Tayssir Touili

Xin Ye

SMODIC: A Model Checker for Self-modifying Code

Keywords: Malware detection, Pushdown Systems, Model Checking ACM Reference Format:

In this paper, we present SMODIC, a model checker for selfmodifying binary codes. SMODIC uses Self Modifying Pushdown Systems (SM-PDS) to model self-modifying binary code. This allows to faithfully represent the program's stack as well as the self-modifying instructions of the program. SMODIC takes a selfmodifying binary code or a self modifying pushdown system as input. It can then perform reachability analysis and LTL/CTL modelchecking for these models. We successfully used SMODIC to modelcheck more than 900 self-modifying binary codes. In particular, we applied SMODIC for malware detection, since malwares usually use self-modifying instructions, and since malicious behaviors can be described by LTL or CTL formulas. In our experiments, SMODIC was able to detect 895 malwares and to prove that 200 benign programs were benign. SMODIC was also able to detect several malwares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Baidu, Avast, and Symantec failed to detect. SMODIC can be found in https://lipn.univ-paris13.fr/~touili/smodic

CCS CONCEPTS

• Theory of computation → Verification by model checking;

• Security and privacy → Logic and verification.

INTRODUCTION

Self-modifying code is code that modifies its own instructions while it is executing. It has been used for a long time to hide the internals of a program. It was e.g. applied to reverse engineering for protection [START_REF] Madou | Software protection through dynamic code mutation[END_REF], since hiding the codes of a program can protect some intellectual property contained by software. Recently, it has also been widely used by malware writers to hide their malicious intent and evade from anti-virus detection. As malwares have become a big security threat to our daily life, malware detection is a critical problem in both industry and academic areas. Thus, being able to analyse self-modifying code is becoming of the utmost importance, since it is widely used by malwares.

There are several kinds of possibilities to make a binary code selfmodifying. One of these techniques is packing and unpacking. Such techniques were extensively studied e.g. in [START_REF] Bergeron | Static detection of malicious code in executable programs[END_REF][START_REF] Bonfante | A construction of a self-modifiying language with a formal correction proof[END_REF][START_REF] Christodorescu | Semantics-aware malware detection[END_REF][START_REF] Balakrishnan | Model Checking x86 Executables with CodeSurfer/x86 and WPDS++[END_REF][START_REF] Kinder | Detecting malicious code by model checking[END_REF][START_REF] Singh | Static verification of worm and virus behavior in binary executables using model checking[END_REF]. In this work, we consider self-modifying code implemented by self-modifying instructions, which are instructions that consider code as data. This allows them to read and write into code, thus producing self-modifying instructions. Such instructions are usually mov instructions, since they allow to read and write into memory. To illustrate this, let us consider the code of Figure 1. This is a segment of the worm Worm.Whboy equipped with a selfmodifying instruction. The goal of this worm is to spread itself and infect computers through file downloading. The first step for Worm.Whboy to infect a host is to make a copy of itself into it. For this, it needs to call the API function GetSystemDirectoryA (address 0x13) to get its location, and then the API functions LStrCatN and CheckPath (addresses 0x2a and 0x35) to check the path. Let us now show how self-modifying code can fool a static analyser and can make this malware undetectable by an antivirus. In Figure 1, the box on the left gives, respectively, the binary code, the corresponding addresses of the different instructions, and the corresponding assembly instruction at each address. For example, ff is the binary code of the instruction push. Thus, the first line is translated to push 0b. The second line is translated to mov 0x2 0xc, since c6 is the binary code of the instruction mov, etc. Let us now execute this code. First, push 0b is executed, then mov 0x2 0xc. This last instruction will replace the first byte at address 0x2 by 0xc. Thus, at address 0x2, ff 0b is replaced by 0c 0b. Since 0c is the binary code of jmp, this means the instruction push 0b is replaced by jmp 0xb. Therefore, this code is self-modifying. If we model this piece of code blindly, without looking at the semantics of the different instructions, we will extract from it the Control Flow Graph CFG a of Figure 1, in which the API functions GetSystemDirectoryA, LStrCatN and CheckPath responsible of the malicious behavior cannot be reached. However, the correct Control Flow Graph of this piece of code is CFG b. Thus, if we do not take into account the fact that the instruction mov 0x2 0xc is self-modifying, then this code will be declared as benign, whereas it is malicious. Therefore, it is very important to be able to deal with self-modifying code implemented by mov instructions.

