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Abstract

This paper addresses the output feedback stabilization of an ODE-PDE cascade. The PDE takes the form of a 1-D reaction-
diffusion equation. The output of the ODE enters into the PDE via a Dirichlet/Neumann/Robin boundary condition. It is
assumed that both the output of the ODE and the output of the PDE, selected as a boundary Dirichlet trace, are available
for feedback control. The proposed control strategy takes the form of a finite-dimensional observer-based controller. Under a
suitable structural controllability property, we show that the reported control strategy achieves the exponential stabilization
of the plant when the order of the observer is selected large enough. We then demonstrate how such a control strategy can be
adapted and augmented with a predictor component in order to achieve the stabilization of the above mentioned PDE-ODE
cascade when the output of the ODE enters into the PDE with an arbitrarily long delay.

Key words: ODE-PDE cascade, delayed cascade interconnection, predictor, output feedback

1 Introduction

The topic of feedback stabilization of systems described
by an ODE coupled with a PDE has emerged during the
last decade. This trend is driven by a number of engi-
neering applications such flexible aircraft [29], flexible
cranes [17], power converters connected to transmission
lines [13], and solid–gas interaction of heat diffusion and
chemical reaction [38]. Coupled PDE and ODE dynam-
ics also arise due to actuator and sensor dynamics em-
ployed to implement feedback control strategies [23,36].
For instance, the PDE can represent the open-loop plant
while the ODE part gathers actuator/sensor dynamics.
Conversely, the PDE can model the sensor dynamics
(e.g., to measure heat) of a finite-dimensional plant. This
may include the presence of filters (e.g., for noise reduc-
tion issues). Moreover, interconnection delays between
the ODE and PDE components may appear, e.g., due
to network effects or the physical distance between the
actuator and the plant; see, e.g., the cases of antennas
for nuclear fusion [1] or sprays for surface decontamina-
tion [43].
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The state-feedback stabilization and the observer de-
sign of a diffusion PDE cascaded with an ODE was
solved using backstepping design in [23,36]. These
control design approaches, which can be seen as the
generalization of predictor feedback techniques [19] as
they aim at compensating an infinite-dimensional input
dynamics [24], have then been extended to the state-
feedback stabilization of other systems described by
PDEs such as strings [22,36] and linearized Korteweg–de
Vries equation [3]. They have also been extended to
the state-feedback stabilization and observer design of
multi-input–multi-output LTI systems with actuator or
sensor dynamics governed by diffusion [7] and wave [6]
PDEs, the output feedback stabilization of a diffusion
PDE coupled with an ODE [37,38], and the output
feedback stabilization of either a diffusion PDE [39]
or hyperbolic PDEs [14,41] sandwiched between two
ODEs. The adaptive stabilization of a coupled ODE-
reaction-diffusion PDE was reported in [30] while the
sliding mode control of a heat PDE-ODE cascade was
addressed in [42]. The stabilization of PDE-ODE and
ODE-PDE cascades using Sylvester equations has been
proposed in [31]. Finally, the possible presence of a
delay in the ODE-PDE system has been considered in
a number of recent works. The state-feedback stabi-
lization of an ODE-heat equation in the presence of a
state-delay was studied in [18]. The state-feedback of
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an ODE-linear KdV cascaded system in the presence of
a boundary input delay was reported in [4]. The output
feedback of a sandwiched ODE–PDE–ODE hyperbolic
system in the presence of an output delay for the second
ODE was addressed in [40].

This paper is concerned with the output feedback stabi-
lization of an ODE-reaction-diffusion PDE cascade. The
output of the ODE enters into the PDE via a Dirich-
let/Neumann/Robin boundary condition. The output
of the PDE is selected as a boundary Dirichlet trace. We
assume that the output of each component of the plant
(both ODE and PDE) is available for feedback control.
This type of output feedback stabilization problem was
solely addressed in [39] for an ODE-diffusion PDE-ODE
cascade (see also [18,42] for ODE-heat cascades in a
state-feedback setting). In this latter work, only the
measurement of the PDE is required but the open loop
diffusion PDE is stable (with constant coefficient) and
the observer is infinite-dimensional. In contrast, we con-
sider in this work a reaction-diffusion PDE that may be
unstable (with spatially varying coefficients) while the
adopted control strategy consists of a finite-dimensional
observer-based controller [5,11,15,16,20,21,26,27,25,35].
Leveraging spectral reduction methods [9,10,34], we
adopt and augment to ODE-PDE cascades the finite-
dimensional observer-based controller architecture as
introduced in the pioneer work [35] along with a LMI-
based strategy as initiated in [20]. More precisely, we
adopt the enhanced procedures [26,25] that allow to
handle general 1-D reaction-diffusion PDEs with Dirich-
let/Neumann/Robin boundary control and Dirich-
let/Neumann boundary measurement while performing
the control design directly with the actual boundary
control input instead of its time derivative. Under a
structural controllability property related to the ODE
and PDE components, we assess that the proposed
finite-dimensional control strategy achieves the output
feedback stabilization of the ODE-PDE cascade when
the order of the observer is large enough.

In the second part of this paper, we demonstrate that
this control strategy can be augmented with a pre-
dictor component [2] in order to achieve the stabiliza-
tion of the above mentioned ODE-PDE cascade when
the output of the ODE enters into the PDE with an
arbitrarily long delay. Hence, the system to be stabi-
lized can be interpreted as an ODE-(transport PDE)-
(reaction-diffusion PDE) cascade. Predictor feedback
is a well-known approach for compensating long in-
put/output delays [8,19]. The possibility to couple a
finite-dimensional observer and a predictor to compen-
sate an input delay was suggested in [21] in the particu-
lar case of a reaction-diffusion equation with Neumann
boundary control, a bounded output operator, and with
stability of the closed-loop system assessed in L2-norm.
The case of general input delayed 1-D reaction-diffusion
PDEs with Dirichlet/Neumann/Robin boundary con-
trol and Dirichlet/Neumann boundary measurement

was solved in [27] for PDE trajectories in evaluated
H1-norm. The case of a long output delay was ad-
dressed in [28]. In contrast, the delay considered in the
present work is fully entangled with the system dynam-
ics since the delay occurs in the interconnection of the
ODE-PDE cascade. In this context, the adopted control
design procedure is inspired by classical approaches for
the predictor-based stabilization of finite-dimensional
LTI systems [19, Chap. 3]. More precisely, we design a
finite-dimensional observer that estimates parts of the
state of the ODE-PDE cascade at two distinct times:
1) a delayed version of the state of the ODE; 2) the
first modes of the PDE at current time. This observer
is coupled with a predictor component that is used to
obtain the control input to be applied at current time.
Under a suitable structural controllability property and
for an arbitrarily given value of the interconnection de-
lay, we show that the reported control strategy achieves
the exponential stabilization of the plant provided the
order of the observer is selected large enough.

