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ABSTRACT
In this paper, we present SMODIC, a model checker for self-
modifying binary codes. SMODIC uses Self Modifying Pushdown
Systems (SM-PDS) to model self-modifying binary code. This al-
lows to faithfully represent the program’s stack as well as the
self-modifying instructions of the program. SMODIC takes a self-
modifying binary code or a self modifying pushdown system as
input. It can then perform reachability analysis and LTL/CTLmodel-
checking for these models. We successfully used SMODIC to model-
check more than 900 self-modifying binary codes. In particular, we
applied SMODIC for malware detection, since malwares usually
use self-modifying instructions, and since malicious behaviors can
be described by LTL or CTL formulas. In our experiments, SMODIC
was able to detect 895 malwares and to prove that 200 benign pro-
grams were benign. SMODIC was also able to detect several mal-
wares that well-known antiviruses such as Bit-Defender, Kinsoft,
Avira, eScan, Kaspersky, Baidu, Avast, and Symantec failed to detect.
SMODIC can be found in https://lipn.univ-paris13.fr/~touili/smodic

CCS CONCEPTS
• Theory of computation→ Verification by model checking;
• Security and privacy→ Logic and verification.
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1 INTRODUCTION
Self-modifying code is code that modifies its own instructions while
it is executing. It has been used for a long time to hide the internals
of a program. It was e.g. applied to reverse engineering for protec-
tion [29], since hiding the codes of a program can protect some
intellectual property contained by software. Recently, it has also
been widely used by malware writers to hide their malicious intent
and evade from anti-virus detection. As malwares have become a
big security threat to our daily life, malware detection is a critical
problem in both industry and academic areas. Thus, being able to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
17th International Conference on Availability, Reliability and Security., Aug 23–26, 2022,
Vienna
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

analyse self-modifying code is becoming of the utmost importance,
since it is widely used by malwares.

There are several kinds of possibilities to make a binary code self-
modifying. One of these techniques is packing and unpacking. Such
techniques were extensively studied e.g. in [4, 6, 10, 15, 21, 33].
In this work, we consider self-modifying code implemented by
self-modifying instructions, which are instructions that con-
sider code as data. This allows them to read and write into code,
thus producing self-modifying instructions. Such instructions are
usuallymov instructions, since they allow to read and write into
memory. To illustrate this, let us consider the code of Figure 1.
This is a segment of the worm Worm.Whboy equipped with a self-
modifying instruction. The goal of this worm is to spread itself
and infect computers through file downloading. The first step for
Worm.Whboy to infect a host is to make a copy of itself into it. For
this, it needs to call the API function GetSystemDirectoryA (address
0x13) to get its location, and then the API functions LStrCatN and
CheckPath (addresses 0x2a and 0x35) to check the path. Let us now
show how self-modifying code can fool a static analyser and can
make this malware undetectable by an antivirus. In Figure 1, the
box on the left gives, respectively, the binary code, the correspond-
ing addresses of the different instructions, and the corresponding
assembly instruction at each address. For example, ff is the binary
code of the instruction push. Thus, the first line is translated to
push 0b. The second line is translated to mov 0x2 0xc, since c6
is the binary code of the instruction mov, etc. Let us now execute
this code. First, push 0b is executed, then mov 0x2 0xc. This last
instruction will replace the first byte at address 0x2 by 0xc. Thus,
at address 0x2, ff 0b is replaced by 0c 0b. Since 0c is the binary
code of jmp, this means the instruction push 0b is replaced by jmp
0xb. Therefore, this code is self-modifying. If we model this piece
of code blindly, without looking at the semantics of the different
instructions, we will extract from it the Control Flow Graph CFG
a of Figure 1, in which the API functions GetSystemDirectoryA,
LStrCatN and CheckPath responsible of the malicious behavior
cannot be reached. However, the correct Control Flow Graph of this
piece of code is CFG b. Thus, if we do not take into account the
fact that the instruction mov 0x2 0xc is self-modifying, then this
code will be declared as benign, whereas it is malicious. Therefore,
it is very important to be able to deal with self-modifying code
implemented by mov instructions.