In this paper, we present SMODIC, a model checker for selfmodifying binary code that use self-modifying mov instructions. In SMODIC, such binary code is modeled using Self Modifying Pushdown Systems (SM-PDS) [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF], which is an extension of standard Pushdown Systems (PDS) that can modify its own instructions during its execution. As advocated in [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF], using SM-PDSs is suitable for this kind of self-modifying binary code as it allows to faithfully represent the program's stack as well as the self-modifying mov instructions of the program. SMODIC takes as input either a selfmodifying binary code or a self modifying pushdown system. It can then perform reachability analysis and LTL/CTL model-checking for these models. SMODIC first adapts the tool Jakstab [START_REF] Veith | Jakstab: A static analysis platform for binaries[END_REF] to get the Control Flow Graph from the binary code. Then, it translates this CFG into a SM-PDS. It then implements the algorithms of [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF][START_REF] Touili | LTL Model Checking for Self Modifying Code[END_REF] to perform reachability analysis and LTL/CTL model-checking for this model.

We successfully used SMODIC to model-check more than 900 self-modifying binary codes. In particular, we applied SMODIC for malware detection, since malwares usually use self-modifying instructions. Indeed, malicious behaviors can be described by LTL or CTL formulas. In our experiments, SMODIC was able to detect 895 malwares and to prove that 200 benign programs were benign. SMODIC was also able to detect several malwares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Baidu, Avast, and Symantec failed to detect. SMODIC can be found in https://lipn.univ-paris13.fr/~touili/smodic.

Outline. Section 3 introduces the theoretical background of SMODIC. Section 4 shows how can SMODIC be used for malware detection. Section 5 describes the architecture of SMODIC. The experiments are discussed in Section 6.

RELATED WORK

Model checking and static analysis approaches have been widely used to analyze binary programs, for instance, in [START_REF] Bergeron | Static detection of malicious code in executable programs[END_REF][START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Balakrishnan | Model Checking x86 Executables with CodeSurfer/x86 and WPDS++[END_REF][START_REF] Kinder | Detecting malicious code by model checking[END_REF][START_REF] Singh | Static verification of worm and virus behavior in binary executables using model checking[END_REF]. Temporal Logics were chosen to describe malicious behaviors in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF][START_REF] Nguyen | CARET model checking for malware detection[END_REF][START_REF] Kinder | Detecting malicious code by model checking[END_REF][START_REF] Beaucamps | Behavior Abstraction in Malware Analysis[END_REF]. However, these works cannot deal with selfmodifying code.