The paper is organized as follows. Definitions and prop-
erties of Sturm-Liouville operators are introduced in Sec-
tion 2. The control design problem of an ODE-PDE cas-
cade is addressed in Section 3. The case of an ODE-PDE
cascade with delayed interconnection is then studied in
Section 4. A numerical example is provided in Section 5.
Finally, concluding remarks are formulated in Section 6.

2 Notation and properties

2.1 Notation

Spaces Rn are endowed with the Euclidean norm ‖ · ‖.
The corresponding induced norms of matrices are also
denoted by ‖·‖. For any two vectorsX and Y of arbitrary
dimensions, col(X,Y ) stands for the vector [X>, Y >]>.
The space of square integrable functions on (0, 1) is de-
noted by L2(0, 1) and is endowed with the usual inner

product 〈f, g〉 =
∫ 1

0
f(x)g(x) dx and associated norm

denoted by ‖ · ‖L2 . For an integer m ≥ 1, Hm(0, 1) de-
notes them-order Sobolev space and is equipped with its
usual norm ‖ · ‖Hm . For a symmetric matrix P ∈ Rn×n,
P � 0 (resp. P � 0) means that P is positive semi-
definite (resp. positive definite).

2.2 Properties of Sturm-Liouville operators

Let θ1 ∈ [0, π/2], θ2 ∈ [0, π/2], p ∈ C1([0, 1]) and
q ∈ C0([0, 1]) with p > 0 and q ≥ 0. Let the Sturm-
Liouville operator A : D(A) ⊂ L2(0, 1) → L2(0, 1)
be defined by Af = −(pf ′)′ + qf on the domain
D(A) = {f ∈ H2(0, 1) : cθ1f(0) − sθ1f

′(0) =
cθ2f(1) + sθ2f

′(1) = 0} where cθi = cos θi and
sθi = sin θi. The eigenvalues λn, n ≥ 1, of A are sim-
ple, non negative, and form an increasing sequence
with λn → +∞ as n → +∞. The corresponding unit
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eigenvectors φn ∈ L2(0, 1) form a Hilbert basis (i.e,
an orthonormal basis of the Hilbert space L2(0, 1)).
The domain of the operator A is also characterized by
D(A) = {f ∈ L2(0, 1) :

∑
n≥1 |λn|2| 〈f, φn〉 |2 < +∞}.

Let p∗, p
∗, q∗ ∈ R be such that 0 < p∗ ≤ p(x) ≤ p∗

and 0 ≤ q(x) ≤ q∗ for all x ∈ [0, 1], then it holds
0 ≤ π2(n− 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ for all n ≥ 1 [32].
Moreover if p ∈ C2([0, 1]), we have (see, e.g., [32]) that
φn(ξ) = O(1) and φ′n(ξ) = O(

√
λn) as n → +∞ for

any given ξ ∈ [0, 1]. Assuming further that q > 0, an
integration by parts and the continuous embedding
H1(0, 1) ⊂ L∞(0, 1) show the existence of constants
C1, C2 > 0 such that

C1‖f‖2H1 ≤
∑
n≥1

λn 〈f, φn〉2 = 〈Af, f〉 ≤ C2‖f‖2H1 (1)

for any f ∈ D(A). This implies that the series expan-
sion f =

∑
n≥1 〈f, φn〉φn holds inH2(0, 1)-norm for any

f ∈ D(A). Due to the continuous embedding H1(0, 1) ⊂
L∞(0, 1), we obtain that f(0) =

∑
n≥1 〈f, φn〉φn(0) and

f ′(0) =
∑
n≥1 〈f, φn〉φ′n(0). We finally define, for any

integer N ≥ 1, RNf =
∑
n≥N+1 〈f, φn〉φn.

3 ODE-PDE cascade

3.1 Problem setting

We study first the ODE-PDE cascade described by

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cx(t) (2a)

zt(t, ξ) = (p(ξ)zξ(t, ξ))ξ − r(ξ)z(t, ξ) (2b)

cθ1z(t, 0)− sθ1zξ(t, 0) = 0 (2c)

cθ2z(t, 1) + sθ2zξ(t, 1) = yi(t) (2d)

y(t) = z(t, 0) (2e)

x(0) = x0, z(0, ξ) = z0(ξ) (2f)

for t > 0 and ξ ∈ (0, 1). Here A ∈ Rnx×nx , B ∈ Rnx ,
C ∈ R1×nx , θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, and r ∈ C0([0, 1]). The states of the ODE
and PDE at time t are denoted by x(t) and z(t, ·), re-
spectively. The control input at time t is denoted by u(t).
We assume that the interconnection signal yi(t) = Cx(t)
and the PDE measurement y(t) = z(t, 0) are available
for feedback. Without loss of generality, we introduce
q ∈ C0([0, 1]) and qc ∈ R such that

r(ξ) = q(ξ)− qc, q(ξ) > 0. (3)

Remark 1 The presentation is focused on the case θ1 ∈
(0, π/2] and θ2 ∈ [0, π/2] because this setting is the most
meaningful from a practical perspective (e.g., the case
of a heat equation with convection boundary conditions).
Nevertheless, the results derived in this paper readily ex-
tend to θ1 ∈ (0, π) ∪ (π, 2π) and θ2 ∈ [0, 2π) provided q
from (3) is selected sufficiently large so that (1) holds.