In this paper, we present SMODIC, a model checker for self-
modifying binary code that use self-modifyingmov instructions.
In SMODIC, such binary code is modeled using Self Modifying Push-
down Systems (SM-PDS) [42], which is an extension of standard
Pushdown Systems (PDS) that can modify its own instructions dur-
ing its execution. As advocated in [42], using SM-PDSs is suitable
for this kind of self-modifying binary code as it allows to faithfully
represent the program’s stack as well as the self-modifying mov

https://lipn.univ-paris13.fr/~touili/smodic
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


17th International Conference on Availability, Reliability and Security., Aug 23–26, 2022, Vienna Touili and Ye

     0x2      push 0b

    0x4     mov 0x2 0xc

 0x9      jmp 0x2
   0xb     lea eat, dword ptr ss

 ff 0b
c6 02 0c

0c 02
8d 8514fcfff

Binary Codes Assemblyaddress

A Segment of Worm.Whboy

 e8 d6cfffff    0x13    call GetSystemDirectoryA

 e8 bbbbffff     0x35    call CheckPath

 e8 86baffff    0x2a   call LStrCatN
ŏ ŏ

ŏ

0x2 
push 0b

0x9 
jmp 0x2

CFG b

0x13 
call

GetSystemDirect
oryA

After executing 
 mov 0x2 0xc

0x2 
push 0b

0x4 
mov 0x2 0xc

0x9 
jmp 0x2

CFG a

0xb 
lea eat, 

dword ptr ss

0x35
call CheckPath

0x2a
call 

LStrCatN

0x4 
mov 0x2 0xc

jmp 0b

ŏ ŏ

ŏ

ŏ

 8b8513fcfff    0x2f    mov eax, dword ptr ss:[ebp-0x3e8]

0xb 
lea eat, 

dword ptr ss
ŏ

0x2f
mov eax 

dword ptr ss:

Figure 1: An Example of Self-modifying code

instructions of the program. SMODIC takes as input either a self-
modifying binary code or a self modifying pushdown system. It can
then perform reachability analysis and LTL/CTL model-checking
for these models. SMODIC first adapts the tool Jakstab [22] to get
the Control FlowGraph from the binary code. Then, it translates this
CFG into a SM-PDS. It then implements the algorithms of [42, 43]
to perform reachability analysis and LTL/CTL model-checking for
this model.

We successfully used SMODIC to model-check more than 900
self-modifying binary codes. In particular, we applied SMODIC
for malware detection, since malwares usually use self-modifying
instructions. Indeed, malicious behaviors can be described by LTL
or CTL formulas. In our experiments, SMODIC was able to detect
895 malwares and to prove that 200 benign programs were benign.
SMODIC was also able to detect several malwares that well-known
antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky,
Baidu, Avast, and Symantec failed to detect. SMODIC can be found
in https://lipn.univ-paris13.fr/~touili/smodic.

Outline. Section 3 introduces the theoretical background of
SMODIC. Section 4 shows how can SMODIC be used for malware
detection. Section 5 describes the architecture of SMODIC. The
experiments are discussed in Section 6.

2 RELATEDWORK
Model checking and static analysis approaches have been widely
used to analyze binary programs, for instance, in [4, 13, 15, 21, 33].
Temporal Logics were chosen to describe malicious behaviors in
[13, 14, 19, 21, 30]. However, these works cannot deal with self-
modifying code.

