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ABSTRACT

Super-resolution (SR) is an ill-posed inverse problem which con-
sists in proposing high-resolution images consistent with a given
low-resolution one. While most SR algorithms are deterministic,
stochastic SR deals with designing a stochastic sampler generating
any realistic SR solution. The goal of this paper is to show that
stochastic SR is a well-posed and solvable problem when restricting
to Gaussian stationary textures. Using Gaussian conditional sam-
pling and exploiting the stationarity assumption, we propose an ef-
ficient algorithm based on fast Fourier transform. We also demon-
strate the practical relevance of the approach for SR with a reference
image. Although limited to stationary microtextures, our approach
compares favorably in terms of speed and visual quality to some state
of the art methods designed for a larger class of images.

Index Terms— stochastic super-resolution, Gaussian textures,
conditional simulation, kriging, super-resolution with a reference
image

1. INTRODUCTION

The super resolution (SR) problem consists in generating a high-
resolution (HR) image corresponding to a given low-resolution (LR)
input image. This is a very ill-posed inverse problem that necessi-
tates an image prior model or additional information to create images
having sharp edges and rich texture details. This is a very important
problem for the entertainment industry due to the increase in reso-
lution of display screens as well as other imaging industries where
resolution is critical, notably satellite imaging and microscopy.
Different frameworks are considered in the literature: the Sin-
gle Image SR (SISR) consists in using only an LR input image and
a generic database of HR images, while SR with a reference im-
age considers an LR input image accompanied with an HR image
that presents similarity with the unknown HR input. Most contribu-
tions in SISR are based on conditional generative neural networks
[ILL 21 131 4], adversarial [S] or not, and trained using the “percep-
tual loss” [6], that is, the distance between pretrained VGG features
[7]. These references tackle zoom factor x4 or even x8. Contrary
to a classical x2 problem that can be seen as an image sharpener
problem, for such high zoom factors new image content must be
generated in accordance with the LR input, and the space of pos-
sible images becomes very large. All references then insist on the
importance of generating local textures and avoiding the “regres-
sion to the mean problem”: when favoring PSNR the optimal result
consists in a blurry image close to the mean of plausible sharp im-
ages. While SISR can be seen as local conditional texture synthesis,
a close inspection of the state-of-the-art techniques shows however
that texture modeling is absent from GANs. Indeed, the perception
loss does not favor the statistics of the textures one wishes to recon-
struct. In addition, the proposed models are generally deterministic,

which is not desirable for texture generation since it does not allow
checking the statistical consistency of the proposed solution. More
recent models propose generative networks with stochastic response
for SISR: SRFlow [8] use invertible generative flow [9]] and [10]
use Denoising Diffusion Probabilistic Models (DDPM) [11]], also
called score-based models [12]. They propose practical solutions
for stochastic SR, that is providing a stochastic sampler that outputs
any realistic solution to the SISR problem. In addition, let us note
that several recent contributions solely focus on texture SR, using
patch statistics from a reference image [[13}[14]] or a prior as spectral
content [15].

In this paper, we solve the problem of stochastic SR when re-
stricting to stationary Gaussian textures [16]. Following a similar
approach as for Gaussian texture inpainting [17, 18], assuming that
the LR input is stationary and Gaussian with a known covariance in
HR space, we propose an exact SR sampler relying on conditional
Gaussian simulation. We exploit the stationarity of both the texture
model and the zoom-out operator to obtain an efficient algorithm
based on Fast Fourier Transform (FFT). We further demonstrate ex-
perimentally the interest of the approach in the context of SR with a
reference image.

The plan of the paper is as follows. We present our framework of
SR and remind results about conditional Gaussian simulation. Then,
we focus on Gaussian stationary textures and detail how to imple-
ment efficiently the stochastic simulation for these models. Finally,
we extend the approach for SR with a reference image and compare
our results with the state of the art before concluding.

2. GAUSSIAN CONDITIONAL SIMULATION FOR
SUPER-RESOLUTION

2.1. Framework

Notations Let M,N > 2 be the size of the images. We ex-
tend all the images on Z? by periodization. We write [M] =
{0,....M — 1} and Qyuy = [M] x [N]. For X,Y € RN,
X * Y designates the discrete and periodic convolution defined by
(X*Y)(xX) = Xyeqyn X(x —y)Y(y), x € Q. For 1€ R, we

denote the symmetric A such that for x € Qyy, A(x) = A(—x). For
X € R®¥, we express by .%,(X) or X its discrete Fourier trans-

form defined by )A((X) = ZyeQM,N X(y) exp(— ZWT'”) exp(— ZWT”’)

X € Qyuy. Let us recall that %, is invertible with 92_1 = ﬁt/?z
and that % (X » Y) = % (X) © % (Y) where ©® denotes the
componentwise product.