3.2 Spectral reduction

Defining the change of variable formula

w(t, ξ) = z(t, ξ)− ξ2

cθ2 + 2sθ2
yi(t), (4)

we infer that (2) is equivalently represented by the fol-
lowing homogeneous representation

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cx(t) (5a)

wt(t, ξ) = (p(ξ)wξ(t, ξ))ξ − r(ξ)w(t, ξ) (5b)

+ a(ξ)yi(t) + b(ξ)ẏi(t)

cθ1w(t, 0)− sθ1wξ(t, 0) = 0 (5c)

cθ2w(t, 1) + sθ2wξ(t, 1) = 0 (5d)

y(t) = w(t, 0) (5e)

x(0) = x0, w(0, ξ) = w0(ξ) (5f)

where a(ξ) = 1
cθ2+2sθ2

{2p(ξ) + 2ξp′(ξ)− ξ2r(ξ)}, b(ξ) =

− ξ2

cθ2+2sθ2
, and w0(ξ) = z0(ξ)− ξ2

cθ2+2sθ2
yi(0). Define the

coefficients of projection zn(t) = 〈z(t, ·), φn〉, wn(t) =
〈w(t, ·), φn〉, an = 〈a, φn〉, and bn = 〈b, φn〉. This gives

wn(t) = zn(t) + bnyi(t), n ≥ 1. (6)

The projection of (5) on (φn)n≥1 gives

ẇn(t) = (−λn + qc)wn(t) + anyi(t) + bnẏi(t), (7)

hence
żn(t) = (−λn + qc)zn(t) + βnyi(t) (8)

where βn = an + (−λn + qc)bn = p(1){−cθ2φ′n(1) +
sθ2φn(1)} = O(

√
λn). Finally, the Dirichlet measure-

ment (5e) can be expressed for classical solutions as:

y(t) = w(t, 0) =
∑
n≥1

wn(t)φn(0). (9)

3.3 Control strategy

The control strategy adopted in this section is an
extension of the controller architecture originally in-
troduced in [35] for parabolic PDEs (and later reused
in [5,11,15,16,20,25,35]) to the case of the ODE-
parabolic PDE cascade (2). Let δ > 0 be fixed. Let
N0 ≥ 1 be selected so that −λn + qc < −δ < 0 for all
n ≥ N0 + 1. Let N ≥ N0 + 1 be arbitrarily given. The
controller dynamics are described by:

ŵn(t) = ẑn(t) + bnyi(t) (10a)

˙̂x(t) = Ax̂(t) +Bu(t)− Lxyi{Cx̂(t)− yi(t)} (10b)

− Lxy
{

N∑
k=1

ŵk(t)φk(0)− y(t)

}
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˙̂zn(t) = (−λn + qc)ẑn(t) + βnyi(t) (10c)

− lzyi,n{Cx̂(t)− yi(t)}

− lzy,n
{

N∑
k=1

ŵk(t)φk(0)− y(t)

}
, 1 ≤ n ≤ N0

˙̂zn(t) = (−λn + qc)ẑn(t) + βnyi(t), N0 + 1 ≤ n ≤ N
(10d)

u(t) =

N0∑
k=1

kkẑk(t) + kxx̂(t) (10e)

where lzyi,n, lzy,n ∈ R and Lxyi , Lxy ∈ Rnx are the ob-
server gains while kk ∈ R and kx ∈ R1×nx are the feed-
back gains.

In preparation for stability analysis, we introduce the
matrices: A0 = diag(−λ1 + qc, . . . ,−λN0

+ qc), A1 =

diag(−λN0+1 + qc, . . . ,−λN + qc), B0 =
[
β1 . . . βN0

]>
,

B̃1 =
[
βN0+1

λN0+1
. . . βNλN

]>
, C0 =

[
φ1(0) . . . φN0

(0)
]
,

C̃1 =

[
φN0+1(0)√
λN0+1

. . . φN (0)√
λN

]
, Ca =

[
0 C

]
, A =[

A0 B0C

0 A

]
, U =

[
A0 0

0 A

]
, B =

[
0

B

]
, C =

[
C0 0

0 C

]
,

K =
[
k1 . . . kN0

kx

]
, Lzy =

[
lzy,1 . . . lzy,N0

]>
, Lzyi =[

lzyi,1 . . . lzyi,N0

]>
, L =

[
Lzy Lzyi

Lxy Lxyi

]
, Ly =

[
Lzy

Lxy

]
,

D = LC +

[
0 B0C

0 0

]
,

F =


A + BK D 0 LyC̃1

0 U− LC 0 −LyC̃1

B̃1Ca B̃1Ca A1 0

0 0 0 A1

 , L =


Ly

−Ly
0

0

 ,

E1 =
[
Ca Ca 0 0

]
,E2 = Ca

[
A + BK D + U− LC 0 0

]
.

Remark 2 By Cauchy uniqueness, it is observed that
φn(0) 6= 0 and βn 6= 0 for all n ≥ 1. Therefore the Hau-
tus test shows that the pairs (A0,B0) and (A0, C0) satisfy
the Kalman rank condition for controllability and observ-
ability, respectively. Hence, the pair (U,C) is observable
if and only if (A,C) is observable. The case of the pair
(A,B) is more involved due to the fact that the control
input of the ODE-PDE cascade only appears in input of
the ODE. It is easily seen that if (A,B) is not control-
lable, then (A,B) is not controllable neither. A form of
converse result is stated below.

Lemma 3 Assume that (A,B) is controllable. Then

the pair (A,B) is controllable if and only if C> /∈
R
(

(µI −A>)
∣∣
ker(B>)

)
for all µ ∈ spA0 = {−λn + qc :

1 ≤ n ≤ N0}. Assuming further that spA ∩ spA0 = ∅,
then (A,B) is controllable if and only if C(µI−A)−1B 6=
0 for all µ ∈ spA0.

Proof. The case C = 0 trivially holds true because,
in that case, (A,B) is not controllable. Hence we as-
sume for the rest of the proof that C 6= 0. Assume that
(A,B) is not controllable. The Hautus test shows the ex-
istence of µ ∈ C and (x1, x2) 6= 0 so that x>1 A0 = µx>1 ,
x>1 B0C + x>2 A = µx>2 , and x>2 B = 0. We observe that
x1 = 0 if and only if x2 = 0. Hence x1 6= 0 and x2 6= 0,
implying that µ ∈ spA0. Since A0 is diagonal with sim-
ple eigenvalues, we may assume without loss of gener-
ality that x1 = fn for some 1 ≤ n ≤ N0 where fn is
the nth element of the canonical basis of RN0 . We de-
duce that βnC + x>2 A = µx>2 . Since βn 6= 0, we can
define x̃2 = x2/βn which is such that B>x̃2 = 0 and
C> = (µI−A>)x̃2. Conversely, assume that there exists
µ = −λn + qc ∈ spA0 and a vector x̃2 so that B>x̃2 = 0
and C> = (µI − A>)x̃2. Since C 6= 0 we infer that
x̃2 6= 0. With βn 6= 0, this implies that x2 = βnx̃2 6= 0
satisfies x>2 B = 0 and βnC + x>2 A = µx>2 . Defining
x1 = fn, we have x>1 B0 = βn hence x>1 A0 = µx>1 ,
x>1 B0C + x>2 A = µx>2 , and x>2 B = 0. Hence (A,B) is
not controllable. To conclude the proof, it is sufficient
to notice that if µ /∈ spA, then the condition C> ∈
R
(

