclusion and a description of future work.

Malicious behavior specification

In this section, we introduce register automata and show how they can be used to specify malicious behaviors.

Register automata

Definition 2.1 (Registers). Let R = {𝑟 1 , ..., 𝑟 𝑛 } be a set of registers (here R is the set of registers used by the assembly program). An instantiation R of R is defined by: 𝑅 In what follows, if there is no confusion, we will write

= {|𝑟 1 | = 𝑣𝑎𝑙 1 , ..., |𝑟 𝑛 | = 𝑣𝑎𝑙 𝑛 },
𝑟 𝑖 = 𝑣𝑎𝑙 𝑖 instead of |𝑟 𝑖 | = 𝑣𝑎𝑙 𝑖 .
To specify malicious behaviors, we will introduce register automata. Such an automaton can be seen as an ordinary finite-state automaton augmented with registers over a finite domain. A state of such an automaton consists of a control location and a register valuation.

Definition 2.2 (Register Automaton). A register automaton is a tuple

𝐴 = ⟨𝐼𝑛𝑠𝑡, R, 𝑄, Δ, 𝑞 0 , 𝑞 𝑓 ⟩, where • 𝐼𝑛𝑠𝑡 is the set of valid instructions of the used assembly language, • R is a finite set of registers, • 𝑄 is a finite set of states, • Δ = Δ 0 ∪ Δ 1 is a finite set of transitions, where
-Δ 0 is a set of transitions of the form (𝑞, 𝑖𝑛𝑠𝑡, 𝑞), for every 𝑞 ∈ 𝑄, and every 𝑖𝑛𝑠𝑡 ∈ 𝐼𝑛𝑠𝑡. -Δ 1 is a set of transitions of the form (𝑞, 𝑖𝑛𝑠𝑡, 𝑔, 𝑞 ′),

where 𝑞, 𝑞 ′ ∈ 𝑄, 𝑖𝑛𝑠𝑡 ∈ 𝐼𝑛𝑠𝑡 and 𝑔 is a constraint over R.

• 𝑞 0 is the initial state, • 𝑞 𝑓 is the final state.
Intuitively, the malicious specifications are described by the transitions of Δ 1 . The transitions Δ 0 can be seen as star transitions that allow to read the transitions of the program of the analysed file that do not correspond to the malicious pattern, i.e., that are not typical for a malware. For every transition of Δ 1 , 𝑔 is a constraint that will represent the content of certain registers during the execution of the instruction 𝑖𝑛𝑠𝑡. A transition of the form (𝑞, 𝑖𝑛𝑠𝑡, 𝑔, 𝑞 ′) can be fired only if the current instantiation of the registers at state 𝑞 satisfies the contraint 𝑔.

Modeling malicious behaviors using register automata

In this section, we show on some examples of Windows viruses how register automata can be used to precisely describe malicious behaviors. We fix in this section R to be the set of the registers used by the considered programs: R = {ax, bx, cx, dx, ah, al, dh, dl, cs, ds, es, ss, sp, bp, si, di}.

2.2.1

File infection after a file search. Several viruses will search the files they want to infect. To do this, they will call the interruption 21h with value 4eh in the register ah, and a pointer to the extension of the searched file name (for example "*.com", "*.exe", etc) in the register dx. Once the file is found, the virus will copy itself into it. To do this, the virus will make another call to int 21h with value 40h in ah, the number of bytes to be written in cl and the location of the first byte to be written in dx. Table 1 gives a fragment of the disassembled code of the virus Intruder-B, where . . . represent pieces of code that are not interesting for the specification of the virus. You can see that this virus meets the above description.

The above specification can be described by the register automaton 𝐴 1 depicted in Figure 1. In this figure, the transitions of Δ 0 are represented by loops labelled by * . 𝐴 1 has 𝑄 = {𝐼𝑛𝑖𝑡, 𝑆1, 𝐴𝑙𝑎𝑟𝑚𝑒} as set of states, where 𝐼𝑛𝑖𝑡 is the initial state, and 𝐴𝑙𝑎𝑟𝑚𝑒 is the final state. Its set of transitions Δ 1 is the following: In Figure 1, for presentation matters, if the constraint 𝑔 is {𝑎ℎ = 4𝑒ℎ, 𝑑𝑥 = " * .𝑒𝑥𝑒"}, for example, we will write: 𝑅𝑒𝑔 = {𝑎ℎ = 4𝑒ℎ, 𝑑𝑥 = " * .𝑒𝑥𝑒"}, just to remind that these are constraints on the values of the registers.

