Leverage-driven cycles and complex dynamics in a model with endogenous network formation

Mauro Napoletano^{1,2}

¹OFCE-Sciences Po (Sophia-Antipolis, France)

²SKEMA Business School (Sophia-Antipolis, France)

Leverage and fluctuations in financial markets

- Leverage is positively correlated with debt over equity.
- Higher leverage → higher profits but also higher probability of bankruptcy! Banks typically set a leverage constraint arbitrating between the two objectives.
- If leverage constraints are not binding banks create links and invest in a common asset. This investment pushes the asset price up.
- If leverage constraints are binding banks destroy links, and disinvest in the the common asset. This pushes the asset price down.
- Leverage constraints are adjusted following changes in leverage

 $\Gamma_{k,t+1} = \Gamma_{k,t} - a \Delta \eta_{k,t} + \xi$ where $\xi \sim \mathcal{N}(\mathbf{0}, \chi)$

→ *a* is intensity of adjustment and χ is the intensity of uncertainty with respect to a change in leverage.

Extreme aggregate price fluctuations from micro uncertainty

Phase transitions

- Small uncertainty →price returns distribution is Gaussian.
- Intermediate uncertainty \rightarrow fat-tailed price returns distribution.
- Large uncertainty →price returns distribution is back to Gaussian.