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COMPARISON OF SEVERAL COMPLETE CUBIC LAWS FOR TWO-PHASE

FLOW MODELS ∗

Gloria Faccanoni1 and Bérénice Grec2

Abstract. In the present paper, we investigate several cubic equations of state widely used in the

literature, for which we are able to construct analytically the complete law. In order to describe two-

phase flows, we use Maxwell’s construction, which amounts to consider pure phases and a mixture zone

at saturation. The parameters appearing in the different equations of state are fitted in order to be

precise in the saturation zone at high pressures. The different laws are then compared in a large range

of pressures, showing the best accuracy of Clausius equation of state.

1. Introduction

In order to describe the dynamical evolution of a fluid, the physical models stem from the principles of
conservation of mass, momentum and energy. To obtain a complete description, these conservation laws must be
supplemented with constitutive relations characterizing the material properties of the fluid. The thermodynamic
properties of a material are given in a relation called Equation of State (EoS). Thermodynamic considerations
imposes mathematical constraints on the admissible EoS.

Many attempts have been made to describe the thermodynamic behavior of fluids, predicting their physical
properties under given conditions. Therefore, many forms of equations of state have been presented in the
literature. There are two main approaches: either find an analytical EoS, or use tabulated values to construct
an EoS (for example the IAPWS relations [26] for water). Of course, the main advantage of the second approach
is that such EoS are capable of expressing fluid thermodynamic properties very precisely, but the non-analytically
defined EoS require time-consuming computations. As far as the first approach is concerned, a huge literature
exists, trying to find a good compromise between the simplicity of the EoS (related to the number of parameters
it involves) and the precision of such EoS.

An (incomplete) EoS is a thermodynamic expression that relates pressure (p), temperature (T ), and specific
volume (τ). The easiest EoS is the ideal gas law pτ = rT , which is satisfactory for gases at low pressures.
However, the application of the ideal gas law at higher pressures may lead to very big errors. Indeed, real gases
behave differently than ideal gases, since the ideal gas law was derived under the assumption that the molecular
volume tends to zero and neither molecular attraction nor repulsion exists between them.

Later, cubic equations of state (CEoS) have been introduced, taking into account both attraction and repul-
sion effects. These CEoS happen to give reasonable results for the thermodynamic behavior of real fluids. In
1873 Van der Waals [25] made one of the earliest attempts to describe the behavior of real gases by an analytical
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CEoS p = rT/(τ − b) − a/τ2. The repulsion pressure is described by the term rT/(τ − b), and the attraction
pressure by a/τ2. In this equation, a is a measure of the intermolecular attractive forces between the molecules,
and b is known as the co-volume (linked to the volume of molecules). The values of both parameters can be ob-
tained from the critical properties of the fluid. Despite its simplicity, the Van der Waals EoS correctly describe
the behavior of fluids in both liquid and gaseous phases. However, it is not accurate enough to be useful for
design purposes. Other researchers began attempts to improve Van der Waals EoS. A usual approach consists
in adapting the molecular attraction term a/τ2. In 1880, Clausius [3] suggested that the molecular attraction
term was inversely proportional to temperature, leading to the relation p = rT/(τ − b) − a/(T (τ + δ)2). The
addition of a new constant δ enabled better agreement with data. However, the mathematical manipulations
required for thermodynamic calculations were more difficult. So Berthelot, in 1899 [2], removed this additional
constant, assuming δ = 0. Another important modification of the Van der Waals EoS is the Redlich-Kwong one
in 1949 [23], where the attraction pressure term was replaced with a generalized temperature-dependent term
p = rT/(τ − b) − a/(

√
Tτ(τ + b)). This idea led to many improvements. A particular important one in the

literature is the one by Soave [24], who replaced the term (a/
√
T ) by a more general temperature-dependent

term, denoted by aα(T ), with α(T ) = (1 + m(1 −
√
T ))2. In this relation, T is the reduced temperature and

the parameter m is correlated to the centric factor.
In this work, we shall only focus on some CEoS, presenting the main features of the improvements we men-

tioned with very few parameters. However, note that following these founding papers, thousands of variations
of CEoS have been proposed in the literature, involving many other parameters, see e.g. overview papers [6,
11, 16, 27].

As indicated before, equations of state are used to describe the behavior of fluids coupled with PDE models.
From the thermodynamic considerations used to derive an EoS, it is classical to write it under the form (τ, T ) 7→
p(τ, T ). However, in order to describe all thermodynamic variables, one needs to construct another relation, for
instance the one giving the specific internal energy e under the form (τ, T ) 7→ e(τ, T ) [9, 22]. Such a relation
has to be derived following standard thermodynamic principles, and might involve some new modeling choices.
This allows to define a so-called complete EoS. Note that, depending on the nature of the PDE, several choices
of thermodynamic variables can be made. In Computational Fluid Dynamics (CFD), it is usual to use other
thermodynamic functions than e(τ, T ), which requires to invert the complete EoS. In compressible models, the
conservation laws lead to express p(τ, e), whereas in low Mach number models, where the pressure is almost
constant, the EoS is expressed as T (τ, p) or in terms of enthalpy h(τ, p). In practice, despite the wide variety
of existing CEoS, only few are used in CFD, due to the difficulty of the EoS completion. For more references
on the mathematical analysis of CEoS and their use in PDE, we refer e.g. to [4, 12, 20–22].

CEoS aim at describing correctly a fluid behavior in both liquid and gaseous phases, and could therefore be
used as a single EoS in order to take into account two-phase flows and phase transition. However, this approach
leads to non physical regions, since in the coexistence zone of the two phases, the pressure is increasing along
an isotherme curve. In this work, in order to account for phase change phenomena, the EoS is modified thanks
to Maxwell’s construction [19]. Note that, for the specific construction needed in the mixture zone (where both
phases are present), other approaches based on one EoS per phase exist [9]. Maxwell’s construction allows,
from an equation of state representing both the liquid and gaseous states of a pure body, to compute the
so-called dome at saturation, where both phases are present, and the (constant) pressure at which the phase
transition occurs at a given temperature. Observe that, although the CEoS are given under an analytical form,
Maxwell’s construction is not analytical, and the boundaries of the coexistence zone and the saturation pressure
(or temperature) have to be approximated numerically.

As any analytical law, (incomplete) CEoS involve some parameters, which have to be fitted. As we already
mentioned, we focus on simple CEoS, for which the number of parameters remain small (up to 4). Since no
choice of parameters allows to be precise for any values of the thermodynamic variables, the fitting of the
parameters is done in order for the EoS to be precise in some pressure range. Since a CEoS describe both liquid
and gaseous phases, only one set of parameters is used for both phases, which allows Maxwell’s construction
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of the coexistence zone. To this end, it is natural to use the critical point (at which both phases coexist) as a
reference experimental value for the fitting [6, 19].

By computing analytically the critical point of the CEoS, three relations between the parameters and the
experimental critical values are obtained. Depending on the number of free parameters, the system can be
under- or over-determined. In the literature, in the case of an over-determined system, the usual approach
consists of dropping one of the relations (and thus not satisfying one of the three critical values). In this
work, we chose to compare these three possible choices and the approach consisting in relaxing the value of the
parameter r, which is usually considered fixed at the ideal gas constant. In the case of an under-determined
system, one degree of freedom remains for the choice of the parameters. In both of these cases, we decide in
this paper to be precise on Maxwell’s construction at a fixed pressure, which allows to compute optimal values
for the parameters. This work is done for water. Further, the quality of the parameters fitting is assessed by
comparing the different CEoS with experimental data on a large range of pressures.

The paper is organized as follows. In section 2, we first introduce the different families of (incomplete) EoS
on which we shall focus in the following. Section 3 is devoted to the construction of a complete EoS for all
considered CEoS. Further, we tackle in section 4 the description of the mixture zone by means of Maxwell’s
construction. Section 5 focuses on the best possible choice of parameters for applications with a large range of
pressures, and the comparison of the performances of our different CEoS. Last, in appendix, we give additional
useful thermodynamic quantities for the different EoS: the speed of sound for compressible CFD, and the
inversion h(τ, p) as well as its derivative for use in low Mach number models.

