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Abstract  13	
Amino acids evolve at different speeds within protein sequences, because their functional 14	
and structural roles are different. However, the position of an amino-acid within the sequence 15	
is not known to influence this evolutionary speed. Here we discovered that amino-acid evolve 16	
almost twice faster at protein termini than in their centre, hinting at a strong topological bias 17	
along the sequence length. We further show that the distribution of functional domains and of 18	
solvent-accessible residues in proteins readily explain how functional constrains are weaker 19	
at their termini, leading to the observed excess of amino-acid substitutions. Finally, we show 20	
that methods inferring sites under positive selection are strongly biased towards protein 21	
termini, suggesting that they may confound positive selection with weak negative selection. 22	
These results suggest that accounting for positional information should improve evolutionary 23	
models.  24	
 25	
 26	
Main text 27	
Rates of evolution vary greatly between protein-coding gene families, for example in 28	
correlation with their expression levels (1, 2), their function (3) or with translational selection 29	
(4) effects. Within a given gene family, molecular rates of evolution can also vary within 30	
lineages (5) and between lineages (6). Within proteins themselves, rate heterogeneity among 31	
amino-acid sites is influenced by their implication in functional domains and by structural 32	
constraints in the folded protein (7). Accounting for such heterogeneity in evolutionary 33	
models is critical to accurately infer phylogenies and estimate cases of positive selection, 34	
and elaborate models have been developed to achieve this (8), generally by estimating site-35	
specific rates in a maximum likelihood framework employing Markov models of sequence 36	
evolution (9–11).  37	
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Surprisingly, the impact of the position of a given amino-acid in the sequence relative to the 38	
protein start and end on the rate of molecular evolution has not yet been investigated. To 39	
address this question, we measured the rates of amino-acid changing substitutions (non-40	
synonymous, dN) and silent substitutions (synonymous, dS) at individual codons positions 41	
and average them over thousands of CDS sequences. Specifically, we computed multiple 42	
sequence alignments (MSA) of CDS from 16,810 primate gene families to identify fixed 43	
mutations (substitutions, insertions and deletions) that took place in these sequences during 44	
the evolution of 26 primate species. The results show a strong excess of such changes 45	
towards the sequence extremities (Fig. 1A), leading to a distinctive U-shaped pattern. 46	
Looking further into substitutions at each individual codon position, we computed position-47	
specific codon average evolutionary rates (Fig. S1) to examine separately the dN and the dS. 48	
While the dS remains remarkably constant along the CDS length (average dS=0.052), the dN 49	
increases significantly in the region spanning the first and last 50 codons (Fig. 1B). We 50	
observe a similar bias when computing dN and dS along the CDS of 7,513 plant (Fabids) 51	
gene families, which were subjected to an approximately 8-fold higher divergence rate than 52	
primates (Fig. 1C). In summary, the dN appears to be driving the distinctive U-shaped 53	
pattern of total substitutions and dN/dS in gene coding sequences (Fig. 1D).  54	
 55	
 56	
 57	
 58	
 59	
 60	
 61	
 62	
 63	
 64	
 65	
 66	
Fig. 1. (A). Frequency of amino acid substitutions, insertion and deletions computed in 16,810 67	
primate multiple sequence (CDS) alignments (MSA), rescaled from 0 to 100% of the coding 68	
sequence length. (B). Distribution of silent (dS) and non-synonymous (dN) substitution rates 69	
computed at each codon position from random pairs of sequences sampled from 16,248 70	
primate MSA without alignment gaps and shown here for the first 50 codons (left panel), the 71	
central 50 codons (middle panel) and the last 50 codons (right panel). (C). Same as in B but 72	
for pairs of CDS sampled from 7,513 plant MSA. (D). The distribution of dN/dS ratio for dN and 73	
dS values shown in B but across the entire CDS length rescaled from 0 to 100%. In all panels 74	
the shaded the area represents the 95% confidence interval.  75	
 76	
 77	
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Computing substitutions in a multiple alignment of coding sequences is a multi-step process, 78	
with many potential sources of technical biases which could potentially explain this pattern 79	
(12, 13). We conducted a series of experiments to exclude annotation errors, multiple 80	
alignment artefacts and compositional biases (Supplementary material, Fig. S2), showing 81	