There are several researches on self-modifying code. Cai et
al. [18] use local reasoning and separation logic to describe self-
modifying code and treat program code uniformly as regular data
structure. However, [18] requires programs to be manually anno-
tated with invariants. In [36], the authors propose a formal se-
mantics for self-modifying codes, and use that to represent self-
unpacking code. This work only deals with packing and unpacking
behaviours. Bonfante et al. [16] provide an operational semantics

for self-modifying programs and show that they can be construc-
tively rewritten to a non-modifying program. However, all these
specifications [16, 18, 36] are too abstract to be used in practice. In
[1], the authors propose a new representation of self-modifying
code named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG
extends standard control flow graphs with a new data structure,
keeping track of the possible states programs can reach, and with
edges that can be conditional on the state of the target memory
location. It is not easy to analyse a binary program only using its
SE-CFG, especially that this representation does not allow to take
into account the stack of the program. [34] propose abstract inter-
pretation techniques to compute an over-approximation of the set
of reachable states of a self-modifying program, where for each
control point of the program, an over-approximation of the mem-
ory state at this control point is provided. [28] combine static and
dynamic analysis techniques to analyse self-modifying programs.
Unlike our approach, these techniques [28, 34] cannot handle the
program’s stack.

Unpacking binary code is also considered in [12, 23, 27, 32, 36].
These works do not consider self-modifyingmov instructions.

There are a lot of tools that can deal with binary code analysis
[2–4, 7–9, 11, 13, 14, 22, 24–26, 37, 39, 41]. POMMADE [13, 14]
is a malware detector based on LTL and CTL model-checking of
pushdown systems. STAMAD [24–26] is a malware detector based
on PDSs and machine learning. However, all these tools cannot
handle self-modifying code. The only tools that we know of and
that can deal with self-modifying code are BE-PUM [17] and CoDis-
asm [5]. BE-PUM (Binary Emulation for PUshdown Model) [17]
focuses on generating CFG (Control Flow Graph) of malwares. BE-
PUM can construct a pushdown model from x86 binaries in an
on-the-fly manner. Concolic testing is applied to determine the
precise destinations of branches for indirect jumps. This tool can
deal with self-modifying code caused by modifying the destinations
of indirect jumps, including overwriting the return address of a
function (in the stack). But it cannot handle self-modifying instruc-
tions. CoDisasm [5] is a tool that focuses on the disassembly of x86
code that includes self-modifying instructions and code overlap-
ping. CoDisasm deals only with disassembling the code. It does not
consider model-checking problems of code.

https://lipn.univ-paris13.fr/~touili/smodic
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3 BACKGROUND
3.1 Self-modifying Pushdown Systems
A Self-modifying Pushdown System (SM-PDS) is a Pushdown Sys-
tem (PDS), i.e. an automaton equipped with a stack, that can dynam-
ically modify its set of rules during the execution time: in addition
to the standard push and pop transition rules of a pushdown system,

a SM-PDS has self-modifying rules of the form 𝑝
(𝑟1,𝑟2)

↩−−−−→ 𝑝 ′ that
move the SM-PDS from control point 𝑝 to control point 𝑝 ′, while
removing 𝑟1 from the set of rules of the SM-PDS and adding 𝑟2 to
it. Thus, an SM-PDS has the capability to change its own set of
transition rules during the execution. For more details about the
SM-PDS model, we refer the reader to [42].

3.2 From Self-modifying Code to SM-PDS
To translate a binary code with self-modifying mov instructions
to a SM-PDS, we use the translation of [42]. The basic idea is that
the control locations of the SM-PDS store the control points of the
binary program and the stack mimics the program’s stack. Our
translation relies on the disassembler Jakstab [22] to disassemble
binary code, construct the control flow graph (CFG), determine
indirect jumps, compute the possible values of the used variables,
registers and the memory locations at each control point of the
program. After getting the control flow graph whose edges are
equipped with disassembled instructions, we translate the CFG into
a SM-PDS as described in [42]. The non self-modifying instructions
of the program define the standard PDS rules of the SM-PDS and can
be obtained following the translation of [13] that models non self-
modifying instructions of the program by a PDS. Self-modifying
instructions are represented using self-modifying rules. For more
details, we refer the reader to [42].