2. Cubic equations of state

2.1. Thermodynamic considerations

In this work, in order to describe accurately both liquid water and vapor, we need to take into account phase
transition. To this end, let us start with some thermodynamic considerations.

Experimentally, it is proved that the temperature at which two phases can coexist at equilibrium is a smooth
function of the pressure. In a phase diagram (T, p), such a function is represented by a so-called coexistence
curve (see Figure 1a). The three coexistence curves (solid–gas, liquid–gas, solid–liquid) separate the (T, p) plane
into regions where the fluid is a gas, a liquid or a solid (see Figure 1a). Those curves meet at a point called the
triple point, which corresponds to the unique value of the pressure and temperature at which the three phases
can coexist. The liquid–vapor coexistence curve terminates at a point which is called the critical point. The
temperature, specific volume, and pressure at this point are called the critical temperature, denoted by Tc, the
critical specific volume, denoted by τc , and the critical pressure, denoted by pc. For water, the values of these
critical constants are

pc,exp = 22.064× 106 Pa, Tc,exp = 647.096 K, τc,exp = 1/322 m3 kg−1. (1)

At temperatures higher than the critical temperature and pressures higher than the critical pressure there is no
transition between liquid and gas phases.

In the plane (τ, p) (see Figure 1b), the saturation curve is defined as the one separating the regions where the
fluid is a pure phase (liquid or gas) from the region where the two phases coexist. The set of states delimited
by the saturation curve is called “dome” of saturation and these states are called “saturated states” or “at
saturation” or “equilibrium mixing state”. Again, for temperatures higher than the critical temperature, the
pure component is under a single phase for all pressures: there is no longer phase transition.

2.2. Incomplete Cubic Equations of State

In order to describe the thermodynamic behavior of a fluid, we use an Equation of State (EoS) which links
the three variables p, τ and T , usually devised in the litterature under the form p(τ, T ).
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(a) Phase diagram (b) Pressure-volume diagram

Figure 1. Schematic coexistence and saturation curves for water

Cubic EoS are very widely used due to their simplicity. A four parameters Cubic Equation Of State (CEoS)
[11] can be written as

p(τ, T ) =
rT

τ − b
− aα(T )

τ(τ + d) + c(τ − d)
, (2)

where r, a, b, c and d are constants and α is a temperature-dependent function. The parameter b is usually
interpreted as the volume occupied by the molecules, and r as the specific ideal gas constant. The second term
in (2) can be thought as representing the effect of intermolecular forces, and is non-positive.

Such EoS are called cubic since the pressure definition leads to a polynomial equation of order 3 on τ in the
following form

τ3 +

(

c+ d− b− rT

p

)

τ2 −
(

cd+ (c+ d)

(

b+
rT

p

)

− aα(T )

p

)

τ +

(

cbd+ cd
rT

p
− b

aα(T )

p

)

= 0. (3)

Among the many CEoS, some well-known families are included in the general form (2). The Patel-Teja (PT)
family of EoS results from setting d = b, the Peng-Robinson (PR) one from setting c = d = b (see [16] and the
references therein).

The temperature-dependent function α must satisfy the following properties [14–16]: α ∈ C 2(R+) and

α(T ) ≥ 0, α′(T ) ≤ 0, α′′(T ) ≥ 0, α′′′(T ) ≤ 0. (4)

Again, many choices can be made for the function α, leading to different well-known families of CEoS.
In this paper, we do not intend to review the numerous cubic equations of state available in the literature. We

focus here on some CEoS that are widely used in the literature and simple enough to give analytical formulas.
These CEoS, though simple, capture the essential physics of liquid-vapor phase transition. The EoS that we
consider are the following

• the Van der Waals (VdW) EoS [19], obtained by setting c = d = 0 and α(T ) = 1:

p(τ, T ) =
rT

τ − b
− a

τ2
; (5)
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• the Berthelot (Ber) EoS [2, 19],1 obtained by setting c = d = 0 and α(T ) = 1
T :

p(τ, T ) =
rT

τ − b
− a

Tτ2
; (6)

• the Clausius (Cl) EoS [3],1 obtained by setting c and d such that c2 + d2 + 6cd = 0 and α(T ) = 1
T :

p(τ, T ) =
rT

τ − b
− a

T (τ + δ)2
, (7)

where we denoted δ def= c+d
2 ;

• the Redlich-Kwong (RK) EoS [19],2obtained by setting c = 0, d = b and α(T ) = 1√
T

:

p(τ, T ) =
rT

τ − b
− a√

Tτ(τ + b)
; (8)

• the Soave-Redlich-Kwong (SRK) EoS [14, 17, 24],3 obtained by setting c = 0, d = b, and α(T ) =

(σ −
√
T )2:

p(τ, T ) =
rT

τ − b
− a(σ −

√
T )2

τ(τ + b)
. (9)

Note that, in order to satisfy (4), the parameter σ has to be larger than
√
T . In our case, since we are

interested in temperatures less than the critical one, it is sufficient that σ >
√
Tc, which is the case by

definition of σ.

2.3. The critical point in a cubic equation of state

On Figure 2, we plot schematically the pressure of a fluid as a function of its specific volume for several
temperatures (isotherm curves) with a Van der Waals EoS. Since, at fixed pressure and temperature, the
equation of state (3) is a cubic equation in τ , we have the following behavior:

• for each isotherm curve above the critical temperature, the pressure is a monotone decreasing function
of the volume;

• for isotherm curves under the critical temperature, the pressure is not monotone. This defines the
so-called spinodal zone where the pressure is increasing. On the left of the spinodal zone, the fluid is
liquid, whereas it is gaseous on the right of this zone. For any fixed pressure smaller than pc, there is
a temperature range for which this pressure is associated with three volumes; a gas phase and a liquid
phase can coexist.

For a CEoS, we can compute analytically the critical point. Indeed, the critical isotherm curve is the one
possessing one inflection point (horizontal tangent and change of convexity). The critical point is this inflection
point of the critical isotherm curve, it thus satisfies

p(τc, Tc) = pc,
∂p

∂τ

∣

∣

∣

∣

T

(τc, Tc) = 0 and
∂2p

∂τ2

∣

∣

∣

∣

T

(τc, Tc) = 0. (10)

1In the litterature, the function α is usually given of the form 1/(T/Tc). This α can be rewritten under the form we propose by
correcting the coefficient a by a multiplicative factor Tc.

2In the litterature, the function α is usually given of the form 1/
√

T/Tc. This α can be rewritten under the form we propose

by correcting the coefficient a by a multiplicative factor
√
Tc.

3In the litterature, the function α is usually given of the form [1 + m(ω)(1 −
√

T/Tc)]2 = m
2

Tc

[√
Tc

m
+

√
Tc −

√
T
]2

, where ω

denotes a physical constant (acentric factor), and the function m is a polynomial of order two with given coefficients. This α can

be rewritten under the form we propose by setting σ =
√
Tc(1 + 1/m(ω)) and correcting the coefficient a by a multiplicative factor

m(ω)2/Tc.
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Figure 2. Isotherm curves for a cubic law in a reduced pressure-volume diagram
(i.e. (τ/τc, p/pc) plane). The critical point is marked in red. The spinodal zone where the
pressure is increasing (along an isotherm) is delimited by the gray curve.

For the general CEoS (2), this leads to the following system







































rTc

τc − b
− aα(Tc)

c(τc − d) + τc(τc + d)
= pc,

− rTc

(τc − b)2
+

a (2τc + c+ d)α(Tc)

(c(τc − d) + τc(τc + d))
2 = 0,

2rTc

(τc − b)3
+

2aα(Tc)

(c(τc − d) + τc(τc + d))
2 − 2a (2τc + c+ d)

2
α(Tc)

(c(τc − d) + τc(τc + d))
3 = 0.