There are several researches on self-modifying code. Cai et al. [START_REF] Cai | Certified self-modifying code[END_REF] use local reasoning and separation logic to describe selfmodifying code and treat program code uniformly as regular data structure. However, [START_REF] Cai | Certified self-modifying code[END_REF] requires programs to be manually annotated with invariants. In [START_REF] Debray | On the semantics of self-unpacking malware code[END_REF], the authors propose a formal semantics for self-modifying codes, and use that to represent selfunpacking code. This work only deals with packing and unpacking behaviours. Bonfante et al. [START_REF] Bonfante | A computability perspective on self-modifying programs[END_REF] provide an operational semantics for self-modifying programs and show that they can be constructively rewritten to a non-modifying program. However, all these specifications [START_REF] Bonfante | A computability perspective on self-modifying programs[END_REF][START_REF] Cai | Certified self-modifying code[END_REF][START_REF] Debray | On the semantics of self-unpacking malware code[END_REF] are too abstract to be used in practice. In [START_REF] Bertrand | A model for self-modifying code[END_REF], the authors propose a new representation of self-modifying code named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends standard control flow graphs with a new data structure, keeping track of the possible states programs can reach, and with edges that can be conditional on the state of the target memory location. It is not easy to analyse a binary program only using its SE-CFG, especially that this representation does not allow to take into account the stack of the program. [START_REF] Blazy | Verified abstract interpretation techniques for disassembling low-level self-modifying code[END_REF] propose abstract interpretation techniques to compute an over-approximation of the set of reachable states of a self-modifying program, where for each control point of the program, an over-approximation of the memory state at this control point is provided. [START_REF] Roundy | Hybrid analysis and control of malware[END_REF] combine static and dynamic analysis techniques to analyse self-modifying programs. Unlike our approach, these techniques [START_REF] Roundy | Hybrid analysis and control of malware[END_REF][START_REF] Blazy | Verified abstract interpretation techniques for disassembling low-level self-modifying code[END_REF] cannot handle the program's stack.

Unpacking binary code is also considered in [START_REF] Debray | Reverse engineering self-modifying code: Unpacker extraction[END_REF][START_REF] Coogan | Automatic static unpacking of malware binaries[END_REF][START_REF] Gyung | Renovo: A hidden code extractor for packed executables[END_REF][START_REF] Royal | Polyunpack: Automating the hidden-code extraction of unpack-executing malware[END_REF][START_REF] Debray | On the semantics of self-unpacking malware code[END_REF]]. These works do not consider self-modifying mov instructions.

There are a lot of tools that can deal with binary code analysis [2-4, 7-9, 11, 13, 14, 22, 24-26, 37, 39, 41]. POMMADE [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF] is a malware detector based on LTL and CTL model-checking of pushdown systems. STAMAD [START_REF] Dam | Malware Detection based on Graph Classification[END_REF][START_REF] Dam | Learning Malware Using Generalized Graph Kernels[END_REF][START_REF] Dam | Precise Extraction of Malicious Behaviors[END_REF] is a malware detector based on PDSs and machine learning. However, all these tools cannot handle self-modifying code. The only tools that we know of and that can deal with self-modifying code are BE-PUM [START_REF] Nguyen | Pushdown model generation of malware[END_REF] and CoDisasm [START_REF] Bonfante | CoDisasm: medium scale concatic disassembly of self-modifying binaries with overlapping instructions[END_REF]. BE-PUM (Binary Emulation for PUshdown Model) [START_REF] Nguyen | Pushdown model generation of malware[END_REF] focuses on generating CFG (Control Flow Graph) of malwares. BE-PUM can construct a pushdown model from x86 binaries in an on-the-fly manner. Concolic testing is applied to determine the precise destinations of branches for indirect jumps. This tool can deal with self-modifying code caused by modifying the destinations of indirect jumps, including overwriting the return address of a function (in the stack). But it cannot handle self-modifying instructions. CoDisasm [START_REF] Bonfante | CoDisasm: medium scale concatic disassembly of self-modifying binaries with overlapping instructions[END_REF] is a tool that focuses on the disassembly of x86 code that includes self-modifying instructions and code overlapping. CoDisasm deals only with disassembling the code. It does not consider model-checking problems of code.

BACKGROUND 3.1 Self-modifying Pushdown Systems

A Self-modifying Pushdown System (SM-PDS) is a Pushdown System (PDS), i.e. an automaton equipped with a stack, that can dynamically modify its set of rules during the execution time: in addition to the standard push and pop transition rules of a pushdown system, a SM-PDS has self-modifying rules of the form 𝑝

(𝑟 1 ,𝑟 2)
↩----→ 𝑝 ′ that move the SM-PDS from control point 𝑝 to control point 𝑝 ′ , while removing 𝑟 1 from the set of rules of the SM-PDS and adding 𝑟 2 to it. Thus, an SM-PDS has the capability to change its own set of transition rules during the execution. For more details about the SM-PDS model, we refer the reader to [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF].