3.3 The Model Checking Algorithms
We use finite automata to finitely represent regular infinite sets
of configurations of a SM-PDS. Then, the sets of predecessors and
successors of a SM-PDS are computed using a kind of a saturation
procedure on the finite automata [42]. As for LTL and CTL model-
checking, they can be reduced to the emptiness problem for Self-
modifying (Alternating) Büchi Pushdown Systems. The basic idea
is to make a product of the given SM-PDS and the given LTL or
CTL formula to get a Self-modifying (Alternating) Büchi Pushdown
system and then apply the algorithms of [43] to check the emptiness
of the Self-modifying (Alternating) Büchi Pushdown system.

4 APPLYING SMODIC FOR MALWARE
DETECTION

SMODIC can be used for malware detection. Indeed, as shown
in [13, 14], malicious behaviors can be described by LTL or CTL
formulas. For example, we show in this section how LTL can be used
to express the malicious behavior of registry key injecting. Other
LTL and CTL formulas that describe other malicious behaviors can
be found in [13, 14, 43].

In order to get started at boot time, many malwares add them-
selves into the registry key listing. This behavior is typically im-
plemented by first calling the API function GetModuleFileNameA
to retrieve the path of the malware’s executable file. Then, the

API function RegSetValueExA is called to add the file path into
the registry key listing. As a result, the malware can execute itself
automatically. This behavior can be expressed by the following LTL
formula:

F
(
𝑐𝑎𝑙𝑙 𝐺𝑒𝑡𝑀𝑜𝑑𝑢𝑙𝑒𝐹𝑖𝑙𝑒𝑁𝑎𝑚𝑒𝐴 ∧ F( 𝑐𝑎𝑙𝑙 𝑅𝑒𝑔𝑆𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝐸𝑥𝐴)

)
This formula expresses that if a call to the API function GetMod-

uleFileNameA is followed by a call to the API function RegSetVal-
ueExA, then probably a malware is trying to add itself into the
registry key listing.

LdPinch.ch is such a malware that uses registry key injecting to
execute itself. Fig. 3 shows a disassembled fragment of this malware.
Note that this fragment contains self-modifying codes in address
00401547: mov replaces the value at address 0040154A with 6A
(which is the binary code of push). If we abstract away the fact
that this code is self-modifying, and we treat this piece of code as
if it were not self-modifying (as done in most of the other tools for
binary code), then we will reach the conclusion that this code is not
malicious. Indeed, in this case, a loop between address 00401545
and address 0040154A will be detected and we will reach the con-
clusion that the API functions responsible of the malicious behavior
cannot be called.

However, in reality, after the execution of mov 0040154A
c6, the instruction at address 0040154A will be changed to
push 00401545 and the remaining instructions will be executed:
GetModuleFileNameA and RegSetValueExA will be called, and
we will reach the conclusion that this code is malicious.

5 ARCHITECTURE
The Architecture of SMODIC is shown in Figure 2. SMODIC takes as
input either a binary program or a SM-PDS. SMODIC can perform
both reachability analysis and LTL/CTL model checking. If the
input of SMODIC is a binary program, it is passed to the component
Oracle. This component is based on the disassembler Jakstab [22].
It takes as input a binary program, and outputs its corresponding
assembly program, its corresponding Control Flow Graph (CFG)
equipped with the assembly instruction corresponding to each edge,
together with informations about the called API functions, and the
different values of the registers and memory addresses at each
control point. All these outputs are fed to the componentModel
Builder that will compute the corresponding SM-PDS.

The Reachability component takes as input a SM-PDS, and a
sequence of API functions, and applies the reachability algorithms
of [42] to check whether the SM-PDS has a run that calls these API
functions in this order. For example, if we consider the sequence
𝑓1, 𝑓2, 𝑓3, then Reachability component checks whether the SM-
PDS has a run that calls first 𝑓1, then 𝑓2, then 𝑓3. The LTL (CTL)
component takes as input a SM-PDS and an LTL (CTL) formula,
and applies the algorithms of [43] to check whether the SM-PDS
satisfies the LTL (CTL) formula.