(11)

At this point, a fluid exhibits some unusual properties such as infinite heat capacity or infinite compressibility.
An alternative method to solve (10) has been introduced in [18]. Instead of defining p(τ, T ), one could also

define implicitly τ(p, T ) from (3). Then, system (10) defining the critical point becomes

τ(pc, Tc) = τc,
∂τ

∂p

∣

∣

∣

∣

T

(pc, Tc) = 0 and
∂τ2

∂2p

∣

∣

∣

∣

T

(pc, Tc) = 0. (12)

From this and the fact that (3) is a unitary polynomial, it follows that the function τ(p, T ) should be equal at
the critical point to (τ − τc)

3 = τ3 − 3τcτ
2 + 3τ3c τ − τ3c . Thus, it is enough to identify the coefficients of this

polynomial with the ones in (3) evaluated at (pc, Tc) to obtain the system satisfied by the critical point































c+ d− b− rTc

pc
= −3τc,

cd+ (c+ d)

(

b+
rTc

pc

)

− aα(Tc)

pc
= −3τ2c ,

cbd+ cd
rTc

pc
− b

aα(Tc)

pc
= −τ3c .

(13)
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3. Construction of a complete cubic EoS using the variables (τ, T )

The goal of a CEoS is to predict thermodynamic properties of a fluid, such as pressure, temperature and
density, but also the enthalpy of vaporization, the isochoric heat capacity and the speed of sound. To do this,
we have to construct a complete EoS from the incomplete EoS given as p = p(τ, T ).

In this section we focus on determining the specific internal energy e = e(τ, T ), which is called the caloric
equation of state. Other quantities (e.g. speed of sound) are computed in Appendix.

3.1. Main idea

We search for the specific internal energy e as a function of temperature T and specific volume τ . Denoting s
the entropy, we differentiate the Gibbs relation de = Tds− pdτ with respect to τ to obtain ∂e

∂τ

∣

∣

T
= T ∂s

∂τ

∣

∣

T
− p.

Using one of the Maxwell relations [9] leads to ∂s
∂τ

∣

∣

T
= ∂p

∂T

∣

∣

∣

τ
. Thus the partial derivative of e with respect to τ

can be expressed as

∂e

∂τ

∣

∣

∣

∣

T

= T
∂p

∂T

∣

∣

∣

∣

τ

− p. (14)

The other partial derivative defines the specific heat capacity at constant volume cv:

∂e

∂T

∣

∣

∣

∣

τ

def= cv. (15)

Since e(τ, T ) must be an exact differential form, the two mixed second partial derivatives have to be equal
to each other:

∂

∂τ

(

∂e

∂T

∣

∣

∣

∣

τ

)∣

∣

∣

∣

T

=
∂

∂T

(

∂e

∂τ

∣

∣

∣

∣

T

)∣

∣

∣

∣

τ

.

We can write this as

∂cv
∂τ

∣

∣

∣

∣

T

=
∂

∂T

(

T
∂p

∂T

∣

∣

∣

∣

τ

− p

)∣

∣

∣

∣

τ

=
∂p

∂T

∣

∣

∣

∣

τ

+ T
∂2p

∂T 2

∣

∣

∣

∣

τ

− ∂p

∂T

∣

∣

∣

∣

τ

,

which leads to the following compatibility condition on cv

∂cv
∂τ

∣

∣

∣

∣

T

= T
∂2p

∂T 2

∣

∣

∣

∣

τ

. (16)

Thus, cv can be computed by integrating this compatibility relation (16)

cv(τ, T ) = cv,0(T ) +

∫ τ

τ0

T
∂2p(ς, T )

∂T 2

∣

∣

∣

∣

ς

dς. (17)

Observe that, since we are working on an incomplete equation of state, we only have a constraint on the
dependence of cv with respect to τ , and we have some freedom on the dependence of the integration constant
cv,0 with respect to T .

From the partial derivatives of e(τ, T ), we deduce that

e(τ, T ) =

∫ τ

τ0

∂e

∂τ

∣

∣

∣

∣

T

(ς, T )dς +

∫ T

T0

∂e

∂T

∣

∣

∣

∣

τ

(τ0, θ)dθ + e(τ0, T0)



8 ESAIM: PROCEEDINGS AND SURVEYS

and thus, using the expression of cv(τ, T ), we obtain

e(τ, T ) =

∫ τ

τ0

(

T
∂p(ς, T )

∂T

∣

∣

∣

∣

τ

− p(ς, T )

)

dς +

∫ T

T0

cv,0(θ)dθ + e0. (18)

The point (τ0, T0) with respect to which the integration takes place can be chosen freely. A standard approach
in the literature [1] is to choose some arbitrary reference temperature and essentially zero pressure. In our work,
we choose to work with the critical point (τc, Tc).

Assumption. For the sake of simplicity, we choose cv,0(T ) to be independent on T ,4 so that

cv,0(T ) = c0. (19)

The choice of the value of c0 is discussed in Remark 5.2.

For each of the considered EoS, the previous construction allows to define e(τ, T ) explicitly, as showed in the
next subsections.

3.2. Van der Waals caloric equation of state

For the Van der Waals equation of state (5), we compute

∂2p

∂T 2

∣

∣

∣

∣

τ

(τ, T ) = 0. (20)

Therefore, the compatibility condition (16) implies that cv(τ, T ) does not depend on τ , and is thus a function
of T only. With our previous assumption (19), this implies that

cv(τ, T ) = c0. (21)

Further, we can obtain the energy e(τ, T ) by integrating

e(τ, T ) = ec + c0(T − Tc)− a

(

1

τ
− 1

τc

)

. (22)

3.3. Berthelot and Clausius caloric equation of state

Observe that Berthelot EoS can be obtained from the Clausius one by setting δ = 0. We thus proceed here
with the general Clausius EoS. For the Clausius equation of state (7), we compute

∂2p

∂T 2

∣

∣

∣

∣

τ

(τ, T ) = − 2a

T 3(τ + δ)2
. (23)

The compatibility condition gives the dependence of cv(τ, T ) as a function of τ . We use again (19), which leads
to

cv(τ, T ) = c0 +
2a

T 2

(

1

τ + δ
− 1

τc + δ

)

, (24)

since we choose to fit the constants using the critical point. Further, we obtain the energy e(τ, T ) by integrating

e(τ, T ) = ec + c0(T − Tc)−
2a

T

(

1

τ + δ
− 1

τc + δ

)

. (25)

4This assumption is referred to as the polytropic case in [21], but this denomination is more frequently used in the literature
with another definition.
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3.4. Redlich-Kwong caloric equation of state

For the Redlich-Kwong equation of state (8), we compute

∂2p

∂T 2

∣

∣

∣

∣

τ

(τ, T ) = − 3a

4T 2
√
Tτ(τ + b)

. (26)

As before, we compute cv(τ, T ) from the compatibility condition and (19)

cv(τ, T ) = c0 +
3a

4bT
√
T

ln

(

τ + b

τ

τc
τc + b

)

. (27)

This leads to the energy

e(τ, T ) = ec + c0(T − Tc)−
3a

2b

1√
T

ln

(

τ + b

τ

τc
τc + b

)

. (28)

3.5. Soave-Redlich-Kwong caloric equation of state

For the Soave-Redlich-Kwong equation of state (9), we compute

∂2p

∂T 2

∣

∣

∣

∣

τ

(τ, T ) = − aσ

2T
√
Tτ(τ + b)

. (29)

Again, we first obtain cv(τ, T ) as

cv(τ, T ) = c0 +
aσ

2b
√
T

ln

(

τ + b

τ

τc
τc + b

)

, (30)

and the energy

e(τ, T ) = ec + c0(T − Tc)−
aσ

b

(√
T − σ

)

ln

(

τ

τ + b

τc + b

τc

)

. (31)

3.6. General caloric equation of state

In this subsection, we perform the formal computations for any generic CEoS, without using the assumption
(19). For the general CEoS (2), we compute

∂2p

∂T 2

∣

∣

∣

∣

τ

(τ, T ) =
−a

τ(τ + d) + c(τ − d)
α′′(T ). (32)

Let us define ∆ def= c2 + d2 + 6cd, and introduce5

C(τ) def=

∫

τ

− a

ς(ς + d) + c(ς − d)
dς =



















− a√
∆

ln

(

2τ + c+ d−
√
∆

2τ + c+ d+
√
∆

)

if ∆ > 0,

a

τ + c+d
2

if ∆ = 0.