that our observations are robust to controls designed to address possible technical artefacts 82	
in the process from CDS annotation to substitution calculations.	83	
We next examined biological or evolutionary explanations. We eliminated the possibility that 84	
a stronger mutation rate at CDS extremities would fuel the increased dN because the dS, 85	
which would be much more sensitive to the mutation rate, is essentially constant along CDS 86	
length (Fig. 1B,C). We next reasoned that a weaker negative selection at protein termini 87	
might be caused by weaker functional constraints. Predicted protein domains capture a large 88	
fraction of amino acids involved in structural and functional roles in protein sequences, and 89	
their prediction relies on sequence similarity and structural information (14). Both of these 90	
features make them good proxies for sites under evolutionary constraints. We computed the 91	
distribution of protein domains predicted by different methods along the 12,067 human 92	
protein sequences involved in our set of primate gene families, and we show that domains 93	
are strongly depleted at protein edges (Fig. 2A and fig. S3A-C). This dome-like shape is 94	
caused by the lower probability of domains overlapping amino acids immediately adjacent to 95	
these termini, since they cannot physically overlap the termini themselves. The distribution of 96	
domains decreases sharply towards protein edges regardless of the length of the protein 97	
sequences (Fig. S3D-E), supporting a scenario where all proteins are similarly affected by a 98	
deficit of domain-induced negative constraints at their edges. The dome-shaped distribution 99	
of domains mirrors the distinctive U-shaped distribution of the dN/dS ratio (Fig. 1A), 100	
consistent with our initial hypothesis that a depletion of domains at the edges of proteins 101	
would make them more permissive to non-synonymous changes and indels because of 102	
weaker selective constraints. To test this more directly, we distinguished codons that code 103	
for amino acids involved in a domain from those that do not, and computed the dN/dS for 104	
each category separately (Fig. 2B). In line with the above expectation, the dN/dS bias 105	
disappears when computed exclusively inside domains. Again, the difference in dN/dS 106	
behaviour is largely caused by the dN, since the dS remains constant both inside and outside 107	
of domains and is almost identical in both categories throughout the protein lengths (Fig. S4). 108	
These results strongly support a model in which selective constraints are significantly weaker 109	
at protein edges. 110	
We next investigated how structural constrains, or lack thereof, may also influence 111	
evolutionary rates at protein termini. A protein sequence is folded in space through both local 112	
and distant amino-acid interactions. Amino acids which are free of those interactions are 113	
conversely accessible to solvents, and typically found on the surface of the folded protein.  114	
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Fig. 2. (A) The distribution of protein domains from the PFAM database in 12,067 human 139	
proteins rescaled from 0-100% of their length (blue line). The red line shows the distribution of 140	
the same domains in random non-overlapping positions in the same sequences. (B) dN/dS 141	
computed in 16,248 alignments of at least 2 CDS sequences from 26 primate genomes, where 142	
sites inside (dark red line) and outside (green line) PFAM domains are distinguished. (C) The 143	
distribution of frequency of amino acids with high (blue line) and low (red line) Relative Solvent 144	
Accessibility (RSA) computed by pCASA on 3D structure predicted by AlphaFold on 23,391 145	
human protein sequences, rescaled to 0-100% of the length. (D) dN/dS computed on 7,614 146	
sequences common to the AlphaFold and Ensembl primate CDS datasets, where sites with 147	
high (green line) and low (dark red line) RSA are distinguished. (E) Proposed model were the 148	
mean dN/dS in domains and in highly accessible regions (RSA > 0.7) are weighted according 149	
respectively to the percent of codons overlapping domains and residues with RSA > 0.7. The 150	
Mean Absolute Error (MAE) and percent average error are indicated for each panel. In all 151	
panels the shaded the area represents the 95% confidence interval. 152	
 153	
 154	
 155	
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Because such structural interactions are linked to the function of a protein, it is well-156	
established that evolutionary rates differ between residues depending on their solvent 157	
accessibility(15–17). The precise relationship between solvent accessibility, evolutionary 158	
rates and amino-acid position along the sequence has however never been ascertained, 159	
mostly because N- and C-terminal regions of proteins are often removed to facilitate 160	