(µI −A>)
∣∣
ker(B>)

)
holds true if and only if there

exists a vector x̃2 so that x̃>2 B = 0 and C = x̃>2 (µI−A),
if and only if C(µI −A)−1B = 0. 2

Remark 4 In the case of a sole reaction-diffusion PDE,
the boundary output feedback stabilization of the plant
with Robin boundary control and Dirichlet/Neumann
measurement can always be achieved. This is in part
due to the fact that the pair (A0,B0) is always control-
lable; see [26,25] for details. In sharp contrast, Lemma 3
shows that the possibility to achieve the stabilization of
the ODE-PDE cascade (2) heavily depends on struc-
tural properties of both the ODE and PDE parts of the
system. Note that, in the case that the N0 first eigenval-
ues of the reaction-diffusion PDE are not eigenvalues
of the ODE plant, the controllability condition reduces
to the fact that none of the N0 first eigenvalues of the
reaction-diffusion PDE is a zero of the ODE system.

3.4 Main stability result

Theorem 5 Let A ∈ Rnx×nx , B ∈ Rnx , and C ∈
R1×nx , θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, and r ∈ C0([0, 1]). Let q ∈ C0([0, 1]) and
qc ∈ R be such that (3) holds. Let δ > 0 and N0 ≥ 1
be such that −λn + qc < −δ for all n ≥ N0 + 1.
Assume that 1) (A,B) is controllable and (A,C) is

observable; 2) C> /∈ R
(

(µI −A>)
∣∣
ker(B>)

)
for all
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µ ∈ {−λn+ qc : 1 ≤ n ≤ N0}. Let K ∈ R1×(N0+nx) and
L ∈ R(N0+nx)×2 be such that A + BK and U − LC are
Hurwitz with eigenvalues that have a real part strictly
less than −δ < 0. For a given N ≥ N0 + 1, assume that
there exist P � 0, α > 1, and β, γ > 0 such that

Θ1 =

[
Θ1,1 PL
L>P −β

]
� 0, Θ2 ≤ 0 (11)

where Θ1,1 = F>P +PF + 2δP +αγ‖RNa‖2L2E>1 E1 +

αγ‖RNb‖2L2E>2 E2 and Θ2 = 2γ
{
−
(
1− 1

α

)
λN+1 + qc + δ

}
+

βMφ withMφ =
∑
n≥N+1

|φn(0)|2
λn

< +∞. Then there ex-
ists a constant M > 0 such that for any initial conditions
x0 ∈ Rnx , z0 ∈ H2(0, 1), x̂(0) ∈ Rnx , ẑn(0) ∈ R so that
cθ1z0(0) − sθ1z′0(0) = 0 and cθ2z0(1) + sθ2z

′
0(1) = Cx0,

the trajectories of the closed-loop system composed of the
plant (2) and the controller (10) satisfy

‖x(t)‖2 + ‖z(t, ·)‖2H1 + ‖x̂(t)‖2 +

N∑
n=1

ẑn(t)2 + u(t)2

≤Me−2δt

(
‖x0‖2 + ‖z0‖2H1 + ‖x̂(0)‖2 +

N∑
n=1

ẑn(0)2

)

for all t ≥ 0. Moreover, the constraints (11) are always
feasible for N selected large enough.

Proof. For initial conditions as in the statement of the
theorem, which ensures that w0 ∈ D(A) ⊂ D(A1/2),
the application of [33, Thm. 6.3.1 and 6.3.3] to the
closed-loop system formed by (5) and (10) shows the
existence and uniqueness of classical solutions, i.e.,
w ∈ C0([0,+∞), L2(0, 1)) ∩ C1((0,+∞), L2(0, 1)) with
w(t, ·) ∈ D(A) for all t ≥ 0. See Appendix A for de-
tails. We write a model that captures the dynamics
of the ODE and of the N0 first modes of the PDE.
Let the observation errors be defined by ex = x − x̂
and en = zn − ẑn for all 1 ≤ n ≤ N . Defining the
residue of measurement ζ =

∑
n≥N+1 wnφn(0), the er-

ror of estimation of the system outputs appearing in
(10) can be written as Cx̂(t) − yi(t) = −Cex(t) and∑N
k=1 ŵk(t)φk(0)−y(t) = −∑N

k=1 ek(t)φk(0)−ζ(t). For
N0+1 ≤ n ≤ N , we introduce the scaled quantities z̃n =

ẑn/λn and ẽn =
√
λnen. With ẐN0 =

[
ẑ1 . . . ẑN0

x̂>
]>

,

EN0 =
[
e1 . . . eN0

e>x

]>
, Z̃N−N0 =

[
z̃N0+1 . . . z̃N

]>
,

and ẼN−N0 =
[
ẽN0+1 . . . ẽN

]>
, we infer that

u(t) = KẐN0(t) (12a)

˙̂
ZN0(t) = (A + BK)ẐN0(t) + DEN0(t) (12b)

+ LyC̃1Ẽ
N−N0(t) + Lyζ(t)

ĖN0(t) = (U− LC)EN0(t)− LyC̃1Ẽ
N−N0(t)− Lyζ(t)

(12c)

˙̃ZN−N0(t) = A1Z̃
N−N0(t) + B̃1CaẐ

N0(t) + B̃1CaE
N0(t)

(12d)

˙̃EN−N0(t) = A1Ẽ
N−N0(t) (12e)

Therefore, with X = col
(
ẐN0 , EN0 , Z̃N−N0 , ẼN−N0

)
,

we deduce from (12) that

Ẋ = FX + Lζ. (13)

Finally, we observe from yi = Cx = C(x̂ + ex) =

Ca(ẐN0 + EN0) that yi = E1X and ẏi = E2X where
‖E1‖ and ‖E2‖ are constants independent of N .

We can now proceed with the stability analysis. To do so,
consider the Lyapunov functional candidate defined by
V (t) = X(t)>PX(t) + γ

∑
n≥N+1 λnwn(t)2. The com-

putation of the time derivative along (7) and (13) gives

V̇ = X>{F>P + PF}X + 2X>PLζ
+ 2γ

∑
n≥N+1

λn((−λn + qc)wn + anyi + bnẏi)wn.