(33)

5The Clausius EoS corresponds to ∆ = c2 + d2 + 6cd = 0 with δ = c+d

2
, and the (Soave)-Redlich-Kwong families correspond to

∆ = b2 > 0.
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Therefore, the compatibility condition implies that

cv(τ, T ) = cv,0(T ) +

∫ τ

τc

T
∂2p(ς, T )

∂T 2

∣

∣

∣

∣

ς

dς = cv,0(T ) + Tα′′(T ) [C(τ)]
τ
τc
. (34)

Further, we can compute the energy

e(τ, T ) = ec +

∫ T

Tc

cv,0(θ)dθ +

∫ τ

τc

(

T
∂p(ς, T )

∂T

∣

∣

∣

∣

τ

− p(ς, T )

)

dς

= ec +

∫ T

Tc

cv,0(θ)dθ + (Tα′(T )− α(T ))

∫ τ

τc

−a

ς(ς + d) + c(ς − d)
dς

= ec +

∫ T

Tc

cv,0(θ)dθ + (Tα′(T )− α(T )) [C(τ)]
τ
τc
. (35)

4. Phase Equilibrium

4.1. Maxwell’s construction in incomplete EoS

Under the critical temperature, the spinodal zone (see Figure 2), situated inside the saturation dome, cor-
responds to a non physical part, since the pressure increases for increasing volume. Moreover, the part of the
saturation dome outside the spinodal zone corresponds to the metastable states. Thus, cubic EoS can only
describe in a satisfactory manner the properties of the fluid at the transition between liquid and vapor above
the critical point or outside the saturation dome. Inside this saturation dome, the equation of state has to
be modified in order to take into account phase change phenomena. To this end, we introduce a saturation
plateau at a pressure depending only on the temperature. In thermodynamics, it is classical to use the so-called
Maxwell’s Area Rule, or Maxwell’s construction, which allows to compute the saturation pressure at which the
phase transition occurs at a given temperature. From a graphical point of view, this rule is equivalent to saying
that the saturating vapor pressure of the isotherm is located on the level for which the two (positive) areas of
the two blue surfaces of Figure 3a are equal.

Let us now give more details on the computations of Maxwell’s construction. For fixed p0 < pc, we have to
compute τ s˜l , τ s`g and T s such that the three following relations hold



































p(τ s˜l , T
s) = p0,

p(τ s`g , T
s) = p0,

∫ τs`g

τs

˜l

(p(τ, T s)− p0) dτ = 0.

(36)

Solving this system for any p < pc allows to define the following functions

p 7→
(

τ s˜l (p), τ
s
`g (p), T

s(p)
)

. (37)

Equivalently, for any fixed T0 < Tc,we can look for τ s˜l , τ s`g and ps such that p(τ s˜l , T0) = ps, p(τ s`g , T0) = ps and
∫

τs`g
τs

˜l
(p(τ, T0)− ps) dτ = 0 (this is what is commonly done in the standard thermodynamics literature). Solving

this system for any T < Tc allows to define the following functions

T 7→
(

τ s˜l (T ), τ
s
`g (T ), p

s(T )
)

. (38)
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(a) Maxwell’s Area Rule (b) Isotherm curves for a cubic law after
Maxwell construction

Figure 3. Isotherm curves for a cubic law in a pressure-volume plane (τ, P ) for the Maxwell
construction

After such a construction, we define the EoS in a piecewise manner (see Figure 3b):

pMaxwell(τ, T ) =

{

p(τ, T ) in pure phases, i.e. τ ≤ τ s˜l (T ) or τ ≥ τ s`g (T ),

ps(T ) in the mixture, i.e. τ s˜l (T ) ≤ τ ≤ τ s`g (T ).

For the different EoS introduced in Section 2.2, we can compute explicitly the integral to rewrite system (36)
in the following way: find (τ s˜l , τ

s
`g , T

s) such that







































rT s

τ s˜l − b
− aα(T s)

τ s˜l (τ
s
˜l + d) + c(τ s˜l − d)

= p0,

rT s

τ s`g − b
− aα(T s)

τ s`g (τ
s
`g + d) + cτ s`g (τ

s
`g − d)

= p0,

rT s ln

(

τ s`g − b

τ s˜l − b

)

+ α(T s)(C(τ s`g )− C(τ s˜l ))− p0(τ
s
`g − τ s˜l ) = 0.

where C(τ) has been defined in (33). The functions C and α are (re)given here for the sake of completeness.

• Van der Waals EoS: C(τ) = 1/τ and α(T ) = 1
• Berthelot EoS: C(τ) = 1/τ and α(T ) = 1/T
• Clausius EoS: C(τ) = 1/(τ + δ) and α(T ) = 1/T

• Redlich-Kwong EoS: C(τ) = (ln(τ + b)− ln(τ))/b and α(T ) = 1/
√
T

• Soave-Redlich-Kwong EoS: C(τ) = (ln(τ + b)− ln(τ))/b and α(T ) = (σ −
√
T )2
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4.2. Phase transition in complete EoS in (τ, T )

Let us now explain how the complete EoS is constructed in the mixture zone. For (τ, T ) given such that
τ s˜l (T ) < τ < τ `gs(T ), we define the mass fraction of the mixture

φ(τ, T ) def=
τ − τ s˜l (T )

τ s`g (T )− τ s˜l (T )
∈ (0, 1).

The energy of the mixture at saturation is then given by

e(τ, T ) def= φ(τ, T )es˜l (T ) + (1− φ(τ, T ))es`g(T ),

where we define the functions at saturation es˜l/`g(T )
def= e(τ s˜l/`g(T ), T ) using (38) in (35).

The complete EoS eMaxwell(τ, T ) is then defined piecewise using the saturation values:

eMaxwell(τ, T ) =

{

φ(τ, T )es˜l (T ) + (1− φ(τ, T ))es`g(T ) in the mixture, i.e. τ s˜l (T ) < τ < τ s`g (T ),

Eq. (35) otherwise.

This construction ensures that the speed of sound remains positive [8]. For the computation of the speed of
sound for the different EoS, see Appendix A.

Remark 4.1 (Specific isochoric heat capacity). By definition of cv (15), the heat capacity of the mixture at
saturation is given by

cv(τ, T ) =
∂φ

∂T

∣

∣

∣

∣

τ

(es˜l (T )− es`g(T )) + φ(τ, T )(es˜l )
′(T ) + (1− φ(τ, T ))(es`g)

′(T )

where

∂φ

∂T

∣

∣

∣

∣

τ

(τ, T ) =
φ(τ, T )(τ s`g )

′(T ) + (1− φ(τ, T ))(τ s˜l )
′(T )

τ s`g (T )− τ s˜l (T )
,

(esκ)
′(T ) =

∂e

∂T

∣

∣

∣

∣

τ

(τ sκ(T ), T ) + (τ sκ)
′(T )× ∂e

∂τ

∣

∣

∣

∣

T

(τ sκ(T ), T ) = cv(τ
s
κ(T ), T ) + (τ sκ)

′(T )× (T × (ps)′(T )− ps(T )),

(ps)′(T ) =
1

T

es`g(T )− es˜l (T )

τ s`g (T )− τ s˜l (T )
+

ps(T )

T
(Clapeyron relation).

Analytical expressions for the phase boundaries τ s˜l/`g(T ) or their derivatives are not available, but they can be

computed numerically.