• (𝐼𝑛𝑖𝑡, int 21h, 𝑎ℎ = 4𝑒ℎ 𝑑𝑥 = " * .𝑐𝑜𝑚" , 𝑆1

File infection without file search.

A virus could hook the file opening routine. In this case, when a program tries to open a file, it will pass the control to the virus instead of passing it to the opening routine, and the registers will have all the needed values for the correct execution of the opening routine. So the virus will get for free the name of the file we are trying to open. The viral behavior in this type of virus is to see if the file has the searched extension (".com" or ".exe"). If so, the virus will copy itself into the file. To do this, it will make a call to int 21h with value 40h in ah, the number of bytes to be written in cl and the location of the first byte to be written in dx. This behavior is present, for example, in the virus Sequin. Table 2 shows a fragment of this virus which corresponds to the behavior described above.

The above specification can be described by the register automaton 𝐴 2 depicted in Figure 2. 𝐴 2 has 𝑄 = {𝐼𝑛𝑖𝑡, 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝐴𝑙𝑎𝑟𝑚𝑒} as set of states, where 𝐼𝑛𝑖𝑡 is the initial state, and 𝐴𝑙𝑎𝑟𝑚𝑒 is the final state. Its set of transitions Δ 1 is the following, for every r ∈ R: (here ∅ means that there is no constraint to be satisfied by the registers to fire the transitions.)

• (𝐼𝑛𝑖𝑡, cmp r, '.', ∅, 𝑆1): The virus compares the value of a register with the char '. '. • (𝑆1, cmp r, 'oc', ∅, 𝑆2): The virus compares the value of a register with the string 'oc', this predicts that the virus is checking whether a file has the extension .com . • (𝑆2, cmp r, 'm', ∅, 𝑆4). The virus completes the comparison of the file extension with ".com". • (𝑆1, cmp r, 'xe', ∅, 𝑆3). The virus compares the value of a register with the string 'xe', this predicts that the virus is checking whether a file has the extension .exe. • (𝑆3, cmp r, 'e', ∅, 𝑆4). The virus completes the comparison of the file extension with ".exe".

• (𝑆4, int 21h, 𝑎ℎ = 40ℎ 𝑑𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑢𝑟 _𝑣𝑖𝑟𝑢𝑠 , 𝐴𝑙𝑎𝑟𝑚𝑒). The virus will write to a file a part of its code. in ax, a pointer to the first byte to be copied in bx, the value 1 in cx and 0, 1 or 80h in dx, depending on whether the virus wants to copy itself to the boot sector of drive A, B, or to the hard disk.

The virus Boot sector virus presents this behavior. Table 3 gives a fragment of this virus that corresponds to this behavior.

The above specification can be described by the register automaton 𝐴 3 depicted in Figure 3. 𝐴 3 has 𝑄 = {𝐼𝑛𝑖𝑡, 𝐴𝑙𝑎𝑟𝑚𝑒} as set of states, where 𝐼𝑛𝑖𝑡 is the initial state, and 𝐴𝑙𝑎𝑟𝑚𝑒 is the final state. Its set of transitions Δ 1 is the folowing:

• (𝐼𝑛𝑖𝑡, int 13h,         𝑎𝑥 = 0301ℎ 𝑏𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑢𝑟 _𝑣𝑖𝑟𝑢𝑠 𝑐𝑥 = 1 𝑑𝑥 = 0        
, 𝐴𝑙𝑎𝑟𝑚𝑒): The virus wants to write to the boot sector of the drive 0.

• (𝐼𝑛𝑖𝑡, int 13h,

        𝑎𝑥 = 0301ℎ 𝑏𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑢𝑟 _𝑣𝑖𝑟𝑢𝑠 𝑐𝑥 = 1 𝑑𝑥 = 1        
, 𝐴𝑙𝑎𝑟𝑚𝑒): The virus wants to write to the boot sector of the drive 1.