Invoking Young’s inequality, using yi = E1X and ẏi =
E2X, and noting that ζ2 ≤Mφ

∑
n≥N+1 λnw

2
n, we infer

that V̇ +2δV ≤ X̃>Θ1X̃+
∑
n≥N+1 λnΓnw

2
n where X̃ =

col (X, ζ) and Γn = 2γ
{
−
(
1− 1

α

)
λn + qc + δ

}
+ βMφ.

With α > 1 we note that Γn ≤ Θ2 for all n ≥ N +
1. Hence (11) implies that V̇ + 2δV ≤ 0. The claimed
stability estimate follows from the definition of V , the
inequalities (1), the change of variable formula (4), and
the definition of the control input (12a).

The feasibility of (11) for N selected large enough is
obtained by applying the Lemma reported in Appendix
to the matrix 1 F + δI to obtain P � 0 so that F>P +
PF + 2δP = −I with ‖P‖ = O(1) as N → +∞ and by

setting α > 1, β =
√
N , and γ = 1/N . Indeed, this gives

Θ2 → −∞ when N → +∞ while the Schur complement
shows that Θ1 � 0 for N selected large enough. 2

4 ODE-PDE cascade with a long interconnec-
tion delay

4.1 Problem setting

We now focus on the control design problem of the
ODE-PDE cascade with a long interconnection delay
described by

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cx(t) (14a)

1 We use in particular the fact that ‖LyC̃1‖ = O(1) and

‖B̃1Ca‖ = O(1) as N → +∞
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zt(t, ξ) = (p(ξ)zξ(t, ξ))ξ − r(ξ)z(t, ξ) (14b)

cθ1z(t, 0)− sθ1zξ(t, 0) = 0 (14c)

cθ2z(t, 1) + sθ2zξ(t, 1) = yi,h(t) , yi(t− h) (14d)

y(t) = z(t, 0) (14e)

x(0) = x0, z(0, ξ) = z0(ξ) (14f)

yi(τ) = yi,0(τ), τ ∈ [−h, 0] (14g)

for t > 0 and ξ ∈ (0, 1). Here h > 0 denotes a delay in
the cascade interconnection. yi,0 : [−h, 0] → R stands
for the initial condition of the cascade interconnection.
All other quantities are defined in Subsection 3.1.

4.2 Spectral reduction

With the change of variable

w(t, ξ) = z(t, ξ)− ξ2

cθ2 + 2sθ2
yi,h(t), (15)

we obtain from (14) the equivalent homogeneous repre-
sentation :

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cx(t) (16a)

wt(t, ξ) = (p(ξ)wξ(t, ξ))ξ − r(ξ)w(t, ξ) (16b)

+ a(ξ)yi,h(t) + b(ξ)ẏi,h(t) (16c)

cθ1w(t, 0)− sθ1wξ(t, 0) = 0 (16d)

cθ2w(t, 1) + sθ2wξ(t, 1) = 0 (16e)

y(t) = w(t, 0) (16f)

x(0) = x0, w(0, ξ) = w0(ξ) (16g)

where w0(ξ) = z0(ξ)− ξ2

cθ2+2sθ2
yi,0(−h). Hence, we have

wn(t) = zn(t) + bnyi,h(t), n ≥ 1. (17)

The projection of (14) gives

żn(t) = (−λn + qc)zn(t) + βnyi,h(t) (18)

while the projection of (16) reads

ẇn(t) = (−λn + qc)wn(t) + anyi,h(t) + bnẏi,h(t). (19)

The Dirichlet measurement (16f) is expressed as (9).

4.3 Control strategy

Let δ > 0 be fixed. Let N0 ≥ 1 be selected so that
−λn + qc < −δ < 0 for all n ≥ N0 + 1. Let N ≥ N0 + 1
be arbitrary. Due to the interconnection delay h > 0,
the idea is to introduce x̂(t) as the estimate of the state
of the ODE at time t − h, namely x(t − h). Such an
approach follows classical procedures for the predictor-
based stabilization of output-delayed finite-dimensional

LTI systems [19, Chap. 3] and can be heuristically in-
terpreted as the transfer of the delay from the output of
the ODE to the input of the ODE. Regarding the PDE
part, we introduce ẑn(t), for 1 ≤ n ≤ N , as the estimate
of the n-th mode of the PDE at current time, namely
zn(t). Hence the observer dynamics is described by:

ŵn(t) = ẑn(t) + bnyi,h(t) (20a)

˙̂x(t) = Ax̂(t) +Bu(t− h)− Lxyi{Cx̂(t)− yi,h(t)}
(20b)

− Lxy
{

N∑
k=1

ŵk(t)φk(0)− y(t)

}
˙̂zn(t) = (−λn + qc)ẑn(t) + βnyi,h(t) (20c)

− lzyi,n{Cx̂(t)− yi,h(t)}

− lzy,n
{

N∑
k=1

ŵk(t)φk(0)− y(t)

}
, 1 ≤ n ≤ N0

˙̂zn(t) = (−λn + qc)ẑn(t) + βnyi,h(t), N0 + 1 ≤ n ≤ N
(20d)

where lzyi,n, lzy,n ∈ R and Lxyi , Lxy ∈ Rnx are the ob-
server gains. We set u(τ) = u0 for all τ ≤ 0 for some
u0 ∈ R. Note that no control is applied to the system
(14) in negative time; this definition is introduced in or-
der to make the dynamics (20) well-defined for all t ≥ 0.

In order to propose a control strategy that compensates
the interconnection delay, which appears as an input
delay of the observer dynamics (20), we introduce for
t ≥ 0 the following Artstein transformation [2]:

ẐN0

A (t) = eAhẐN0(t) +

∫ t

t−h
eA(t−s)Bu(s) ds (21)

where ẐN0 =
[
ẑ1 . . . ẑN0

x̂>
]>

while A,B are defined

in Subsection 3.3. We define the control input as

u(t) = KẐN0

A (t) (22)

for all t ≥ 0. Here K ∈ R1×(N0+nx) is the feedback gain.
The resulting closed-loop system is depicted in Fig 1.

ODE Delay h RD PDE

Controller

yi(t) = Cx(t) yi,h(t) = yi(t− h)

y(t) = z(t, 0)
u(t)

Fig. 1. Diagram of the closed-loop system with ODE = (14a),
RD PDE = (14b-14d), Controller = (20-22)

In preparation for stability analysis, we consider the ma-
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trices defined in Subsection 3.3 except that:

F =


A + BK eAhD eAhLyC̃1

0 U− LC −LyC̃1

0 0 A1

 , L =


eAhLy

−Ly
0

 ,

E1 =
[
I 0 0

]
, E2 =

[
0 I 0

]
, K̃ =

[
K 0 0

]
, and E3 =[

e−Ah(A + BK) U− LC + D 0
]
.