5. Methodology to determine the parameters

Let us now describe shortly the methodology to determine the parameters of a CEoS for a given fluid. We
proceed in two steps:

(1) First, by solving system (13), we establish a relation between the parameters (a, b, and possibly δ or
σ), the experimental critical values (Tc,exp, τc,exp, pc,exp) and r. A specific choice has to be made for the
value of r: either treating it as a parameter, or using the experimental value rexp

def= R/M , where R is
the ideal gas constant and M the molar mass of the fluid. For water, rexp = 461.526 JK−1 kg−1.
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Case EoS Tc pc τc r a b

①

Van der Waals
Berthelot

Tc,exp pc,exp

3rTc

8pc rexp

aVdW =
27T 2

c r
2

64pc
, aBer = aVdWTc

rTc

8pc

Redlich-Kwong
rTc

3pc

(

1 + 3
√
2 + 3

√
4
)

T 2
c

√
Tcr

2

9pc

(

3
√
2− 1

)

rTc

3pc

②

Van der Waals
Berthelot Tc,exp

3rTc

8τc τc,exp rexp

aVdW =
9rTcτc

8
, aBer = aVdWTc

τc
3

Redlich-Kwong
rTc

3τc

(

1 + 3
√
2 + 3

√
4
)

rT 2
c

√
Tcτc

3

(

3
√
2− 1

)

τc

③

Van der Waals
Berthelot

8pcτc
3r

pc,exp τc,exp rexp

aVdW = 3pcτ
2
c , aBer = aVdWTc

τc
3

Redlich-Kwong
3pcτc
r

pcτ
2
c

√
3pcτc

(

3
√
2− 1

)

r

(

3
√
2− 1

)

τc

④

Van der Waals
Berthelot Tc,exp pc,exp τc,exp

8pcτc
3Tc

aVdW = 3pcτ
2
c , aBer = aVdWTc

τc
3

Redlich-Kwong
3pcτc
Tc

(

1 + 3
√
2 + 3

√
4
)

pc
√
Tcτ

2
c

(

3
√
2− 1

)

τc

Table 1. All possible choices of fixed parameters for Van der Waals, Berthelot and Redlich-
Kwong EoS.

(2) When the problem is under- or over-determined, we optimize the choices of parameters of the parameter
values in order to best fit the values at saturation at a given pressure p = p∗ with IAPWS data [26].

After fixing these parameters, we compare the saturation temperature T s(p) (coexistence curves) and the
phase boundaries τ s˜l/`g(p) with respect to experimental data for different pressures to assess the quality of the

EoS.

5.1. First step: expression of the parameters from the critical values

The critical point (Tc, τc, pc) is obtained by solving the system (13).

5.1.1. Van der Waals, Berthelot and Redlich-Kwong EoS

For Van der Waals, Berthelot and Redlich-Kwong EoS, the problem is overdetermined. We explore all possible
choices of fixed parameters.

① Usually, in the literature, Tc = Tc,exp, pc = pc,exp and r = rexp are fixed, to deduce a, b, τc ̸= τc,exp.
Historically, this approach was chosen since the experimental value τc,exp was not known [27].

② We fix τc = τc,exp, Tc = Tc,exp, r = rexp and deduce a, b, and pc ̸= pc,exp.
③ We fix τc = τc,exp, pc = pc,exp, r = rexp and deduce a, b, and Tc ̸= Tc,exp.
④ We fix Tc = Tc,exp, pc = pc,exp, τ = τc,exp and deduce a, b, and r ̸= rexp.

The obtained values are summarized in Table 1.
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Remark 5.1. We treat the parameter r in the equation of state as an empirical one, different in general from
the experimental value. We shall observe in section 5.2 that the experimental value of r does not lead to the
best results when evaluating the saturation constants, and we shall therefore choose another optimized value.

In our setting, for high pressures, the value of r differs from the ideal gas constant. Thus, the CEoS does
not converge to the ideal gas law when the pressure converges to zero. Note that, if one wants to be precise
in another pressure regime, the parameters have to be fitted again. In particular, for low pressure values,
the optimized value of r is close to the ideal gas constant. Indeed, this same approach has also been used
independently from our work in [10] in the case of the Van der Waals EoS. In their work, the pressure is set at
the atmospheric value, which leads to a value of r close to the experimental one.

5.1.2. Clausius EoS

For the Clausius EoS, we now have three parameters (a, b and δ). Thus, all three critical values can be fixed
to the experimental values. We can also fix the value of r (see section 5.2.2), and a, b and δ are then recovered
by the following relations

a(r) =
27T 3

c,expr
2

64pc,exp
, b(r) = τc,exp − rTc,exp

4pc,exp
, δ(r) =

3rTc,exp

8pc,exp
− τc,exp.

5.1.3. Soave-Redlich-Kwong EoS

For the Soave-Redlich-Kwong (SRK) EoS, we again have three parameters (a, b and σ). However, we observe
that the first equation of (13) does not depend on the choice of the function α. Moreover, in this case, since
c = 0 and d = b, no parameter (a, b and σ) appears in this equation. Thus, the system is overdetermined when
fixing all three critical quantities and r to their experimental values. Guided by the best choice for Van der
Waals, Berthelot and Redlich-Kwong EoS (cf. Section 5.2.1), we again allow r to vary, fixing the three critical
quantities to their experimental values. When solving the system, we obtain

a(σ) =

(

1 + 3
√
2 + 3

√
4
)

pc,expτ
2
c,exp

(Tc,exp − σ)2
, b =

(

3
√
2− 1

)

τc,exp, r =
3pc,expτc,exp

Tc,exp
̸= rexp.

Observe that the parameter σ remains free, and can thus be chosen in order to optimize some quantities of
interest. We will explain in the following the choice we made for σ.

5.1.4. Reduced EoS

A usual approach to avoid computing the values of the parameters for different fluids is to consider the
reduced EoS, for which the variables are the reduced temperature T = T/Tc, reduced pressure p = p/pc and
reduced specific volume τ = τ/τc.

For the Van der Waals, the Berthelot and the Redlich-Kwong EoS, let us emphasize that all the different
choices of fixed parameters as in Table 1 lead to the same reduced EoS:

p(τ , T ) =



































8

3

T

τ − 1/3
− 3

τ2
for the Van der Waals EoS,

8

3

T

τ − 1/3
− 3

Tτ2
for the Berthelot EoS,

3T

τ −
(

3
√
2− 1

) −
(

1 + 3
√
2 + 3

√
4
)

√
Tτ(τ +

(

3
√
2− 1

)

)
for the Redlich-Kwong EoS,

which do not involve any parameter. More precisely, this reduced form suggests to treat the parameter r as a
variable one, in the same way as for a and b. Indeed, if the experimental values of the three critical quantities are
known, the reduced EoS can be used as such. Of course, if one of these values is not known (corresponding to the
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cases ①-③), it is recovered by the corresponding formula in Table 1, involving then the (known experimental)
value of r.

For Clausius EoS, we observe that, if we define the quantity ξ = 8pc,expτc,exp/Tc,exp, the reduced Clausius
EoS only involves this quantity ξ:

p =
8T

3ξτ + 2− 3ξ
− 3

T (ξτ + 1− ξ)2
.

For Soave-Redlich-Kwong EoS, observe that, if we define the “reduced parameter” σ = σ/
√
Tc, the reduced

SRK EoS only involves this parameter σ:

p =
3T

τ −
(

3
√
2− 1

) −
(

1 + 3
√
2 + 3

√
4
)

σ − 1

(σ −
√
T )2

τ(τ +
(

3
√
2− 1

)

)
.

Observe that the quantity ξ and the “reduced” parameter σ appearing in the Clausius and Soave-Redlich-
Kwong reduced EoS do not play the same role. Indeed, for a fixed fluid, the critical values are given, and the
constant ξ has a fixed value, whereas the reduced parameter σ involves the constant σ, and can therefore be
chosen independently.