Zoom-out operator We denote by r the factor of zoom-out (=
4,8,...). From now on we assume that M and N are multiples of r.
The loss of pixels in an image can be caused by multiple operators.
We will assume in our experiments that the degradation is caused
by the imresize function of Matlab which is used in many mod-
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Fig. 1. Different components of the Gaussian SR model. Top row: SR with a factor x 16, the images HR size is 512 x 768; Bottom row: SR
with a factor x8, the images HR size is 256 x 256. The last columns presents respectively a Gaussian SR sample and its associated kriging
and innovation components. Observe the complementarity of the the kriging component which deblurs the LR input and the innovation

component which adds independent high-frequency details.

els [3L 4, [8]]. Concretely, this operator reduces the size of an image
by weighting the pixels. If we suppose that the image is periodic, we
can split it off in a separable convolution which weights all the pixels
followed by a subsampling with stride ». We denote A = SC this
linear zoom-out operator, with C the convolution and S the subsam-
pling operator with stride r such that for U € R®v SU e R®/m/r
and for x € Q. v/, (SU)(x) = U(rx).

2.2. Gaussian conditional simulation

Let X € R be a stationary Gaussian process with distribution
A(0,T) and X;r = AX € R®/rN/r be its LR version where A is
the periodic zoom-out operator. A reduces the size of the images
and thus is not invertible. We would like to sample X|X;r. In our
further assumptions, X is supposed to be Gaussian, consequently we
will use the classical theorem recalled in [I8]):

Theorem 1 (Gaussian simulation and Gaussian kriging). Let X be
a Gaussian vector, and A be a linear operator, E(X|AX) and X —
E(X|AX) are independent. Consequently, if X is independent of X
with the same distribution, then E(X|AX) + (X — E(X|AX)) has
the same distribution as X, knowing AX. Furthermore, if X is zero-
mean, there exists A € ROM/mN/- N sych that B(X|AX) = ATAX
and E(X|AX) = ATAX ifand only if A verifies the matrix equation:

ATATA = AT (1)

This theorem is a consequence of the fact that the space of square-
integrable random variables is a Hilbert space. The assumption that
X follows a Gaussian law is crucial. As for now, the resolution of
our problem requires the computation of E(X|X;r) = E(X|AX) =
ATAX = ATX(g, where A is called the kriging matrix. A”Xg is
called the kriging component and X — AT AX the innovation compo-
nent. Therefore, stochastic SR for Gaussian textures corresponds to
simulate A”X; g + (X — ATAX). Figure[1|presents the realization
of X|Xg, titled SR Gaussian sample. This is the sum of the kriging
component which is an attachment to data and the innovation com-
ponent that adds stochastic independent high-frequency variations.
For the given LR image X r and the HR covariance I, it is just nec-
essary to compute A to sample HR versions of X g.

3. AN EFFICIENT IMPLEMENTATION IN THE
STATIONARY CASE

3.1. ADSN model and super-resolution

Our objective is to study the SR of Gaussian stationary textures. We
will focus on textures following the asymptotic discrete spot noise
(ADSN) model [T6]. Given a grayscale image U € R®*~ with mean
grayscale m € R, one defines ADSN(U) as the distribution of X =
txW where t = \/;W (U—m) is called the texton associated with U.
ADSN(U) is a Gaussian distribution with mean zero and covariance
matrix I' that represents the convolution by the kernel y = t 1.
X ~ ADSN(U) is stationary since for all x € Qyy and y € Z2,
X(x—y) Z X(x).

For a given input image U € R®~ and its LR version Uy =
AU, we would like to sample X ~ ADSN(U) conditioned on X; g =
Ui, that is, by Theorem([T}

Xsr = ATUg + (X — ATAX)

where X ~ ADSN(U), and A is the kriging matrix associated with
ADSN(U) = .4(0,T). We will explain how to implement it effi-
ciently in the following.

3.2. Structure of the problem induced by stationarity

Fork,C € [r], let Qv = {(k + ir,C + jr), i, j € [M/r] x [N/r]} <
Qyn be the subgrid of Qyy having stride r and starting at (k, £).
Note that each subgrid Qﬁfl\', has the same number of pixels as the

LR image domain Qy/,.n/;-

Proposition 1 (Structure of the kriging matrix). Y € R®M/mv/r
ATY e ROV corresponds to a convolution on each of the shifted
subgrids Q’;f{, k,€ € [r]. More precisely, A is fully determined by
its r* first columns A(k, €) = Aq,, oy (k0> K, € € [r] and

(ATY) (@) = Ak, 0) * Y.