4.4 Main stability result

Theorem 6 Let A ∈ Rnx×nx , B ∈ Rnx , and C ∈
R1×nx , θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, and r ∈ C0([0, 1]). Let q ∈ C0([0, 1]) and
qc ∈ R be such that (3) holds. Let δ > 0 and N0 ≥ 1
be such that −λn + qc < −δ for all n ≥ N0 + 1.
Assume that 1) (A,B) is controllable and (A,C) is

observable; 2) C> /∈ R
(

(µI −A>)
∣∣
ker(B>)

)
for all

µ ∈ {−λn+ qc : 1 ≤ n ≤ N0}. Let K ∈ R1×(N0+nx) and
L ∈ R(N0+nx)×2 be such that A + BK and U − LC are
Hurwitz with eigenvalues that have a real part strictly
less than −δ < 0. Let h > 0 be given. For a given
N ≥ N0 + 1, assume that there exist P � 0, Q � 0,
α > 1, β, γ > 0, and ρ ≥ 0 such that

Θ1 =

[
Θ1,1 PL
L>P −β

]
� 0, Θ2 ≤ 0, R1 ≤ 0, R2 � 0

(23)
where

Θ1,1 = F>P + PF + 2δP + ρhK̃>K̃ + E>1 QE1

+ 3αγ‖RNa‖2L2E>2 C
>
a CaE2

+ 3αγ‖RNa‖2L2‖e−Ah‖2‖C‖2E>1 E1

+ 4αγ‖RNb‖2L2E>3 C
>
a CaE3

+ 4αγ‖RNb‖2L2(Cae
−AhB)2K̃>K̃

Θ2 = 2γ

{
−
(

1− 1

α

)
λN+1 + qc + δ

}
+ βMφ

R1 = −ρe−2δh + 3αγh‖RNa‖2L2m2
A,h‖B‖2‖C‖2

+ 4αγh‖RNb‖2L2m2
A,h‖A‖2‖B‖2‖C‖2

R2 = −e−2δhQ+ 4αγ‖RNb‖2L2(CB)2K>K

with Mφ =
∑
n≥N+1

|φn(0)|2
λn

< +∞, and mA,h =

maxτ∈[0,h] ‖e−Aτ‖. Then there exists a constant
M > 0 such that for any initial conditions x0 ∈ Rnx ,
z0 ∈ H2(0, 1), x̂(0) ∈ Rnx , ẑn(0) ∈ R, u0 ∈ R, and
yi,0 ∈ C2([−h, 0]) so that cθ1z0(0) − sθ1z

′
0(0) = 0,

cθ2z0(1) + sθ2z
′
0(1) = yi,0(−h), and yi,0(0) = Cx0, the

trajectories of the closed-loop system composed of the
plant (14) and the controller (20-22) satisfy

‖x(t)‖2 + ‖z(t, ·)‖2H1 + ‖x̂(t)‖2 +

N∑
n=1

ẑn(t)2 + u(t)2

≤Me−2δt
(
‖x0‖2 + ‖z0‖2H1 + ‖x̂(0)‖2 (24)

+

N∑
n=1

ẑn(0)2 + u20 + ‖yi,0‖2∞ + ‖ẏi,0‖2∞
)

for all t ≥ 0. Moreover, the constraints (23) are always
feasible for N selected large enough.

Proof. For initial conditions as in the statement of the
theorem, the well-posedness in terms of classical solu-
tions follows as in [28, Rem. 3.3] from [33, Thm. 6.3.1
and 6.3.3] and an induction argument for handling the
interconnection delay. We reuse the notations of the
proof of Theorem 6 except that the error of observa-
tion of the ODE is now defined for t ≥ h by ex(t) =

x(t− h)− x̂(t). Then the ẐN0 dynamics reads for t ≥ h

˙̂
ZN0(t) = AẐN0(t) + Bu(t− h) + DEN0(t)

+ LyC̃1Ẽ
N−N0(t) + Lyζ(t).

We have used that yi,h(t) = C(x̂(t) + ex(t)) for all t ≥
h. In view of the Artstein transformation (21) and the
feedback (22), we infer that

˙̂
ZN0

A (t) = (A + BK)ẐN0

A (t) + eAhDEN0(t) (25)

+ eAhLyC̃1Ẽ
N−N0(t) + eAhLyζ(t)

for t ≥ h. The dynamics of Z̃N−N0 reads

˙̃ZN−N0(t) = A1Z̃
N−N0(t) + B̃1yi,h(t), ∀t ≥ 0

= A1Z̃
N−N0(t) + B̃1CaẐ

N0(t) + B̃1CaE
N0(t), ∀t ≥ h

(26)

Finally, the dynamics of the estimation errors EN0 and
ẼN−N0 are given by (12c) for t ≥ h and (12e) for t ≥ 0,
respectively. Hence, introducing the vector defined by

X = col
(
ẐN0

A , EN0 , ẼN−N0

)
, (27)

we obtain from (12c), (12e), and (25) that

Ẋ(t) = FX(t) + Lζ(t) (28)

for all t ≥ h. We also have

ẐN0

A = E1X, EN0 = E2X, u = K̃X. (29)

We can now proceed with the stability analysis. Let
V (t) = V0(t) + V1(t) + V2(t) be defined for t ≥ h by

V0(t) = X(t)>PX(t) + γ
∑

n≥N+1

λnwn(t)2, (30a)
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V1(t) = ρ

∫ 0

−h

∫ t

t+θ

e−2δ(t−s)|u(s)|2 dsdθ, (30b)

V2(t) =

∫ t

t−h
e−2δ(t−s)ẐN0

A (s)>QẐN0

A (s) ds. (30c)

Introducing X̃ = col (X, ζ), the computation of the time
derivative of V along the system trajectories (19) and
(28), and the use of Young’s inequality, give

V̇0 = X>{F>P + PF}X + 2X>PLζ
+ 2γ

∑
n≥N+1

λn((−λn + qc)wn + anyi,h + bnẏi,h)wn

≤ X̃>
[
F>P + PF PL
L>P 0

]
X̃ (31)

+ 2γ
∑

n≥N+1

λn

{
−
(

1− 1

α

)
λn + qc

}
w2
n

+ αγ‖RNa‖2L2 |yi,h|2 + αγ‖RNb‖2L2 |ẏi,h|2,

V̇1(t) = −2δV1(t) + ρh|u(t)|2 − ρ
∫ 0

−h
e2δθ|u(t+ θ)|2 dθ

≤ −2δV1(t) + ρhX(t)>K̃>K̃X(t) (32)

− ρe−2δh
∫ t

t−h
|u(s)|2 ds,

V̇2(t) = −2δV2(t) + ẐN0

A (t)>QẐN0

A (t) (33)

− e−2δhẐN0

A (t− h)>QẐN0

A (t− h).