5.2. Second step: saturation at fixed pressure

Is it widely admitted in the literature [13, 27] that the parameters have to be chosen in view of the application
of the EoS. The novelty of our approach is to allow r to be a free parameter (which can be interpreted as a
fraction of the experimental value of r). In our case, in order to handle diphasic flows, we want to be precise near
to the saturation state around a fixed reference pressure. We here present the full procedure of parameter fitting,
with the comparisons of all choices of fixed experimental values, for water at a fixed pressure p∗ = 155 bar. Of
course, the same procedure can be applied for a different fluid, at a different pressure, or even using other
reference values than the saturation values.

5.2.1. Van der Waals, Berthelot and Redlich-Kwong EoS

In Table 2 we present, for the Van der Waals, the Berthelot and the Redlich-Kwong EoS, the four possible
choices of fixed experimental values described in the previous subsection (indicated in the first column), and
show the values of the obtained parameters. Moreover, in the three last columns, we compute, using these
values of the parameters, the saturation values by solving system (36). Note that, for the sake of readibility, we
chose to display the density ϱ = 1/τ instead of the specific volume τ . We assess the quality of the EoS by the
error made on these saturation values with respect to experimental IAPWS values [26]. We observe that, for
all three EoS, the best choice is to fix all three critical values (Tc,exp, τc,exp, pc,exp), and to compute a, b and r.
This choice leads to more precise saturation values, as can be seen on Figure 4, which depicts the temperature
for these EoS in the plane (ϱ, p). Moreover, we observe that the Berthelot EoS leads to a far better description
of the fluid at this pressure p∗ than the Van der Waals one: the saturation temperature is very precise, and the
phase boundaries are closer to the experimental ones. As for the Redlich-Kwong EoS, it gives an even better
approximation for the phase boundaries than the Berthelot EoS, but the saturation temperature slightly looses
precision.
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Fixed
param.

a b r pc Tc ϱc ϱs˜l (p∗) ϱs`g(p∗) T s(p∗)

[m3 J kg−2] [m3 kg−1] [JK−1 kg−1] [Pa] [K] [kgm−3] [kgm−3] [kgm−3] [K]

IAPWS
461.526 2.2064×107 647.096 322 594.358 101.925 617.942

Van der Waals
pTτ 638.401 1.0352×10−3 282.376 2.2064×107 647.096 322 513.77 152.106 593.788
Tτr 1043.43 1.0352×10−3 461.526 3.60622×107 647.096 322 606.717 86.8006 530.753
pTr 1705.41 1.69196×10−3 461.526 2.2064×107 647.096 197.01 314.341 93.0631 593.788
pτr 638.401 1.0352×10−3 461.526 2.2064×107 395.914 322 513.77 152.106 363.299

Berthelot
pTτ 413107 1.0352×10−3 282.376 2.2064×107 647.096 322 525.844 142.917 616.312
Tτr 675197 1.0352×10−3 461.526 3.60622×107 647.096 322 621.923 77.4192 578.977
pTr 1.10357×106 1.69196×10−3 461.526 2.2064×107 647.096 197.01 321.728 87.4414 616.312
pτr 252752 1.0352×10−3 461.526 2.2064×107 395.914 322 525.844 142.917 377.079

Redlich-Kwong
pTτ 20826.5 8.07208×10−4 317.673 2.2064×107 647.096 322 562.68 136.755 608.57
Tτr 30257.3 8.07208×10−4 461.526 3.20553×107 647.096 322 664.945 84.3884 572.579
pTr 43958.8 1.17274×10−3 461.526 2.2064×107 647.096 221.636 387.299 94.1299 608.57
pτr 17278.6 8.07208×10−4 461.526 2.2064×107 445.403 322 562.68 136.755 418.886

Table 2. Van der Waals, Berthelot and Redlich-Kwong EoS: comparison of the different
choices of fixed parameters on computed critical and saturation values at p∗

(a) Van der Waals (b) Berthelot (c) Redlich-Kwong

Figure 4. Temperature T (ϱ, p∗) as a function of ϱ for all different choices of fixed parameters
for Van der Waals, Berthelot and Redlich-Kwong EoS

5.2.2. Clausius EoS

As far as the Clausius EoS is concerned, we already mentioned that the three critical values can be fixed, as
well as the value of r. A first choice for r is the experimental one given by the IAPWS. However, we observe in
Table 3 and on Figure 5a that this choice leads to phase boundaries which are quite far from the experimental
ones. To improve the parameter fitting, similarly to the Berthelot case for which it led to good results, we
consider the possibility to relax the experimental value of r. In this setting, we have to choose a value for r.
When choosing the same value of r as for the Berthelot EoS, we see in Table 3 that there still is some discrepancy
on the phase boundaries. To improve the choice of r, we compare on Figure 5b the phase boundaries ϱs˜l and
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a b δ r ϱs˜l (p∗) ϱs`g(p∗) T s(p∗)

[m3 JKkg−2] [m3 kg−1] [m3 kg−1] [JK−1 kg−1] [kgm−3] [kgm−3] [K]

IAPWS 461.526 594.358 101.925 617.942

rexp 1.10357×106 -2.78334×10−4 0.0019703 461.526 878.8 105.642 616.312
rBer 413107 1.0352×10−3 0 282.376 525.844 142.917 616.312
ropt 577587 6.57483×10−4 0.00056657 333.892 594.505 129.752 616.312

Table 3. Comparison of the different choices of r on computed saturation values at p∗ for the
Clausius EoS

(a) Temperature ϱ 7→
T (ϱ, p∗) for different val-

ues of r

(b) Phase boundaries ϱsκ(p∗) as functions of r

Figure 5. Comparison of different values of r for the Clausius EoS

ϱs`g for all values of r between the experimental value and the one obtained in the Berthelot EoS (we do not

compare the saturation temperature since it does not vary for different values of r). We observe that, when
trying to decrease the error on ϱs`g , the error on ϱs˜l increases rapidly. Therefore, we can define an optimal value of

r, corresponding to minimizing simultaneously both the normalized L1 error on ϱs`g and the one on ϱs˜l . Finally,

we observe that the precision obtained with this choice of parameteres in the Clausius EoS is better than all
other choices.

5.2.3. Soave-Redlich-Kwong EoS

For the Soave-Redlich-Kwong EoS, we already mentioned that the parameter σ remains free. As for the
Clausius case, the idea is to optimize it in order to improve the saturation values (in this case, since the
parameter σ is related to the temperature, it affects all three saturation values). We observe on Figure 6 that
the optimal values of σ allowing to be precise on the phase boundaries or on the saturation temperature are
very different. Thus, a choice has to be made on which saturation quantity needs the most precision. In our
case, with applications in CFD in mind, it has been shown [5] that the precise evaluation of the saturation
temperature is of utmost importance. We therefore chose the optimal value σopt = 48. For this choice, the
parameters and saturation values are given in Table 4.
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a b r ϱs˜l (p∗) ϱs`g(p∗) T s(p∗)

[m3 JKkg−2] [m3 kg−1] [JK−1 kg−1] [kgm−3] [kgm−3] [K]

IAPWS 461.526 594.358 101.925 617.942

σopt = 48 1.60834 0.0008.07208×10−3 317.673 568.93 133.162 617.974

Table 4. Computed saturation values at p∗ for the Soave-Redlich-Kwong EoS

Figure 6. Saturation values σ 7→ ϱs˜l/`g(p∗) and T s(p∗) as functions of σ for the SRK EoS

5.2.4. All EoS

To summarize the performance of all EoS, we compare the temperature around saturation at pressure p∗ for
the best choice of parameters in each EoS on Figure 7. We note that whereas the Van der Walls, and to a lesser
extent, the Redlich-Kwong EoS are not very precise, the three other EoS are very accurate on the saturation
temperature. The phase boundaries are best described by the Clausius and Soave-Redlich-Kwong EoS, with
slightly more precision with the Clausius one.

Figure 7. T (ϱ, p∗) with the best parameters for the different EoS
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Figure 8. Coexistence curves p 7→ T s(p) for the different EoS

5.3. Precision of CEoS with fitted parameters at all pressures

Fixing now the parameters at the optimal values obtained in the previous subsection for p = p∗, we want to
assess the quality of the different CEoS by comparing them with experimental data [26] at all pressures.