Input: Animage Ur € R®M/N/r | r the zoom factor, t the
convolution kernel of the ADSN model, ¢ the kernel
of the convolution of the zoom-out operator A = SC

1 Step 1: Computation of kriging matrix A

2 Store per(t) the periodic component of t;

3 Store the convolution kernels y = per(¢) * pér(¢), ¢ x y
and k = ¢ x y * ¢ (computed in Fourier);

4 for (k,€) € [r]* do

s | b=A(S(ernC k- -0);
~ b[#0
6 Ak, £) [k £ 0] < %;

7 end

8 Step 2: Sampling of one SR version of Urg;

9 Generate W € R®¥ following a Gaussian standard law;
10 X —t+xW;

11 XLR «— AX,

12 for each shifted subgrid by (k, €) € [r]* do

B | Xa(QyR) <

757 (O~ %) © (k.0 ) + X(AE):

14 end
Output: Xsg

Algorithm 1: Pseudo-code of the Gaussian simulation for SR.
To generate several samples, only the step 2 should be re-run.

The proof of Proposition[T]relies on the fact that both X and X =
AX are stationary on their respective domains. Consequently, it is
sufficient to solve the r? equations

ATA" Ak, €) = ATq,, yx(ke)» kL€ [r] ()

to fully determine the kriging component of X|X;r. Remark that the
matrix A is determined by MN values, the size of the HR image.

3.3. Resolution of the systems

To determine the kriging component, it is sufficient to solve the r?
systems of Equation (Z). We will use the Lemmal([T}

Lemma 1 (Convolution and subsampling). If B is a 2D convolution
on Quy by the kernel B € Qyn, SBST is a convolution on Qut/rn/r
by the kernel S € Qu)rn/y-

By Lernrna AT AT is a convolution matrix with kernel k = S(c¢ *
¥ * €) where c is the kernel of C. The Equations (Z) become

k* Ak, 0) = Alq,,  xko)» kL€ [1] 3)
and we can easily pseudo-invert the convolution by component-wise
division in the Fourier domain.

The full FFT-based procedure is given by Algorithm[I] Note that
to avoid artefacts due to non-periodicity of the images, as classically
done we use the periodic plus smooth decomposition [19] to make
the spectral computations. To work with non-zero mean images, the
mean grayscale of the LR image should be subtracted at the begin-
ning of the algorithm and added at the end. For RGB color images,
the operations should be led on each channel. Note that the Gaussian
noise W to generate the ADSN textures should be the same for each
channel [[16], as done for the results prensented in Figure[]

4. SUPER-RESOLUTION WITH A REFERENCE IMAGE

In the previous theoretical sections we used the ground truth HR ver-
sion U to estimate the distribution of the Gaussian texture, making
the process impractical. In this section we demonstrate that the ap-
proach extends to the context of SR with a reference image, the ref-
erence image being used in place of the ground truth for modeling
the ADSN distribution. Given an LR texture U g = AU € R®/r/r
and a reference HR texture Uy; € R~ we simply replace the un-
kown ADSN kernel t = \/JW (U — m) by tes = ﬁ(Urer — Myet)
in Algorithm [I} assuming that the two microtextures are similar.
We sample Xsg = A’Urg + (X — ATAX) where X has the dis-
tribution ADSN(Uy,¢) and A is the kriging matrix associated with
ADSN(Uyes).

Two SR experiments are given in Figure [2] where we evaluate
and compare our results with two competitive methods: Wasserstein
patch prior (WPP) [13] and SRFlow [8§]. WP]Fﬂ is deterministic and
proposes to use optimal transport in patch space in a variational for-
mulation for SR. The routine needs a reference image similar to ours.
SRFIOV&E] is a normalizing flow for sotchastic SR trained on natural
images. The network transforms a standard Gaussian latent variable
into a SR sample given the LR image. It depends on a temperature
hyperparameter 7 € [0, 1] that modulates the variance of the latent
variable. Both methods require GPU and experiments were con-
ducted using a NVIDIA V100 GPU. Visually, there are some issues
in the borders of the image generated by WPP and the output texture
tends to be blurry. The results of SRFlow with high temperature are
too sharp for the Gaussian texture input, probably a bias induced by
the training set of natural images that are often piecewise regular.
The images obtained with SR Gaussian (ours) have a more granular
appearence, due to the innovation component. However, the texture
of details that breaks the stationary assumptions are not retrieved as
in the white spot in the second image. Let us stress here that both
WPP and SRFlow are designed for generic natural images while our
method only works on Gaussian textures.