From Self-modifying Code to SM-PDS

To translate a binary code with self-modifying mov instructions to a SM-PDS, we use the translation of [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF]. The basic idea is that the control locations of the SM-PDS store the control points of the binary program and the stack mimics the program's stack. Our translation relies on the disassembler Jakstab [START_REF] Veith | Jakstab: A static analysis platform for binaries[END_REF] to disassemble binary code, construct the control flow graph (CFG), determine indirect jumps, compute the possible values of the used variables, registers and the memory locations at each control point of the program. After getting the control flow graph whose edges are equipped with disassembled instructions, we translate the CFG into a SM-PDS as described in [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF]. The non self-modifying instructions of the program define the standard PDS rules of the SM-PDS and can be obtained following the translation of [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF] that models non selfmodifying instructions of the program by a PDS. Self-modifying instructions are represented using self-modifying rules. For more details, we refer the reader to [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF].

The Model Checking Algorithms

We use finite automata to finitely represent regular infinite sets of configurations of a SM-PDS. Then, the sets of predecessors and successors of a SM-PDS are computed using a kind of a saturation procedure on the finite automata [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF]. As for LTL and CTL modelchecking, they can be reduced to the emptiness problem for Selfmodifying (Alternating) Büchi Pushdown Systems. The basic idea is to make a product of the given SM-PDS and the given LTL or CTL formula to get a Self-modifying (Alternating) Büchi Pushdown system and then apply the algorithms of [START_REF] Touili | LTL Model Checking for Self Modifying Code[END_REF] to check the emptiness of the Self-modifying (Alternating) Büchi Pushdown system.

APPLYING SMODIC FOR MALWARE DETECTION

SMODIC can be used for malware detection. Indeed, as shown in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF], malicious behaviors can be described by LTL or CTL formulas. For example, we show in this section how LTL can be used to express the malicious behavior of registry key injecting. Other LTL and CTL formulas that describe other malicious behaviors can be found in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF][START_REF] Touili | LTL Model Checking for Self Modifying Code[END_REF].

In order to get started at boot time, many malwares add themselves into the registry key listing. This behavior is typically implemented by first calling the API function GetModuleFileNameA to retrieve the path of the malware's executable file. Then, the API function RegSetValueExA is called to add the file path into the registry key listing. As a result, the malware can execute itself automatically. This behavior can be expressed by the following LTL formula:

F 𝑐𝑎𝑙𝑙 𝐺𝑒𝑡𝑀𝑜𝑑𝑢𝑙𝑒𝐹𝑖𝑙𝑒𝑁 𝑎𝑚𝑒𝐴 ∧ F(𝑐𝑎𝑙𝑙 𝑅𝑒𝑔𝑆𝑒𝑡𝑉 𝑎𝑙𝑢𝑒𝐸𝑥𝐴)
This formula expresses that if a call to the API function GetMod-uleFileNameA is followed by a call to the API function RegSetVal-ueExA, then probably a malware is trying to add itself into the registry key listing.

LdPinch.ch is such a malware that uses registry key injecting to execute itself. Fig. 3 shows a disassembled fragment of this malware. Note that this fragment contains self-modifying codes in address 00401547: mov replaces the value at address 0040154A with 6A (which is the binary code of push). If we abstract away the fact that this code is self-modifying, and we treat this piece of code as if it were not self-modifying (as done in most of the other tools for binary code), then we will reach the conclusion that this code is not malicious. Indeed, in this case, a loop between address 00401545 and address 0040154A will be detected and we will reach the conclusion that the API functions responsible of the malicious behavior cannot be called.

However, in reality, after the execution of mov 0040154A c6, the instruction at address 0040154A will be changed to push 00401545 and the remaining instructions will be executed: GetModuleFileNameA and RegSetValueExA will be called, and we will reach the conclusion that this code is malicious.