We now need to evaluate |yi,h(t)|2 and |ẏi,h(t)|2 appear-
ing in (31). We have yi,h(t) = Cx(t − h) = C(x̂(t) +

ex(t)) = Ca(ẐN0(t) +EN0(t)) = CaẐ
N0(t) +CaE2X(t)

for all t ≥ h, where we have used (29). Recalling
that mA,h = maxτ∈[0,h] ‖e−Aτ‖, we infer from (21)

and using Cauchy-Schwarz inequality that ‖ẐN0(t)‖ ≤
‖e−Ah‖‖ẐN0

A (t)‖ + mA,h‖B‖
√
h
{∫ t

t−h |u(s)|2 ds
}1/2

.

Using again (29) we infer that

|yi,h(t)|2 ≤ 3‖e−Ah‖2‖C‖2X(t)>E>1 E1X(t) (34)

+ 3hm2
A,h‖B‖2‖C‖2

∫ t

t−h
|u(s)|2 ds

+ 3X(t)>E>2 C
>
a CaE2X(t)

for all t ≥ h. We also have ẏi,h(t) = Ca(
˙̂
ZN0(t)+ĖN0(t))

for t > h. In view of the Artstein transforma-

tion (21), we obtain that
˙̂
ZN0(t) = e−Ah

˙̂
ZN0

A (t) −
A
∫ t
t−h e

A(t−s−h)Bu(s) ds − e−AhBu(t) + Bu(t − h).

Based on (22) and (29), and using e−Ah
˙̂
ZN0

A (t) +

ĖN0(t) = E3X(t) for all t > h, we deduce that

|ẏi,h(t)|2 ≤ 4X(t)>E>3 C
>
a CaE3X(t) (35)

+ 4hm2
A,h‖A‖2‖B‖2‖C‖2

∫ t

t−h
|u(s)|2 ds

+ 4(Cae
−AhB)2X(t)>K̃>K̃X(t)

+ 4(CB)2ẐN0

A (t− h)>K>KẐN0

A (t− h)

for all t > h. Combining now (31-35) and using the
estimate ζ2 ≤Mφ

∑
n≥N+1 λnw

2
n, we infer that

V̇ (t) + 2δV (t) ≤ X̃(t)>Θ1X̃(t) +
∑

n≥N+1

λnΓnwn(t)2

+R1

∫ t

t−h
|u(s)|2 ds+ ẐN0

A (t− h)>R2Ẑ
N0

A (t− h)

where Γn = 2γ
{
−
(
1− 1

α

)
λn + qc + δ

}
+ βMφ for t >

h. With α > 1 we note that Γn ≤ Θ2 for all n ≥ N + 1.
Hence (23) implies that V̇ (t) + 2δV (t) ≤ 0 for all t > h.
This shows that V (t) ≤ e−2δ(t−h)V (h) for all t ≥ h. De-
noting by CI = ‖x0‖2 +

∑
n≥1 λnwn(0)2 + ‖x̂(0)‖2 +∑N

n=1 ẑn(0)2 +u20 + ‖yi,0‖2∞+ ‖ẏi,0‖2∞, standard results
[33, Thm. 6.3.3] show the existence of a constant c1 > 0,
independent of the initial conditions, so that ‖x(t)‖2 +∑
n≥1 λnwn(t)2 + ‖x̂(t)‖2 +

∑N
n=1 ẑn(t)2 ≤ c1CI for all

t ∈ [0, h]. Based on the definition of V given by (30) and
(21-22), we obtain the existence of a constant c2 > 0, in-
dependent of the initial conditions, so that V (h) ≤ c2CI
hence V (t) ≤ c2e

−2δ(t−h)CI for all t ≥ h. From (27)
and using the definition of the Artstein transformation
(21) along with the input (22), we obtain the existence
of a constant c3 > 0, independent of the initial condi-
tions, so that ‖ẐN0(t)‖2 + ‖EN0(t)‖2 ≤ c3e

−2δ(t−h)CI
for all t ≥ h. In view of (26) and recalling that the
eigenvalues of A1 are given by −λn + qc < −δ < 0 for
N0 + 1 ≤ n ≤ N , we infer the existence of a constant
c4 > 0, independent of the initial conditions, so that
‖Z̃N−N0(t)‖2 ≤ c4e

−2δtCI for all t ≥ h. Combining to-
gether all the above estimates, the stability estimate (24)
is now a direct consequence of the inequalities (1), the
change of variable (15), and the control input (22).

It remains to show that (23) is feasible provided the or-
der N of the observer is selected large enough. Let α > 1
be arbitrarily. For any given N ≥ N0 +1 we fix γ = 1/N

and β =
√
N . Due to the upper triangular nature of F

and since ‖eAhLyC̃1‖ = O(1) and ‖LyC̃1‖ = O(1) as
N → +∞, an argument similar to the Lemma reported
in the Appendix applied to the matrix F + δI shows the
existence of P � 0 such that F>P + PF + 2δP = −I
with ‖P‖ = O(1) as N → +∞. We finally define
Q = 4e2δhαγ‖RNb‖2L2(CB)2K>K � 0 and ρ =

e2δhαγh
(
3‖RNa‖2L2 + 4‖RNb‖2L2‖A‖2

)
m2

A,h‖B‖2‖C‖2 ≥
0. Hence, we haveR1 = 0 andR2 = 0 for allN ≥ N0+1.
Moreover we have Θ2 → −∞ as N → +∞. Finally,
noting that all the matrices involved in the definition of
Θ11 are bounded in norm as N → +∞, we observe that
Θ11 � − 1

2I for N selected large enough. Since P and L
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are bounded in norm as N → +∞, the Schur comple-
ment gives Θ1 � 0 for N selected large enough. 2

Remark 7 The Z̃N−N0 dynamics (26) is not included
in reduced model (28). The reason is that this dynamics

involves ẐN0(t) which cannot be expressed based on the

sole vector ẐN0

A (t) at time t. Hence (26) is considered
separately in the stability analysis. Note that a similar
procedure could have been applied in the proof of Theo-
rem 5. However, the approach developed in the proof of
Theorem 5 is more general as it provides a Lyapunov
functional for the full system dynamics (it can be used,
e.g., to study robustness properties).