6 EXPERIMENTS
A SM-PDS can be translated into an equivalent Pushdown System
(PDS) [42]. Thus, to perform reachability, and LTL/CTL model-
checking for an SM-PDS, one can translate it into an equivalent
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Figure 2: Architecture of SMODIC

...
00401545    6A 0040154C          push 0040154C
00401547    C6 0040154A  FF    mov 0040154A C6
0040154A    FF 00401545          jmp  00401545
0040154C    6A 00                      push 0
0040154E    E8 47040000          call GetModuleFileNameA      
...
004016E6    E8 63030000          call RegOpenKeyExA
...
004016F3    8365 F8 00            and dword ptr ss:[ebp-8],0
004016F7    6A 04                    push 4
004016F9    8D45 F8                lea eax,dword ptr ss:[ebp-8]
004016FC    50                         push eax
004016FD    6A 04                    push 4
004016FF    6A 00                    push 0
00401701    68 6B214000       push 0040216B           
00401706    FF75 FC               push dword ptr ss:[ebp-4]
00401709    E8 46030000       call RegSetValueExA
...

Address AssemblyBinary

Figure 3: A Fragment of LdPinch.ch

PDS, and then apply the standard algorithms for reachability and
LTL/CTL model-checking for standard PDSs [20, 38, 40]. We show
in this section how, in our experiments, translating the SM-PDS
into an equivalent PDS is not efficient and that our tool SMODIC
behaves much better. We also show how our tool SMODIC can
be successfuly applied for malware detection. All our experiments
were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory.

6.1 SMODIC vs. standard PDS Model-checking
To compare the performance of SMODIC against the approach that
consists in translating the SM-PDS into an equivalent PDS or sym-
bolic PDS [20, 38] and then apply the standard 𝑝𝑜𝑠𝑡∗, 𝑝𝑟𝑒∗, LTL and
CTL algorithms for PDSs and symbolic PDSs [20, 38, 40], we first
applied our tool on randomly generated SM-PDSs of various sizes.
SMODIC was able to successfully handle all cases in only a few
seconds. Then, we translated these SM-PDSs into equivalent PDSs
or symbolic PDSs and run the tools MOPED [38] (for reachability
and LTL model checking), or PuMoC [40] (for CTL model checking).
Going through PDSs or symbolic PDSs is less efficient and leads to

memory out in several cases, whereas SMODIC was able to deal
with all the cases in only a few seconds. The results (CPU Execution
time) for the LTL component are shown in Table 1.

In Table 1,Column Size is the size of the SM-PDS (𝑆1 for non self-
modifying transitions and 𝑆2 for self-modifying transitions). Col-
umn LTL gives the size of the transitions of the Büchi automaton
generated from the LTL formula (using the tool LTL2BA[31]). Col-
umn SMODIC gives the cost of SMODIC. Column PDS shows the
cost it takes to get the equivalent PDS from the SM-PDS. Column
Result reports the cost it takes to run the LTL PDS model-checker
Moped [38] for the PDS we got. Column Total is the total cost it
takes to translate the SM-PDS into a PDS and then apply the stan-
dard LTL model checking algorithm of Moped (Total=PDS+Result).
Column Symbolic PDS reports the cost it takes to get the equiva-
lent Symbolic PDS from the SM-PDS. Column 𝑅𝑒𝑠𝑢𝑙𝑡1 is the cost
to run the Symbolic PDS LTL model-checker Moped. Column
𝑇𝑜𝑡𝑎𝑙1 is the total cost it takes to translate the SM-PDS into a
symbolic PDS and then apply the standard LTL model checking
algorithm of Moped. You can see that SMODIC (Column SMODIC)
is much more efficient than translating the SM-PDS to an equiva-
lent (symbolic) PDS, and then run the standard LTL model-checker
Moped. Translating the SM-PDS to a standard PDS may take
more than 20 days, whereas our tool SMODIC takes only a
few seconds. Moreover, since the obtained standard (symbolic)
PDS is huge, Moped failed to handle several cases (the time limit
that we set for Moped is 20 minutes), whereas SMODIC was able
to deal with all the cases in only a few seconds.