ARCHITECTURE

The Architecture of SMODIC is shown in Figure 2. SMODIC takes as input either a binary program or a SM-PDS. SMODIC can perform both reachability analysis and LTL/CTL model checking. If the input of SMODIC is a binary program, it is passed to the component Oracle. This component is based on the disassembler Jakstab [START_REF] Veith | Jakstab: A static analysis platform for binaries[END_REF]. It takes as input a binary program, and outputs its corresponding assembly program, its corresponding Control Flow Graph (CFG) equipped with the assembly instruction corresponding to each edge, together with informations about the called API functions, and the different values of the registers and memory addresses at each control point. All these outputs are fed to the component Model Builder that will compute the corresponding SM-PDS.

The Reachability component takes as input a SM-PDS, and a sequence of API functions, and applies the reachability algorithms of [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF] to check whether the SM-PDS has a run that calls these API functions in this order. For example, if we consider the sequence 𝑓 1 , 𝑓 2 , 𝑓 3 , then Reachability component checks whether the SM-PDS has a run that calls first 𝑓 1 , then 𝑓 2 , then 𝑓 3 . The LTL (CTL) component takes as input a SM-PDS and an LTL (CTL) formula, and applies the algorithms of [START_REF] Touili | LTL Model Checking for Self Modifying Code[END_REF] to check whether the SM-PDS satisfies the LTL (CTL) formula.

EXPERIMENTS

A SM-PDS can be translated into an equivalent Pushdown System (PDS) [START_REF] Touili | Reachability Analysis of Self Modifying Code[END_REF]. Thus, to perform reachability, and LTL/CTL modelchecking for an SM-PDS, one can translate it into an equivalent

Address Assembly Binary

Figure 3: A Fragment of LdPinch.ch PDS, and then apply the standard algorithms for reachability and LTL/CTL model-checking for standard PDSs [START_REF] Esparza | Efficient Algorithms for Model Checking Pushdown Systems[END_REF][START_REF] Kiefer | Moped -A Model-Checker for Pushdown Systems[END_REF][START_REF] Song | PuMoC: a CTL model-checker for sequential programs[END_REF]. We show in this section how, in our experiments, translating the SM-PDS into an equivalent PDS is not efficient and that our tool SMODIC behaves much better. We also show how our tool SMODIC can be successfuly applied for malware detection. All our experiments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory.

SMODIC vs. standard PDS Model-checking

To compare the performance of SMODIC against the approach that consists in translating the SM-PDS into an equivalent PDS or symbolic PDS [START_REF] Esparza | Efficient Algorithms for Model Checking Pushdown Systems[END_REF][START_REF] Kiefer | Moped -A Model-Checker for Pushdown Systems[END_REF] and then apply the standard 𝑝𝑜𝑠𝑡 * , 𝑝𝑟𝑒 * , LTL and CTL algorithms for PDSs and symbolic PDSs [START_REF] Esparza | Efficient Algorithms for Model Checking Pushdown Systems[END_REF][START_REF] Kiefer | Moped -A Model-Checker for Pushdown Systems[END_REF][START_REF] Song | PuMoC: a CTL model-checker for sequential programs[END_REF], we first applied our tool on randomly generated SM-PDSs of various sizes. SMODIC was able to successfully handle all cases in only a few seconds. Then, we translated these SM-PDSs into equivalent PDSs or symbolic PDSs and run the tools MOPED [START_REF] Kiefer | Moped -A Model-Checker for Pushdown Systems[END_REF] (for reachability and LTL model checking), or PuMoC [START_REF] Song | PuMoC: a CTL model-checker for sequential programs[END_REF] (for CTL model checking). Going through PDSs or symbolic PDSs is less efficient and leads to memory out in several cases, whereas SMODIC was able to deal with all the cases in only a few seconds. The results (CPU Execution time) for the LTL component are shown in Table 1.