• (𝐼𝑛𝑖𝑡, int 13h,

        𝑎𝑥 = 0301ℎ 𝑏𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑢𝑟 _𝑣𝑖𝑟𝑢𝑠 𝑐𝑥 = 1 𝑑𝑥 = 0080ℎ        
, 𝐴𝑙𝑎𝑟𝑚𝑒): The virus wants to write to the boot sector of the hard disk.

                                  
              
write virus to the boot sector of drive 1 . . .

Binary Code Modeling

In this section, we show how to build a pushdown system (PDS) from a binary program. Indeed, malwares are usually executables, i.e., binary programs. We suppose we are given an oracle O that extracts from the binary program a control flow graph equipped with informations about the values of the registers and the memory locations at each control point of the program. Jakstab [START_REF] Kinder | Jakstab: A Static Analysis Platform for Binaries[END_REF] and IDA Pro [START_REF]Disassembler[END_REF] can be used to get this oracle. We translate the control flow graph into a pushdown system where the control locations store the control points of the binary program and the stack tracks the stack of the program. This translation takes into account the values of the different registers and memory locations of the program.

Control Flow Graphs

Let R be the finite set of registers used in the binary program. Let 𝑉 𝑎𝑙 be the set of possible values that can be assigned to these registers according to our modeling. 𝑉 𝑎𝑙 = [0000ℎ, 𝑓 𝑓 𝑓 𝑓 ℎ] ∪{⊥}∪{pointeur_virus}, where ⊥ is used to indicate "unknown value", and as mentionned previously, pointeur_virus is used to indicate that the register has a pointer to the program's (virus') own code. Let States be the set of functions from R ∪ [0000ℎ, 𝑓 𝑓 𝑓 𝑓 ℎ] to 2 𝑉 𝑎𝑙 . Intuitively, let 𝑠 ∈ States. For every 𝑟 ∈ R, 𝑠 (𝑟) gives the possible values of the register 𝑟 in the state 𝑠, while for every 𝑑 ∈ [0000ℎ, 𝑓 𝑓 𝑓 𝑓 ℎ], 𝑠 (𝑑) gives the possible values of the memory at address 𝑑 in the state 𝑠. Let EXP be the set of expressions over the registers and the memory locations used in the program. States is extended over expressions in EXP in the usual way.

A control flow graph (CFG) is a tuple 𝐺 = (𝑁 , 𝐼𝑛𝑠𝑡, 𝐸), where 𝑁 is a finite set of nodes corresponding to the control points of the program, 𝐼𝑛𝑠𝑡 is a finite set of assembly instructions used in the program, and 𝐸 : 𝑁 × 𝐼𝑛𝑠𝑡 × 𝑁 is a finite set of edges each of them associated with an assembly instruction of the program. We write 𝑛 1 𝑖 -→ 𝑛 2 for every (𝑛 1 , 𝑖, 𝑛 2) in 𝐸. Given a binary program, the oracle O computes a corresponding control flow graph 𝐺 and a function 𝜚 : 𝑁 -→ States that associates to each node 𝑛 an overapproximation of the set of possible states of the program at the control point 𝑛. For technical reasons, if the instruction 𝑖 at control point 𝑛 is of the form (𝑖 = mov 𝑟 , offset EXPRESSION) or (𝑖 = mov 𝑟 , [EXPRESSION]), for a register 𝑟 in R, then we let 𝜚 (𝑛) (𝑟) = {pointeur_virus}. Here, the program wants to put in the register 𝑟 a pointer to its own code. Therefore, we will put pointeur_virus in this register in order to say that it has a pointer to the virus code. This is important to know for virus detection as explained in the previous section. Let 𝑒𝑥𝑝 be an expression and let 𝑟 be a register involved in this expression. If 𝜚 (𝑛) (𝑟) = {pointeur_virus}, then 𝜚 (𝑛) (𝑒𝑥𝑝) = {pointeur_virus}.