crystallisation prior to structure solving, or are generally poorly resolved in electron density 161	
maps. To circumvent this issue, we analysed 23,391 structures predicted by Alphafold (18) 162	
on complete human protein sequence to compute the relative solvent accessibility (RSA) of 163	
each residue (Fig. S5A). We note that RSA values follow a bimodal distribution with a 164	
distinctive peak above 0.7 depleted in residues included in protein domains. Conversely, 165	
residues with RSA below 0.3 are enriched in functional domains. We took residues from 166	
these two extremes categories to compute their distribution along protein sequences, and we 167	
find that solvent accessibility increases sharply at protein termini, consistent with weak 168	
structural constraints in these regions (Fig. 2C). Critically, the dN/dS rate is low and constant 169	
along protein length in sites with low accessibility, while it is high in highly accessible regions 170	
(Fig. 2D). In both categories, the marked increase in dN/dS at sequence extremities shown in 171	
Figure 1 is absent, indicating that solvent accessibility is likely a strong marker of the 172	
decrease in selective pressure observed in the N- and C-terminal region of proteins.  173	
Because both functional domains and RSA seem to drive dN/dS variation at protein termini, 174	
we applied a model where the average dN/dS at a given residue is the sum of the average 175	
dN/dS in domains and in high RSA (RSA > 0.7), each weighted by the proportion of residues 176	
in their category (Supplementary Material). The model reproduces the observed dN/dS with 177	
remarkable accuracy in human proteins (mean difference = 5.9%, Fig. 2E), suggesting that 178	
functional domains and RSA are two variable that are sufficient to explain the bias in average 179	
dN/dS along proteins sequences. The slight asymmetry in dN/dS bias between N- and C-180	
termini observed in the model, reminiscent of the asymmetry observed in Figure 1B, largely 181	
disappears when we remove the 15.8% of proteins labelled with a signal peptide at the N-182	
terminus (Fig. S5B). Signal peptide, which are known to be highly variable in sequence (19) 183	
are therefore likely to provide additional relief from the evolutionary pressure measured in 184	
this region. 185	
The dN/dS bias at protein ends is measurable by averaging thousands of sites at any given 186	
position. Is it also significant at the level of individual sequence alignments? This is important 187	
if evolutionary models applied to single gene families are likely to be affected. To address 188	
this, we computed a correlation between codon position and dN/dS for 12,322 multiple 189	
sequence alignments, separately for the 50 codons at beginning and at the end of coding 190	
sequences (Fig. 3A).  191	
 192	
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Figure 3. (A) Distribution of Pearson correlation coefficients between dN/dS values and their 217	
position in mouse CDS from 12,322 alignments of 5 to 20 rodent sequences. Positions are 218	
either the first 50 (filled blue bars) or the last 50 (filled pink bars) codons. The blue line shows 219	
the distribution for the first and last 50 codons in the same mouse sequences but where their 220	
positions were randomized. (B) Distribution of the frequency of sites under positive selection 221	
in 12,170 rodent CDS rescaled to 0-100% of their length (C) Distribution of the frequency of 222	
sites under positive selection in the first, middle and last 50 codons of 12,170 rodent CDS, 223	
distinguishing sites inside (blue line) and outside (red line) PFAM domains. (D) Distribution of 224	
the frequency of sites under positive selection in the first, middle and last 50 codons of 5,893 225	
rodent CDS, distinguishing sites with high (red line) and low (blue line) RSA. 226	
 227	
 228	
Compared to a control where amino-acid positions are randomised, the distribution of 229	
correlations are significantly shifted towards negative (p-value=8.10-80; t-test) and positive (p-230	
value = 6.10-46; t-test) values for the start and end regions of coding sequences, respectively. 231	
This reflects the existence of a measurable increase in dN/dS towards CDS edges, even in 232	
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individual sequences. We propose that this pattern is caused by the same factors as for the 233	
average sequences analysed previously (Fig. 1B), respectively the biased domain 234	
distribution and solvent accessibility.  235	
These results immediately raise questions for the identification of positive selection in proteins 236	
sequences, because a significantly elevated dN compared to some background rate is 237	
generally taken as evidence of adaptive changes (20). The U-shaped bias in dN observed in 238	
our study suggests that relaxation of constraints at protein edges might confound tests of 239	