To evaluate the different methods we report in Figure [2] the
metrics Peak Signal to Noise Ratio (PSNR), Structural SIMilarity
(SSIM) and Learned Perceptual Image Patch Similarity (LPIPS).
PSNR is the logarithm of the mean-squared error (MSE) between
two images. SSIM is a metric which quantifies the similarity of two
images studying their luminance, contrast and structure [20]. LPIPS
is the norm between features of a pre-trained classification network
and quantifies the perceptual similarity between two images [21].
As illustrated by the results of Figure 2] PSNR and SSIM are not
adapted to evaluate the quality of the texture samples in our context.
Indeed the best solutions for this metric are always the most blurry
solutions, namely the bicubic interpolation, SRFlow with tempera-
ture T = 0, and the kriging component. The LPIPS metric is more
relevant for SR of textures. For this metric our Gaussian SR results
are the best for both examples. Note also that our algorithm runs
very quickly using only a CPU.

To advocate for the irrelevance of the PSNR for stochastic tex-
ture SR, in our Gaussian framework it can be shown that the MSE
is lower for the blurry kriging component than for the perfect SR
samples.

Proposition 2 (Kriging component and MSE). Let U € R®MN be a
Gaussian texture, U g = AU its LR version, U a reference image,

Thttps://github.com/johertrich/Wasserstein_Patch_
Prior

“Code and weights from https://github.com/andreas128/
SRFlow
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LR image Reference image HR image

Evaluation metrics

PSNR (dB)1? SSIM{  LPIPS| TIME (s)
Kriging component 28.42 0.56 0.69
Bicubic 30.21 0.65 0.54
SRFlow (7 = 0) 28.55 0.54 0.63 0.47 (GPU)
Gaussian SR (ours) 26.25 + 0.05 0.42 +0.00 0.12 + 0.01 0.01 (CPU)
WPP 24.70 0.39 0.22 64.0 (GPU)

SRFlow(r = 0.9) 27.33 £0.34 0.48 £ 0.02 0.20 + 0.03 0.47 (GPU)

LR image Reference image HR image

Evaluation metrics

PSNR (dB)1 SSIM1  LPIPS| TIME (s)
Kriging component 21.78 0.24 0.87
Bicubic 23.52 0.45 0.70
SRFlow(t = 0) 21.84 0.24 0.87  0.55 (GPU)
Gaussian SR (ours) 18.99 +0.05 0.14 + 0.01 0.25+ 0.01 0.02 (CPU)
WPP 21.12 0.21 0.42  77.0 (GPU)

SRFlow(r = 0.9) 1899 £+ 0.38 0.14 £+ 0.01 0.39 + 0.04 0.55 (GPU)

Kriging component

Gaussian SR (ours)

Bicubic SRFlow (1 = 0)

WPP SRFlow (t = 079)

Kriging component Bicubic SRFlow (1t = 0)

Gaussian SR (ours) WPP

Slow (r =079)

Fig. 2. Gaussian SR with a reference image for a factor x8 and comparison with other methods. Top: HR size 208 x 208. Bottom: HR
size 256 x 256. For the stochastic methods SR Gaussian and SRFlow, the table has been realized on 200 samples. Note that our method
outperforms in terms of the perceptual LPIPS metric and execution time, while PSNR and SSIM are optimal for blurry images, illustrating

that these metrics are not relevant for texture SR.

I such that ADSN(Uy) = A(0,T) and A associated to T. Let
Xsr be a random image following the distribution of the SR samples
obtained with Algorithm[I} then

Exg (U= Xsr|*) = [U—A"Ur|* + Tr(I' — ATATATA)
> U - AU~

In other words, the kriging component ATU g has a lower MSE in
expectation than the perfect SR samples Xgg.

The inequality is due to the positiveness of the covariance matrix
I' — ATATA” A of the innovation component. This property is con-
sistent with the fact that computing E(X|X{ ) aims to minimize the
mean squared error. This is a specific illustration of the well-known
regression to the mean problem in SR [22]]. The same effect can be
observed for the network SRFlow with temperature 7 = 0 which
solves deterministically the MSE problem [8§]).

5. CONCLUSION

This study solves the problem of stochastic SR for stationary Gaus-
sian textures. Such texture models constitute a base case for stochas-
tic SR for which all the computations are accessible, leading to an
efficient algorithm for stochastic SR and stochastic SR with a refer-
ence image. Our method outperforms some state of the art methods
in terms of execution time and LPIPS metrics and we have demon-
strated experimentally that the PSNR and the SSIM metrics are not
compatible with the evaluation of the perceptual quality of SR sam-
ples. This illustrates the necessity to study further the performance
on microtextures of generic stochastic SR models. Furthermore, the
presented method could be applied for other inverse problems in-
volving non invertible operators of the form convolution followed
by subsampling.
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