6.2 Detecting Real Malwares
We applied SMODIC to detect several malwares. We consider 895
malwares from VX heaven [44], VirusShare [45], and MalShare
[35]. We also choose 200 benign samples from Windows XP sys-
tem (win32). We consider self-modifying versions of the malwares.
In these versions, the malicious behaviors are unreachable if the
semantics of the self-modifying instructions are not taken into
account, i.e., if the self-modifying instructions are considered as
“standard” instructions that do not modify the code, then the ma-
licious behaviors cannot be reached. First, we abstract away the
semantics of the self-modifying instructions and model such pro-
grams as standard PDSs (as in [13, 14]), and perform LTL/CTL
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Size LTL SMODIC PDS Result Total Symbolic PDS𝑅𝑒𝑠𝑢𝑙𝑡1𝑇𝑜𝑡𝑎𝑙1
𝑆1 : 5, 𝑆2 : 2 |𝛿 |:15 0.07s 0.09s 0.01s 0 .10s 0.08s 0.00s 0.08s
𝑆1 : 5, 𝑆2 : 3 |𝛿 |:8 0.06s 0.08s 0.01s 0.09s 0.09s 0.00s 0.09s
𝑆1 : 11, 𝑆2 : 4 |𝛿 |:8 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s 0.10s
𝑆1 : 5, 𝑆2 : 3 |𝛿 |:10 0.06s 0.15s 0.01s 0.16s 0.09s 0.00s 0.09s
𝑆1 : 110, 𝑆2 : 4 |𝛿 |:8 0.34s 186.10s 0.79s 186.99s 0.35s 0.00s 0.35s
𝑆1 : 255, 𝑆2 : 8 |𝛿 |:8 0.39s 281.02s 0.94s 281.96s 4.82s 0.05s 4.87s
𝑆1 : 255, 𝑆2 : 8 |𝛿 |:10 0.42s 281.02s 0.97s 281.99s 4.82s 0.06s 4.88s
𝑆1 : 110, 𝑆2 : 4 |𝛿 |:15 0.28s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
𝑆1 : 255, 𝑆2 : 8 |𝛿 |:15 0.46s 281.02s 1.92s 282.94s 4.82s 0.08s 4.90s
𝑆1 : 110, 𝑆2 : 4 |𝛿 |:20 0.37s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s
𝑆1 : 255, 𝑆2 : 8 |𝛿 |:20 0.55s 281.02s 1.97s 282.99s 4.82s 0.17s 4.99s
𝑆1 : 255, 𝑆2 : 8 |𝛿 |:25 0.59s 281.02s 1.23s 282.99s 4.82s 0.24s 5.36s
𝑆1 : 2059, 𝑆2 : 7 |𝛿 |:8 0.86s 19525.01s 20.71s 19545.72s 20.70s error -
𝑆1 : 2059, 𝑆2 : 9 |𝛿 |:8 1.49s 19784.7s 79.12s 19863.32 128.12s error -
𝑆1 : 2059, 𝑆2 : 11 |𝛿 |:8 3.73s 30011.67s 168.15s 30179.82s 261.07s error -
𝑆1 : 2059, 𝑆2 : 11 |𝛿 |:28 6.88s 30011.67s 169.55s 30180.22s 261.07s error -
𝑆1 : 3050, 𝑆2 : 10 |𝛿 |:8 5.21s 39101.57s killed - 438.27s error -
𝑆1 : 3090, 𝑆2 : 10 |𝛿 |:8 5.86s 40083.07s killed - 438.69s error -
𝑆1 : 3050, 𝑆2 : 10 |𝛿 |:20 7.24s 39101.57s killed - 438.27s error -
𝑆1 : 3090, 𝑆2 : 10 |𝛿 |:30 8.38s 40083.07s killed - 438.69s error -
𝑆1 : 3090, 𝑆2 : 10 |𝛿 |:25 8.89s 40083.07s killed - 438.69s error -
𝑆1 : 4050, 𝑆2 : 10 |𝛿 |:8 9.21s 81408.91s killed - 699.19s error -
𝑆1 : 4050, 𝑆2 : 10 |𝛿 |:28 11.64s 81408.91s killed - 699.19s error -
𝑆1 : 4058, 𝑆2 : 11 |𝛿 |:8 9.83s 93843.37s killed - 802.07s error -
𝑆1 : 4058, 𝑆2 : 11 |𝛿 |:25 13.59s 93843.37s killed - 802.07s error -
𝑆1 : 5050, 𝑆2 : 11 |𝛿 |:8 10.34s 173943.37s killed - 921.16s error -
𝑆1 : 5090, 𝑆2 : 11 |𝛿 |:8 10.52s 179993.54s killed - 929.32s error -
𝑆1 : 5090, 𝑆2 : 11 |𝛿 |:10 12.89s 179993.54s killed - 929.32s error -
𝑆1 : 6090, 𝑆2 : 11 |𝛿 |:8 13.49s 190293.64s killed - 1002.73s error -
𝑆1 : 6090, 𝑆2 : 11 |𝛿 |:10 15.81s 190293.64s killed - 1002.73s error -
𝑆1 : 6090, 𝑆2 : 11 |𝛿 |:40 32.39s 190293.64s killed - 1002.73s error -
𝑆1 : 10150, 𝑆2 : 12 |𝛿 |:60 97.56s 2134633.28s killed - 1469.28s error -
𝑆1 : 10150, 𝑆2 : 12 |𝛿 |:65 105.89s 2134633.28s killed - 1469.28s error -
𝑆1 : 10150, 𝑆2 : 16 |𝛿 |:65 134.45s 2211008.82s killed - 3665.59s error -
𝑆1 : 10180, 𝑆2 : 16 |𝛿 |:65 175.29s 2134643.52s killed - 3689.83s error -
𝑆1 : 10180, 𝑆2 : 16 |𝛿 |:78 214.36s 2134643.52s killed - 3689.83s error -