5.3.1. Coexistence curve

More precisely, we plot on Figure 8 the coexistence curves p 7→ T s(p) for variable pressures, starting from
the smallest pressure in tabulated values up to the critical pressure pc, i.e. p ∈ [7 × 102Pa, 22.06 × 106Pa].
This is done for all four considered CEoS together with experimental values6. We observe a large discrepancy
of the Van der Waals EoS with respect to IAPWS for pressures far from pc. On the other hand, the Berthelot,
Clausius and Soave-Redlich-Kwong EoS show a very good accuracy with respect to IAPWS, even for pressures
far from p∗ (at which the parameters were fitted). We also observe that there is no visible influence of the
parameter δ, and both Berthelot and Clausius EoS are very satisfying. For the Soave-Redlich-Kwong EoS, the
choice we made of optimal σ in order to lead maximal precision on the saturation temperature at p∗ leads to a
very good accuracy on the whole pressure interval. As for the Redlich-Kwong EoS, it does not have the precision
of SRK/Clausius EoS for the coexistence curve, but it still gives a satisfying approximation of experimental
data on the whole pressure interval.

5.3.2. Phase boundaries

We further investigate the quality of the parameter fitting for all p ∈ [7×102 Pa, 22.06×106 Pa] by comparing
the saturation zones. As before, for the sake of readibility, we chose to work in the plane (ϱ, p). In this plane,

the mixture is at saturation in the set
{

(ϱ, p)
∣

∣

∣ ϱs`g(p) ≤ ϱ ≤ ϱs˜l (p)
}

, the fluid is in the liquid phase for ϱ > ϱs˜l (p)

and in the gas phase for ϱ < ϱs`g(p). We can thus compare the phase boundaries ϱs˜l/`g(p) for each EoS with respect

to experimental data as plotted on Figure 9. More precisely, for each pressure, we determine the saturation
values, which allow to construct the solid lines describing the so-called saturation dome. Again, we observe a
better accuracy for Berthelot, Redlich-Kwong, Clausius and SRK EoS than for the Van der Waals one. We also
notice that in the lower range of pressures, the Redlich-Kwong/SRK EoS seem to be more adequate that the
Berthelot/Clausius ones, when the parameters have been fitted at a higher pressure. We also plot on Figure 9
in dashed lines the isotherm curve ϱ 7→ p(ϱ, T s(p∗)) for each EoS. Since the value of p∗ = 155 bar is fixed, the
height of the plateau of the curve is the same for any EoS. However, the value of T s(p∗) is different for each

6In fact, the smallest values of the pressure are only computed for Clausius, Redlich-Kwong and Soave-Redlich-Kwong EoS on
Figures 8-9, by solving (36) with a simple fixed point procedure to obtain the saturation values. For Van der Waals and Berthelot
EoS, a more refined procedure would be needed to compute the saturation, since the system is very stiff.
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Figure 9. Saturation domes in the (ϱ, p) plane for the different EoS

EoS, and thus these isotherm curves do not all correspond to the same temperature. Again, the discrepancy
between experimental values and CEoS is bigger for Van der Waals and Berthelot EoS, and smaller for Clausius
and (Soave)-Redlich-Kwong ones.

5.3.3. Internal energy

We can also observe the performance of the cubic laws by plotting the internal energy with respect to τ for
different temperatures. To this end, we chose for the integration constants the experimental values given in
[26], namely ec = 2.019× 106 J kg−1, and c0 ≈ 4.538× 103 J kg−1 K−1.
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Figure 10. Internal energy as a function of τ at three constant temperatures for the Clausius
EoS.

We observed on Figure 7 that the best cubic laws were the Clausius and the Soave-Redlich-Kwong ones for
evaluating the saturation temperature, but that the Clausius law was far better for evaluating the boundaries
of the saturation zone. We thus chose to plot the internal energy for the Clausius EoS for different isotherm
curves (see Figure 10).

Since the parameters have been fitted for the critical temperature, the energy is of course closer to experi-
mental values for temperatures close to the critical one.

We observe that the error made on the saturation zone is inherent to the EoS. Since the evaluation of τ s˜l is
quite precise, the liquid zone is almost exact, whereas the error on τ s`g leads to a worse evaluation of the vapor
zone.

It is worth noting that, on an isotherm curve, the error on the energy could be corrected by dropping
assumption (19), and choosing cv,0(T ) depending on T . In particular, by defining cv,0(T ) piecewise in the liquid
and in the vapor phase, the two parts of the isotherm curves could be independently translated vertically, in
order to improve the accuracy of the internal energy.

Remark 5.2. For any CEoS, when considering the monotony of cv with respect to τ on an isotherm curve,
one notices that it is related to the sign of

− a

τ(τ + d) + c(τ − d)
,

which is always non positive (on the whole physical domain for values of τ , and for any physical values of the
parameters), leading to cv being non increasing. However, this is not the behavior observed for some fluids (for
example, for water, cv is increasing in the liquid phase whereas it is decreasing in the vapor phase). Nevertheless,
this problem does not occur on e, since it has been constructed to verify the correct properties, and the internal
energy is thus always increasing.

Note also that, with our assumption (19), cv(τ, T ) given by (17) does not diverge when approaching the
critical point (τc, Tc, pc), in contrast with experimental observations. Again, this problem does not appear on
the internal energy, since c0 is integrated between Tc and T , which converges to zero at the critical point.

6. Conclusion

In this paper, we have studied several CEoS of different types (Van der Waals, Berthelot and Clausius,
Redlich-Kwong, Soave-Redlich-Kwong), for which we are able to construct analytically the complete EoS. More-
over, we optimized the parameters appearing in the EoS in order to be precise on the coexistence zone of two
phases (i.e. on Maxwell’s construction). We investigated the performances of these EoS, and showed that, for
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a large range of pressures, Clausius (and to a lesser extent Soave-Redlich-Kwong) EoS lead to very satisfying
results, improving greatly the accuracy with respect to Van der Waals EoS.

Following this work, some improvements could be investigated. In particular, it could be of interest to
investigate possible corrections of the considered CEoS when changing the function α(T ), e.g. when choosing
α(T ) = T ν , ν < 0. Moreover, we mentioned that the work could be extended by allowing cv,0 to depend on
T . In this case, a choice has to be made for this function cv,0(T ), which could be optimized to improve the
performance of the considered complete EoS. Further, in the context of use in compressible CFD, the remaining
step would be to develop an efficient strategy for inverting the complete EoS.

A. Speed of sound

In compressible flow models, knowledge of the speed of sound is fundamental. It is defined as

(c∗)2(τ, s) def= −τ2
∂p

∂τ

∣

∣

∣

∣

s

.

Let p(τ, s) = p(τ, T (τ, s)). By the composition rule, we have

(c∗)2(τ, T ) = −τ2
(

∂p

∂τ

∣

∣

∣

∣

T

+
∂p

∂T

∣

∣

∣

∣

τ

∂T

∂τ

∣

∣

∣

∣

s

)

.

Using a Maxwell relation [9] and the chain rule, we compute

(c∗)2(τ, T ) = −τ2
(

∂p

∂τ

∣

∣

∣

∣

T

− ∂p

∂T

∣

∣

∣

∣

τ

∂p

∂s

∣

∣

∣

∣

τ

)

= −τ2
(

∂p

∂τ

∣

∣

∣

∣

T

− ∂p

∂T

∣

∣

∣

∣

τ

∂p

∂T

∣

∣

∣

∣

τ

∂T

∂e

∣

∣

∣

∣

τ

∂e

∂s

∣

∣

∣

∣

τ

)

= −τ2

(

∂p

∂τ

∣

∣

∣

∣

T

−
(

∂p

∂T

∣

∣

∣

∣

τ

)2
∂T

∂e

∣

∣

∣

∣

τ

T

)

,

where we used the definition of T def=
∂e

∂s

∣

∣

∣

∣

τ

in the last equality. We can rewrite this expression of (c∗)2 using

cv(τ, T )
def=

∂e

∂T

∣

∣

∣

∣

τ

as

(c∗)2(τ, T ) = −τ2











∂p

∂τ

∣

∣

∣

∣

T

− T

(

∂p

∂T

∣

∣

∣

∣

τ

)2

∂e

∂T

∣

∣

∣

∣

τ











= −τ2

[

∂p

∂τ

∣

∣

∣

∣

T

−
(

∂p

∂T

∣

∣

∣

∣

τ

)2
T

cv(τ, T )

]

. (39)

Note that, with Maxwell’s construction, we never handle the spinodal zone, and thus, we only consider the

EoS in the zone where
∂p

∂τ

∣

∣

∣

∣

T

is nonpositive. This guarantees that the speed of sound is positive.