In Table 1, Column Size is the size of the SM-PDS (𝑆 1 for non selfmodifying transitions and 𝑆 2 for self-modifying transitions). Column LTL gives the size of the transitions of the Büchi automaton generated from the LTL formula (using the tool LTL2BA [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]). Column SMODIC gives the cost of SMODIC. Column PDS shows the cost it takes to get the equivalent PDS from the SM-PDS. Column Result reports the cost it takes to run the LTL PDS model-checker Moped [START_REF] Kiefer | Moped -A Model-Checker for Pushdown Systems[END_REF] for the PDS we got. Column Total is the total cost it takes to translate the SM-PDS into a PDS and then apply the standard LTL model checking algorithm of Moped (Total=PDS+Result). Column Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS from the SM-PDS. Column 𝑅𝑒𝑠𝑢𝑙𝑡 1 is the cost to run the Symbolic PDS LTL model-checker Moped. Column 𝑇𝑜𝑡𝑎𝑙 1 is the total cost it takes to translate the SM-PDS into a symbolic PDS and then apply the standard LTL model checking algorithm of Moped. You can see that SMODIC (Column SMODIC) is much more efficient than translating the SM-PDS to an equivalent (symbolic) PDS, and then run the standard LTL model-checker Moped. Translating the SM-PDS to a standard PDS may take more than 20 days, whereas our tool SMODIC takes only a few seconds. Moreover, since the obtained standard (symbolic) PDS is huge, Moped failed to handle several cases (the time limit that we set for Moped is 20 minutes), whereas SMODIC was able to deal with all the cases in only a few seconds.

Detecting Real Malwares

We applied SMODIC to detect several malwares. We consider 895 malwares from VX heaven [START_REF] Heaven | [END_REF], VirusShare [START_REF] Virusshare | vXshare[END_REF], and MalShare [START_REF] Cutler | malshare[END_REF]. We also choose 200 benign samples from Windows XP system (win32). We consider self-modifying versions of the malwares. In these versions, the malicious behaviors are unreachable if the semantics of the self-modifying instructions are not taken into account, i.e., if the self-modifying instructions are considered as "standard" instructions that do not modify the code, then the malicious behaviors cannot be reached. First, we abstract away the semantics of the self-modifying instructions and model such programs as standard PDSs (as in [START_REF] Song | Efficient Malware Detection Using Model-Checking[END_REF][START_REF] Song | LTL model-checking for malware detection[END_REF] 2: SMODIC vs. well known anti-viruses model-checking for PDSs to determine whether the programs contain any malicious behavior. In this case, none of the programs was declared as malicious. Then, we use SM-PDSs to model these programs, thus, taking self-modifying instructions into consideration: we use SMODIC to model these programs using SM-PDSs and to check whether these SM-PDSs satisfy any malicious LTL/CTL formula in our database. SMODIC was able to detect all malwares, and to calssify benign programs as benign.

Comparison with well-known antiviruses.

We also compare our tool against well-known and widely used antiviruses. In order to have a fair comparision, we need to consider new malwares, since anti-viruses know the signatures of all the known malwares. Thus, the challenge for anti-viruses is to detect new malwares. To this aim, we use the sophisticated malware generator NGVCK available at VX Heavens [START_REF] Heaven | [END_REF] to generate 200 new malwares. Then we obfuscate these malwares with self-modifying code. Then, we feed these malwares to SMODIC and to well-known antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Baidu, Avast, and Symantec to detect them. Our tool was able to detect all these programs as malicious, whereas none of the well-known antiviruses was able to detect all these malwares. Table 2 reports the detection rates of our tool and the well-known anti-viruses.

Figure 1 :

 1 Figure 1: An Example of Self-modifying code

), and perform LTL/CTL SMODIC McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Avast Symantec

	100%	27.6%	22.1%	33.1%	14.4% 28.3% 21.4%	56.2 %	35.9%	50.7%	77.9%
				Table					

Size