Table 1: SMODIC vs. standard LTL for PDSs

SMODIC McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Avast Symantec
100% 27.6% 22.1% 33.1% 14.4% 28.3% 21.4% 56.2 % 35.9% 50.7% 77.9%

Table 2: SMODIC vs. well known anti-viruses

model-checking for PDSs to determine whether the programs con-
tain any malicious behavior. In this case, none of the programs
was declared as malicious. Then, we use SM-PDSs to model these
programs, thus, taking self-modifying instructions into considera-
tion: we use SMODIC to model these programs using SM-PDSs and
to check whether these SM-PDSs satisfy any malicious LTL/CTL
formula in our database. SMODIC was able to detect all malwares,
and to calssify benign programs as benign.

6.3 Comparison with well-known antiviruses.
We also compare our tool against well-known and widely used an-
tiviruses. In order to have a fair comparision, we need to consider
new malwares, since anti-viruses know the signatures of all the
known malwares. Thus, the challenge for anti-viruses is to detect
new malwares. To this aim, we use the sophisticated malware gen-
erator NGVCK available at VX Heavens [44] to generate 200 new
malwares. Then we obfuscate these malwares with self-modifying
code. Then, we feed these malwares to SMODIC and to well-known
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antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky,
Qihoo-360, Baidu, Avast, and Symantec to detect them. Our tool
was able to detect all these programs as malicious, whereas none of
the well-known antiviruses was able to detect all these malwares.
Table 2 reports the detection rates of our tool and the well-known
anti-viruses.
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