Pushdown Systems

A Pushdown System (PDS) is a tuple P = (𝑃, Γ, 𝐴𝑐𝑡, Δ), where 𝑃 is a finite set of control locations, Γ is the stack alphabet, 𝐴𝑐𝑡 is a finite set of actions, Δ ⊆ (𝑃 × Γ) × 𝐴𝑐𝑡 × (𝑃 × Γ *) is a finite set of transition rules.

A configuration ⟨𝑝, 𝜔⟩ of P is an element of 𝑃 × Γ * . We write ⟨𝑝, 𝛾⟩ 𝑎 ↩-→ ⟨𝑞, 𝜔⟩ instead of ((𝑝, 𝛾), 𝑎, (𝑞, 𝜔)) ∈ Δ. The successor relation ; P ⊆ (𝑃 × Γ *) × (𝑃 × Γ *) is defined as follows: if ⟨𝑝, 𝛾⟩ 𝑎 ↩-→ ⟨𝑞, 𝜔⟩, then ⟨𝑝, 𝛾𝜔 ′ ⟩ ; P ⟨𝑞, 𝜔𝜔 ′ ⟩ for every 𝜔 ′ ∈ Γ * . The reachability relation =⇒ P ⊆ (𝑃 × Γ *) × (𝑃 × Γ *) is the reflexive and transitive closure of the successor relation ; P . Formally =⇒ P is defined as follows: (1)

𝑐 =⇒ P 𝑐 for every 𝑐 ∈ 𝑃 × Γ * , (2) if ⟨𝑝, 𝛾⟩ 𝑎 ↩-→ ⟨𝑞, 𝜔⟩, then ⟨𝑝, 𝛾𝜔 ′ ⟩ =⇒ P ⟨𝑞, 𝜔𝜔 ′ ⟩ for every 𝜔 ′ ∈ Γ * , (3) if 𝑐 =⇒ P 𝑐 ′′
and 𝑐 ′′ =⇒ P 𝑐 ′ , then 𝑐 =⇒ P 𝑐 ′ .

From Control Flow Graphs to Pushdown Systems

To compute a PDS from the binary program, we follow the translation given in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF]. The only difference with the translation of [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF] is that here we use pointeur_virus to express that the register has a pointer to the program's own code, whereas in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF], an overapproximation of the set of addresses that the register is pointing to, computed by the oracle, is considered. Consider a binary program. Let (𝑁 , 𝐼𝑛𝑠𝑡, 𝐸) be the CFG and 𝜚 be the state function provided by the oracle O. We construct the PDS P = (𝑃, Γ, 𝐼𝑛𝑠𝑡, Δ) as follows:

• the control locations 𝑃 are the nodes 𝑁 ; • Γ is the smallest set of symbols satisfying the following: ------→ 𝑛 2 where cjmp denotes a conditional jump instruction (𝑗𝑒, 𝑗𝑔, etc.). Let flag be the flag register (ZF,CF, etc.) of cjmp. Depending on whether the flag register satisfies the condition of cjmp or not (i.e., whether 𝑓 𝑎𝑙𝑠𝑒 ∈ 𝜚 (𝑛 1)(𝑓 𝑙𝑎𝑔) or not), we add the transition rules 𝑟 1 = ⟨𝑛 1 , 𝛾⟩

-if 𝑛 𝑐𝑎𝑙𝑙 𝑝𝑟𝑜𝑐 --------→ 𝑛 ′ ∈ 𝐸, then {𝑛 ′ } ∈ Γ where 𝑛 ′ is the return address of the call; -if 𝑛 𝑝𝑢𝑠ℎ 𝑒𝑥𝑝 --------→ 𝑛 ′ ∈ 𝐸,

Looking for the malicious behaviors in the program

The next step is to make the product between the pushdown system that models the program and the register automaton specifying the malicious behaviors. Let P = (𝑃, Γ, 𝐼𝑛𝑠𝑡, 𝛿) be a pushdown system modeling the program, and let 𝐴 = ⟨𝐼𝑛𝑠𝑡, R, 𝑄, Δ, 𝐼𝑛𝑖𝑡, 𝐴𝑙𝑎𝑟𝑚𝑒⟩ be a register automaton representing some malicious behavior, where R = {𝑟 1 , . . . , 𝑟 𝑛 } is the set of registers of the considered program, Δ = Δ 0 ∪ Δ 1 is the set of transitions as described in Definition 2.2. 𝐼𝑛𝑖𝑡 is the initial state of 𝐴 and 𝐴𝑙𝑎𝑟𝑚𝑒 is its final state. The product between 𝐴 and P is defined as the pushdown system RP = (𝑃 ′ , Γ ′ , 𝐼𝑛𝑠𝑡, 𝛿 ′) where:

• 𝑃 ′ = 𝑃 × 𝑄, • Γ ′ = Γ,
• 𝛿 ′ is the set of transitions defined as follows:

- Then, to check whether the program contains the considered malicious behaviors or not, we check whether the above PDS RP reaches a configuration of the form ⟨(𝑝, 𝐴𝑙𝑎𝑟𝑚𝑒), 𝜔⟩ from the initial configuration ⟨(𝑒 0 , 𝐼𝑛𝑖𝑡), 𝜖⟩, where 𝑒 0 is the entry point of the program, 𝐼𝑛𝑖𝑡 and 𝐴𝑙𝑎𝑟𝑚𝑒 are respectively the initial and final states of the register automaton describing the malicious behavior, 𝑝 ∈ 𝑃 and 𝜔 ∈ Γ * . Indeed, the paths of the above product RP that reach a control point of the form (𝑝, 𝐴𝑙𝑎𝑟𝑚𝑒) correspond to paths of the program that satisfy the malicious behaviors of the register automaton 𝐴.

If ⟨𝑝, 𝛾⟩ 𝑖𝑛𝑠𝑡 ↩-→ ⟨𝑝 ′ , 𝜔⟩ ∈ 𝛿 and (𝑠, 𝑖𝑛𝑠𝑡, 𝑠) ∈ Δ 0 , then ⟨(𝑝, 𝑠), 𝛾⟩ 𝑖𝑛𝑠𝑡 ↩-→ ⟨(𝑝 ′ , 𝑠), 𝜔⟩ ∈ 𝛿 ′ . -If ⟨𝑝, 𝛾⟩ 𝑖𝑛𝑠𝑡 ↩-→ ⟨𝑝 ′ , 𝜔⟩ ∈ 𝛿 and (𝑠, 𝑖𝑛𝑠𝑡, 𝑔, 𝑠 ′) ∈ Δ 1 . Let 𝐺 be the valuation 𝐺 = {|𝑟 𝑖 | = 𝜚 (𝑝) (𝑟 𝑖), 1 ≤ 𝑖 ≤ 𝑛}. If 𝐺 |= 𝑔, then 𝛿 ′
Thus, formally, we need to check whether ⟨(𝑒 0 , 𝐼𝑛𝑖𝑡), 𝜖⟩ =⇒ R P ⟨(𝑝, 𝐴𝑙𝑎𝑟𝑚𝑒), 𝜔⟩. This query can be answered by the standard reachability analysis algorithms for pushdown systems [START_REF] Bouajjani | Reachability Analysis of Pushdown Automata: Application to Model Checking[END_REF][START_REF] Esparza | A BDD-Based Model Checker for Recursive Programs[END_REF].

Conclusion and future work

In this work, we showed how to perform precise malware detection by keeping track of the registers of the program. We reduced the malware detection problem to reachability checking in pushdown systems. We implemented our techniques and obtained encouraging preliminary results.

As future work, we plan to improve the malicious behavior specification formalism. Indeed, register automata allow to take into account the registers' values in the malware specifications. However, they do not allow to consider constraints on the program's stack. We plan to define malware specification formalisms that allow to consider both the stack and the registers' values. For example, [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | Pushdown Model Checking for Malware Detection[END_REF][START_REF] Song | LTL Model-Checking for Malware Detection[END_REF][START_REF] Song | PoMMaDe: pushdown modelchecking for malware detection[END_REF] introduce the logics SLTPL and SCTPL and show how they can be used to describe the malicious behaviors while taking into account the stack. These logics extend, respectively, standard LTL and CTL with variables, quantifiers, and predicates over the stack. It would be interesting to see whether these logics could be extended with registers. This would allow to have more precise malware specifications that could deal with both the program's stack and the registers' values.