positive selection. To investigate this, we estimated sites under positive selection in a set of 240	
12,170 Rodent gene trees using a site model (methods). We found that sites estimated under 241	
positive selection are strikingly enriched at protein edges (Fig. 3B), and that this enrichment is 242	
specifically attributed to sites located outside of functional domains (Fig. 3C) and to residues 243	
with high solvent accessibility (Figure 3D). Notably, the same bias towards coding sequence 244	
extremities can be observed in several recent published scans for positive selection (Figure 245	
S6). Interestingly, while this bias is conspicuous for sites estimated to have been subject to 246	
positive selection using bioinformatic methods, it is not the case for experimentally verified 247	
sites, although our compilation of cases for this category is too small to draw general 248	
conclusions.  249	
We reveal a pattern of evolutionary rate along coding sequences that has so far remained 250	
concealed: the average amino acid substitution rate (dN) increases towards the extremities of 251	
the sequence. We found this pattern by assembling observations that were sometimes known 252	
quantitively or intuitively in the field but never connected with respect to codon or amino-acid 253	
positions in sequences. This patterns provide insights into the elusive mechanism driving 254	
evolutionary rate heterogeneities (7). First noted by Perutz and colleagues on haemoglobin 255	
(21) and confirmed by many studies since, protein surfaces evolve faster than their interior, 256	
where structural constraints, residue interactions and functional sites are most enriched and 257	
solvent accessibility is very low (15, 16). Attempts at explaining evolutionary rate heterogeneity 258	
have thus mainly focused on this paradigm, that structural constraints governed by complex 259	
spatial interactions create a range of selective pressures on amino acids, but these are still 260	
hard to predict from the sequence itself.  261	
We note that in the present study molecular rates are not dependent on a substitution model, 262	
as they do not rely on ancestral state inferences in coding sequences, and molecular rates are 263	
computed on MSA without gaps, which are known to introduce biases. Also, our finding that 264	
the average dS is constant along CDS length (Figs. 1B, 1C) should not be interpreted as 265	
meaning that dS does not vary or is not subject to site heterogeneity in individual genes, as 266	
this has been shown in many studies (22).  267	
If protein termini are under lower evolutionary pressure, why are they not cropped by micro-268	
deletions in the course of evolution? The example of signal peptides, but also of amino-acids 269	
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carrying specific epigenetic marks (e.g. methyl or acetyl groups) in histones, illustrate why 270	
maintaining structurally flexible regions may be functionally important. 271	
Methods designed to identify positive selection are sensitive to false positives, potentially 272	
caused by factors such as variable effective population size (23), biased gene-conversion 273	
(24), multi-nucleotide mutations (25) and punctual relaxation of selective pressure in a 274	
lineage (5, 26). Here we show that sites inferred as having experienced a period of positive 275	
selection are conspicuously enriched in regions with high dN caused by low selective 276	
pressure, suggesting that they may contain a high proportion of false positives. This is 277	
consistent with the observation that experimentally tested positively selected sites are, on the 278	
contrary, depleted at sequence extremities. Of note, we observed that the synonymous rate 279	
dS is constant along protein length, thus providing little leverage for background model 280	
adjustments to counteract this effect in statistical tests of positive selection. Considering the 281	
excess of positive selection inferences at protein extremities as false positives would also be 282	
consistent  with expectations that selection for advantageous traits would operate 283	
predominantly where functional domains and structural constraints are most frequent, i.e. 284	
away from the extremities (27). It has also been previously shown that non-adaptive changes 285	
as well as positively selected sites are significantly enriched on the surface of proteins where 286	
solvent accessibility is high, emphasizing the difficulty in distinguishing them in these regions 287	
(17).  Altogether, we propose that intervals between functional domains display a neutrally 288	
evolving size and weaker structural constraints, largely causing lower selective pressure at 289	
protein termini. Accounting for this bias in models of molecular evolution should improve their 290	
handling of site heterogeneity and accuracy of adaptive evolution inference.  291	
 292	

 293	
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