In pure phases

In formula (39), all quantities are given by the EoS. More precisely, cv(τ, T ) is given for Van der Waals, the
Berthelot/Clausius, the Redlich-Kwong and the Soave-Redlich-Kwong EoS respectively by (21), (24), (27) and
(30), and the partial derivatives are given in Table 5 for each EoS.

In the mixture at saturation

In the mixture, ∂p
∂τ

∣

∣

∣

T
= 0, since p(τ, T ) = ps(T ) in the mixture, and ∂p

∂T

∣

∣

∣

τ
= (ps)′(T ). The functions (ps)′(T )

and cv(τ, T ) in the mixture are given in section 4.2, which defines all quantities in (39).
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∂p

∂τ

∣

∣

∣

∣

T

∂p

∂T

∣

∣

∣

∣

τ

Van der Waals − rT

(τ − b)2
+

2a

τ3
r

τ − b

Berthelot and Clausius − rT

(τ − b)2
+

2a

T (τ + δ)3
r

τ − b
+

a

T 2(τ + δ)2

Redlich-Kwong − rT

(τ − b)2
+

a(2τ + b)√
Tτ2(τ + b)2

r

τ − b
+

a

2T
√
Tτ(τ + b)

Soave-Redlich-Kwong − rT

(τ − b)2
+

a(σ −
√
T )2(2τ + b)

τ2(τ + b)2
r

τ − b
+

a(σ −
√
T )√

Tτ(τ + b)

Table 5. Partial derivatives of the pressure for the different EoS

B. Use of the complete cubic EoS in a low Mach number model

When we are interested in simulating low Mach number flows, for which the thermodynamical pressure is
constant, it is natural to work with the variables (τ, p) instead of (τ, T ). For some equations of state, it is
possible to invert the formula of the pressure and express the temperature as a function of (τ, p). In this case,
we can insert this expression of T in e(τ, T ) to gain

ẽ(τ, p) def= e(τ, T (τ, p)), (40)

which further leads to h(τ, p) = pτ + ẽ(τ, p). In the LMNC model [7], an important variable is the derivative of
the enthalpy with respect to τ . We can derive h with respect to τ to obtain:

ζ(τ, p) =
∂h

∂τ

∣

∣

∣

∣

p

= p+
∂ẽ

∂τ

∣

∣

∣

∣

p

= p+
∂e

∂τ

∣

∣

∣

∣

T

+
∂e

∂T

∣

∣

∣

∣

τ

∂T

∂τ

∣

∣

∣

∣

p

. (41)

B.1. Generic

We now consider the general cubic equation of state (2). Provided that the inversion of the temperature is
possible, giving thus T (τ, p), we can do the same construction as before. In order to obtain ζ(τ, p) by (41), we
need to compute the two partial derivatives of e given by (35):

∂e

∂τ

∣

∣

∣

∣

T

= (Tα′(T )− α(T ))C′(τ) = − a (Tα′(T )− α(T ))

τ(τ + d) + c(τ − d)

and
∂e

∂T

∣

∣

∣

∣

τ

= cv(τ, T ) = cv,0(T ) + Tα′′(T )(C(τ)− C(τc)).

Remark B.1 (Phase transition in complete EoS in (τ, p)). Since the pressure is the same in both fluids in the
mixture at saturation, the complete EoS hMaxwell(τ, p) is defined piecewise using the saturation values:

hMaxwell(τ, p) =

{

φ(τ, p)h(τ s˜l (p), T
s(p)) + (1− φ(τ, p))h(τ s`g (p), T

s(p)) in the mixture, i.e. τ s˜l (p) < τ < τ s`g (p),

pτ + ẽ(τ, p) otherwise,
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so that

ζMaxwell(τ, p) =







h(τs`g (p),T s(p))−h(τs

˜l (p),T
s(p))

τs`g (p)−τs

˜l
(p), in the mixture, i.e. τ s˜l (p) < τ < τ s`g (p)

Eq. (41) otherwise.

B.2. Van der Waals

From the expression (5) of the pressure, we can invert the temperature as follows

T (τ, p) =
(pτ2 + a) (τ − b)

rτ2
.

Inserting this expression in relation (22) for e, we deduce ẽ(τ, p) and thus the enthalpy and its derivative

ζ(τ, p) = p+
a

τ2
+ c0

pτ3 + a(2b− τ)

rτ3
. (42)

B.3. Clausius (and Berthelot)

From the expression (7) of the pressure, we can invert the temperature by solving a second-order equation
on T and selecting the positive root, which is given by

T (τ, p) =
p(τ − b)

2r
+

D

2r(τ + δ)
,

where we defined D
def=
√

(τ − b)(p2(τ + δ)2(τ − b) + 4ar). We can thus compute the partial derivative

∂T

∂τ

∣

∣

∣

∣

p

=
p

2r
− D

2r(τ + δ)2
+

p2(τ + δ)(τ − b)(2τ + δ − b) + 2ar

2r(τ + δ)D
,

which allows to compute ζ(τ, T ) by (41). Note that the Berthelot equation is recovered when δ = 0.

B.4. Soave-Redlich-Kwong

From the expression (9) of the pressure, we can invert the temperature by solving a second-order equation
on T and selecting the positive root, which is given by

T (τ, p) =
−aσ(τ − b) +D

rτ(τ + b)− a(τ − b)
,

where we defined D
def=
√

τ(τ2 − b2)[a (rσ2 − p(τ − b)) + prτ(τ + b)]. We can thus compute the partial derivative

∂T

∂τ

∣

∣

∣

∣

p

=
−aσ + (

√
D)′ − T (τ, p)(2rτ + rb− a)

rτ(τ + b)− a(τ − b)
,

where the derivative of
√
D with respect to τ is given by

(
√
D)′ =

1

2
√
D

{

(3τ2 − b2)
[

a(rσ2 − p(τ − b)) + prτ(τ + b)
]

+ pτ(τ2 − b2)(2rτ + rb− a)
}

which allows to compute ζ(τ, T ) by (41).
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B.5. Redlich-Kwong

From the expression (8) of the pressure, we observe that the inversion of the temperature reduces to a
third-order equation on

√
T :

r

τ − b

√
T

3
− p

√
T − a

τ(τ + b)
= 0.

Selecting the real root in Cardano’s formula, we obtain

T (τ, p) =





3

√

2
3p

F
+

F
3
√
18r





2

,

where we defined

F
def=

3

√√
3
√

27a2r4 − 4r3p3 − 9ar2, r
def=

r

τ − b
, a

def=
−a

τ(τ + b)
.

We can thus compute the partial derivative

∂T

∂τ

∣

∣

∣

∣

p

= 2
√

T (τ, p)



−
3

√

2
3pF

′

F2
+

rF′ − r′F
3
√
18r2



 ,

with the following derivatives with respect to τ

F′ = F2

[√
3(9aa′r4 + 18a2r′r3 − 2p3r′r2)

√

27a2r4 − 4r3p3
− 3a′r2 − 6ar′r

]

, r′ = − r

(τ − b)2
, a′ =

a(2τ + b)

τ2(τ + b)2

which allows to compute ζ(τ, T ) by (41).
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