): This transition corresponds to a search for a file with the extension .com. • (𝐼𝑛𝑖𝑡, int 21h, 𝑎ℎ = 4𝑒ℎ 𝑑𝑥 = " * .𝑒𝑥𝑒" , 𝑆1): This transition corresponds to a search for a file with the extension .exe. • (𝑆1, int 21h, 𝑎ℎ = 40ℎ 𝑑𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑢𝑟 _𝑣𝑖𝑟𝑢𝑠 , 𝐴𝑙𝑎𝑟𝑚𝑒): The virus will write a part of its code to a file. pointeur_virus is an abstraction used to indicate that the register has a pointer to the program's (virus') own code.

Figure 2 :

 2 Figure 2: File infection without file search specification

Figure 1 :

 1 Figure 1: File infection with file search specification

Figure 3 :

 3 Figure 3: Boot sector infection specification

 where 𝑒𝑥𝑝 is an expression in 𝐸𝑋 𝑃, then 𝜚 (𝑛) (𝑒𝑥𝑝) ∈ Γ where 𝜚 (𝑛) (𝑒𝑥𝑝) denotes the set of possible values of the expression 𝑒𝑥𝑝 at the control point 𝑛;• the set of rules Δ contain transition rules that mimic the instructions of the program: for every edge 𝑒 ∈ 𝐸, 𝛾 ∈ Γ:if 𝑒 = 𝑛 1 𝑝𝑢𝑠ℎ 𝑒𝑥𝑝--------→ 𝑛 2 , we add the transition rule⟨𝑛 1 , 𝛾⟩ 𝑝𝑢𝑠ℎ 𝑒𝑥𝑝 ↩-→ ⟨𝑛 2 , 𝛾 ′ 𝛾⟩,where 𝛾 ′ = 𝜚 (𝑛 1) (𝑒𝑥𝑝). This rule moves the program's control point from 𝑛 1 to 𝑛 2 , and pushes the set of all the possible values of the expression 𝑒𝑥𝑝 at control point 𝑛 1 onto the stack;if 𝑒 = 𝑛 1 𝑐𝑎𝑙𝑙 𝑝𝑟𝑜𝑐 --------→ 𝑛 2 , we add the transition rule ⟨𝑛 1 , 𝛾⟩ 𝑐𝑎𝑙𝑙 𝑝𝑟𝑜𝑐 ↩-→ ⟨𝑝𝑟𝑜𝑐 𝑒 , {𝑛 2 }𝛾⟩, for every 𝑝𝑟𝑜𝑐 𝑒 ∈ 𝜚 (𝑛 1) (𝑝𝑟𝑜𝑐).This rule moves the program's control point to the entry point of the procedure 𝑝𝑟𝑜𝑐, and pushes the return address 𝑛 2 onto the stack.if 𝑒 = 𝑛 1 𝑝𝑜𝑝 𝑒𝑥𝑝 -------→ 𝑛 2 ,we add the transition rule ⟨𝑛 1 , 𝛾⟩ 𝑝𝑜𝑝 𝑒𝑥𝑝 ↩-→ ⟨𝑛 2 , 𝜖⟩ which moves the program's control point to 𝑛 2 and pops the topmost symbol from the stack; -if 𝑒 = 𝑛 1 𝑟𝑒𝑡 ---→ 𝑛 2 , we add a transition rule ⟨𝑛 1 , 𝛾⟩ 𝑟𝑒𝑡 ↩-→ ⟨𝑎𝑑𝑑𝑟, 𝜖⟩ for every 𝑎𝑑𝑑𝑟 ∈ 𝛾. This moves the program's control point to every address 𝑎𝑑𝑑𝑟 in 𝛾, and pops the topmost symbol from the stack; -if 𝑒 = 𝑛 1 𝑐 𝑗𝑚𝑝 𝑒

 contains the transition ⟨(𝑝, 𝑠), 𝛾⟩ 𝑖𝑛𝑠𝑡 ↩-→ ⟨(𝑝 ′ , 𝑠 ′), 𝜔⟩. Note that this transition is considered only if 𝐺 |= 𝑔, i.e., if the values of the registers at state 𝑝 satisfy the contraint 𝑔.