5 Numerical example

We consider the delayed ODE-reaction-diffusion
PDE cascade described by either (2) or (14) with

A =

[
3/2 1

1/2 2/3

]
, B =

[
1/2

1

]
, C =

[
3/4 1/3

]
,

p = 1, r = −5, θ1 = π/3, and θ2 = 0. With
these parameters, both open-loop ODE and PDE
are open-loop unstable. We set the feedback gains

K =
[
−21.2455 −5.9072 −8.2153

]
and the observer

gain L =

[
3.1778 −0.0946 0.4047

0.0239 0.6971 19.9290

]>
in order to guar-

antee the exponential decay rate δ = 0.5.

For the ODE-PDE cascade (2), the constraints (11) of
Theorem 5 are found feasible for N = 3 using Matlab
LMI solvers. This ensures the exponential stability of the
closed-loop system composed of the plant (2) and the
controller given by (10). Considering now the ODE-PDE
cascade with interconnection delay h = 0.5 s described
by (14), the constraints (23) are found feasible forN = 7.
Hence Theorem 6 ensures the exponential stability of
the closed-loop system composed of the plant (14) and
the controller described by (20-22) in the sense of (24).

We illustrate with numerical simulations the case of the
delayed interconnection (14). The adopted numerical
scheme consists of the modal approximation of the PDE
using its first 20 dominant modes while the predictor
feedback (21) is implemented using a Riemann sum ap-
proximation of the integral with a time-step of 1ms. We

set x0 =
[
3 −5

]>
, z0(x) = 50x2(x−1)2+c0x

2 with c0 =

Cx0 = 7/12, yi,0(τ) = 3 cos(10π(h+τ)) sin(3πτ)+c0 for
τ ≤ 0, and zero initial condition for the observer. The
evolution of the closed-loop system is depicted in Fig. 2.

6 Conclusion

This paper has addressed the output feedback stabiliza-
tion of an ODE-Reaction-Diffusion PDE cascade. Using
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Fig. 2. Closed-loop system composed of the plant (14) and
the controller (20-22) with interconnection delay h = 0.5 s

the output of the both ODE and PDE parts, we designed
a finite-dimensional control strategy achieving the expo-
nential stabilization of the plant. This control strategy
was augmented with a predictor component to embrace
the case of an arbitrarily long interconnection delay be-
tween the ODE and the PDE. While we considered the
case of a Dirichlet boundary measurement, our approach
extends to the case of a Neumann boundary measure-
ment by adapting the arguments from [25]. Future works
may deal with the extension of the approach to the case
where only the output of the PDE is available for feed-
back control or to the case of time-varying delays.
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A Well-posedness assessment

With Xc =
[
x̂> ẑ1 ẑ2 . . . ẑN

]>
∈ Rnx+N , the con-

troller dynamics (10) takes the form: Ẋc = AcXc +
Bc,1u+Bc,2yi+Bc,3y and u = CcXc for suitable real ma-
tricesAc, Bc,1, Bc,2, Bc,3, Cc. Using (3), the plant (5) can
be written as ẋ = Ax+Bu and wt = −Aw+qcw+ayi+
bẏi where yi = Cx and ẏi = Cẋ = CAx+CBu. Let the
Hilbert spaceH = L2(0, 1)×Rnx×Rnx+N and the state
vector X = (w, x,Xc). Then, the closed-loop system
formed by (5) and (10) reads dX

dt = −AeX+LeX where

Ae = diag(A, I, I) with D(Ae) = D(A)×Rnx ×Rnx+N
while Le = Le,1 + Le,2 is a linear operator with Le,1 :
H → H a bounded linear operator defined by

Le,1(w, x,Xc) =


qcw + aCx+ bCAx+ bCBCcXc

(I +A)x+BCcXc

(I +Ac)Xc +Bc,1CcXc +Bc,2Cx


and Le,2 :

(
D(A1/2)× Rnx × Rnx+N

)
→ H defined by

Le,2(w, x,Xc) = (0, 0, Bc,3w(0)). From Subsection 2.2,
it is seen that−Ae is the generator a diagonal semigroup
Te(t) which is analytic and satisfies ‖Te(t)‖ ≤ 1 for all
t ≥ 0 while 0 ∈ ρ(−Ae); see, e.g., [12, Sec. 2.3]. We infer
from w(0) =

∑
n≥1 〈w, φn〉φn(0) and Cauchy-Schwarz

inequality the existence of a constant c > 0 so that
‖Le,2(w, x,Xc)‖ ≤ c‖A1/2w‖, hence ‖Le(w, x,Xc)‖ ≤(
‖Le,1‖‖A−1/2e ‖+ c

)
‖A1/2

e (w, x,Xc)‖. This allows the

application of [33, Thm. 6.3.1 and 6.3.3] for initial con-
ditions w0 ∈ D(A1/2), x0 ∈ Rnx , and Xc(0) ∈ Rnx+N .

B Technical lemma

The following Lemma is a direct extension of [25, An-
nex A] to the case MN

32 6= 0.

Lemma 8 Let n,m,N ≥ 1, M11 ∈ Rn×n and
M22 ∈ Rm×m Hurwitz, M12 ∈ Rn×m, MN

14 ∈ Rn×N ,
MN

24 ∈ Rm×N ,MN
31 ∈ RN×n,MN

32 ∈ RN×m,MN
33,M

N
44 ∈

RN×N , and

FN =


M11 M12 0 MN

14

0 M22 0 MN
24

MN
31 M

N
32 M

N
33 0

0 0 0 MN
44

 .

We assume that there exist constantsC0, κ0 > 0 such that

‖eMN
33t‖ ≤ C0e

−κ0t and ‖eMN
44t‖ ≤ C0e

−κ0t for all t ≥ 0
and all N ≥ 1. Moreover, we assume that there exists a
constant C1 > 0 such that ‖MN

14‖ ≤ C1, ‖MN
24‖ ≤ C1,

‖MN
31‖ ≤ C1 , and ‖MN

32‖ ≤ C1 for allN ≥ 1. Then there
exists a constant C2 > 0 such that, for any N ≥ 1, there
exists a symmetric matrix PN ∈ Rn+m+2N with PN � 0
such that (FN )>PN + PNFN = −I and ‖PN‖ ≤ C2.
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