 where 𝑣𝑎𝑙 1 , ..., 𝑣𝑎𝑙 𝑛 ∈ [0000ℎ, 𝑓 𝑓 𝑓 𝑓 ℎ] ∪ {⊥} ∪ {pointeur_virus}. 0000ℎ, • • • , 𝑓 𝑓 𝑓 𝑓 ℎ are the possible values of the registers in the program, ⊥ is used to indicate "unknown value". We need it if we are unable to calculate accurately the value of a register, and pointeur_virus is used to indicate that the register has a pointer to the program's (virus') own code (as will be seen later, this information is crucial for virus detection). The value 𝑣𝑎𝑙 𝑖 of the register 𝑟 𝑖 in 𝑅 will be denoted by |𝑟 𝑖 | 𝑅 .A constraint g over R is defined by 𝑔 = {|𝑟 𝑖 1 | = 𝑣𝑎𝑙 1 , ..., |𝑟 𝑖 𝑘 | = 𝑣𝑎𝑙 𝑘 }, for {𝑖 1 , ..., 𝑖 𝑘 } indices of {1, ..., 𝑛}. For every 𝑖 𝑗 ∈ {𝑖 1 , ..., 𝑖 𝑘 }, we say that 𝑟 𝑖 𝑗 is constrained by 𝑔. Let 𝑅 be an instantiation of R. We say that 𝑅 |= 𝑔 iff ∀𝑖 such that 𝑟 𝑖 is constrained by 𝑔, |𝑟 𝑖 | 𝑅 = |𝑟 𝑖 | 𝑔 . In this case, we say that the instantiation 𝑅 satisfies the constraint 𝑔.

Table 1 .

 1 Fragment of the virus Intruder-B

	. . .		
	EXEFILE DB '*.EXE',0		;variable with the searched pattern
	. . .		
	VIRUS:		;first code label, which is located at address 0
	. . .		
	FINDEXE:		
	mov dx,OFFSET EXEFILE mov cx,3FH mov ah,4EH int 21H . . .	          	search for a '*.exe' file
	INFECT:		
	. . .		
	mov cx,OFFSET FINAL xor dx,dx mov ah,40H int 21H . . .	          	write the virus to a file
	FINAL:		
	END VIRUS		

Table 2 .

 2 Fragment of the virus Sequin

	IVOFS EQU 100H	;first label of the code, wich is located at
		;address 0.
	ORG 100H	
	. . .	
	mov si,dx	;dx has the name of a file
	FO1:	
	lodsb	
	cmp al,'.'	
	jne FO1	
	lodsw	
	or ax,2020H	
	cmp ax,'oc'	
	jne FEX	
	lodsb	
	or al,20H	
	cmp al,'m'	

Table 3 .

 3 Fragment of the virus Boot sector virus

	. . .
	ORG 7C00H
	. . .
	mov ax,0301H
	mov bx,7C00H
	mov cx,1
	mov dx,1
	int 13H

 ⟨𝑎𝑑𝑑𝑟, 𝛾⟩ for every 𝑎𝑑𝑑𝑟 ∈ 𝜚 (𝑛 1) (𝑒). 𝑟 1 moves the program's control point to 𝑛 2 whereas 𝑟 2 moves the programs's control point to the address 𝑎𝑑𝑑𝑟 that corresponds to the value of 𝑒 at point 𝑛 1 . ⟨𝑛 2 , 𝛾⟩ which moves the program's control point from 𝑛 1 to 𝑛 2 without changing the stack. Note that in this modeling, the PDS control locations correspond to the program's control points, and the PDS stack mimics the program's execution stack. The above transition rules allow the PDS to mimic the behavior of the program's stack.

	𝑐 𝑗𝑚𝑝 𝑒
	↩-→ ⟨𝑛 2 , 𝛾⟩
	𝑐 𝑗𝑚𝑝 𝑒
	and/or 𝑟 2 = ⟨𝑛 1 , 𝛾⟩ ↩-→ -if 𝑒 = 𝑛 1 𝑖 -→ 𝑛 2 is any other transition, we add a tran-
	sition rule ⟨𝑛 1 , 𝛾⟩

𝑖

↩-→